
Effect of Distributed Directories in Mesh Interconnects

Marcos Horro∗

Universidade da Coruña, Spain

Mahmut T. Kandemir
Pennsylvania State University, USA

Louis-Noël Pouchet
Colorado State University, USA

Gabriel Rodríguez∗

Universidade da Coruña, Spain

Juan Touriño∗

Universidade da Coruña, Spain

ABSTRACT

Recent manycore processors are kept coherent using scalable dis-

tributed directories. A paramount example is the Xeon Phi Knights

Landing. It features 38 tiles packed in a single die, organized into

a 2D mesh. Before accessing remote data, tiles need to query the

distributed directory. The effect of this coherence traffic is poorly

understood. We show that the apparent UMA behavior results from

the degradation of the peak performance. We develop ways to

optimize the coherence traffic, the core-to-core-affinity, and the

scheduling of a set of tasks on the mesh, leveraging the unique char-

acteristics of processor units stemming from process variations.

1 INTRODUCTION

Mesh interconnects featuring distributed directories are becoming

essential in the design of scalable manycore architectures [6, 13, 17],

and reducing their coherence footprint is critical for performance [3,

10, 15]. Each time a core issues an access to a memory block not

present in its local caches in a valid state, it needs to query the

distributed directory in order to discover its current status and

location.

A paramount example of this trend is the Intel Mesh Intercon-

nect Architecture, first present in the Intel Xeon Phi Knights Land-

ing (KNL) manycore [13], and more recently featured in the Xeon

Scalable [14]. In this architecture each tile in the mesh contains

not only processor cores, but also a network of Caching/Home

Agents (CHAs) in charge of managing a distributed cache coher-

ence directory. While this reduces the contention of the network

by eliminating the need for snoops and the bottleneck of a cen-

tralized directory, it causes an increase in the network latency due

to the distance between directories and memory controllers [5].

This paper analyzes the effect of the coherence traffic in distributed

directory interconnects. Although we focus on one specific state-

of-the-art manycore, the Intel KNL, the techniques we propose can

be extended to other distributed directory architectures.

In order to optimize coherence traffic the compiler needs to have

a deep low-level knowledge of the underlying network-on-chip

architecture. Unfortunately, some important aspects of the KNL

∗Also with Computer Architecture Group, CITIC.
Contact author: gabriel.rodriguez@udc.es

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317808

design are not disclosed. In particular, for this architecture two spe-

cific hidden pieces of information need to be discovered, namely, the

physical location of logical components and the scattering of mem-

ory blocks across the distributed directory and memory interfaces.

We expose this information through microbenchmarking [16], and

leveraging it we propose mechanisms to: i) reduce the round-trip

times of coherence messages across the mesh, which improves the

access latency to both memory and other caches; and ii) optimize

the scheduling of sets of tasks across the processor mesh. More

specifically, we make the following three contributions:

• We propose a mechanism to discover the physical layout of

the logical components (cores and CHAs) of any KNL unit,

as well as the mapping of memory blocks across CHAs and

memory interfaces.

• Leveraging the previous contribution, we analyze the impact

of coherence traffic in the memory latency of distributed

directory architectures. Mechanisms to optimize coherence

traffic are proposed, improving CHA-to-core and thread-to-

core affinity.

• We gather and analyze data generated by a large number of

executions on a KNL unit, and develop optimized strategies

for scheduling a set of tasks across the tiles in the mesh.

We perform experiments to quantify the efectiveness of our

optimizations. Our results reveal that exploiting the multiple

opportunities for locality in a mesh interconnect is essential

to increase the potential performance of future manycores.

The paper is structured as follows. Section 2 covers the Knights

Landing architecture and introduces the proposed approach. Sec-

tion 3 details how to map the components of the processor to its

physical floorplan. Section 4 covers how to optimize coherence

traffic. Section 5 evaluates the potential advantages of the proposed

approach, and develops ways to exploit the architectural charac-

teristics of a particular KNL unit. The related work is discussed in

Sec. 6, and Sec. 7 concludes the paper.

2 BACKGROUND AND OVERVIEW

The Knights Landing [9] is the latest architecture released by Intel

for high performance computing. It is a manycore processor, in-

cluding from 64 to 72 cores inside a single die. The processor layout

consists of a 2D mesh topology containing 38 tiles, detailed in Fig. 1.

Internally, each tile contains two cores, each with its private L1

instruction and data caches (32 kB each); and a unified L2 cache (1

MB) shared among the local cores, but private to the tile.

The KNL processor has two different types of DRAM memory.

A Multi-Channel DRAM (MCDRAM) provides high-bandwidth

through eight interfaces in the corners of the mesh. Besides, two

DDR controllers on opposite parts of the chip control three memory

channels each. The MCDRAM memory has higher latency than

different hyperthreads of the same core, to better exploit the avail-

able slack in the mix. The “optimized” schedule takes into account

the characteristics of the mesh to achieve further improvements.

This effect is most noticeable in mix #5, in which the longest com-

putation corresponds to jac-1d-swap-16MB, a benchmark which

is particularly sensible to the co-location of its computing threads.

Aggregating all mixes, “load” scheduling improves total execution

times by 20.8%, and “optimized” increases that gain to 61.3%.

Figure 4b gives a more detailed view of different performance

metrics for the “optimized” schedules. The plot aggregates the sum

of all metrics for all tasks in each mix. Note that sometimes the total

number of execution cycles increases with respect to the original

execution cycles. Yet, as shown in Fig. 4a, the total execution time

always improves. The reason is that the “optimized” schedule ex-

ploits the slacks of non-critical path tasks to better balance resource

allocation. Another interesting effect is the total increase in the

number of MCDRAM accesses for almost all mixes. This is caused

by a benchmark with large dataset but short comparative execution

time being allocated a reduced set of resources. This causes the

benchmark to become memory-bound, and its execution time to

increase, but keeping it out of the critical path of the mix. To avoid

interference, these tasks are allocated a set of MCDRAM interfaces

which are not used by other high-bandwidth demanding tasks. On

the other side of the spectrum is mix #5, where the number of

MCDRAM accesses is greatly reduced by the co-location of the

executing threads and the increase in allocated cache resources.

6 RELATEDWORK

In recent years, a number of papers have explored the design of

scalable networks-on-chip to support manycore architectures. Daya

et al. [5] design a NoC based on an ordered network and a snoopy

coherence protocol, and show how congestion increases heavily

with the number of cores. Ferdman et al. [6] propose a scalable

distributed directory system to alleviate the power and performance

problems of sparse and duplicate-tag directories, scaling up to 1,024

cores. Charles et al. [3] identify the importance of the coherence

traffic in manycore performance, and show how the memory modes

in the Intel KNL can be manipulated to achieve better performance.

They neither explore software optimizations to coherence traffic,

nor the actual layout of the KNL processor.

Several papers have explored the performance of the KNL archi-

tecture, mainly through the analysis of well-known benchmarks,

machine learning applications, and parallel workloads [1, 2, 4, 8].

None of these works undertake the analysis of the locality charac-

teristics of the KNL interconnect. Ramos and Hoefler [12] develop a

capability model of the cache performance and memory bandwidth

of the KNL, characterizing the impact of the different memory and

cluster modes. However, this work does not consider the impact of

the distributed directory.

Few works focus on data layout optimizations for 2D intercon-

nects. Lu et al. [11] propose a polyhedral model and associated opti-

mizations to achieve data locality in these topologies. Liu et al. [10]

use a compiler-guided scheme to minimize on-chip network traffic

by reducing the distances of cores to data, but without taking into

account the effects of a distributed directory.

7 CONCLUSION

This work has explored the performance implications of the co-

herence traffic in distributed directory architectures, in particular

when coupled with an opaque distribution of memory blocks over

directory fragments, such as in the Intel Knights Landing architec-

ture. We have presented ways to improve network performance

by optimizing the coherence traffic, which for the KNL required

exposing the physical topology of the processor. We have revealed

novel intuitions which negate the pretended UMA behavior of this

kind of architectures, and shown how the illusion of uniformity

comes from a degradation of access latencies to a sub-optimal aver-

age. Furthermore, we have shown how traditional data placement

optimizations are not exploitable unless the affinity between cores

and the distributed directory fragments is first controlled for. We

validated all these proposals by developing and testing optimized

scheduling algorithms for a unique KNL processor.

Complex mesh interconnects as exemplified by the KNL architec-

ture are a viable approach to implementing multi- and manycores

in the forthcoming future, as demonstrated by their inclusion in

the Intel Xeon Scalable series. While manufacturers may obfuscate

information, which had to be empirically revealed in the current

work, its dissemination is essential for compiler developers to de-

liver higher code optimization quality, as suggested in this paper.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Economy,

Industry and Competitiveness of Spain (TIN2016-75845-P AEI/FED-

ER/EU), by the Ministry of Education (FPU16/00816), and by the

U.S. National Science Foundation award CCF-1750399.

REFERENCES

[1] A. Azad and A. Buluç. 2017. A Work-Efficient Parallel Sparse Matrix-Sparse
Vector Multiplication Algorithm. In IPDPS. 688–697.

[2] C. Byun et al. 2017. Benchmarking Data Analysis and Machine Learning Appli-
cations on the Intel KNL Many-Core Processor. In HPEC. 1–6.

[3] S. Charles et al. 2018. Exploration of Memory and Cluster Modes in Directory-
Based Many-Core CMPs. In NOCS. 1–8.

[4] L. Chen et al. 2017. Benchmarking Harp-DAAL: High Performance Hadoop on
KNL Clusters. In CLOUD. 82–89.

[5] B.K. Daya et al. 2014. SCORPIO: A 36-Core Research Chip Demonstrating Snoopy
Coherence on a Scalable Mesh NoC with In-Network Ordering. In ISCA. 25–36.

[6] M. Ferdman et al. 2011. Cuckoo Directory: A Scalable Directory for Many-Core
Systems. In HPCA. 169–180.

[7] J.R. Goodman and H.H.J. Hum. 2009. MESIF: A Two-Hop Cache Coherency Protocol
for Point-to-Point Interconnects. Technical Report. University of Auckland.

[8] M. Jacquelin, W. De Jong, and E. Bylaska. 2017. Towards Highly Scalable Ab
Initio Molecular Dynamics (AIMD) Simulations on the Intel Knights Landing
Manycore Processor. In IPDPS. 234–243.

[9] J. Jeffers, J. Reinders, and A. Sodani. 2016. Intel Xeon Phi Processor High Perfor-
mance Programming: Knights Landing Edition. Morgan-Kauffman.

[10] J. Liu et al. 2015. Network Footprint Reduction through Data Access and Compu-
tation Placement in NoC-Based Manycores. In DAC. 181.

[11] Q. Lu et al. 2009. Data Layout Transformations for Enhancing Data Locality on
NUCA Chip Multiprocessors. In PACT. 348–357.

[12] S. Ramos and T. Hoefler. 2017. Capability Models for Manycore Memory Systems:
A Case-Study with Xeon Phi KNL. In IPDPS. 297–306.

[13] A. Sodani. 2015. Knights Landing (KNL): 2nd Generation Intel Xeon Phi processor.
In HCS. 1–24.

[14] S.M. Tam et al. 2018. SkyLake-SP: A 14nm 28-Core Xeon Processor. In ISSCC.
34–36.

[15] L. Yang et al. 2017. Task Mapping on SMART NoC: Contention Matters, Not the
Distance. In DAC. 88.

[16] K. Yotov, K. Pingali, and P. Stodghill. 2005. Automatic Measurement of Memory
Hierarchy Parameters. In SIGMETRICS. 181–192.

[17] C. Zhang. 2015. Mars: A 64-core ARMv8 processor. In HCS. 1–23.

