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Abstract— Navigation problems are generally solved applying
least-squares (LS) adjustments. Techniques based on LS can
be shown to perform optimally when the system noise is
Gaussian distributed and the parametric model is accurately
known. Unfortunately, real world problems usually contain
unexpectedly large errors, so-called outliers, that violate the
noise model assumption, leading to a spoiled solution esti-
mation. In this work, the framework of robust statistics is
explored in order to provide a robust solution to the Global
Navigation Satellite Systems (GNSS) single point positioning
(SPP) problem. Considering that GNSS observables may be
contaminated by erroneous measurements, we survey most
popular approaches for robust regression and how they can
be adapted into a general methodology for robust SPP.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) play a funda-
mental role on prospective applications of Intelligent Trans-
portation Systems (ITS), as the main source of positioning
information. Besides, GNSS provides timing synchronization
to critical applications such as power grid or the stock
market. However, GNSS performance can be easily degraded
by natural phenomena and signal reflection. Navigation in
urban scenarios results particularly challenging due to the
presence of severe multipath effects, inducing large errors in
the observed pseudorange measurements. Most positioning
techniques are based on maximum likelihood (ML) esti-
mation, since the later provides optimal solutions under
the assumption of Gaussian distributed observation noise.
Although this assumption is generally fulfilled for nominal
GNSS open-sky conditions, positioning on signal-degraded
scenarios constitutes a challenge for ML estimators such as
the least-squares (LS) [1].

Thus, the GNSS community has devoted great efforts
towards the development of resilient navigation solutions.
One of the most popular approaches is based on solution
separation –also known as consistency-checking–, where a
statistical test is applied to the estimated residuals to verify
whether the Gaussian assumption is fulfilled. Otherwise,
combinations of subsets excluding one observation are com-
puted and the statistical test applied again. This procedure is
repeated until a fault-free subset is found. Advanced Receiver
Autonomous Integrity Monitoring (ARAIM) is possibly the
most well-known representative of the solution separation
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approach, becoming the de facto navigation method for
vertical guidance in the aviation domain [2], [3]. Numerous
other works have adapted consistency-checking navigation
algorithms for single point positioning (SPP) in signal-
degraded scenarios [4]–[7]. With the deployment of new
GNSS constellations and frequencies, ARAIM-like methods
pose challenging scalability issues. Since solution separation
methods constitute a combinatorial problem with the number
of observations and outliers, the computation complexity
could potentially become an intractable problem with the
growing amount of measurements.

Robust statistics provides an alternative framework for the
definition of navigation methods resilient against multiple
erroneous observations. Originally suggested for general data
analysis in the early 1970s [8]–[10], robust estimators has
experienced substantial research growth and its use has
extended to manifold fields: signal processing [11]–[13],
biomedical [14], [15], power systems [16], etc. In recent
times, the application of robust statistics to GNSS-related
problems has gained traction, especially for interference
mitigation at the receiver level [17]–[22]. Similarly, the use
of robust estimators to compute position, velocity and timing
(PVT) solutions has been explored for both memoryless
and recursive positioning [23]–[29]. However, a profound
characterization of the estimators properties and an in-depth
discussion on the implementation details appear to be miss-
ing.

This work introduces the principles of robust statistics for
regression problems and presents three of the most popular
robust methods: M-, S- and MM-estimators. Besides, a com-
prehensive guide on the implementation of such techniques
for solving the GNSS SPP problem is detailed. Moreover,
the specific challenges on the application of robust estimators
for GNSS positioning are discussed. Experiments based on
synthetic data are carried out to evaluate the positioning
capabilities of the M-, S- and MM-estimators against classi-
cal LS. In these experiments, the pseudorange observations
are contaminated with outliers of different magnitude and
on diverse percentages of the data. A definition for relative
Gaussian efficiency is presented, defined as the ratio on posi-
tioning accuracy between a robust estimator and the LS under
nominal normal-distributed noise. Such relative efficiency is
addressed for the evaluated estimators over different data
volumes, to resolve whether a possible correlation between
data redundancy and efficiency exists.

The rest of the paper is organized as follows. In Section
2, the basics of robust estimation are introduced. Section
3 relates the application of robust techniques for GNSS
positioning. Section 4 presents the simulation results and



discusses the performance of the estimators. Finally, in
Section 5 the outlook and future work are presented.

II. BACKGROUND ON ROBUST ESTIMATION

A traditional way to represent ‘well-behaved’ data is to
assume that the underlying noise is normal distributed, with
known parametrization,

ε ∼ N
(
µ, σ2

)
. (1)

Thus, classical regression methods assume that ε belongs to
an exactly known parametric distribution [30]. If this assump-
tion holds, the LS estimate is optimal. However, several real-
world measurements have confirmed the presence of heavy-
tailed (or approximately normal) noise [31]–[33], causing
estimators derived from the Gaussian probability model to be
biased or even break down [11]. Under these circumstances,
the robust estimators become relevant, given their capacity to
provide close-to-optimal results in non-nominal conditions.
The concept of approximate normality can be formalized
by considering a proportion 1− ε of the observations to be
affected by Gaussian noise, while a complementary portion
0 ≤ ε ≤ 1 of the data is contaminated by an unknown
(potentially) non-Gaussian distribution,

ε ∼ (1− ε)G+ ε H (2)

where G = N
(
µ, σ2

)
is the nominal Gaussian distribution

and H is an arbitrary contaminating distribution. Notice
that another approach for modeling outliers involves the use
of heavy-tailed distributions, whose tails tend to zero at a
slower rate than the Gaussian distribution. Cauchy, Laplace,
Student-t or α-stable distributions are examples of such
heavy-tailed densities. This section introduces a basic notion
on robust statistics and on some of the most well-known
robust estimators for regression problems. For a detailed
theoretical analysis of robust statistics, the reader is referred
to classical textbooks [10], [34], [35], or the recent works
[11], [36] for its application to a variety of signal processing
problems.

A. Robust Statistics Dictionary

Some basic concepts from robust statistics are introduced
in this section. First, qualitative robustness is described
adopting Hampel’s definition [8]. In plain words, if a
bounded change in the distribution of the observations is
seen as a bounded change in the distribution of the estimates,
then the claim is that the estimator is robust. More precisely,
let X = {x1, . . . , xn} be a set of i.i.d. observations from
a distribution F , and let Tn = Tn(X ) be a sequence of
estimates. Then Tn is called robust at F = F0 if the sequence
of maps of distributions1, LF (Tn) is equicontinuous at F0,
that is, if we take a suitable distance d∗, in the space of
probability measures, and assume that for all δ2 > 0 there
exists a δ1 > 0 such that,

d∗(F0, F ) ≤ δ1 ⇒ d∗ (LF0
(Tn),LF (Tn)) ≤ δ2 . (3)

1LF (Tn) stands for the distribution of an estimator (or test statistic) Tn
under F .

Another important metric is the breakdown point ε∗,
defined as the smallest percentage of contamination that can
cause the estimator to take on arbitrarily large aberrant value
[8]. Later, the concept of breakdown point on finite sets
was introduced in [37]. Thus, taken any sample X of n
observations and any estimator T , Tn. Let β (m,T,X ) be
the supremum of ‖T (X ′)−T (X ) ‖ for all corrupted samples
X ′ where m of the original n observations are replaced by
arbitrary values. Then, the breakdown point of an estimator
T is defined as

ε∗m (T,X ) = min
{m
n
, β (m,T,X )

}
(4)

If a set of observation is to follow a mixture model as
in Eq. 2, those healthy observations following a known
distribution are referred to as inliers. On the other hand,
observations that are well separated from the bulk of the
data are generally referred to as outliers.

Robust estimators provide resiliency to outliers, but they
do it at the price of some performance degradation under the
nominal model, i.e., when all observations are inliers. Such
degradation is quantified via the loss-of-efficiency (LoE), also
known as relative or Gaussian efficiency, defined as the
performance ratio between a robust estimator and the optimal
method (e.g., the LS) under the nominal noise model.

B. Robust Estimates for Regression Problems

Consider a linear regression problem yt = z>t x+nt, with
t = 1, . . . , N, and x the unknown parameters, or in vector
form, y = Zx + n. We can define a vector r = y − Zx
of observation residuals. The regression is generally solved
applying a LS estimator (minimization of the `2-norm of the
residuals),

x̂LS = arg min
x
||y−Zx||2 ⇒ arg min

x

N∑
i=1

(
ri(x)

σi

)2

, (5)

which is optimal when the Gaussian noise assumption for n
holds. However, it lacks robustness as even a single outlier
could completely spoil the estimation. A first approach to-
wards protecting against outlying measurements is the least-
absolute value or `1, consisting on the substitution of the
squared residuals as

x̂`1 = arg min
x

N∑
i=1

∣∣∣∣ri(x)

σi

∣∣∣∣ . (6)

Nonetheless, the `1 method retains a sum of residuals and
thus the influence of outliers is still unbounded. This problem
can be generalized by considering a general loss function
ρ(x) (a.k.a. ρ-function). For instance, ρLS (x) = x2 and
ρ`1 (x) = |x| correspond to the aforementioned estimation
approaches. The framework of robust statistics proposes loss
functions ρ (·) such that the estimates are nearly optimal
when the noise is exactly normal and nearly optimal when the
noise is approximately normal (e.g., contaminated normal).
The influence function (a.k.a. ψ-function) is defined as the
bias impact of an infinitesimal contamination on the esti-
mator ψ(x) = ∂ρ(x)

∂x . Several robust estimators of regression



have been proposed in the literature, the most popular being:
i) M-estimate, ii) S-estimate, and iii) MM-estimate. In the
sequel, the loss functions for robust statistics are introduced,
alonside some details on the robust estimators, for which Fig.
1 provides some pictorial support.

1) Huber and Tukey Families of Loss Functions: The key
idea behind robust estimation is to use loss functions which
appropriately penalize measurements with outliers. Several
loss functions exist in the literature, the most common being
Huber and Tukey’s bisquare families of functions. The family
of Huber functions is defined as

ρHa (x) =

{
x2 if |x| ≤ a
2a|x| − a2 if |x| > a

, (7)

ψHa (x) =

{
x if |x| ≤ a
a sgn(x) if |x| > a

, (8)

WH
a (x) = min

{
1,

a

|x|

}
, (9)

then ρHa (x) is quadratic around 0 and increases linearly
with x. In the case of location estimation, the limit cases,
a → ∞ and a → 0 correspond to the mean and median
estimates, respectively. A desirable property of ρ-functions
is boundedness, which implies redescending ψ-functions that
tend to 0 at infinity. A popular choice is the Tukey’s bisquare
or biweight family of functions,

ρBc (x) =

{
1−

(
1−

(
x
c

)2)3
if |x| ≤ c

1 if |x| > c
(10)

ψBc (x) = x

(
1−

(x
c

)2)2

I(|x| ≤ c), (11)

WB
c (x) =

(
1−

(x
c

)2)2

I(|x| ≤ c), (12)

with c > 0 a constant parameter and I(|x| ≤ c) the indicator
function, i.e., I(|x| ≤ c) = 1 if |x| ≤ c, and 0 if |x| > c.

Typically, the constant parameter in both functions are
fixed to achieve a given efficiency to the normal distribution.
For a 95% of efficiency, a = 1.345 for the Huber function,
and c = 4.685 for the Tukey function.

2) M-estimator: the M-estimate of regression is defined
as

x̂M = arg min
x

N∑
i=1

ρ

(
ri(x)

σ̂

)
, (13)

with σ̂ an estimate of the scale of errors n, or equivalently,
as the solution to

N∑
i=1

ψ

(
ri(x)

σ̂

)
∂ (ri(x)/σ̂)

∂x
= 0, (14)

which is commonly solved by an Iteratively Reweighted LS
(IRLS), with an instrumental weight function defined as

W (x) =

{
ψ(x)/x, if x 6= 0
ψ′(0), if x = 0

, (15)

to provide the convenient alternative formulation,

N∑
i=1

W (ri/σ̂) ∂

((ri
σ̂

)2)
/∂x = 0. (16)

Solving such system requires finding the state estimate per
se as well as the weights for each of the observations
according to the corresponding weighting function. Notice
that a normalization using the dispersion of the residuals σ̂
is included in the formulation, because these estimates are
not scale equivariant. An estimate of the residuals dispersion
must be used, for instance, the normalized median absolute
deviation σ̂MAD, defined as

σ̂MAD(x) = cm Med(|x−Med(x)|) (17)

being Med(x) the median of x, and cm a normalizing
constant (≈ 1.4815 for the normal case).

3) S-estimator: the S-estimate of regression is defined as
the estimator that minimizes the robust scale M-estimate,

x̂S = arg min
x
sM (r(x)), (18)

with sM (r(x)) the M-estimate of scale, which satisfies

1

N

N∑
i=1

ρ

(
ri(x)

sM (r(x))

)
= b, (19)

and thus,

x̂S = arg min
x

N∑
i=1

ρ

(
ri(x)

ŝ

)
, ŝ = sM (r(x̂S)) (20)

Again this is solved by an IRLS. A typical choice is the
bisquare scale with ρ(x) = min{1 − (1 − x2)3, 1} and b =
0.5. In this case, W (x) = min{3− 3x2 + x4, 1/x2}, where
it’s clear that larger values of x have smaller weights. S-
estimator are characterized by a high breakdown point, while
attaining a low efficiency at the normal distribution.

4) MM-estimator: this robust estimator is designed to
achieve both high efficiency and high breakdown point
simultaneously. If we consider two bounded loss functions,
ρ0 and ρ1, which satisfy ρ1 < ρ0, then the MM estimator is
defined as

x̂MM = arg min
x

N∑
i=1

ρ1

(
ri(x)

sN (r(x̂1))

)
, (21)

where x̂1 is consistent and high BP estimate of x, and
sN (r(x̂1)) is the M-estimate of scale of the residuals of x̂1,
computed using ρ0 and b.

The MM-estimate is build up with three steps:
1) Compute an initial consistent S-estimate of x, x̂1, with

a high BP but possibly low normal efficiency.
2) Compute a M-estimate of the scale of the residuals

sN (r(x̂1)) using the high BP estimate x̂1.
3) Compute the regression M-estimate starting at x̂1, con-

sidering the robust scale estimate sN (r(x̂1)) and using
the recursive IRLS solution.
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Fig. 1: ρ(x) (left), ψ(x) (middle) and W (x) (right) for: i) `2-norm (LS), ii) `1-norm, iii) Huber fct with a = 1.345, and iv)
Tukey fct with c = 4.685.

III. ROBUST STATISTICS FOR GNSS POSITIONING

The GNSS-based positioning principle consists in solving
a geometric problem from the measured ranges to the visible
satellites, whose positions are known. Assuming that n ≥ 4
satellites are tracked, then the observation model to relate
the code pseudoranges to the unknown receiver coordinates
is as follows:

Ri = ‖pi − p‖2 + c (δt− δti) + Ii + Tri + εi (22)

where the subscript i = {1, . . . , n} refers to the i-th satellite,
R is the observed pseudorange, pi and p denote the satellite
and receiver positions respectively, c is the speed of light and
δt is the receiver clock offset. Besides, I and Tr denote the
ionospheric and tropospheric corrections and ε agglomerates
the remaining unmodeled errors (e.g., multipath effects, in-
strumental delays, phase biases, etc.). The GNSS positioning
problem is generally formulated as a regression problem as:

y = h (x) + ε (23)

where y is the n-dimensional observation vector, h (·) is the
observation model from (22) and x =

[
p>, cδt

]>
is the state

to be estimated. The LS adjustment is the most commonly
used method for the estimation of the regression problem
of Eq. 23. Since GNSS SPP involves a nonlinear observa-
tion model, the problem is typically linearized and solved
applying an iterative Gauss-Newton method as follows

∆x =
(
H>WH

)−1
H>Wy (24)

x̂k = x̂k−1 + ∆x (25)

where H is the Jacobian matrix for the observation model,
also known as geometry matrix. That linearization is per-
formed around some guess point x̂k−1 for the k-th iteration
of the method, and ∆x provides the update for that iteration
which will be used to linearize at iteration k + 1 as in (25).
W is the weighting matrix for the observations. Classical
SPP solutions take W as the inverse of the observations
covariance matrix R. Stochastic modelling of pseudorange

observations has been a recurrent topic within the GNSS
community. A simplification commonly used is to assume
that the observations noise is uncorrelated, zero-mean normal
distributed εi ∼ N

(
0, σ2

i

)
[38]. Thus, the covariance is

given by
R = W−1 = diag

(
σ2
i , . . . , σ

2
n

)
(26)

where σ2
i is derived from combining the uncertainty of

the different error sources (satellite ephemeris and clock,
ionosphere, troposphere, multipath and receiver noise), as
in [39], [40] or from error models dependent on the satellite
elevation and/or the signal carrier-to-noise density ratio [41]–
[43].

Algorithm 1 describes the IRLS process for the robust
estimation of the GNSS SPP. Notice that WLS (a short
for weighted least squares) refers to the iterative Gauss-
Newton described in (24)-(25), and MAD is defined in (17).
N and δ denote the maximum number of iterations of the
iterative Gauss-Newton method and the convergence criteria,
respectively. The choice of the influence function and the
scale estimate is subject on the robust estimator applied –
e.g., for the M-estimator, one might use the Huber function
in (8) and the MAD as scale estimate.

Remarkably, the application of robust estimators to GNSS
positioning poses specific challenges. On the one hand,
the observation model h (·) is nonlinear. Thus, the IRLS
procedure for finding the observations weights based on
the M-estimator concatenates with the iterative LS used for
dealing with the model nonlinearity. On the other hand,
GNSS PVT problems are characterized by presenting fat data
samples, namely, there is a low redundancy of observations.
Since generally only around a dozen satellites are tracked
and at least four parameters are to be estimated, GNSS
SPP constitutes a severe case of low redundancy regression
problem [44]. Lastly, the general assumption on robust
statistics of independent and identically distributed noise is
not met for the GNSS case. Not only are GNSS observations
noise uniquely described using stochastic models, but the
assumption of independent noise can be violated for satellites



Algorithm 1 IRLS procedure for robust SPP

1: Initial WLS→ x0, r0 = arg minx‖y−Hx‖2W�1

2: Initial scale→ σ̂0 = MAD
(
r0
)

3: Normalized residuals d0 = r0/σ̂0

4: for k := 1, 2, . . . N do
5: wk = ψ(dk−1)/dk−1

6: W = diag
(
wk1 , . . . , w

k
n

)
7: WLS→ xk, rk

8: Estimate scale→ σ̂k
(
rk
)

9: dk = rk/σ̂k

10: if ‖xk − xk−1‖ < δ then
11: Stop
12: end if
13: end for

of similar direction-of-arrival (e.g., for multipath and none
line of sight effects), or for all satellites (e.g., under the
influence of a jamming attack or an ionospheric storm).

IV. TEST AND RESULTS

The performance of robust estimators for GNSS position-
ing is assessed using a simulated environment and compared
to classical WLS. Different percentages of outlying observa-
tions ε and outlier magnitudes are considered. The magnitude
of the outliers α is defined as the ratio between inlier,
or healthy observations, and outliers. The skyplot of the
tracked satellite is as shown in Fig. 2 and results are obtained
after averaging 104 Monte Carlo runs. For the simulation of

TABLE I: Parameters for the Monte Carlo simulation.

UTC time 15/05/2017 09 : 30 : 00
Location Koblenz, Germany

(50◦21’56”N, 7◦35’55”E)
Number of satellites n 10
Observation variance noise [m2] 4
Outlier percentage ε 0 - 10 - 20 - 30 - 40
Outlier magnitude α 1 - 3 - 6 - 10 - 30 - 60 -100

the observations, a simplified model was considered, where
the pseudorange measurements correspond to the geometric
distance to the satellites and a simulated receiver clock offset,
thus omitting the effects due to atmospheric propagation
and the errors in the satellites ephemeris and clock offsets.
The inlier observation noise follows a zero-mean normal
distribution, whose variance noise is indicated in Table I.
Similarly, the noise present in outlying observations follows a
zero-mean normal distribution with a variance α times larger
than that of the healthy observations. First, a simulation is
realized based on the actual positions of GPS satellites, as
shown in the skyplot of Fig. 2, assuming that the receiver is
located in Koblenz (Germany) in May 2017. The evaluated
estimators are the regular WLS, the M estimator on the
Huber function (a = 1.345), the S estimator on the Tukey
function (a = 4.685 and b = 0.5) and the MM estimator
(applying on a first stage a S estimator for the scale estimate

and later a M estimator, using the same tuning parameters
as stated previously). The first row of Fig. 3 shows the

Fig. 2: Skyplot of the tracked satellites for the simulations.

positioning root mean squared error (RMSE) on the ordinate
axis, with the magnitude of the outliers being depicted on the
abscissa axis. As expected, the LS estimation gets spoiled by
the contamined observations, presenting a bias proportional
to the size of the outliers. On the other hand, the M-,S- and
MM-estimators exhibit certain resilience against the outliers.
For a contamination of 10%, the three robust estimators
cope perfectly with the contaminated data. Moreover, the
performance increases with the size of the outliers, since the
detection of these get facilitated by their great impact on the
estimation. For large ratios of contaminated data (Figs. 3 (b)
and (c)), the characteristics of the estimators become more
evident. Since the Huber function applied the M estimation
is not redescending – i.e., the effects of the outliers do
not get completely eliminated –, the performance of the M
estimation rapidly decays. On the contrary, the S and MM
estimators make use of the Tukey function, which utterly
bounds the effects of the observations presenting the largest
residuals. Fig. 3 (c) makes evident the need for observation
redundancy to ensure the correct functioning of the robust
estimators, since the overall positioning performance gets
heavily degraded. Nonetheless, the differences on perfor-
mance between the M-, S- and MM-estimators support the
hypothesis suggested on classical robust theory, for which
the S- and MM-estimators pose a higher breakdown point
compared to the M-estimator.

Given the prospective scenario in which four GNSS con-
stellations will be fully deployed, it results of great interest
the performance characterization of robust estimators under
a large number of observations available. Thus, a second
experiment is carried out by simulating n = 40 satellites
(azimuth ∼ U (0, 2π), elevation ∼ U (0, π/4) and distance
∼ N

(
20.200[km], 2.000[km2]

)
). The second row of Fig. 3

shows the positioning performance of the evaluated WLS and
robust methods. Despite the large number of observations,
the LS estimation results as spoiled as with a reduced num-
ber of measurements, asserting the hypothesis of minimum
robustness for classical ML methods. Contrarily, the robust



(a) 10% of contaminated data. (b) 30% of contaminated data. (c) 40% of contaminated data.

(d) 10% of contaminated data. (e) 30% of contaminated data. (f) 40% of contaminated data.

Fig. 3: RMSE positioning error for ε ∈ {10, 30, 40}% contamination data (each column) and n ∈ {10, 40} pseudorange
observations (each row).

estimators are capable of successfully bounding the effects of
outliers, even for the case of 40% data contamination. Again,
the S- and MM-estimators manifest the best performance
among the robust methods.

Fig. 4: RMSE performance (top) of LS and robust estimators
as a function of the number of measurements and loss-of-
efficiency (bottom) comparison of robust methods.

Finally, the Gaussian efficiency of the estimators is studied
from the point of view of the loss-of-efficiency (LoE).
LoE ∈ [0, 1) is defined as the ratio between the RMSE
of the LS and a particular estimator. Given that LS is an
optimal estimator for the normal distributed noise, the higher
the LoE for an estimator is, the more efficient at normal
distribution such estimator is. Fig. 4 (top) depicts the RMSE
of the evaluated methods against the number of observations
simulated. While in general the positioning improves with the

number of measurements, the LoE of an estimator appears
detached from the number of observations, as displayed in
Fig. 4 (bottom). The S-estimator presents the lowest LoE
and, thus, the poorest Gaussian efficiency. On the other
hand, the MM-estimator holds a LoE of approximately 0.99
and it represents the most efficient among the compared
methods. Given that MM-estimator poses, together with the
S-estimator, the best performance against high percentage of
contaminated observations, we might conclude that the MM-
estimator resembles the best robust method for the GNSS
SPP problem.

V. OUTLOOK AND FUTURE WORK

This paper provides a brief overview of robust statistics
and how it can be used to enhance the resilience of GNSS
SPP solutions in the presence of outliers, caused in practice
by multipath propagation or hardware malfunctioning for
instance. SPP can be seen as a regression problem, for
which this paper presents its robust version leveraging the
sound theory of robust statistics. At the same time, the
article discusses the specific aspects of applying robust
regression to GNSS SPP solvers, and support the discussion
with simulation results showing the improvements of such
methods as well as their characterization. Future research
will provide a better understanding of the loss-of-efficiency
incurred by those methods; as well as the relaxation of the
i.i.d. assumption among different satellites, and the use of
robust techniques in recursive versions that yield to more
sophisticated PVT solutions.
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