IEEE TRANSAC I IONS ON SOF IWARE ENGINEERING, VOL. 1BD, 2019

SEQUENCER: Sequence-to-Sequence Learning
for End-to-End Program Repair

Zimin Chen, Steve Kommrusch, Michele Tufano,
Louis-Noél Pouchet, Denys Poshyvanyk and Martin Monperrus

Abstract—This paper presents a novel end-to-end approach to program repair based on sequence-to-sequence learning. We devise,
implement, and evaluate a technique, called SEQUENCER, for fixing bugs based on sequence-to-sequence learning on source code.
This approach uses the copy mechanism to overcome the unlimited vocabulary problem that occurs with big code. Our system is
data-driven; we train it on 35,578 samples, carefully curated from commits to open-source repositories. We evaluate SEQUENCER on
4,711 independent real bug fixes, as well on the Defects4J benchmark used in program repair research. SEQUENCER is able to
perfectly predict the fixed line for 950/4,711 testing samples, and find correct patches for 14 bugs in Defects4J benchmark.
SEQUENCER captures a wide range of repair operators without any domain-specific top-down design.

Index Terms—program repair; machine learning.

1 INTRODUCTION

EOPLE have long dreamed of machines capable of writ-
Ping computer programs by themselves. Having ma-
chines writing a full software system is science-fiction but
teaching machines to modify an existing program to fix a
bug is within the reach of current software technology; this
is called automated program repair [1].

Program repair research is very active and dominated
by techniques based on static analysis (e.g., Angelix [2]) and
dynamic analysis (e.g., CapGen [3]). While great progress
has been achieved, the current state of automated program
repair is limited to simple small fixes, mostly one line
patches [3], [4]. These techniques are heavily top-down,
based on intelligent design and domain-specific knowledge
about bug fixing in a given language or a specific appli-
cation domain. In this paper, we also focus on one line
patches, but we aim at doing program repair in a language-
agnostic generic manner, fully relying on machine learning
to capture syntax and grammar rules and produce well-
formed, compilable programs. By taking this approach, we
aim to provide a foundation for connecting program repair
and machine learning, allowing the program repair com-
munity to benefit from training with more complete bug
datasets and continued improvements to machine learning
algorithms and libraries.

As the foundation for our model, we apply sequence-
to-sequence learning [5] to the problem of program repair.
Sequence-to-sequence learning is a branch of statistical ma-

o Zimin Chen and Martin Monperrus are with KTH Royal Institute of
Technology, 114 28 Stockholm, Sweden
E-mail: {zimin, monp}@kth.se

o Steve Kommrusch and Louis-Noél Pouchet are with Colorado State Uni-
versity, Colorado 80523, USA
Email: {steveko, pouchet@cs.colostate.edu

e Michele Tufano and Denys Poshyvanyk are with The College of William
and Mary, VA 23185, USA
Email: {mtufano, denys|@cs.wm.edu

o Zimin Chen and Steve Kommrusch have equally contributed to the paper
as first authors.

Manuscript submitted February 11, 2019

chine learning, mostly used for machine translation: the
algorithm learns to translate text from one language (say
French) to another language (say Swedish) by generaliz-
ing over large amounts of sentence pairs from French to
Swedish. The training data comes from the large amount of
text already translated by humans, starting with the Rosetta
stone written in 196 BC [6]. The name of the technique is
explicit: it is about learning to translate from one sequence
of words to another sequence of words.

Now let us come back to the problem of programming;:
we want to learn to 'translate’” from one sequence of pro-
gram tokens (a buggy program) to a different sequence
of program tokens (a fixed program). The training data is
readily available: we have millions of commits in open-
source code repositories. Yet, we still have major challenges
to overcome when it comes to using sequence-to-sequence
learning on code: 1) the raw (unfiltered) data is rather noisy;
one must deploy significant effort to identify and curate
commits that focus on a clear task; 2) contrary to natural
language, misuse of rare words (identifiers, numbers, etc)
is often fatal in programming languages [7]; in natural
language some errors may be tolerable because of the intelli-
gence of the human reader while in programming languages
the compiler (or interpreter) is strict 3) in natural language,
the dependencies are often in the same sentence (“it” refers
to “dog” just before) , or within a couple of sentences, while
in programming, the dependencies have a longer range: one
may use a variable that has been declared dozens of lines
before.

We are now at a tipping point to address those chal-
lenges. First, sequence-to-sequence learning has reached a
maturity level, both conceptually and from an implementa-
tion point of view, that it can be fed with sequences whose
characteristics significantly differ from natural language.
Second, there has been great recent progress on using vari-
ous types of language models on source code [8]. Based on
this great body of work, we present our approach to using
sequence-to-learning for program repair, which we created

IEEE TRANSAC I IONS ON SOF IWARE ENGINEERING, VOL. 1BD, 2019

to repair real bugs from large open-source projects written
in the Java programming language.

Our end-to-end program repair approach is called SE-
QUENCER and it works as follows. First, we focus on one-
line fixes: we predict the fixed version of a buggy program-
ming line. For this, we create a carefully curated training
and testing dataset of one-line commits. Second, we devise
a sequence-to-sequence network architecture that is specif-
ically designed to address the two main aforementioned
challenges. To address the unlimited vocabulary problem,
we use the copy mechanism [9]; this allows SEQUENCER to
predict the fixed line, even if the fix contains a token that
was too rare (i.e., an API call that appears only in few cases,
or a rare identifier used only in one class) to be considered
in the vocabulary. This copy mechanism works even if the
fixed line should contain tokens which were not in the train-
ing set. To address the dependency problem, we construct
abstract buggqy context from the buggy class, which captures
the most important context around the buggy source code
and reduces the complexity of the input sequence. This
enables us to capture long range dependencies that are
required for the fix.

We evaluate SEQUENCER in two ways. First, we compute
accuracy over 4,711 real one-line commits, curated from
three open-source projects. The accuracy is measured by
the ability of the system to predict the fixed line exactly as
originally crafted by the developer, given as input the buggy
file and the buggy line number. Our golden configuration
is able to perfectly predict the fix for 950/4,711 (20%) of the
testing samples. This sets up a baseline for future research in
the field. Second, we apply SEQUENCER to the mainstream
evaluation benchmark for program repair, Defects4]. Of the
395 total bugs in Defects4], 75 have one-line replacement
repairs; SEQUENCER generates patches which pass the test
suite for 19 bugs and patches which are semantically equiv-
alent to the human-generated patch for 14 bugs. To our
knowledge, this is the first report ever on using sequence-to-
sequence learning for end-to-end program repair, including
validation with test cases.

Overall, the novelty of this work is as follows. First, we
create and share a unique dataset for evaluating learning
techniques on one-line program repair. Second, we report on
using the copy mechanism on seq-to-seq learning on source
code. Third, on the same buggy input dataset, SEQUENCER
is able to produce the correct patch for 119% more samples
than the closest related work [10].

To sum up:

e Our key contribution is an approach for fixing bugs
based on sequence-to-sequence learning on token se-
quences. This approach uses the copy mechanism to
overcome the unlimited vocabulary problem in source
code.

o We present the construction of an abstract buggy context
that leverages code context for patch generation. The
input program token sequences are at the level of full
classes and capture long-range dependencies in the fix
to be written. We implement our approach in a publicly-
available program repair tool called SEQUENCER.

o We evaluate our approach on 4,711 real bug fixing tasks.
Contrary to the closest related work [10], we do not
assume bugs to be in small methods only. Our golden

2

trained model is able to perfectly fix 950/4,711 testing
samples. To the best-of-our knowledge, this is the best
result reported on such a task at the time of writing this
paper [10][11][12].

o We evaluate our approach on the 75 one-line bugs of
Defects4], which is the most widely used benchmark
for evaluating programming repair contributions. SE-
QUENCER is able to find 2,321 patches for these bugs,
761 compile successfully, 61 are plausible (they pass the
full test suite) and 18 are semantically equivalent to the
patch written by the human developer.

o We provide a qualitative analysis of 8 interesting repair
operators captured by sequence-to-sequence learning
on the considered training dataset.

2 BACKGROUND ON NEURAL MACHINE TRANSLA-
TION WITH SEQUENCE-TO-SEQUENCE LEARNING

SEQUENCER is based on the idea of receiving buggy code
as input and producing fixed code as output. The concept
is similar to neural machine translation where the input is
a sequence of words in one language and the output is a
sequence in another language. In this section, we provide a
brief introduction to neural machine translation (NMT).

In neural machine translation, the dominant technique is
called “sequence-to-sequence learning”, where “sequence”
refers to the sequence of words in a sentence. An early
example of a sequence-to-sequence network [5] used a re-
current neural network to read in tokens and to generate an
output sequence, as shown in Figure 1. Let us consider that
the input tokens are denoted x;, and after receiving all of
the input tokens a special <EOS> token is used. The output
tokens are denoted y;, and at training time the output tokens
are fed into the network to learn proper generation of the
next token. In the following equations, h; is the hidden state
of a recurrent neural network, W"® is the weight matrix
that computes how the input z, affects the hidden state,
Whh s the weight matrix related to recurrence (i.e., how
the previous hidden state affects the current hidden state),
and W¥" is the weight matrix used to predict which token
should be output given the hidden state. All weights are
learned with supervised learning and back-propagation:

ht = O'(th.’l,‘t + Whhht_l)
yr = W¥"h,

A softmax function is then used to turn the y; values
into probabilities to choose the most likely token from a
learned vocabulary. In this example, one can see how the
weight matrices capture the learning of common patterns;
after processing the input sequence, the hidden state A <cos>
encodes the most likely initial token to begin the output and
each subsequent h; uses the W matrices to predict the most
likely next token given the input as well as preceding tokens
just produced in the output. The W matrices thus learn the
long range dependencies in the full input.

A problem with the sequence generation described
above is that only tokens which are in the training set
are available for output as y;. In the case of natural hu-
man language, words such as proper names (e.g., Chicago,
Stockholm) may be so rare that they do not appear in the
training vocabulary, but those words may be necessary for

IEEE TRANSACTIONS ON SOF ITWARE ENGINEERING, VOL. 1BD, 2019

w X Y z <EOS>

A B [<EOS> w X Y z

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

Fig. 1: Figure from Sutskever, et al. [5] showing example of
early sequence-to-sequence model

proper output. One successful approach to overcome the
vocabulary problem is to use a copy mechanism [9]. The
basic intuition behind this approach is that rare words not
available in the vocabulary (i.e., unknown words, referred as
<unk>), may be directly copied from the input sentence over
to the output translated sentence. This relatively simple idea
can be successful in many cases - especially when translating
sentences containing proper names - where these tokens can
be easily copied over.

For example, let’s consider the task of translating the
following English sentence "The car is in Chicago” to French.
Let’s also assume that all the tokens in the sentence are in the
vocabulary, except "Chicago”. An NMT model might output
the following sentence: "La wvoiture est a <unk>". With a
copy mechanism, the model would be able to automatically
replace the unknown token with one of the tokens from the
input sentence, in this case, "Chicago”.

The copy mechanism can be particularly relevant for
source code, where the size of the vocabulary can be several
times the size of a natural language corpus [13]. This results
from the fact that developers are not constrained by any
vocabulary (e.g., English dictionary) when defining names
for variables or methods. This leads to an extremely large
vocabulary containing many rare tokens, used infrequently
only in specific contexts. Thus, the copy mechanism applied
to source code allows a system to generate rare out-of-
vocabulary identifier names and numeric values as long as
they are somewhere in the input. Furthermore, in natural
language, a human recipient may be able to use context to
cope with one missing word in an automatically translated
sentence. In a programming language, the compiler does
not make any semantic inference, and the generation has
to be complete. For example, if the code to predict is "if
(i < num_cars)", then generating "if (i < int)" is not going
to work at all. We discuss the mathematics of the copy
mechanism in the context of SEQUENCER in Section 3.3.1.
Readers interested in more detail are referred to the work
by See et al. [9].

Tufano et al. [10] proposed using NMT with the goal of
learning bug-fixing patches by translating the entire buggy
method into the corresponding fixed method. Before the
translation, the authors perform a code abstraction process
which transforms the source code into an abstracted version,
which contains: (i) Java keywords and identifiers; (ii) fre-
quent identifiers and literals (a selection of 300 idioms); (iii)
typified IDs (e.g., METHOD_1, VAR_2) that replace identifiers
and literals in the code. In Section 6 we highlight differences
and improvements introduced in SEQUENCER.

3

Another approach to addressing the vocabulary size
problem in code is to use byte pair encoding (BPE), which
has been widely used in NLP and also applied to source
code [14]. For SEQUENCER, we did preliminary experiments
with BPE to solve the unlimited vocabulary problem, but
our early results showed that it is less effective than the
copy mechanism.

3 APPROACH TO USING SEQ-TO-SEQ LEARNING
FOR REPAIR

SEQUENCER is a sequence-to-sequence deep learning model
that aims at automatically fixing bugs by generating one-
line patches (i.e., the bug can be fixed by replacing a single
buggy line with a single fixed line). We do not consider line
deletion because: 1) it does not require a method for token
generation (and is thus less interesting to our research)
and 2) if desired, SEQUENCER could be combined with
the lightweight Kali [11] to include line deletion. We do
not consider line addition because spectrum based fault
localization, used in most of the related work, is not effective
for line addition patches [15]. We note that in 64% of all
395 bugs in Defects4] are fixed by replacing existing source
code [16]. Given a Software System with a faulty behav-
ior (i.e., failing test case), state-of-the-art fault localization
techniques are used to identify the buggy method and the
suspicious buggy lines. Such techniques have been shown
to predict the correct buggy line as one of the top 10 candi-
dates in 44% of the time [15]. SEQUENCER then performs
a novel Buggy Context Abstraction (Section 3.2) process
which intelligently organizes the fault localization data (i.e.,
buggy classes, methods, and lines) into a representation that
is concise and suitable for the deep learning model yet able
to preserve valuable information regarding the context of
the bug, which will be used to predict the fix. The represen-
tation is then fed to a trained sequence-to-sequence model
(Section 3.3.1) which performs Patch Inference (Section 3.4)
and is capable of generating multiple single-lines of code
that represent the potential one-line patches for the bug.
Finally, SEQUENCER in the Patch Preparation (Section 3.5)
step generates the concrete patches by formatting the code
and replacing the suspicious line with the proposed lines.
Figure 2 shows the aforementioned steps both for the train-
ing phase (left) and inference phase (right). In the remainder
of this section we will discuss the common steps as well as
those specific for training and inference.

341

Given a buggy system b°, and test suite ¢, we assume a
fault localization technique, F'L, which identifies an ordered
set of potential bug locations I = {l3,12,...}, where each
location [; consists of the buggy class b§, buggy method b;",
and the buggy line b:

I ={loc|loc e FL(b° 1)}
Vi € 1,1 = {05, b7, bt} and bl C b C B¢

1771)

Problem Definition

The problem is to predict (i.e, generate) a fixed line f,
where [; is the true bug location, such that by replacing b
with f! in b7, the resulting system f* passes the test suite
and the bug is considered fixed. SEQUENCER tackles this

IEEE TRANSACTIONS ON SOF ITWARE ENGINEERING, VOL. 1BD, 2019

Human commits

]

Find single-line repair from
buggy to fixed code

Buggy source code Fixed line

SequenceR

Buggy context
abstraction

) 2

Sequence to
sequence network

¥

Update parameters with
back-propagation

Training

Use trained network

to repair bugs

Bug with source code
and failing test case

Fault localization

Ranked suspicious lines

SequenceR

Buggy context
abstraction

L 2

Sequence to
sequence network

L 2

Patch preparation

Patch candidates 1

Patch validation

Inference

Fig. 2: Overview of our approach using sequence-to-sequence learning for program repair.

1 class Foo { 1 class Foo { 1 class <unk> {

2 int i =0; 2 int i =0; 2 int i =0;

3 int bar; 3 int bar; 3 int <unk>;

4 Foo (int bar){ 4 Foo (int bar){ 4 <unk> (int <unk>){

5 this .bar = bar; 5 5

6 } 6 int decrement(){ 6 int <unk>(){

7 int decrement(){ 7 7

8 return bar—1; 8 int increment(){ 8 int increment(){

9 } 9 <START_BUG> 9 <START_BUG>
10 int increment(){ 10 return bar—1; 10 return <unk>—1;
11 return bar—1; 11 <END_BUG> 11 <END_BUG>
12} 12) 12}

13} 13} 13}

Listing 1: Original code

Listing 2: abstract buggy context

Listing 3: Context with <unk>

Fig. 3: Illustration of the abstract buggy context step in SEQUENCER. € is highlighted in yellow, b™ is highlighted in orange

and ' is highlighted in red.

problem by taking as input the fault localization data (i.e.,
I ={li,ls,...}) of a buggy system and attempts to generate
fixed line fll for each l; in order. The b°, ¢, [, [;, b$, b}", bﬁ, ff
and f* notations are used throughout this work.

3.2 Buggy Context Abstraction

The context of a bug plays a fundamental role in understand-
ing the faulty behavior and reasoning about the possible
fix. During bug-fixing activities, developers usually identify
the buggy lines, then analyze how they interact with the
rest of the method’s execution, and observe the context (e.g.,
variables and other methods) in order to reason about the
possible fix and possibly select several tokens in the context
to build the fixed line [17].

SEQUENCER mimics this process by constructing the
abstract buggy context and organizing the fault localization

data into a representation that is concise yet retains the
necessary context that allows the model to predict the pos-
sible fix. During this process SEQUENCER needs to balance
two contrasting goals: (i) reduce the buggy context into a
reasonably concise sequence of tokens (since sequence-to-
sequence models suffer from long sentences [18]), (ii) while
at the same time retaining as much information as possible
to allow the model to have enough context to predict a
possible fix.

Given the bug locations | = {l1,ls,...}, for each I; €
I,l; = {b$, b bl}, SEQUENCER performs the following
steps:

Buggy Line <START_BUG> is inserted before the first token
in the buggy line b} and <END_BUG> is inserted after the
last token. The rationale is that we would like to propa-
gate the information extracted by the fault localization

IEEE TRANSACTIONS ON SOF ITWARE ENGINEERING, VOL. 1BD, 2019

technique and indicate to the model what is a buggy
line. In doing so, we mimic developers who focus on
the buggy lines during their bug-fixing activities.

Buggy Method The remainder of the buggy method b}"
is kept in the representation. The rationale is that the
method provides crucial information on where the
buggy line is placed and its interaction with the rest
of the method.

Buggy Class From the buggy class b§ we keep all the in-
stance variables and initializers, along with the signa-
ture of the constructor and non-buggy methods even
if they are not called in the buggy method. The body
of the non-suspcious methods is stripped out. The
rationale for this choice is that the model could use
variables and method signatures as potential sources
when building the fixed line f}.

After these steps, SEQUENCER performs tokenization
and truncation to create the abstract bugqy context. Trunca-
tion is used to limit the abstract buggy context to a predeter-
mined size in cases where the input sequence is too long.
This allows SEQUENCER to process input files of arbitrary
size without running out of memory. The truncation process
can be summarized as: 1) the truncation size will be chosen
such that most input files do not require truncation 2) if
the buggy line itself is over the truncation limit, as many
tokens as possible from the start of the line are included
up to the limit 3) otherwise, the buggy line is included
in abstract buggy context and twice as many tokens are
included before the line as after the line. For example, if the
truncation limit is 1,000 tokens and a 5,000 token file has a
buggy line with 100 tokens (including the START_BUG and
END_BUG tokens) in the middle of the file, then abstract
bugqy context will consist of 600 tokens before the buggy
line, then 100 tokens of the buggy line, then 300 tokens after
the buggy line. Generally, truncation will delete the actual
class definition from the input, but context near the buggy
line is preserved to aid in patch generation.

The abstract bugQy context represents the input to the
sequence-to-sequence network which will be used to predict
the fixed line. Internally, abstract buggy context is represented
as a sequence of tokens belonging to a vocabulary V. The
out-of-vocabulary tokens (token ¢ V') are replaced with the
unknown token <unk>. In Section 3.6 we describe how we
empirically derive the vocabulary V' and in Section 3.3.1 we
explain how the copy mechanism helps in overcoming the
unknown tokens problem.

Figure 3 shows the output of this process. The original
class is presented in Listing 1 and Listing 2 displays the
buggy class after Buggy Context Abstraction. Listing 3 il-
lustrates the class when tokens that are out of vocabulary
are replaced with the unknown token <unk>. Programming
language tokens such as class and int are not replaced
with <unk> because they are part of the vocabulary. Other
in-vocabulary tokens include common variable names such
as 1. Our sequence-to-sequence network receives Listing 2
as input.

3.3 Sequence-to-Sequence Network

In this phase we train SEQUENCER to learn how to generate
a fix for a given bug. Specifically, we train a Sequence-to-

Predicted fixed line
N
(|| Generator with
copy attention

—

Token

Copy
Generator

Selector

Bidirectional
LSTM 2 layers

Token
Embedding

Global
Attention

Neural
network

Attention
components

Decoder
components
Encoder
components
Token Sequence

LSTM 2 layers

Token
Embedding

context with <unk>
Replace out of

Replace out of
vocab tokens
with <unk>

vocab tokens
with <unk>

LI e B |
‘ ‘ ‘ abstract buggy context ‘ l ‘

Fig. 4: Sequence-to-sequence model used in SEQUENCER.

Sequence Network with Encoder-Decoder model (with at-
tention and copy mechanism) to translate the abstract buggy
context of a bug to the corresponding target fixed line f;. To
train such a network we rely on a large dataset of bug fixes
mined from different sources, explained in Section 4.3. The
bug fixes are divided into training and testing data, which
are used to train and evaluate the Sequence-to-Sequence
Network described in Section 3.3.1.

3.3.1 Model

Figure 4 shows our model for sequence-to-sequence learn-
ing to create Java source code patches. The basis of our
model is a recurrent neural network similar to a natural
language processing architecture [5]. During training, the
source token sequence X = [x1,...,&,] (i.e., abstract buggy
context) is provided to the encoder, where n is the token
length of abstract buggy context. Then, the decoder produces
the target sequence Y = [y1,...,Ym] (e, the fixed line),
where m is the token length of the fixed line. Back prop-
agation is used to update the parameters in the network
with stochastic gradient decent during training [19]. The
trained parameters are unchanged during inference (patch
generation in our case).

Encoder The encoder is a recurrent neural network using
LSTM gates to process the input [20]. It is a bidirectional en-
coder which allows the encoding for a token to incorporate
information from other tokens both before and after it in the
input data [21]. The encoder converts the source sequence
X = [1, ..., z,] into a sequence of encoder hidden states h;
using a learnable recurrence function g.. After reading the
last token, the last hidden state, h?, is used as the context
vector c for use in initializing the decoder [22]:

hi = ge(wi, hi_1); ey

Decoder The decoder is also a recurrent neural network
using LSTM gates. When initialized by the encoder, it begins
production of the patch candidate by receiving the special
start token as input yg. For each previous output token y;_1,
the decoder updates its hidden state h;l using the learnable
recurrence function gy [22]:

h_? = !]d(?/j—h h_;'lflr C) (2)

The initial value h{ is provided by a learnable bridge
function of the encoder state. The decoder states h;l are

IEEE TRANSAC I IONS ON SOF IWARE ENGINEERING, VOL. 1BD, 2019

used in for token generation by the attention and copy
mechanisms in Equation 4 and Equation 5. The decoder 2
stops generating new tokens when the last token generatedi
by the model is a special end-of-sequence token. 5
Attention In addition, we use an attention mechanism
that provides a way to create a more specific context vector
c; for each output token y; from the decoder using a linear
combination of the hidden encoder states h{ [23]:

n
— Jpe
G = E :aihi
i=1

Where «] represents learnable attention weights. This con-
text vector c¢; is used by a learnable function g, to allow
each output token y; to pay "attention" to different encoder
hidden states when predicting a token from vocabulary V:

(4)

Copy In Section 2 we presented the intuition behind the
copy mechanism, while in this section we describe how
it operates during patch generation. The copy mechanism
can significantly improve the performance of the system by
allowing the model to select a token from any of the tokens
provided in the abstract buggy context, even when the tokens
are not contained in the training vocabulary. We empirically
show the improvements offered by this approach by com-
paring it to the vanilla sequence-to-sequence model without
a copy mechanism in Section 4.4.2. The copy mechanism
contributes to Equation 4 to produce a token candidate. This
component calculates pye,, the probability that the decoder
generates a token from its initial vocabulary. And 1 — pgen
is the probability to copy a token from the input tokens
depending on the attention vector o’ in Equation 3 [9]:

®)

Py (yj | Yj—1,Yj—2 50, ¢5) = ga(h, yj—1,¢5)

Pgen = gc(h;la Yt—1, Cj) (5)

P(y;) = pgen Py (y;) + (1 = pgen) Y, al (6)

11T =Y

g. in Equation 5 is learnable function. Using Equation 6, the
output token y; for the current decoder state is selected from
the set of all tokens that are either: 1) tokens in the training
vocabulary (including the <unk> token) or 2) tokens in the
abstract buggy context. Although there are no <unk> targets
in the training set for patches, if the Py computation is
very uncertain which token is correct, it may happen to
have a high likelihood for <unk>. If at the same time, pgen
is high then a <unk> token will be produced as the copy
mechanism did not replace it. Such outputs are discarded as
discussed in Section 3.5.

3.4 Patch Inference

Once the sequence-to-sequence network is trained, it can be
used to generate patches for projects outside of the training
dataset. During patch inference, we still generate abstract
buggy context for the bug, as described in Section 3.2. But
we will use beam search to generate multiple likely patches
for the same buggy line, as done in related work [10],
[24]. Beam search works by keeping the n best sequences
up to the current decoder state. The successors of these
states are computed and ranked based on their cumulative

return 1;
return i;

// discarded
return bar+1;
return Foo.bar;

return 1 ;

return i ;

return <unk> ;
return bar + 1 ;
return Foo . bar ;

return 1 ;

return i ;

return <unk> ;

return <unk> +1 ;
return <unk> . <unk>;

Listing 5:
Network output

Listing 4: Without
copy mechanism

Listing 6: After
patch preparation

Fig. 5: Patch preparation step using copy mechanism

probability; and the next n best sequences are passed to
next decoder state. n is often called the width or beam
size, and beam search with an infinite n corresponds to
doing a complete breath-first-search. In Listing 5, we have
an example of predictions with beam size 5 for the bug
presented in Listing 2. Each row is one prediction from the
model, representing one potential bug fix, and each of them
is further processed by the patch preparation step described
below.

3.5 Patch preparation

The raw output from the sequence-to-sequence network
cannot be used as a patch directly. First, the predictions
might still contain <unk> tokens not handled by the copy
mechanism. Listing 4 illustrates token values before the
copy mechanism replaces <unk> for samples 4 and 5. But
the copy mechanism may not replace all such tokens as seen
in sample 3 of Listing 5. Second, the predictions contain a
space between every token, which is not well-formed source
code in many cases. (For example, a space is not allowed
between the dot separator, ".", and a method call, but a space
is required between a type and the corresponding identifier
name.)

Consequently, we have a final patch preparation step as
follows. We discard all line predictions that contain <unk>
and we reformulate the remaining predictions into well-
formed source code by removing or adding the required
spaces. An example is shown between Listing 5 and List-
ing 6, whitespaces are adjusted and the third prediction
from Listing 5 is removed since it contains <unk> token.
Each one of the line predictions is used to create a candidate
program by replacing the original buggy line b! (i.e., the
<START_BUG>, <END_BUG> and all tokens in between are
replaced with the model output).

More formally, the remaining candidate fixed lines,
cand, {prel,pre?,..}, will replace the buggy line
bl in buggy system b° and generate candidate patches
{patchl, patch?, ...}, which should be verified with any
patch validation technique, such as test suite validation.
When the test suite is weak to specify the bug, we can
have different patches {patch}, patch}, ...} for different bug
locations {l;,1;, ...} that passed the test suite. Then, the cor-
rectness can be verified, for example, by manual inspection.

3.6
Library. We have implemented our Encoder-Decoder model
using OpenNMT-py [25], built in the Python programming
language and the PyTorch neural network platform [26].

Implementation Details & Parameter Settings

IEEE TRANSAC I IONS ON SOF IWARE ENGINEERING, VOL. 1BD, 2019

Vocabulary In this paper, we consider a vocabulary of
the 1,000 most common tokens. To the best of our knowl-
edge, this is one of the largest vocabularies considered
for machine learning for patch generation: for comparison,
DeepFix [27] has a vocabulary size of 129 words, and Tufano
et al. [10] considered a vocabulary size of 430 words.

Limit for truncation We truncate if the abstract buggy con-
text is longer than 1,000 tokens. It is motivated by Figure 7,
where we can see the most of abstract buggy context are less
than 1,000 tokens long. SEQUENCER truncates by removing
statements, class definitions, and method definitions until
abstract buggy context is 1,000 tokens or less, but keeping the
buggy line within the truncated buggy class.

Network parameters We explored a variety of settings
and network topologies for SEQUENCER. Most major design
decisions are verified with ablation experiments that change
a single variable at a time as detailed further in Section 5. We
train our model with a batch size of 32 for 10,000 iterations.
To prevent overfitting, we use a dropout of 0.3. In relation to
the components shown in Figure 4, below are the primary
matrix sizes associated with each component along with
a reference to the equations in Section 3.3.1 to which they
relate:

o Token embedding (our model uses the same embed-
ding for both g. and gg4): 1,004x256 (1,000 + 4 special
tokens)

e Encoder bidirectional LSTM (part of g. fuction):
256x256x4x2x2

e Decoder LSTM (part of g4 function): 512x256x4x2 +
256x256x4x2

o Token generator (part of g, function): 256x1004

o Bridge between encoder and decoder (path for h{ to
initialize h{): 256x256x2

« Global Attention (o] weights): 256x256 + 512x256

o Copy selector (g, function): 256x1

We use a beam size of 50 during inference, which is
the default value used in the literature [10][24] and which
proves to be good empirically.

Input and output summary The input to SequenceR is
a Java class of any size. The non-empty faulty line within
a method on which to attempt repair has been identified
by another technique (usually line-based fault localization).
The output is the fixed line which must have fewer than 100
tokens with our current model.

Usage After SEQUENCER is trained, we can use it to
predict fixes to a bug. SEQUENCER takes as input the buggy
file and a line number indicating where the bug is. The
output is a list of patches in the diff format, so that the user
can run their own patch validation step, which could either
be test validation or manual inspection.

The source code of SEQUENCER is available at https://
github.com/kth/SequenceR, together with the best model
we have identified and the synthesized patches.

4 EVALUATION

In this section, we describe our evaluation of SEQUENCER.

4.1 BResearch Questions

The two first research questions focus on machine learning;:

7

e RQ1: To what extent can the fixed line be perfectly
predicted?

e RQ2: How often does the copy mechanism generate
out-of-vocabulary tokens for a patch, and which parts
of abstract buggy context are referenced for the copy?

The last two research questions look at the system from
a domain-specific perspective: we assess the performance of
SEQUENCER from the viewpoint of program repair research.

e RQ3: How effective is SEQUENCER’s sequence-to-
sequence learning in fixing bugs in the well-established
Defects4] benchmark?

e RQ4: What repair operators
sequence-to-sequence learning?

are captured with

4.2 Experimental Methodology
4.2.1 Methodology for RQ1

We train SEQUENCER with the parameter settings described
in Section 3.6. The training and validation accuracy and
perplexity will be plotted. Perplexity (ppl) is a measurement
of how well a model predicts a sample and is defined as:

_ZLQ log P(y; | yz‘—17---,y17X))
Y|

where X is the source sequence, Y is the true target se-
quence and y; is the i-th target token [25]. Luong et al. found
a strong correlation between a low perplexity value and
high translation quality [28].

The resulting model is tested on our testing dataset,
CodRep4 (see Section 4.3.1). Next, in order to compare
SEQUENCER against the state-of-the-art approach by Tufano
et al. [10], we created CodRep4Medium. It is a subset of
CodRep4 containing 1,116 samples where the buggy method
length is limited to 100 tokens.

ppl(X,Y) = exp(

4.2.2 Methodology for RQ2

To evaluate the effectiveness of the copy mechanism (de-
scribed in Section 3.3.1), we consider all samples from Co-
dRep4. For each successfully predicted line, we categorize
tokens in that line based on whether the token is in the
vocabulary or not. And at the same time, for tokens that are
out-of-vocabulary but are copied from the input sequence,
we try to find the original location of the copied token. By
analyzing the original location of out-of-vocabulary tokens,
we can measure the importance of the context, in particular
of the abstract bugqy context we define in this paper. The
copy mechanism allows the system to be more powerful by
providing more tokens beyond the vocabulary to be used in
the patch.

4.2.3 Methodology for RQ3

We evaluate SEQUENCER on Defects4] [16], which is a
collection of reproducible Java bugs. Most recent approaches
in program repair research on Java use Defects4] as an
evaluation benchmark [3], [12], [29]-[31].

Since the scope of our paper is on one-line patches,
we first focus on Defects4] bugs that have been fixed by
developers by replacing one single line (there are 75 such
bugs). In order to study the effectiveness of sequence-to-
sequence itself, we isolate the fault localization step as

IEEE TRANSACTIONS ON SOF ITWARE ENGINEERING, VOL. 1BD, 2019

follows: the input to SEQUENCER is the actual buggy file
and the buggy line number. SEQUENCER then produces a
list of patches (recall that beam search produces several can-
didate patches). All patches are compiled and then executed
against the test suite written by the developer.

Each candidate patch generated by SEQUENCER is then
categorized as follows:

e Compilable patch: The patch can be compiled.

« Plausible patch: The patch is compilable and passes the
test suite. The patch may yet be incorrect because of the
overfitting problem [32].

e Correct patch: The patch passes the test suite, and is
semantically equivalent to the human patch. We hand-
check for semantic equivalence for this evaluation.

As per the definitions, there is a strict inclusion structure
in those categories: correct patches are necessarily plausible
and compilable, plausible patches are necessarily compil-
able.

4.2.4 Methodology for RQ4

For RQ4, we aim at having a qualitative understanding
of the cases for which our sequence-to-sequence repair
approach works. This research question is motivated by
the need to understand what grammatically correct code
transformations are captured by SEQUENCER, even though
it is purely a token-based approach with no first class AST
or grammar knowledge. For gaining this understanding,
we use a mixed method combining grounded theory and
targeted analysis. The results would be an understanding of
the variety of repair operators and programming language
syntax captured by SEQUENCER in cases where the model
output correctly matches the test data. For the grounded
theory, we have been regularly sampling successful cases,
i.e., cases in our testing dataset CodRep4 for which SE-
QUENCER was able to predict the fixed line, for each case,
the authors reached a consensus to know whether 1) the
case is interesting from a programming perspective (e.g.,
it represents a common bug fix pattern), and 2) the case
highlights a phenomenon that has already been covered
in a previously found case. For the targeted analysis, we
specifically searched for 2 kinds of results: cases where
the copy mechanism was used and cases where a specific
programming construct was involved (method call, field
reference and string literals).

4.3 Training Data

SEQUENCER is trained based on past modifications made
to source code, i.e., it is trained on past commits. In our
experiments, we combine two sources of past commits, the
CodRep dataset [33] and the Bugs2Fix dataset [10], into
what appears to be the largest dataset of one-line bug fixes
published to date. Both datasets 1) consider Java code and 2)
have been built based on the history of open-source projects.

The CodRep dataset focuses solely on one-line source
code fixes (aka one-line patches), it contains 5 datasets
curated from real commits on open-source projects. The
Bugs2Fix dataset contains diffs mined from Github between
March 2010 and October 2017 for bug-fixing commits (based
on heuristics to only consider bug-fixing commits). Neither
dataset requires the buggy project to have a test suite for

8
10000000 Y
1000000 | SequenceR
! vocab size
100000 :
10000 :
1

1000
100
10

1
1 10 100

Number of occurances in
training data

I
}
I
}
1000 10000 100000 1000000

Rank order of token

Fig. 6: Overview of vocabulary: token count occurrences
follow a Zipf’s law distribution.

exposing the buggy behavior, instead they are focusing on
collecting bug fix commits.

4.3.1 Data Preparation

Since CodRep and Bugs2Fix datasets are in different for-
mats, we first unify these two datasets as follows. First, we
only keep diffs from Bugs2Fix which are fixes with a single
line replacement. Further, we filter out certain diffs if the
changes are outside of a method.

Since the Bugs2Fix dataset comes from a generic bug-
fix data mining which includes multi-line fixes and fixes
outside of methods, we can look at its statistics to help un-
derstand the generality of SEQUENCER. Bugs2Fix contains
92,849 commits. 15,548 of these (17%) are one-line patches
within a method, and are within the problem domain of
SEQUENCER.

After preparing the dataset, we divide it into training
and testing data. CodRep is originally split into 5 parts,
numbered from 1 to 5, with each part containing commits
from different groups of projects. Our training data consists
of CodRep datasets 1,2,3 & 5 and the Bugs2Fix dataset. Our
testing data is CodRep dataset 4 (or CodRep4 for short).
We chose dataset 4 because it is approximately 20% of the
entire CodRep data (data set 1 is less than 10% and data set
5 is over 30%) and because CodRep 4 contains a broad and
representative set of projects on which to evaluate [33].

Furthermore, we ensure there are no duplicate samples
between the training and testing datasets. During the model
setup, we use a random subset of 95% of the training data
for model training and 5% as our validation dataset.

4.3.2 Descriptive Statistics of the Datasets

In total, we have 35,578 samples in our training set and 4,711
samples in our testing set.

Input Size Figure 7 shows the size distribution of the
abstract buggy context in number of tokens before truncation
is done. The CodRep training data has a median token
length of 372; the Bugs2Fix dataset has a median length
of 340 tokens; and the testing dataset has a median length
of 411. These variations are a result of using different Java
projects in the datasets, but we observe that the distribution
of lengths is similar.

Prediction Size The lines from the abstract buggy context
samples in our dataset had a median length of 6. 99% of the
lines were 30 tokens or fewer, which fits well typical output

IEEE TRANSACTIONS ON SOF ITWARE ENGINEERING, VOL. 1BD, 2019

" 400 1

% | Size limit for

£ 300 | truncation

8 i

6 200 :

@ | !

o 1

€ 100 } M\L

3

c 0 ; L e e Y
0 500 1000 1500 2000

abstract buggy context length

—— (CR1235 classes Bugs2Fix classes CR4 (test) classes

Fig. 7: Only 14% of samples exceed the 1K token length limit
and require truncation.

Approach Prediction Accuracy
CodRep4Medium | CodRep4

simple seq2seq line2line, no copy | 77/1116 (6.9%) 206/4711 (4.4%)

Tufano ef al. [10] 157/1116 (14.1%) | N/A

SEQUENCER 344/1116 (30.8%) | 950/4711 (20.2%)

TABLE 1: Comparison with state-of-the-art approach by
Tufano et al.

sizes used for natural language processing. To sum up, the
order of magnitude of the sequence-to-sequence prediction
receives an input sequence with an average length of 350
tokens and produces an output sequence with an average
length of 6 tokens.

Vocabulary Size In our training data, the full vocabulary
is 567,304 different tokens. Figure 6 shows the distribution of
the number of occurrences for the whole vocabulary. It is a
typical power-law like distribution with a long tail. We limit
our training vocabulary to the 1,000 most common tokens.

4.4 Experimental Results
4.4.1 Answer to RQ1: Perfect Predictions

We trained our model on a GPU (Nvidia K80) for 1.2
hours. For a typical training run on our golden model,
Figure 8 shows the training and validation accuracy per
token generated (the accuracy for the entire patch would
be lower) and Figure 9 shows the perplexity (ppl) per token
generated over the training and validation datasets. In this
particular run, the best results for both the perplexity and
accuracy on the validation dataset occur at 10,500 iterations.
We chose 10,000 iterations as the standard training time for
our model.

CodRep4 On the 4,711 prediction tasks of our best
model, SEQUENCER is able to generate the perfect fix in 950
cases (from Table 1). In all those cases, the predicted line that
replaces the buggy line is exactly the line fix implemented
by the developer. The copy mechanism is used in a number
of cases, this will be further discussed in subsubsection 4.4.2.

Comparison to state-of-the-art To the best of our knowl-
edge, the state-of-the-art approaches are from Tufano et al.
[10] and Hata et al. [34]. We only compare against Tufano
et al. since their approach has been open sourced while that
one of Hata et al. was not made available at the time of
writing this paper. The approach used by Tufano et al. is
limited to fixes only inside small methods, consisting of less

9

than 100 tokens. The limitation is due to the fact that their
approach generates the entire fixed source code method as
output of the decoder. This means that the decoder may
need to generate a long sequence of source code tokens,
which is one of the major challenges for NMT models [35].
SEQUENCER does not make any assumption on the size of
the buggy method. In order to compare against [10], we
select those 1,116 tasks from CodRep4 where the buggy line
resides in a method smaller than 100 tokens. Those 1,116
tasks are called the CodRep4Medium testing dataset.

Our testing accuracy for both CodRep4 and Co-
dRep4Medium are shown in Table 1. From the table, we
see that the accuracy of SEQUENCER is 344/1,116 (30.8%)
while Tufano et al. [10] is 157/1,116 (14.1%). This is a clear
indicator that SEQUENCER outperforms the current state-of-
the-art showing twice as many correct predictions. It shows
that our construction of the abstract buggy context, together
with the copy mechanism, leads to higher accuracy than
only having the buggy method as context with a specific
encoding for variables. Recent fault localization research
[15] indicates that best-in-class techniques can predict the
faulty line 44% of the time and the faulty method 68% of
the time. If we extrapolate these percentages to our data,
SEQUENCER is more likely to find correct one-line patches
than the prior work [10] is to find method replacements,
and SEQUENCER can process and repair larger methods as
demonstrated by the right-hand column of Table 1.

We now concentrate on the effectiveness of the approach
depending on the buggy method length. Overall, we ob-
serve that SEQUENCER has a lower accuracy on longer
methods (30.8% accuracy on CodRep4Medium, 20.2% ac-
curacy on CodRep4). This phenomenon is explained by the
fact that fixes in long methods are usually more complex
and involve more context variables, identifiers and literals
that are not easily captured by the learning system. This
phenomenon has also been previously observed [10].

4.4.2 Answer to RQ2: Copy Mechanism

We now look at to what extent the copy mechanism is
used. Figure 10 shows the origin of tokens in successfully
predicted lines, per patch size. Let us consider the highest
bar, corresponding to all successfully predicted lines con-
sisting of 7 tokens. For those 7-token patches, the black bar
means that all tokens are taken from the vocabulary. The
non-black bars mean that the copy mechanism has been
used to predict the line fix. Overall, there is a minority
of patches (216/950, 23%) for which all tokens come from
the vocabulary. At the extreme, the longest successful patch
generated by SEQUENCER was 68 tokens long, but the
longest successful patch without the copy mechanism was
only 27 tokens long.

Figure 10 also lets us analyze the location origin of the
copied token. The brown bars represent those patches for
which copied tokens all come from the buggy line: this
is the majority of cases (641/950, 68%). However, we also
observe cases where some copied tokens have been taken
from the buggy method (green bars) and cases where the
copied tokens has been taken from the buggy class (red
bars), i.e., taken from the class context as captured in our
encoding.

IEEE TRANSACTIONS ON SOF ITWARE ENGINEERING, VOL. 1BD, 2019

g

oy

© 95

o 90 A A\ /\ /\

o B N AN\ LA —
c 85 S =
R=l

T 80 y

2 75

S- 0 2000 4000 6000 8000 10000 12000
[—

L Iterations

5

-

— Training Accuracy Validation Accuracy

Fig. 8: Training and validation accuracy

iy

Token perplexity
N

0 2000 4000 6000 8000 10000 12000

Iterations

Training perplexity Validation perplexity

Fig. 9: Training and validation perplexity

As an example, Listing 7 replaces variable masterNode
with nonMasterNode as in the correct human patch.
nonMasterNode in the fixed line does not occur in our
training data and hence it is not in our 1000 token
vocabulary. Therefore, SEQUENCER was able to generate
this patch because it copied the out-of-vocabulary token
nonMasterNode from within the buggy method. As this
example is a 4 token long patch, it would contribute to the
green bar for patch length 4 in Figure 10.

while(nonMasterNode == null) {
nonMasterNode=randomFrom(internalCluster().getNodeNames());
if (nonMasterNode.equals(masterNode)) {

— masterNode = null;

+ nonMasterNode = null;

}
}

Listing 7: Example of the copy mechanism creating a correct
patch by incorporating a variable which is not in the
vocabulary from the broader context around the buggy line.

Overall, Figure 10 shows that the copy mechanism is
extensively used (734/950, 77%) and that our class level
abstraction enables us to predict difficult cases where only
the buggy line or the buggy method would not have been
enough.

In order to understand the benefits of context size with
the copy mechanism, we measured the distance in tokens to
reach a copied token used to generate a patch. In the 87 cases
where a copied token was needed from the buggy method
by, the median distance from the buggy line b; to the nearest
use of the copied token was 9 tokens, 90% of the 87 cases
were within 49 tokens of b;, and 100% were found within a
122 token distance. In the 7 cases when a copied token was
needed from the buggy class b., the median distance to the

10

200
180
160
140
120
100
80
60
40

o -l
0 s

10 15 20 25 30 35 40 45 50 55 60 65
Patch Length

Number of patches

W Vocab M Buggyline BuggyMethod M BuggyClass

Fig. 10: Histogram showing correctly generated patches: 1)
that only use tokens in our 1,000 token vocabulary, 2) that
need to copy tokens from the buggy line, 3) from the buggy

method and 4) from the buggy class.

copied token from b, was 25 tokens, and 100% were found
within a 241 token distance. In addition to ablation study
results discussed is Section 5, the preceding data supports
our decision to create the abstract buggy context.

4.5 Answer to RQ3: Defects4J Evaluation

As explained in Section 4.2.3, we consider 75 Defects4]
bugs that have been fixed with a one-line patch by human
developers. In total SEQUENCER finds 2,321 patches for 58
of the 75 bugs. The main reason that we are unable to fix
the remaining 17 bugs is due to fact that some bugs are not
localized inside a method, which is a requirement for the
fault localization step that SEQUENCER assumes as input.
Listing 8 is one such example where the Defects4j bug is not
localized inside a method. We have 2,321 patches instead
of 2,900 (58x50) because some predictions are filtered by
the patch preparation step (Section 3.5), i.e., patches that
contain the <unk> token. The statistics about all bugs can be
found in Figure 11. Out of 75 bugs, SEQUENCER successfully
generated at least one patch for 58 bugs, 53 bugs have at
least one compilable patch, 19 bugs have at least one patch
that passed all the tests (i.e., are plausible) and 14 bugs are
considered to be correctly fixed (semantically identical to
the human-written patch). Of these 14 bugs, in 12 cases the
plausible patch with the highest ranking in the beam search
results was the semantically correct patch.

— private static final double DEFAULT_EPSILON = 10e—9;
+ private static final double DEFAULT_EPSILON = 10e—15;

Listing 8: An example of Defects4] defect (Math 104) where
the bug is not localized inside a method. In this case, a class
variable is changed.

Figure 12 gives a different perspective on this data,
focusing on patches (and not bugs). SEQUENCER is able
to generate 761 compilable patches (33% of all patches).
SEQUENCER finds 61 plausible patches spread over 19 bugs,
thus there can be several plausible patches for the same
bug, a phenomenon well-known in the program repair field
[12]. One reason is that some Defects4] bugs have a weak
test suite. To the best of our knowledge, we are the first to

IEEE TRANSAC I IONS ON SOF IWARE ENGINEERING, VOL. 1BD, 2019

Total bugs 75
Bugs with patches 58
with compilable patches 53
with plausible patches 19

with correct patches

14

1 1 1 1 1 J

0 15 30 45 60 75 90

Fig. 11: SEQUENCER results on the 75 one-line Defects4]
bugs.

Total patches

Compilable patches
Plausible patches | 61
Correct patches | 18

2321
761

1 1 1 1 1 J

0 500 1000 1500 2000 2500 3000

Fig. 12: Stastistics on patches synthesized by SEQUENCER
for the 75 one-line Defects4] bugs.

report the correctness of patches generated by a sequence-
to-sequence model, where correctness means passing the
test suite and being semantically equivalent to the human
patch. In the end, SEQUENCER is able to generate 18 patches
that are semantically equivalent to the correct bug fix.

For SEQUENCER applied to Defects4] bugs, we observe
that out of 61 plausible patches, 18 are correct, which is a
ratio of 30%. An analysis of prior techniques which used a
different benchmarck in C (GenProg [36], RSRepair [37], and
AE [38]) shows that they have a correct patch ratio of less
than 12% [11]. We did not evaluate SEQUENCER on the same
benchmark as this prior work (we target Java not C), but the
ratio is evidence that SEQUENCER has learned to produce
outputs which represent reasonable patch proposals.

Although we did not directly include fault localization
in our evaluation of SEQUENCER, we can estimate the
performance of a repair system which includes state-of-the-
art fault localization techniques [15] as follows. It has been
shown that there is an estimated 44% success of correctly
identifying a faulty line in the top 10 candidates. Hence, in
order to process 75 total bugs from Defects4], 750 candidate
abstract buggy contexts would need to be prepared for input
to our model. We have run fault localization with Gzoltar
[39] and found that it successfully localized the faulty line
for 9 of the 14 bugs for which SEQUENCER found a correct
fix.

Let us now discuss timing. We estimate the machine time
required to automatically find patches for 75 bugs with the
summation below!:

« Estimated time to run fault localization on 75 bugs and
identify 10 likely faulty line locations: 112 minutes

o Time to create 750 abstract buggy contexts (10 created for
each bug): 29 minutes

e Time to create 37,500 patch candidates (50 candidates
created from beam size 50 for each abstract buggy con-
text): 9 minutes

o Estimated time to prune raw patches down to 23,210
total patches: 2 minutes

1. Our Defects4] testing was run on an Intel Core i7 at 3.5GHz and
our sequence-to-sequence model was run on an Nvidia K80.

11

o Time to attempt compile on 23,210 patches: 1378 min-
utes

 Time to run test cases on 7,610 patches: 6287 minutes

o Final result estimated to take 130 total machine hours
to find patches which correctly fix 9 bugs.

Listing 9 shows the SEQUENCER patch for Math 75,
which is semantically equivalent to the human patch. We ob-
serve that it contains some unnecessary parentheses, and the
same behavior occasionally occurs in other patches found by
SEQUENCER. We have observed unnecessary parenthesis in
some of the human-generated patches in our training data
and SEQUENCER occasionally replicates this human style.
In this case, the parentheses do not change the order of
evaluation. Therefore the SEQUENCER patch for Math 75 is
semantically equivalent to the human patch.

Interestingly, getPct is not part of the vocabulary, and
it did not appear in the buggy method. The getPct method
is defined in the same buggy class, as captured by our
abstract bugqy context. In Defects4], the copy mechanism is
also useful to capture the right tokens to add in the patch.

— return getCumPct((Comparable<?>) v);
+ return getPct((Comparable<?>) v); // Human patch
+ return getPct (((Comparable<?>)(v))); // SEQUENCER patch

Listing 9: Found patch for Math 75

We now compare those results against the patches found
by recent program repair tools that are publicly available.
Elixir [4], CapGen [3] and SimFix [31] have reported 26,
22, 34 correctly repaired bugs for all Defects4] bugs, where
the patch is identical to the human patch or claimed as
correct. Of those correctly repaired bugs, 22, 19 and 17
respectively are for the 75 one-line bugs that we consider for
SEQUENCER. We notice that the majority of claimed correct
patches are for one-line bugs. We observe that SEQUENCER
does not fix more one-line Defects4] bugs.

While Elixir, CapGen, and SimFix are driven with in-
telligent design and require substantial configuration and
handcrafted rules, our goal with SEQUENCER is to be ag-
nostic and to not design any repair operator upfront. For
example, CapGen implements context-aware operator se-
lection and context-aware ingredient prioritization [3]. The
CapGen implementation heavily relies on code transforma-
tion tools and carefully selected algorithms/parameters/-
metrics. In constrast, our SEQUENCER can be considered less
heavyweight. We note that the required parameter tuning
in SEQUENCER can easily be performed using grid search
or other meta-optimization techniques [40]. To that extent,
it is remarkable that such a generic approach is able to
learn bug-fixing patterns and synthesizes 18 patches that are
semantically equivalent to the human repair, without any
static or dynamic analysis. By providing a generic approach,
SEQUENCER will improve in the future as machine learning
sequence-to-sequence techniques improve, and as more bug
fix training data is provided. Also, since SEQUENCER learns
repair operators from examples, it could be trained on less
common languages (such as COBOL).

We assume perfect fault localization while other related
tools ran fault localization to localize the buggy source
code. Yet, different papers use different fault localization
algorithms, implementations, and granularity (e.g., methods
versus line). Liu et al. pointed out that because of different

IEEE TRANSAC I IONS ON SOF IWARE ENGINEERING, VOL. 1BD, 2019

assumptions about fault localization, it is hard to compare
different repair techniques [41]. By assuming perfect fault
localization, we purely focus on the patch generation step
of the algorithm.

4.6 Answer to RQ4: Qualitative Case Studies

We now present the diversity of repair operators that are
captured by SEQUENCER. These cases are culled from the
950 correct patches SEQUENCER generated for the Co-
dRep4Full test dataset. Both the buggy line that was part of
the input is shown and the correct patch which includes ex-
amples of repair operators. We also highlight again the effec-
tiveness of the copy mechanism by using a bold underlined
font for those tokens that were copied (i.e., that are outside
the vocabulary of the 1,000 most common tokens).

4.6.1

Our training and evaluation data consist of object-oriented
Java software. We observe that SEQUENCER captures differ-
ent kinds of operations related to method calls.

Call change Here a call to method writeUTF is replaced
by a call to method writeString.

Case study: method call change

— out.writeUTEF(failure);
+ out.writeString(failure);

Listing 10: Call change

Call deletion The buggy line chains two method calls;
this successful prediction consists of deleting one of them.

smartNameFieldMappers(fieldName);
+ FieldMappers x = context.smartNameFieldMappers(fieldName);

‘ — FieldMappers x = context.mapperService() .
|
\
L

Listing 11: Call deletion.

Argument addition In this patch, SEQUENCER adds an
argument (which in Java, means calling another method).

‘ — stage.getViewport() .update(width, height);
| + stage.getViewport() .update(width, height, true);
‘ o= VEWPTTR

Listing 12: Argument addition

Target change In this successful case, the patch
also calls method isTerminated but on another tar-
get (scheduledExecutorService instead of executorService
which is copied from the input context).

— if(!(executorService.isTerminated())){
+ if (|(scheduledExecutorService.isTerminated())){

Listing 13: Target change

4.6.2 Case study: if-condition change

SEQUENCER can change if conditions, and in this particular
case, removes two clauses from the boolean formula.

—if(((t>=0) && (t<=1)) && (intersection != null))
+ if (intersection != null)

Listing 14: if-condition change

12

4.6.3 Case study: Java keyword change

SEQUENCER is also able to generate patches involving the
replacement of programming language keywords, indicat-
ing clues of syntax understanding.

— break ;
+ continue ;

Listing 15: Java keyword change

4.6.4 Case study: change from field access to method call

A good practice of software engineering is to implement en-
capsulation by calling methods instead of directly accessing
fields, this is handled by SEQUENCER as follows (size to
size())

|
|
|
|

~ getTextures() .size)));
+ app.log("PixmaPackerTest", ("Number of textures: " + (atlas.
getTextures () .size())));

Listing 16: change from field access to method call

4.6.5 Case study: off-by-one repair

Finally, SEQUENCER is also able to repair classical off-by-one
€errors.

— nextIndex = currentIndex;
+ nextIndex = (currentIndex) — 1;

Listing 17: off-by-one repair

Overall, SEQUENCER uses all three kinds of token oper-
ations: 1) Token deletion, e.g., Listing 11; 2) Token addition,
e.g., Listing 12; 3) Token replacement, e.g., Listing 10.

5 ABLATION STUDY

We perform an ablation study to understand the relative
importance of each component of our approach. The process
is as follows. First, we identify the golden model based
on a greedy optimization in the parameter search space.
This is the model that we described in section 4. Then we
change one single parameter to a different reasonable value
and report the performance on the same testing dataset.
The ablation results demonstrate that parameter selections
for the golden model produce the highest acceptance rates
for the configurations we tested. The model parameters we
found with our dataset are likely to yield reasonable results
when training for other computer languages so long as a
form of abstract buggy context can be done to provide context
related to the buggy line. We provide details on our ablation
results to aid future researchers in understanding which
variables are most likely to improve their own models.

Due to randomness in learning, for each parameter, we
run each configuration multiple times and report the mean
and standard deviation for the model as recommended for
assessment of random algorithms [42]. As our goal is to
select the best model for use in our Defects4] evaluation,
we use the test set from CodRep4Full to select the best run
of each model, hence we report the percentage decrease of
the best run for a given model from the best result found
with the golden model. Due to computational constraints,

IEEE TRANSAC I IONS ON SOF IWARE ENGINEERING, VOL. 1BD, 2019

we only run each model 10 times; for the 18 configura-
tions reported, almost 200GB of disk storage was used and
400 machine-hours. When using SEQUENCER to learn new
datasets, we would recommend a similar approach where
a validation set is used to select the best performing model
after multitple training runs.

First, we consider the very coarse grain features. Table 2
shows the performance of four models, starting from a
simplistic seq-to-seq model that only takes a single buggy
line b; as input when learning to produce the fixed line
fi. Then we show beam search, copy, and the use of the
abstract buggy context improving the model performance.
These results confirm our answer to RQ2 that the copy
mechanism is essential to the performance of the system.

Second, Table 3 shows the results of our ‘Golden model’
against the results of single specific, targeted changes made
to the model. Ablation ID 1 shows that our 10K training
limit is sufficient given our training data. ID 2 shows that a
vocabulary smaller than 1K tokens performs worse - likely
due to a loss of learned tokens that can be used even if an
instance of the token is not in the abstract buggy context. ID
3 shows that a vocabulary larger than 1K tokens performs
worse - perhaps due to the additional tokens having insuffi-
cient training examples for learning a proper embedding.
To further understand the effect of vocabulary size, we
analyzed the raw output of our model before the patch
preparation step. For the golden model (vocab=1000), 38%
of the generated patches on CodRep4 have <unk> tokens
and would be discarded; with ID 2 (700) it is 43%, and with
ID 3 (1400) it is 37%. Hence, although a larger vocabulary
had fewer raw <unk> tokens, the 1000 token vocabulary
was able to produce better optimized models.

ID 4 is about pretraining; in order to provide more
opportunities to learn a quality embedding, we created
unsupervised pretraining data for the encoder/decoder.
Using this unsupervised data did not improve the model,
it worsened it.

ID 5 a and b show the value of combining the CodRep
and Bugs2Fix data sets to improve the generalization of
the model. ID 6 demonstrates the effect of removing the
bridge between the encoder and decoder, which improved
the mean for the model but tightened the standard deviation
and hence produced a lower best result that the golden
model. This is perhaps due to the bridge layer allowing for
more variation in the encoder hidden state embedding and
decoder hidden state embedding.

IDs 7 through 10 demonstrate that our LSTM network
is sized correctly; presumably a smaller network cannot
generalize on the model data well enough whereas a larger
network has too many degrees of freedom. Our speculation
is that a 2 layer encoder/decoder network allows the layer
connected directly to the token embedding to ‘focus’ the
weight matrix on input syntax while the layer connected to
the attention/copy mechanism ‘focuses” on output genera-
tion. ID 11 shows the loss in accuracy when abstract buggy
context is reduced to just the buggy line.

ID 12 shows that truncation is necessary otherwise an
out-of-memory error crashes the system, due to too many
time steps being stored in memory per token in the se-
quence. ID 13 shows that if we truncated to 4,000 tokens
then the system passes, but the increased context size (4,000

13
Model description CR4Full | ratio
50K vocab, no copy, beam size 1, no context | 55 baseline
50K vocab, no copy, beam size 50, no context | 206 3.7x
1K vocab, copy, beam size 50, no context 826 15.0x
Golden Model (with abstract buggy context) 950/4711| 17.3x

TABLE 2: Performance impact of the key features of beam
size, copy, and context.

vs the golden model 1,000) did not improve accuracy of the
model. ID 14 shows that using a 500 token limit for abstract
buggy context hurts accuracy presumably because there are
less opportunities for token copy. We also speculate that a
possible advantage of 1K truncation instead of 500 could be
that 1K provides a type of unsupervised learning for the
encoder hidden states, the global attention, and the copy
mechanism.

ID 15 removes the <START_BUG> and <END_BUG> to-
kens from the abstract buggy context input. The target output
is still the correct single-line patch. Without these labels,
SEQUENCER must learn line break positions and learn a
type of fault localization in order to create a valid patch.
Because abstact buggqy context does not include test coverage
data or other information useful for fault localization, there
is a significant accuracy loss for this ID, but the network was
still able to create 356 correct patches.

Our primary use case modeled in this paper is to use
our golden model for SEQUENCER on projects for which it
was not trained. This allows for a simpler use model than
retraining the model periodically on an ongoing project.
ID 16 explores the use case where SEQUENCER is trained
with samples from the same projects that the buggy test
cases come from. CodRep4 is added to the training set data
and then 4,711 random samples are removed for testing
(these samples may be from CodRep or Bugs2Fix project
files). When the training data includes bugs from the same
projects as the test data, we see a 12% improvement in the
best model. This use model is viable, but it does require
more complete integration of SEQUENCER into a project
regression system.

6 RELATED WORK

The work presented here is on built on top of two big and
active research fields: program repair and machine learning
on code. We refer to recent surveys for getting a good
overview on them: [1] for program repair and Allamanis
et al.’s [8] for the latter. In the following, we focus on those
works that are about learning and automatic repair.

sk_p is a program repair technique for syntactic and
semantic errors in student programs submitted to MOOCs
[43]. First, it uses the previous and next statement to predict
the statement in the middle, ie., to replace the current
statement. The probability of a patch is the product of the
probabilities for all chosen statements. As we do, sk_p uses
beam search to produce the top n predictions.

Another paper on MOOCs [44] repairs student submis-
sions in Python by combining learning and sketch-based
synthesis. The approach by Wang et al. [45] considers MOOC
but the technique itself is completely different: [45] does
deep learning on program traces in order to predict the kind

IEEE TRANSAC I IONS ON SOF IWARE ENGINEERING, VOL. 1BD, 2019

ID | Model description mean | SD | max| chng

0 | Golden Model 859 61 [950 | —

1 | more training iterations (20K | 832 78 | 901 | -5%
vs 10K)

2 | smaller token vocabulary (700 | 824 70 | 886 | -7%
vs 1000)

3 | larger token vocabulary (1400 | 868 32 | 907 | -5%
vs 1000)

4 | with unsupervised pretraining | 821 65 | 922 | -3%

5a | less training data (CR vs | 742 47 | 810 | -15%
CR+Bugs2Fix)

5b | less training data (Bugs2Fix vs | 748 24 | 785 | -17%
CR+Bugs2Fix)

6 | no bridge layer from encoder | 887 34 | 942 | -1%
to decoder

7 fewer LSTM layers on enc/dec | 281 203 | 513 | -46%
1vs2)

8 more LSTM layers on enc/dec | 833 49 | 914 | 4%
(Bvs2)

9 | fewer LSTMs per layer (128 vs | 848 40 | 888 | -11%
256)

10 | more LSTMs per layer (512 vs | 812 89 | 907 | -5%
256)

11 | without context (input only | 738 63 | 826 | -13%
buggy line)

12 | no truncation of abstract buggy | crash
context

13 | truncate to larger context (4K | 848 79 | 950 | -0%
vs 1K)

14 | truncate to smaller context (500 | 826 54 | 890 | -6%
vs 1K)

15 | remove START_BUG & | 331 33 | 412 | -57%
END_BUG

16 | Intraproject training (4,711 test- | 984 47 | 1068| +12%
cases from CR+Bugs2Fix)

TABLE 3: Results with selected configurations in the param-
eter neighborhood of the golden model. For ID 0 through 15,
results are total exact matches when model is tested on 4,711
testcases from CR4Full. ID16 results selected 4,711 testcases
after merging CR1,2,3,4, and 5 with Bugs2Fix

of bug affecting a student submission. The main differences
between those works and ours are that 1) we consider a
larger context (the buggy class) and 2) we consider real
programs for training and testing that are bigger and more
complex than student’s submissions. Shin et al. [46] consider
simple programs in the educational programming language
Karel. As SEQUENCER, their system predicts to delete, insert
or replace tokens. Henkel et al. [47] compute an embedding
for symbolic traces and perform a pilot experiment for fixing
error-handling code, which is very different from concrete
bug fixing as we do here.

DeepFix is a program repair tool for fixing compiler
errors in introductory programming courses [27]. The input
is the whole program, (100 to 400 tokens long for their
data), and the output is a single line fix. The vocabulary
size is set to 129, which was enough to map every distinct
token type to a unique word in the vocabulary. TRACER is
another program repair tool for fixing compiler errors which
outperforms DeepFix in terms of success rate [24]. Santos et
al.’s [48] further refines the idea and evaluates it with an
even larger dataset. The focus of those three works and ours
is very different, they focus on compiler errors, we focus
on logical bugs. For compiler errors, one does not need to
consider the whole vocabulary, but only token types. On the
contrary, we have to address this problem and we do so by

14

using the copy mechanism.

DeepRepair [49] is an early attempt to integrate machine
learning in a program repair loop. DeepRepair leverages
learned code similarities, captured with recursive autoen-
coders [50], to select repair ingredients from code fragments
that are similar to the buggy code. Our usage of learning is
different, DeepRepair uses machine learning to select inter-
esting code, SEQUENCER uses machine learning to generate
the actual patch.

Tufano et al. investigated the feasibility of using neu-
ral machine translation for learning bug-fixing patches via
NMT [10]. The authors first perform a source code abstrac-
tion process that relies on a combination of Lexer+Parser
which replaces identifiers and literals in the code. The
goal of this abstraction is it reduce the vocabulary while
keeping the most frequent identifiers/literals. In their work
the authors analyzed small methods (no longer than 50
tokens) and medium methods (no longer than 100 tokens)
and observed a drop in performance for longer methods.
Since their approach takes a buggy method as input and
generates the entire fixed method as output, the maximum
method length Tufano et al. considered is only 100 tokens.
Their work addressed the vocabulary problem by renam-
ing rare identifiers through a custom abstraction process.
SEQUENCER is different in the following ways. First, we
consider the entire context of the buggy class, rather than
only the buggy method, in order for the model to access
more tokens when predicting the fix. Second, our abstrac-
tion process uniquely utilizes the copy mechanism (which
they do not), which allows SEQUENCER to utilize a larger
set of tokens when generating the fix and to include infor-
mation about the context within the abstract buggy context in
which a token is used. Beyond those two major qualitative
differences, a quantitative one is that they only consider
small methods, no longer than 100 tokens, while we have
no such restriction; SEQUENCER can potentially generate a
one-line patch within a method of any size.

Parallel work by Hata et al. [34] discusses a similar net-
work architecture, also applied to one-line diffs. The major
differences between [34] and our work are the following;:
First, they do project-specific training, which means that
their approach is only evaluated on testing data coming
from the same project. On the contrary, we do global
training and we show that SEQUENCER captures repair
operators applicable to any project. Our qualitative case
studies are unique with that respect. Second, they only look
at wellformedness of the output, while we also compile and
execute the predicted patch. Our work is an end-to-end test-
suite based repair approach. Third, their input is limited
to the precise buggy code to replace, while SEQUENCER
uses abstract buggy context, which allows for a broader set
of tokens for the copy mechanism to select from.

7 CONCLUSION

In this paper, we have presented a novel approach to
program repair, called SEQUENCER, based on sequence-
to-sequence learning. Our approach uniquely combines an
encoder/decoder architecture with the copy mechanism to
overcome the problem of large vocabulary in source code.
On a testing dataset of 4,711 tasks taken from projects

REFERENCES

which were not in the training set, SEQUENCER is able
to successfully predict 950 changes. On Defects4] one-line
bugs, SEQUENCER produces 61 plausible, test-suite ade-
quate patches. To our knowledge, our paper is the first
ever to show the effectiveness of the copy mechanism for
program repair, which provides a mechanism to alleviate
the unlimited vocabulary problem.

This work opens promising research directions. First, we
aim to improve and adapt SEQUENCER with the goal of
addressing multi-line patches. We believe there are different
ways we can tackle this: (i) for fixes modifying contiguous
lines of code (i.e., hunk) we can extend SEQUENCER to
learn to generate multiple lines of code as output, with
the special tokens (i.e., <START_BUG> and <END_BUG>) sur-
rounding the entire hunk; (ii) for fixes modifying multiple
lines in different locations, we could envision SEQUENCER
generating a finite set of combinations of the program
containing a predicted fixed line for each of the suspicious
locations. Second, there is some preliminary work on tree-
to-tree transformation learning [51], which conceptually is
very appropriate for code viewed as parse trees. Such tech-
niques may augment or supersede sequence-to-sequence
approaches. Finally, the originality of our context abstraction
is to capture class-level, long range dependencies: we will
study whether such a network architecture is able to capture
dependencies beyond that, at the package or application
level.

REFERENCES

[1] M. Monperrus, “Automatic software repair: A bibli-
ography,” ACM Computing Surveys, vol. 51, pp. 1-24,
2017. poI: 10.1145/3105906. [Online]. Available: https:
/ / hal . archives - ouvertes . fr / hal - 01206501 / file /
survey-automatic-repair.pdf.

[2] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix:
Scalable multiline program patch synthesis via sym-
bolic analysis,” in Proceedings of the 38th international
conference on software engineering, ACM, 2016, pp. 691-
701.

[3] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung,
“Context-aware patch generation for better automated
program repair,” ICSE, 2018.

[4] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad,
“Elixir: Effective object-oriented program repair,”
in Automated Software Engineering (ASE), 2017 32nd
IEEE/ACM International Conference on, 1EEE, 2017,
pp. 648-659.

[5] L Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” in Advances
in neural information processing systems, 2014, pp. 3104—
3112.

[6] R. Solé and D. Valbelle, The Rosetta Stone: the story of
the decoding of hieroglyphics. Profile, 2001.

[7] V.]. Hellendoorn and P. Devanbu, “Are deep neural
networks the best choice for modeling source code?”
In Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ACM, 2017, pp. 763-773.

8]

9]

(10]

(11]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

19]

15

M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton,
“A survey of machine learning for big code and nat-
uralness,” ACM Computing Surveys (CSUR), vol. 51,
no. 4, p. 81, 2018.

A. See, P. J. Liu, and C. D. Manning, “Get to
the point: Summarization with pointer-generator net-
works,” CoRR, vol. abs/1704.04368, 2017. arXiv: 1704.
04368. [Online]. Available: http://arxiv.org/abs/1704.
04368.

M. Tufano, C. Watson, G. Bavota, M. D. Penta, M.
White, and D. Poshyvanyk, “An empirical study on
learning bug-fixing patches in the wild via neural
machine translation,” ACM Transactions on Software
Engineering and Methodology, 2018.

Z.Qi, F. Long, S. Achour, and M. Rinard, “An analysis
of patch plausibility and correctness for generate-and-
validate patch generation systems,” in Proceedings of
the 2015 International Symposium on Software Testing and
Analysis, ser. ISSTA 2015, Baltimore, MD, USA: ACM,
2015, pp. 24-36, 1SBN: 978-1-4503-3620-8. DOI: 10.1145/
2771783.2771791. [Online]. Available: http://doi.acm.
org/10.1145/2771783.2771791.

M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and
M. Monperrus, “Automatic repair of real bugs in java:
A large-scale experiment on the defects4j dataset,”
Empirical Software Engineering, vol. 22, no. 4, pp. 1936—
1964, 2017.

M. Tufano, J. Pantiuchina, C. Watson, G. Bavota,
and D. Poshyvanyk, “On learning meaningful code
changes via neural machine translation,” in Proceed-
ings 41st ACM/IEEE International Conference on Software
Engineering (ICSE 2019), 2019.

R. Karampatsis and C. Sutton, “Maybe deep neural
networks are the best choice for modeling source
code,” CoRR, vol. abs/1903.05734, 2019. arXiv: 1903.
05734. [Online]. Available: http:/ / arxiv.org / abs /
1903.05734.

D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang,
“An empirical study of fault localization families and
their combinations,” IEEE Transactions on Software En-
gineering, 2019.

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A
database of existing faults to enable controlled testing
studies for java programs,” in Proceedings of the 2014
International Symposium on Software Testing and Analy-
sis, ACM, 2014, pp. 437-440.

A. J. Ko, B. A. Myers, M.]. Coblenz, and H. H.
Aung, “An exploratory study of how developers seek,
relate, and collect relevant information during soft-
ware maintenance tasks,” IEEE Transactions on software
engineering, no. 12, pp. 971-987, 2006.

K. Cho, B. van Merrienboer, D. Bahdanau, and
Y. Bengio, “On the properties of neural machine
translation: Encoder-decoder approaches,” CoRR,
vol. abs/1409.1259, 2014. arXiv: 1409.1259. [Online].
Available: http:/ /arxiv.org/abs/1409.1259.

J. Kiefer, J. Wolfowitz, et al., “Stochastic estimation of
the maximum of a regression function,” The Annals of
Mathematical Statistics, vol. 23, no. 3, pp. 462466, 1952.

REFERENCES

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735—
1780, 1997.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent
neural networks,” IEEE Transactions on Signal Process-
ing, vol. 45, no. 11, pp. 2673-2681, 1997.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S.
Gulwani, “Compilation error repair: For the student
programs, from the student programs,” in Proceedings
of the 40th International Conference on Software Engineer-
ing: Software Engineering Education and Training, ACM,
2018, pp. 78-87.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush,
“OpenNMT: Open-source toolkit for neural machine
translation,” in Proc. ACL, 2017. DOI1: 10.18653 /v1/
P17-4012. [Online]. Available: https:/ / doi.org/10.
18653/v1/P17-4012.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A.
Lerer, “Automatic differentiation in pytorch,” 2017.
R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix:
Fixing common c language errors by deep learning.,”
in AAAI, 2017, pp. 1345-1351.

M.-T. Luong, I. Sutskever, Q. V. Le, O. Vinyals,
and W. Zaremba, “Addressing the rare word prob-
lem in neural machine translation,” arXiv preprint
arXiv:1410.8206, 2014.

Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang,
and L. Zhang, “Precise condition synthesis for pro-
gram repair,” in Proceedings of the 39th International
Conference on Software Engineering, IEEE Press, 2017,
pp- 416-426.

Q. Xin and S. P. Reiss, “Leveraging syntax-related
code for automated program repair,” in Proceedings of
the 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering, IEEE Press, 2017, pp. 660-
670.

J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen,
“Shaping program repair space with existing patches
and similar code,” 2018.

E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is
the cure worse than the disease? overfitting in auto-
mated program repair,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering,
ACM, 2015, pp. 532-543.

Z. Chen and M. Monperrus, “The CodRep Machine
Learning on Source Code Competition,” ArXiv e-
prints, Jul. 2018. arXiv: 1807.03200 [cs.SE].

H. Hata, E. Shihab, and G. Neubig, “Learning to gen-
erate corrective patches using neural machine transla-
tion,” arXiv preprint 1812.07170, 2018.

P. Koehn and R. Knowles, “Six challenges for neu-
ral machine translation,” CoRR, vol. abs/1706.03872,

(36]

(371

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

16

2017. arXiv: 1706.03872. [Online]. Available: http://
arxiv.org/abs/1706.03872.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W.
Weimer, “A systematic study of automated program
repair: Fixing 55 out of 105 bugs for $8 each,” in
Proceedings of the 34th International Conference on Soft-
ware Engineering, ser. ICSE "12, Zurich, Switzerland:
IEEE Press, 2012, pp. 3-13, I1SBN: 978-1-4673-1067-3.
[Online]. Available: http:/ /dl.acm.org/ citation.cfm?
id=2337223.2337225.

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The
strength of random search on automated program re-
pair,” in Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE 2014, Hyderabad,
India: ACM, 2014, pp. 254265, 1SBN: 978-1-4503-2756-
5. DOL: 10.1145/2568225.2568254. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568254.

W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging
program equivalence for adaptive program repair:
Models and first results,” in Proceedings of the 28th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ser. ASE’13, Silicon Valley, CA, USA:
IEEE Press, 2013, pp. 356-366, ISBN: 978-1-4799-0215-6.
DOI: 10.1109 / ASE.2013.6693094. [Online]. Available:
https:/ /doi.org/10.1109/ASE.2013.6693094.

J. Campos, A. Riboira, A. Perez, and R. Abreu,
“Gzoltar: An eclipse plug-in for testing and debug-
ging,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE
2012, Essen, Germany: ACM, 2012, pp. 378-381, ISBN:
978-1-4503-1204-2. DoI: 10.1145 / 2351676 . 2351752.
[Online]. Available: http:/ /doi.acm.org/10.1145/
2351676.2351752.

Y. Bengio, “Practical recommendations for gradient-
based training of deep architectures,” in Neural net-
works: Tricks of the trade, Springer, 2012, pp. 437-478.
K. Liu, A. Koyuncu, T. E. Bissyandé, D. Kim,]J. Klein,
and Y. L. Traon, “You cannot fix what you cannot find!
an investigation of fault localization bias in bench-
marking automated program repair systems,” arXiv
preprint arXiv:1812.07283, 2018.

A. Arcuri and L. Briand, “A practical guide for using
statistical tests to assess randomized algorithms in
software engineering,” in Proceedings of the 33rd In-
ternational Conference on Software Engineering, ser. ICSE
"11, Waikiki, Honolulu, HI, USA: ACM, 2011, pp. 1-
10, 1SBN: 978-1-4503-0445-0. DOI: 10.1145 / 1985793.
1985795. [Online]. Available: http:/ /doi.acm.org/10.
1145/1985793.1985795.

Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzi-
lay, “Sk_p: A neural program corrector for moocs,”
CoRR, vol. abs/1607.02902, 2016. arXiv: 1607 .02902.
[Online]. Available: http:/ /arxiv.org/abs/1607.02902.
S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic
program corrector for introductory programming as-
signments,” in 2018 IEEE/ACM 40th International Con-
ference on Software Engineering, 2018, pp. 60-70.

K. Wang, R. Singh, and Z. Su, “Dynamic neural pro-
gram embedding for program repair,” arXiv preprint
arXiv:1711.07163, 2017.

IEEE TRANSAC I IONS ON SOF IWARE ENGINEERING, VOL. 1BD, 2019

[46]

(471

(48]

[49]

(50]

(51]

R. Shin, I. Polosukhin, and D. Song, “Towards
specification-directed program repair,” in ICLR Work-
shop, 2018.

J. Henkel, S. Lahiri, B. Liblit, and T. Reps, “Code vec-
tors: Understanding programs through embedded ab-
stracted symbolic traces,” in Proceedings of ESEC/FSE,
2018.

E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, and
J. N. Amaral, “Syntax and sensibility: Using language
models to detect and correct syntax errors,” in 2018
IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2018, pp. 311-
322.

M. White, M. Tufano, M. Martinez, M. Monperrus,
and D. Poshyvanyk, “Sorting and transforming pro-
gram repair ingredients via deep learning code simi-
larities,” in Proceedings of SANER, 2019.

M. White, M. Tufano, C. Vendome, and D. Poshy-
vanyk, “Deep learning code fragments for code clone
detection,” in Proceedings of the 31st IEEE/ACM In-
ternational Conference on Automated Software Engineer-
ing, ser. ASE 2016, Singapore, Singapore: ACM, 2016,
pp. 87-98, 1SBN: 978-1-4503-3845-5. DOI: 10.1145 /
2970276.2970326. [Online]. Available: http://doi.acm.
org/10.1145/2970276.2970326.

S. Chakraborty, M. Allamanis, and B. Ray, “Tree2tree
neural translation model for learning source code
changes,” arXiv, vol. abs/1810.00314, 2018.

Zimin Chen Biography text and photo will be
provided.

PLACE
PHOTO
HERE

Steve Kommrusch Biography text and photo
will be provided.

PLACE
PHOTO
HERE

Michele Tufano Biography text and photo will be
provided.

PLACE
PHOTO
HERE

PLACE
PHOTO
HERE

PLACE
PHOTO
HERE

PLACE
PHOTO
HERE

17

Louis-Noél Pouchet Biography text and photo

will be provided.

Denys Poshyvanyk Biography text and photo

will be provided.

Martin Monperrus Biography text and photo will

be provided.

