Effect of Distributed Directories in Mesh Interconnects

Marcos Horro"
Universidade da Coruiia, Spain

Gabriel Rodriguez

Universidade da Coruria, Spain

ABSTRACT

Recent manycore processors are kept coherent using scalable dis-
tributed directories. A paramount example is the Xeon Phi Knights
Landing. It features 38 tiles packed in a single die, organized into
a 2D mesh. Before accessing remote data, tiles need to query the
distributed directory. The effect of this coherence traffic is poorly
understood. We show that the apparent UMA behavior results from
the degradation of the peak performance. We develop ways to
optimize the coherence traffic, the core-to-core-affinity, and the
scheduling of a set of tasks on the mesh, leveraging the unique char-
acteristics of processor units stemming from process variations.

1 INTRODUCTION

Mesh interconnects featuring distributed directories are becoming
essential in the design of scalable manycore architectures [6, 13, 17],
and reducing their coherence footprint is critical for performance [3,
10, 15]. Each time a core issues an access to a memory block not
present in its local caches in a valid state, it needs to query the
distributed directory in order to discover its current status and
location.

A paramount example of this trend is the Intel Mesh Intercon-
nect Architecture, first present in the Intel Xeon Phi Knights Land-
ing (KNL) manycore [13], and more recently featured in the Xeon
Scalable [14]. In this architecture each tile in the mesh contains
not only processor cores, but also a network of Caching/Home
Agents (CHAs) in charge of managing a distributed cache coher-
ence directory. While this reduces the contention of the network
by eliminating the need for snoops and the bottleneck of a cen-
tralized directory, it causes an increase in the network latency due
to the distance between directories and memory controllers [5].
This paper analyzes the effect of the coherence traffic in distributed
directory interconnects. Although we focus on one specific state-
of-the-art manycore, the Intel KNL, the techniques we propose can
be extended to other distributed directory architectures.

In order to optimize coherence traffic the compiler needs to have
a deep low-level knowledge of the underlying network-on-chip
architecture. Unfortunately, some important aspects of the KNL

*Also with Computer Architecture Group, CITIC.
Contact author: gabriel.rodriguez@udc.es

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6725-7/19/06....$15.00
https://doi.org/10.1145/3316781.3317808

Mahmut T. Kandemir
Pennsylvania State University, USA

Louis-Noél Pouchet
Colorado State University, USA

Juan Tourino”
Universidade da Coruria, Spain

design are not disclosed. In particular, for this architecture two spe-
cific hidden pieces of information need to be discovered, namely, the
physical location of logical components and the scattering of mem-
ory blocks across the distributed directory and memory interfaces.
We expose this information through microbenchmarking [16], and
leveraging it we propose mechanisms to: i) reduce the round-trip
times of coherence messages across the mesh, which improves the
access latency to both memory and other caches; and ii) optimize
the scheduling of sets of tasks across the processor mesh. More
specifically, we make the following three contributions:

e We propose a mechanism to discover the physical layout of
the logical components (cores and CHAs) of any KNL unit,
as well as the mapping of memory blocks across CHAs and
memory interfaces.

o Leveraging the previous contribution, we analyze the impact
of coherence traffic in the memory latency of distributed
directory architectures. Mechanisms to optimize coherence
traffic are proposed, improving CHA-to-core and thread-to-
core affinity.

e We gather and analyze data generated by a large number of
executions on a KNL unit, and develop optimized strategies
for scheduling a set of tasks across the tiles in the mesh.
We perform experiments to quantify the efectiveness of our
optimizations. Our results reveal that exploiting the multiple
opportunities for locality in a mesh interconnect is essential
to increase the potential performance of future manycores.

The paper is structured as follows. Section 2 covers the Knights
Landing architecture and introduces the proposed approach. Sec-
tion 3 details how to map the components of the processor to its
physical floorplan. Section 4 covers how to optimize coherence
traffic. Section 5 evaluates the potential advantages of the proposed
approach, and develops ways to exploit the architectural charac-
teristics of a particular KNL unit. The related work is discussed in
Sec. 6, and Sec. 7 concludes the paper.

2 BACKGROUND AND OVERVIEW

The Knights Landing [9] is the latest architecture released by Intel
for high performance computing. It is a manycore processor, in-
cluding from 64 to 72 cores inside a single die. The processor layout
consists of a 2D mesh topology containing 38 tiles, detailed in Fig. 1.
Internally, each tile contains two cores, each with its private L1
instruction and data caches (32 kB each); and a unified L2 cache (1
MB) shared among the local cores, but private to the tile.

The KNL processor has two different types of DRAM memory.
A Multi-Channel DRAM (MCDRAM) provides high-bandwidth
through eight interfaces in the corners of the mesh. Besides, two
DDR controllers on opposite parts of the chip control three memory
channels each. The MCDRAM memory has higher latency than

MCDRAM 0 MCDRAM 1 MCDRAM 2 MCDRAM 3

DDR 127

(%]
=i
m
=
=
<
T
)
<
o
[=)
[a]
m

3 DDR4 CHANNELS

H
S
[
=
B
2

MCDRAM 6 MCDRAM 7

Figure 1: Floorplan of the Intel KNL architecture. Superim-
posed, heatmap of the measured access latency (in CPU cy-
cles) from each tile in the mesh of an Intel Xeon Phi x200
7210 to a single block of memory associated to MCDRAM #0
and its adjacent CHA.

DDR (it is approximately 10% slower), but the eight interfaces can
be accessed simultaneously, providing a much higher bandwidth.

Messages traverse the mesh using a simple YX routing protocol: a
transaction always travels vertically first, until it hits its target row.
Then, it begins traveling horizontally until it reaches its destination.
Each vertical hop takes 1 clock cycle, while horizontal hops take 2
cycles. The mesh features 4 parallel networks, each customized for
delivering different types of packets.

KNL employs a directory-based cache coherence mechanism
using Intel MESIF [7], a variant of MESI. In order to alleviate the
bottleneck of centralized directories, it features a distributed system
in which each tile includes a Caching/Home Agent (CHA) in charge
of managing a portion of the directory. Each time a core requests
a memory block that does not reside in the local tile caches, the
distributed directory is queried. A message is sent to the appropriate
CHA (message (1) in Fig. 1). If the block already resides in one of
the L2 caches in the mesh in Forward state!, the CHA will forward
the request to the owner, which will send the data to the requestor
in turn (messages (2) and (3) in the figure). In other cases, the
data must be fetched from the appropriate memory interface. The
data flow shown in the figure exemplifies one of the performance
hazards inherent to the KNL architecture: although the data for the
requested block lies in the forwarder tile F, just above the requestor
R, the coherence data is stored far away in tile C. As it is, 18 cycles
are required to transfer the data (10 vertical and 4 horizontal hops).
But, if the directory information were stored either in the requestor
or in the forwarder, the round trip time of data packets would be
of only 2 cycles (2 vertical hops on the mesh). This paper explores

1A cache containing a block in Forward state is in charge of serving said block upon a
request. The requestor acquires the block in Forward state, while the sender changes
it to Shared.

ways to exploit nearby CHAs, avoiding the overhead of accessing
distant tiles of the mesh.

The KNL architecture can be configured into one of three main
cluster modes, which determine the affinity between memory in-
terfaces, CHAs, and cores: All-to-All, only recommended when
different amounts of memory are connected to each MCDRAM
interface; Quadrant, the de-facto standard, in which the mesh is log-
ically divided into four different clusters; and SNC, targeted towards
NUMA-aware MPI applications only [9]. Similarly, the MCDRAM
may be configured into one of two modes: “Flat” memory, in which
the address space is explicitly exposed as an independent NUMA
domain; and “Cache” mode, in which it serves as a memory-side
cache. In this paper we focus exclusively on the MCDRAM subsys-
tem, although all the proposed optimizations are directly extensible
to the DRAM subsystem, and on the Quadrant/Flat mode.

In the related literature, the access time of a core to any mem-
ory block is assumed to be UMA when in Quadrant mode [9, 12].
This is a reasonable assumption, given that memory blocks will
be uniformly interleaved across the CHAs and memory interfaces
using an opaque, pseudo-random hash function. As a result, the
access latency will average out over a sufficient number of accesses
for all cores. This is the behavior reported by works which do not
consider the CHA location as a blocking factor in their experi-
ments [12]. The challenging aspect of these measurements is that
the physical locations of logical entities on the 2D mesh are not
exposed to the programmer, and are variable across KNL units due
to process variations. After reverse engineering these locations
using the techniques detailed in Sec. 3, however, we observe that
actual access latencies from different cores to a fixed memory block
are far from UMA. More precisely, the coherence traffic causes a
systematic degradation of memory performance which, on average,
creates the illusion of UMA behavior. Fig. 1 shows the actual access
latencies from each tile in the mesh of a particular Intel x200 7210
processor to MCDRAM #0, for a memory block whose coherence
data is contained in the tile next to the memory interface. We note
differences in access latency of up to 32 CPU cycles (a 27% over-
head over the minimum observed latency of 117 cycles), which
matches the theoretical time for a round trip around the mesh (12
vertical plus 10 horizontal hops). In addition to the latency gap
caused by the round trip, contention is generated on the network
when all cores are continuously accessing all the CHAs in the mesh.
Confining cooperating threads and associated coherence data to
isolated regions of the mesh would reduce network footprint, a
critical parameter for NoC performance [3, 10, 15].

In order to characterize the latency and traffic across the network,
we need to obtain information about: i) how the logical components
of the mesh (CHAs, cores) are physically mapped; and ii) how the
address space is distributed across CHAs and MCDRAM interfaces.
We propose the following approach:

(1) Identify where CHAs and cores are physically located in the
processor mesh by leveraging the information provided by
the CPUID instruction, profiling memory access latencies,
and building a minimum squared error model (Sec. 3).

(2) Dynamically modify the layout of the runtime data so that
each core operates on data whose directory information lies
in CHAs close to that core (Sec. 4).

3 MAPPING THE KNL ARCHITECTURE

When working in the SNC cluster mode the correspondence be-
tween logical and physical cores is explicit. This allows one to
carefully select the affinity for a team of processes executing an
MPI application, as the memory allocated to them is guaranteed to
reside in their local interfaces. It is not possible to exploit this para-
digm using a multithreaded code (e.g., OpenMP) without simulating
the distributed memory nature of multiprocess parallelism.

In the default Quadrant mode it is impossible to reason about
core affinities, as the physical layout of core IDs is unknown. Fur-
thermore, even if we discovered core location and bound a team of
threads to neighboring cores, the coherence data of the accessed
memory blocks will be scattered across the full mesh. For this rea-
son, it is not sufficient to know where each core is located in the
physical mesh; we need to know where each CHA is located and
how memory blocks are assigned to CHAs in order to carefully
optimize the network traffic for each thread.

We reverse engineered the physical layout of an Intel x200 7210
processor by profiling memory access latencies, building potential
layout candidates, and iteratively discarding the ones which present
larger squared errors with respect to the observed behavior. For this
purpose, we systematically measure the access latency from each
logical core ID to memory blocks located in each of the 8 MCDRAM
interfaces and each of the 38 CHAs in the mesh. These latencies
are analyzed to determine where each pair of cores and CHA is
located on the physical mesh. The floorplan includes 38 physical
tiles, some of which have their cores disabled depending on the
processor model. Note that, despite having disabled cores, all tiles
have fully functional CHAs and interconnects. The actual location
of the tiles with disabled cores is believed to change for each proces-
sor unit, depending on process variations. The CPUID instruction
can be used to discover the associations between cores and CHAs,
and to provide the list of CHAs which do not have enabled cores.
Armed with this information, and with our measured core-to-CHA-
to-MCDRAM latencies, we build a squared error model for each
candidate assignment of cores and CHAs to the physical mesh, and
finally accept the one which presents the least squared error.

The inferred locations of CHAs and cores present a recognizable
pattern, as shown in Fig. 2. The CHAs in each quadrant are sequen-
tially arranged in a vertical fashion. Cores are assigned sequentially
to CHAs, skipping tiles with disabled cores. We believe that, even
if disabled cores vary for each particular KNL unit, the pattern for
arranging the CHAs and assigning the cores to CHAs is fixed. If this
assumption is correct, it allows one to obtain the physical layout
of any individual KNL unit immediately, by just checking which
CHAs have disabled cores through CPUID instructions.

4 PROCESSOR AFFINITY AND DATA LAYOUT

Once the mapping of the logical components of the processor onto
the physical floorplan is exposed, the next step is to take advantage
of this information. There are at least two orthogonal ways in which
an application might exploit locality across the mesh:

e Each thread should access data with coherence information
stored in a nearby CHA as much as possible. In this way,
memory access latency will be improved due to the shortest
message trips across the network. Furthermore, restricting

MCDRAM O MCDRAM 1
| [

MCDRAM 2 MCDRAM 3
| |

| [20,21 22,23 52,53
12 13 29)
I I I
28,29 | _30,31H
16 17 33
I I [
) 36,37 | _38,39“)
i 20 21 C37 0
E ‘ I S
| P (44,45) | | (46.,47) S
3 (24) 25 3
Sirs ‘ : —
(4,5 24,29 | _26,27H
2 14 15 27)
| I I [
10,11) (32,33 | 34,35) 54,55
6 18 19 31)
| I | [
16,17 [40,41) | | [42,43) 160,61
10 22 23 35)

[[I [
MCDRAM 4 MCDRAM 5 “ MCDRAM 6 MCDRAM 7

Figure 2: Result of our model. Each tile contains two cores
and one CHA (their IDs are enclosed in a large and small
box, respectively). Tiles with blank boxes indicate that their
cores are not active.

coherence data to subsets of the tile will improve the network
contention when a large number of cores is active. We refer
to this optimization as exploting CHA-to-core affinity.

e A core requesting data in a nearby L2 cache may not take
advantage of this proximity due to the coherence data being
assigned to a distant CHA, as illustrated in Fig. 1. However,
once CHA-to-core affinity is improved, applications will ben-
efit from co-locating cooperating threads. We refer to this
optimization as thread-to-core affinity.

Mapping memory blocks and their associated CHAs and using
them accordingly requires important changes to the compilation
chain and/or the source code of an application. For any array in a
computational kernel, we need to obtain a mapping of the corre-
spondence between the memory blocks in the array and the CHAs
in the mesh. Once that is done, work has to be scheduled across
the available threads according to the affinity between the core
executing each thread and the CHAs. There are two ways in which
this can be accomplished: i) dynamically, by running an inspec-
tor/executor which finds the mapping between memory blocks
and CHAs, and schedules tasks accordingly; and ii) statically, by
exposing information about the memory system to the compiler.

The static option, which would get rid of any runtime overhead,
would require one to discover the hash function that determines
CHA location for each physical memory block. We are exploring
this approach, which falls out of the scope of this paper, for future
work. For the current paper, we are interested only in showing
that CHA proximity plays an important role in the performance of
multithreaded codes, and showcasing the potential of optimizing
mesh locality. For this purpose, we map the CHA locations of all
the memory blocks in the 16 GB MCDRAM memory subsystem.
For each block, we note the associated CHA and MCDRAM inter-
face, and store both in one byte. This information takes up 256

MB for the entire memory, and is incorporated into the runtime
of each application. Upon execution, an inspector-executor copies
the data to be accessed by each core to memory locations indexed
by CHAs with high affinity to said core. This requires using ar-
rays of indirections, and therefore this technique will likely bring
performance advantages to irregular codes only. Nevertheless, the
aim of this work is to: i) provide evidence of the impact of the
distributed directory; ii) highlight the importance of disclosing ar-
chitectural features for code optimization; and iii) serve as a basis to
develop a compiler-based optimization model. All our experimental
codes will use arrays of indirections, even when accessing memory
sequentially, in order to fairly assess memory performance.

5 EXPERIMENTAL RESULTS

We applied the proposed approach to several commonplace com-
putational kernels to analyze how the location of coherence data
affects system behavior. The experiments were run on the Intel Xeon
Phi x200 7210 mapped in Sec. 3, with 64 cores, 192 MB of DDR, and
16 GB of MCDRAM. Codes are compiled using ICC 18.0.3 with -02
-xKNL. The system is configured in Quadrant/Flat mode, dividing
the address space into two different regions, one for DDR and one
for MCDRAM. The frequency is fixed to the base of 1.30 GHz. Our
applications were configured to use MCDRAM exclusively for data
allocation through numactl. All our data arrays are allocated into
1 GB hugepages. We ran three different sets of experiments. First,
we analyzed the impact of the core-to-CHA affinity optimization
using different affinity strengths (Sec. 5.1). Next, we analyzed the
effect of the thread-to-core affinity optimization in coherence traffic,
using a modified 1D stencil (Sec. 5.2). Finally, we broaden our scope
to analyze the impact of optimized thread-to-core scheduling of
several different workloads (Sec. 5.3).

5.1 Effect of core-to-CHA affinity on memory
latency

We first measure the potential of optimizing core-to-CHA affinity to
reduce memory latency. For this purpose, we employ a vector-vector
reduction kernel, due to its high memory bandwidth requirements.
We work with a total dataset of 128 MB to ensure that no reuse
takes place through caches, and repeat the computation 100 times
to average out performance differences across the full experiment.

Figure 3a illustrates how performance metrics evolve for all pos-
sible affinities between cores and CHAs. The core-to-CHA affinity
(X axis) indicates the maximum distance in CPU cycles allowed
from a core to the CHAs indexing the data it accesses. The figure
shows a clear performance improvement from limiting the spread
of coherence traffic. The reduction in outstanding weighted cycles
is of 7.2%, close to the expected theoretical optimal. However, the
derived speedup is only 3.1%. The culprit is the increase in the num-
ber of yTLB misses, due to the pseudo-random nature of the access
to the data arrays enforced by the search for blocks associated to
local CHAs, and to the lack of hugepages support on the L1 TLB.
Increasing the neighborhood size reduces yTLB misses, as more
memory blocks are usable by each core. This reduces the spread
of the accesses, but also increases access latency, as more distant
MCDRAM interfaces are accessed causing an increase in the travel
times of data and coherence packets. The proportion of distant

thread affinity

[cycles woeee MTLB misses
BN outstanding —— distant mem. access. [co-located EEE scatter
0 1.00
Lo 10
H 0.98
0.99 g
0.98 o B O8 5 0.061 |
= &)
0.97 0.6 o 0.94
8
0.96 = 0.92

0.4

£
5 0.90
2
02 % o d
0.

0.0 86 ? * ! " * ? ? !
10111213141516 512K1M 2M 4M 8M 16M 32M 64M128M
ore-to-CHA affinity Problem size

(a) (b)

0.95

0.94

0.93 -I-I-l
0

Figure 3: Effects of core-to-CHA and core-to-core affini-
ties: 3a) execution cycles, outstanding weighted cycles, yTLB
misses, and accesses to distant memory interfaces for dif-
ferent core-to-CHA affinities. Results are normalized to the
maximum value for each series, except for accesses to dis-
tant memory interfaces, which are normalized to the total
number of memory accesses. yTLB misses and distant ac-
cesses are referenced to the right axis; and 3b) execution cy-
cles of the best-performing CHA-to-core affinity for two dif-
ferent core-to-core affinities: “scatter” (thread i is assigned
to OS core i), and “co-located” (adjacent threads are placed in
adjacent physical cores). Results are normalized to the exe-
cution cycles of the non-optimized code with scatter thread
placement. The left Y axes are truncated to better reflect the
differences in values.

accesses eventually converges to approximately one fourth, as 2
out of the 8 MCDRAM interfaces are considered close to each core.

5.2 Effect of core-to-core affinity on coherence
traffic

A second optimization enabled by our architectural analysis is
the exploitation of core-to-core affinity. We aim to improve the
locality of the data across the L2 caches in the mesh to reduce
coherence traffic. For this purpose, we modify a jacobi-1d stencil so
that neighboring cores swap their data at the end of each timestep.
Note that it is futile to try to exploit core-to-core affinity without
enforcing the CHA-to-core affinity first, as a thread sharing a block
of data will need to traverse the mesh to query the appropriate
CHA before finding out that the block lay in a neighboring core.
The 1D stencil was run on 64 cores using 108 different configu-
rations, including several problem sizes, five different CHA-to-core
affinities, and two core-to-core affinities: scatter and an ad-hoc “co-
located” affinity in which adjacent threads are assigned to adjacent
cores whenever possible. In total, more than 3,000 executions of the
stencil were run. Fig. 3b shows the normalized median execution
cycles after discarding outliers. As can be observed, the two opti-
mizations target different types of workloads. For applications with
small datasets, in which reuse comes from other cores in the mesh,
adjusting core-to-core affinity yields important benefits. The fig-
ure clearly shows how this optimization loses effectivity when the
memory footprint reaches the total combined cache size (32 MB in
our Intel x200 7210 processor). On the other hand, applications with

Table 1: Benchmarks used in the experiments, characterized by the weighted averages of cache accesses and misses, memory
accesses, and floating-point operations. Values are reported in millions per thread per second.

Benchmark | Description

| Dilacc. D1 misses L2misses MCDRAM acc. FLOPs

rvec Vector reduction
rvv | Vector-vector addition and reduction
vecsearch | Search for value in vector
jac-2d | 2D Jacobi stencil
avv | Vector-vector addition
jac-1d | 1D Jacobi stencil
jac-1d-swap

1D Jacobi with data swap after each timestep

14.88 10.24 8.42 8.34 190.25
19.68 12.59 11.08 10.95 257.05
11.42 8.96 8.39 8.32 284.88
249.98 12.26 9.58 9.38 334.62
124.45 9.66 11.40 11.29 635.02
52.98 11.02 15.22 15.10 702.72
59.79 11.50 14.77 7.37 717.60

large datasets, which consume a large volume of data directly from
memory, benefit more from the memory latency reduction provided
by CHA-to-core affinity. This optimization also loses effectivity as
footprint increases. In this case, the reason is the exponentially
increasing number of ;' TLB misses, as covered in Sec. 5.1.

5.3 Optimized thread-to-core scheduling

In the previous section, we studied how changing the core-to-core
affinity impacted performance for a particular workload. The data
was always shared among consecutive threads, and therefore a sim-
ple affinity could be devised ensuring that threads sharing data were
never more than two hops apart on the mesh. However, designing
balanced affinities for more complex data sharing relationships in
64-threaded applications is a non-trivial problem, particularly given
the irregular structure of the mesh. Instead, we focus on how to
optimally schedule smaller workloads on the available cores.

In order to characterize the mesh behavior we executed different
applications with footprints ranging from 512 KB to 2 MB per
thread (4 times the allotted cache space per core), running on 4, 8,
16, and 32 threads. We tested a total of 113 thread-to-core schedules,
including 4-, 8-, 16- and 32-thread groups. For instance, in the case
of 4 threads, we tested the full set of 46 different contiguous 2-tile
allocations, plus the default “scatter” affinity in ICC, plus several
random ones to act as control groups. Our benchmarks are the
stencils and array kernels detailed in Table 1. In total, more than
45,000 executions were performed. The results were analyzed using
k-means clustering to discover the factors that impact performance.
We gather information about architectural trends, particularized
for our processor unit: which cores are faster or slower, how the
distance to the MCDRAM interfaces affects benchmarks depending
on bandwidth requirements, which types of benchmarks benefit
from CHA-to-core and core-to-core affinity optimizations, etc.

We validate the collected “historic” data by generating random
mixes of applications and executing them using a schedule which
exploits the architectural characteristics discovered during the anal-
ysis phase. We randomly generate 6 different workload mixes, each
including 8 benchmarks of varying sizes, as detailed in Table 2.
We then execute each mix using three different configurations: i)
“fair”: cores are assigned to each task proportionally to the size of
their dataset; no CHA-to-core-affinity is enforced; and the bind-
ing of threads to cores is managed by the OS; ii) “load”: cores are
distributed across the tasks by using the historic data to estimate
expected execution times; no CHA-to-core affinity is enforced; and
the binding of the threads to cores is managed by the OS; and iii)

Table 2: Applications in each mix of workloads.

mix apps

#1 jac-2d-512kB, rvv-512kB, jac-1d-8MB, jac-2d-8MB, rvec-8MB,
rvv-32MB, vecsearch-32MB, avv-128MB

#2 avv-512kB, rvv-1MB, vecsearch-1MB, avv-2MB, avv-2MB, jac-
1d-swap-4MB, jac-1d-swap-32MB, jac-2d-128MB

#3 vecsearch-512kB, jac-2d-1MB, vecsearch-1MB, jac-2d-2MB, avv-
2MB, vecsearch-4MB, rvec-8MB, jac-2d-16MB

#4 rvec-512kB, rvv-512kB, vecsearch-512kB, avv-32MB, jac-1d-4MB,
vecsearch-4MB, avv-32MB, jac-2d-32MB

#5 jac-1d-swap-1MB, jac-2D-1MB, rvec-2MB, vecsearch-4MB, avv-
16MB, jac-1d-swap-16MB, jac-2d-16MB, jac-2d-32MB

#6 jac-1d-swap-512kB, avv-1MB, avv-2MB, rvv-2MB, rvv-8MB, avv-
32MB, rvv-32MB, jac-2d-64MB

[Cycles [L2 misses
[load B optimized 3 D1 misses I MCDRAM acc.
1.0
3
0.8
0.6 2
0.4
14 SO 1| S — -
0.2
0.0
1 2 3 4 5 6
mix
(a) (b)

Figure 4: Results of optimized scheduling methodologies:
4a) Execution cycles of “load” and “optimized” schedules
normalized to “fair” values; and 4b) Performance counters
of “optimized” schedules aggregated over the sum of each
mix and normalized to the values in “fair” schedules.

“optimized”: the number of cores per task is the same as in ii), but
strong CHA-to-core affinity is enforced; and an optimal thread-to-
core binding is computed by consulting historic data.

Figure 4a shows the performance of our optimized scheduling
methodologies. The improvement obtained by the “load” schedul-
ing depends on how well the computational load of each mix is
predicted by the footprint of its applications. For example, in mix #1
the initial “load” scheduling does not improve the execution time, as
our resource allocation binds threads of very small benchmarks to

different hyperthreads of the same core, to better exploit the avail-
able slack in the mix. The “optimized” schedule takes into account
the characteristics of the mesh to achieve further improvements.
This effect is most noticeable in mix #5, in which the longest com-
putation corresponds to jac-1d-swap-16MB, a benchmark which
is particularly sensible to the co-location of its computing threads.
Aggregating all mixes, “load” scheduling improves total execution
times by 20.8%, and “optimized” increases that gain to 61.3%.
Figure 4b gives a more detailed view of different performance
metrics for the “optimized” schedules. The plot aggregates the sum
of all metrics for all tasks in each mix. Note that sometimes the total
number of execution cycles increases with respect to the original
execution cycles. Yet, as shown in Fig. 4a, the total execution time
always improves. The reason is that the “optimized” schedule ex-
ploits the slacks of non-critical path tasks to better balance resource
allocation. Another interesting effect is the total increase in the
number of MCDRAM accesses for almost all mixes. This is caused
by a benchmark with large dataset but short comparative execution
time being allocated a reduced set of resources. This causes the
benchmark to become memory-bound, and its execution time to
increase, but keeping it out of the critical path of the mix. To avoid
interference, these tasks are allocated a set of MCDRAM interfaces
which are not used by other high-bandwidth demanding tasks. On
the other side of the spectrum is mix #5, where the number of
MCDRAM accesses is greatly reduced by the co-location of the
executing threads and the increase in allocated cache resources.

6 RELATED WORK

In recent years, a number of papers have explored the design of
scalable networks-on-chip to support manycore architectures. Daya
et al. [5] design a NoC based on an ordered network and a snoopy
coherence protocol, and show how congestion increases heavily
with the number of cores. Ferdman et al. [6] propose a scalable
distributed directory system to alleviate the power and performance
problems of sparse and duplicate-tag directories, scaling up to 1,024
cores. Charles et al. [3] identify the importance of the coherence
traffic in manycore performance, and show how the memory modes
in the Intel KNL can be manipulated to achieve better performance.
They neither explore software optimizations to coherence traffic,
nor the actual layout of the KNL processor.

Several papers have explored the performance of the KNL archi-
tecture, mainly through the analysis of well-known benchmarks,
machine learning applications, and parallel workloads [1, 2, 4, 8].
None of these works undertake the analysis of the locality charac-
teristics of the KNL interconnect. Ramos and Hoefler [12] develop a
capability model of the cache performance and memory bandwidth
of the KNL, characterizing the impact of the different memory and
cluster modes. However, this work does not consider the impact of
the distributed directory.

Few works focus on data layout optimizations for 2D intercon-
nects. Lu et al. [11] propose a polyhedral model and associated opti-
mizations to achieve data locality in these topologies. Liu et al. [10]
use a compiler-guided scheme to minimize on-chip network traffic
by reducing the distances of cores to data, but without taking into
account the effects of a distributed directory.

7 CONCLUSION

This work has explored the performance implications of the co-
herence traffic in distributed directory architectures, in particular
when coupled with an opaque distribution of memory blocks over
directory fragments, such as in the Intel Knights Landing architec-
ture. We have presented ways to improve network performance
by optimizing the coherence traffic, which for the KNL required
exposing the physical topology of the processor. We have revealed
novel intuitions which negate the pretended UMA behavior of this
kind of architectures, and shown how the illusion of uniformity
comes from a degradation of access latencies to a sub-optimal aver-
age. Furthermore, we have shown how traditional data placement
optimizations are not exploitable unless the affinity between cores
and the distributed directory fragments is first controlled for. We
validated all these proposals by developing and testing optimized
scheduling algorithms for a unique KNL processor.

Complex mesh interconnects as exemplified by the KNL architec-
ture are a viable approach to implementing multi- and manycores
in the forthcoming future, as demonstrated by their inclusion in
the Intel Xeon Scalable series. While manufacturers may obfuscate
information, which had to be empirically revealed in the current
work, its dissemination is essential for compiler developers to de-
liver higher code optimization quality, as suggested in this paper.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Economy,
Industry and Competitiveness of Spain (TIN2016-75845-P AEI/FED-
ER/EU), by the Ministry of Education (FPU16/00816), and by the
U.S. National Science Foundation award CCF-1750399.

REFERENCES

[1] A. Azad and A. Bulug. 2017. A Work-Efficient Parallel Sparse Matrix-Sparse
Vector Multiplication Algorithm. In IPDPS. 688-697.

[2] C.Byun et al. 2017. Benchmarking Data Analysis and Machine Learning Appli-
cations on the Intel KNL Many-Core Processor. In HPEC. 1-6.

[3] S. Charles et al. 2018. Exploration of Memory and Cluster Modes in Directory-
Based Many-Core CMPs. In NOCS. 1-8.

[4] L. Chen et al. 2017. Benchmarking Harp-DAAL: High Performance Hadoop on
KNL Clusters. In CLOUD. 82-89.

[5] B.K.Daya et al. 2014. SCORPIO: A 36-Core Research Chip Demonstrating Snoopy
Coherence on a Scalable Mesh NoC with In-Network Ordering. In ISCA. 25-36.

[6] M. Ferdman et al. 2011. Cuckoo Directory: A Scalable Directory for Many-Core
Systems. In HPCA. 169-180.

[7] JR. Goodman and H.H.J. Hum. 2009. MESIF: A Two-Hop Cache Coherency Protocol
for Point-to-Point Interconnects. Technical Report. University of Auckland.

[8] M. Jacquelin, W. De Jong, and E. Bylaska. 2017. Towards Highly Scalable Ab
Initio Molecular Dynamics (AIMD) Simulations on the Intel Knights Landing
Manycore Processor. In IPDPS. 234-243.

[9] J. Jeffers, J. Reinders, and A. Sodani. 2016. Intel Xeon Phi Processor High Perfor-

mance Programming: Knights Landing Edition. Morgan-Kauffman.
J. Liu et al. 2015. Network Footprint Reduction through Data Access and Compu-
tation Placement in NoC-Based Manycores. In DAC. 181.
[11] Q.Lu et al. 2009. Data Layout Transformations for Enhancing Data Locality on
NUCA Chip Multiprocessors. In PACT. 348-357.

[12] S.Ramos and T. Hoefler. 2017. Capability Models for Manycore Memory Systems:
A Case-Study with Xeon Phi KNL. In IPDPS. 297-306.

[13] A.Sodani. 2015. Knights Landing (KNL): 2nd Generation Intel Xeon Phi processor.
In HCS. 1-24.

[14] S.M. Tam et al. 2018. SkyLake-SP: A 14nm 28-Core Xeon Processor. In ISSCC.

34-36.

L. Yang et al. 2017. Task Mapping on SMART NoC: Contention Matters, Not the

Distance. In DAC. 88.

[16] K. Yotov, K. Pingali, and P. Stodghill. 2005. Automatic Measurement of Memory

Hierarchy Parameters. In SIGMETRICS. 181-192.
[17] C.Zhang. 2015. Mars: A 64-core ARMv8 processor. In HCS. 1-23.

=
=

[15

