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ABSTRACT

Localization in large sensor networks requires decentralized
computationally efficient filtering solutions. To model chal-
lenging indoor propagation conditions, including non-line-of-
sight conditions and other channel variations, it may be neces-
sary to consider non-Gaussian distributed errors. In this case,
Gaussian filters cannot be considered as is and particle filters
do not meet the system requirements on computational cost
and/or available memory. In this article we explore decen-
tralized Gaussian information filtering strategies under skew-
Laplace errors, exploiting the hierarchically Gaussian formu-
lation of such distribution. An illustrative example is consid-
ered to show the performance and support the discussion.

Index Terms— Network localization, distributed filter-
ing, object tracking, skew-Laplace distributed noise.

1. MOTIVATION & SIGNAL MODEL

1.1. RSS-based Localization State-space Model

We are interested in robust object localization exploiting re-
ceived signal strength (RSS) measurements to improve the lo-
calization in challenging non-Gaussian indoor scenarios. An
object is localized using a set of N RSS sensors. Its 2D po-
sition/velocity are to be inferred, xt = [px,t, py,t, vx,t, vy,t]

>,
pt = [px,t, py,t]

>, vt = [vx,t, vy,t]
>,

xt =

(
I2 Ts · I2
0 I2

)
︸ ︷︷ ︸

F

xt−1 +νt−1, νt−1 ∼ N (0,Q), (1)

with Q = diag(σ2
px , σ

2
py , σ

2
vx , σ

2
vy ), Ts the sampling period

and I2 the 2x2 identity matrix. The m-th sensor RSS is

ym,t = 10 log10

(
1

|rm − pt|2

)
+ nm,t,

with measurement noise typically considered to be Gaussian
distributed nm,t ∼ N (nm,t; 0, σ2

m), with σ2
m depending on
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line-of-sight (LOS) or non-line-of-sight (NLOS) conditions,
and known RSS sensor position rm = [rx,m, ry,m]>. But
the Gaussian distribution does not account for possible chan-
nel variations between objects and RSS anchor nodes. For
instance, in crowded indoor scenarios where several people
may cross such propagation path, then a non-Gaussian distri-
bution must be accounted for, nm,t ∼ D(nm,t;φm), withφm
a known hyperparameters vector. The complete RSS mea-
surement equation is then

yt = [y1,t, · · · , yN,t]>

=


10 log10

(
1

|r1−pt|2

)
...

10 log10

(
1

|rN−pt|2

)


︸ ︷︷ ︸
ht(xt)

+

 n1,t
...

nN,t


︸ ︷︷ ︸

nt

. (2)

We can consider the following two approaches:

• Centralized Filtering: if a centralized localization ap-
proach is considered, the complete set of available ob-
servations yt is used into the filtering method, where
each noise components in nt follow a non-Gaussian
distribution. Then the state-space model (SSM) given
by (1) and (2), is nonlinear/non-Gaussian.

• Decentralized Filtering: in a distributed approach a sin-
gle sensor or a cluster of close sensors must perform the
estimation task, without having access to the complete
set of observations. This is typically done through a
three step approach: i) a set of sensors in a cluster are
able to communicate and perform the estimation task,
ii) the estimated states are transmitted to a fusion center
which refines these estimates by combining the output
of the different clusters, and iii) the updated estimates
are re-transmitted to the set of sensors/clusters to per-
form the subsequent estimation.

1.2. Rationale behind the Proposed Filtering Strategy

Because of the SSM of interest, the conventional solution
would be to consider a Particle Filter (PF) approach [1]. But



the PF is not suited for decentralized localization in large
wireless sensor networks (WSN), which require cost-efficient
algorithms whose implementation does not involve high com-
putational complexity. On the other hand, standard nonlin-
ear Gaussian filters [2, 3], and their decentralized versions
[4, 5] assume Gaussian distributed errors, which is not the
case in the indoor localization context of interest, where non-
Gaussian distributions must be considered to properly charac-
terize NLOS and other possible RSS channel variations. The
proposed filtering strategy wants to: i) provide a decentral-
ized solution, ii) use computationally efficient Gaussian fil-
ters, iii) while considering the possibly non-Gaussian mea-
surement noise. To achieve such goal, we exploit the fact that
noise distributions may be expressed in a conditionally Gaus-
sian form (see Section 1.3). We provide a new decentralized
collaborative multiple sensor fusion algorithm, which oper-
ates in large-dimensional non-Gaussian systems and reduces
the computational load at each cluster of sensing nodes. This
work further analyses the concepts introduced in [6] for cen-
tralized TOA localization under skew t-distributed noise.

1.3. Hierarchically Gaussian RSS Error Distribution

Several contributions deal with the characterization of RSS
errors in mixed LOS/NLOS environments, see [7] and refer-
ences therein. RSS errors under LOS and NLOS conditions
are typically modeled as Gaussian distributed with different
variances, σ2

LOS < σ2
NLOS , to account for different RSS

channel variations. It is suggested in [8] that the fadings in-
duced by people crossing a RSS link follow a skew-Laplace
distribution, which is typically the case in crowded environ-
ments. In this article we adopt such RSS error distribution,
which allows to avoid to distinguish between LOS and NLOS
conditions. The univariate skew-Laplace pdf is given by [9]

SL(z;µ, σ, λ) =
1

2σα
exp

(
λ

(
x− µ
σ2

)
− α

∣∣∣∣x− µσ
∣∣∣∣) ,

(3)
with hyperparameters µ ∈ R, σ ∈ R+, λ ∈ R, being re-
spectively the distribution location, scale and skewness, and
α =

√
1 + λ2/σ2. Notice that this distribution accepts a Nor-

mal Variance-Mean Mixture (NVMM) representation. This
implies that it can be reformulated as hierarchically Gaussian.
Mathematically, z ∼ SL(z;µ, σ2, λ) can be rewritten as [9]

z|β ∼ N
(
z;µ+ βλ, βσ2

)
, (4)

with β ∼ G (β; 1, 2) and G (·) the gamma distribution. No-
tice that with λ = 0, this becomes the (symmetric) Laplace
distribution L(z;µ, σ) = SL(z;µ, σ, λ = 0).

Under the knowledge of µ, σ, λ and β in (4), z is Gaus-
sian, then D(ni,t;φi) = SL(ni,t;φi) (i.e., φi = [µi, σi, λi])
and using the NVMM formulation, the SSM becomes non-
linear/Gaussian. The marginal posterior distribution of the
states, p(xt|y1:t) turns to be Gaussian and thus we are able to
use computationally light Gaussian filtering methods.

2. METHODOLOGY

The nonlinear/non-Gaussian SSM of interest is written as

xt = ft−1(xt−1) + νt−1 ,νt−1 ∼ N (νt−1; 0,Qt−1), (5)
yt = ht(xt) + nt, ni,t ∼ SL(ni,t;φi), (6)

where each measurement noise component is skew-Laplace
distributed, being conditionally Gaussian from the formula-
tion in Section 1.3. xt ∈ Rnx are the hidden state of the sys-
tem to be inferred from the available observations yt ∈ Rny ;
ft−1(·) and ht(·) are known functions of the state; both noise
sequences νt−1 and nt are assumed to be independent. Con-
sidering a set of observations taken at M different clusters of
sensors, where the j-th cluster (with Nj RSS sensors) obser-
vation model in RNj is given by a subset of Nj RSS observa-
tions (yj,t = hj,t(xt) + nj,t, for j = 1, . . . ,M ), the goal is
that each cluster characterizes the posterior p(xt|yj,1:t).

2.1. Gaussian Information Filtering Background

The information filter (IF) is an algebraically equivalent form
of the Kalman filter (KF), where instead of considering the
state vector and its associated estimation error covariance,
the filter propagates the so-called information vector and in-
formation matrix (i.e., the inverse of the covariance). The
main advantage is in terms of information fusion, because
the aggregation of information provided by different clusters
of sensors is just a sum of individual information vectors [4,
5]. Considering linear/Gaussian systems, i.e., ft−1(xt−1) =
Ft−1xt−1, ht(xt) = Htxt and nt ∼ N (0,Rt), the KF
computes the predicted and updated state estimates at dis-
crete time t as x̂t|t−1 = Ft−1x̂t−1|t−1 and x̂t|t = x̂t|t−1 +

Kt

(
yt −Htx̂t|t−1

)
, with Kt the Kalman gain, Σx,t|t−1 and

Σx,t|t the prediction and estimation error covariance matri-
ces, respectively. To reformulate the KF as an IF, we define
the information vector and matrix as,

ẑt|t = Σ−1x,t|tx̂t|t = Zt|tx̂t|t ; Zt|t = Σ−1x,t|t, (7)

and then the standard KF recursion is rewritten as

ẑt|t−1 = Ltẑt−1|t−1 (8)

Zt|t−1 =
(
Ft−1Z

−1
t−1|t−1F

>
t−1 + Qt−1

)−1
, (9)

ẑt|t = ẑt|t−1 + it ; Zt|t = Zt|t−1 + It. (10)

with Lt = Zt|t−1Ft−1Z
−1
t|t−1, and the information contribu-

tions to the updates it = H>t R−1t yt and It = H>t R−1t Ht.
Considering a set of observations taken at M different clus-
ters of sensors, each cluster j computes its own estimate and
then the global estimate can be updated simply as

ẑt|t = ẑt|t−1 +
M∑
j=1

ij,t ; Zt|t = Zt|t−1 +
M∑
j=1

Ij,t, (11)



with ij,t = H>j,tR
−1
j,t yj,t and Ij,t = H>j,tR

−1
j,tHj,t. Notice

that the filter complexity (e.g., inversion of matrices) is trans-
lated from the measurement update to the state prediction,
which is substantially lower dimensional in WSN.

For nonlinear/Gaussian systems, deterministic sampling-
based information filters (SPIFs) have been proposed [4, 5],
where the prediction step can be implemented as in standard
sigma-point filters [3], and the information contributions to
construct the measurement update at cluster j are given by

ij,t = Zj,t|t−1Σj,xy,t|t−1R
−1
j,t

(
yj,t − ŷj,t|t−1

+Σ>j,xy,t|t−1ẑj,t|t−1

)
Ij,t = Zj,t|t−1Σj,xy,t|t−1R

−1
j,t

(
Zj,t|t−1Σj,xy,t|t−1

)>
,

where the measurement prediction and cross-covariance
are ŷj,t|t−1 ≈

∑L
i=1 ωihj,t(xi,t|t−1) and Σj,xy,t|t−1 ≈∑L

i=1 ωixi,t|t−1h
>
j,t(xi,t|t−1) − x̂j,t|t−1ŷ

>
j,t|t−1, respec-

tively, with {ξi, ωi}i=1,...,L a set of sigma-points and weights,
xi,t|t−1 = Sj,x,t|t−1ξi + x̂j,t|t−1, and Sj,x,t|t−1 the square-
root Cholesky factorization of Σj,x,t|t−1. Notice that after
computing the global estimate at the fusion center, the infor-
mation vector and matrix are retransmitted to each cluster.

2.2. Decentralized IF under Skew-Laplace Noise

Considering the nonlinear/non-Gaussian SSM of interest (5)-
(6), the proposed decentralized IF exploits the NVMM re-
spresentation of the skew-Laplace distribution introduced in
Section 1.3, which allows to resort to Gaussian filtering tech-
niques. The SPIF core considers a Gaussian noise, then the
filter requires at every time step an estimate of the noise ran-
dom mean and variance. The key point is to marginalize the
unknown non-Gaussian noise latent variable (i.e., β in (4))
within the SPIF framework. For the marginalization we need
to obtain an expression for the posterior distribution of the la-
tent variable. Under Gaussianity the marginal predictive and
posterior densities are given by

p(xt|y1:t−1) ≈ N
(
xt; x̂t|t−1,Σx,t|t−1

)
, (12)

p(xt|y1:t) ≈ N
(
xt; x̂t|t,Σx,t|t

)
, (13)

but we have to take into account that the independent noise
components are univariate skew-Laplace distributed,

nt = [n1,t, ..., nN,t]
> ; ni,t ∼ SL(ni,t;µi, σi, λi), (14)

ni,t|βi,t ∼ N
(
ni,t;µi + βi,tλi, βi,tσ

2
i

)
, (15)

βi,t ∼ G (βi,t; 1, 2) ; ψt = {βi,t}|i=1,...,N , (16)

nt|ψt ∼ N (nt; mt(ψt),Rt(ψt)) , (17)

[mt(ψt)]i = µi + βi,tλi ; [Rt(ψt)]i,i = βi,tσ
2
i . (18)

In this case, we can write the marginalized posterior as

p(xt|y1:t) =

∫
p(xt|ψt,y1:t)p(ψt|y1:t)dψt, (19)

then the key point is to obtain the noise latent variables pos-
terior, p(ψt|y1:t). Observations are independent, then

p(ψt|y1:t) =
∏
i

p(βi,t|yi,1:t), (20)

p(βi,t|yi,1:t) = p(βi,t|yi,t) ∝ p(yi,t|βi,t)p(βi,t), (21)

yi,t|βi,t ∼ N (yi,t; hi,t(xt) + µi + βi,tλi, βi,tσ
2
i ). (22)

Recall that for a gamma distributed random variable z ∼
G (z;m, s), where z > 0,

G (z;m, s) =
1

Γ(m)sm
zm−1e−z/s, (23)

with shape and scale parameters m and s, respectively, then
E[z] = ms and Var[z] = ms2. Also, it is important to notice
that the gamma distribution is a special case of the generalized
inverse Gaussian distribution,

GIG(z; p, a, b) =
(a/b)p/2

2Kp(
√
ab)

zp−1e−(az+b/z)/2, (24)

with parameters p ∈ R, a > 0, b > 0, z > 0 and Kp(·) a
modified Bessel function. For p > 0, we obtain that

G(z;m, s) = GIG(z;m, 2/s, 0). (25)

Interestingly, the generalized inverse Gaussian distribu-
tion is the conjugate prior to the Gaussian likelihood within
the NVMM formulation, that is, prior, likelihood and poste-
rior are related as

p(z|p, a, b) = GIG(z; p, a, b),

p(x|z, c, d) = N (x; c+ dz, z),

p(z|x, p, a, b, c, d) = GIG(z; p− 1/2, a+ d2, b+ (x− c)2),

then, for the particular case of the G(·) mixing distribution,

p(z|m, s) = G(z;m, s) = GIG(z;m, 2/s, 0),

p(x|z, c, d) = N (x; c+ dz, z),

p(z|x,m, s, c, d) = GIG(z;m− 1/2, 2/s+ d2, (x− c)2).

Going back to our problem,

p(βi,t) = G(βi,t;m, s) = GIG(βi,t;m, 2/s, 0), (26)

p(yi,t|βi,t) = N (yi,t; hi,t(xt) + µi + βi,tλi, βi,tσ
2
i ). (27)

We can define a normalized observation, ỹi,t ,
yi,t
σi

, and the
corresponding normalized likelihood is

p(ỹi,t|βi,t) = N
(
ỹi,t;

hi,t(xt) + µi
σi

+
λi
σi
βi,t, βi,t

)
(28)

The mixing variable posterior distribution is given by

p(βi,t|yi,t) = GIG(βi,t; pi,t, ai,t, bi,t), (29)



with

pi,t = m− 1

2
=

1

2
; ai,t =

2

s
+

(
λi
σi

)2

= 1 +

(
λi
σi

)2

bi,t =

(
yi,t
σi
− hi,t(xt) + µi

σi

)2

, (30)

and the posterior mode can be computed as

Mode[βi,t|yi,t] =
(pi,t − 1) +

√
(pi,t − 1)2 + ai,tbi,t
ai,t

,

from which we can obtain a point estimate of β̂i,t at each time
step replacing xt by x̂i,t|t−1, which can be used in the update
step of each filter using

[mt(ψt)]i ≈ µi + β̂i,tλi ; [Rt(ψt)]i,i ≈ β̂i,tσ2
i . (31)

Notice that the final information contributions in (11) are ob-
tained from these estimates as

ij,t = Zj,t|t−1Σj,xy,t|t−1[Rj,t(ψt)]
−1 (yj,t − ŷj,t|t−1

−mj,t(ψt) + Σ>j,xy,t|t−1ẑj,t|t−1

)
, (32)

Ij,t = Zj,t|t−1Σj,xy,t|t−1[Rj,t(ψt)]
−1

×
(
Zj,t|t−1Σj,xy,t|t−1

)>
. (33)

Instead of directly using (30) at each time step, we can use
the posterior at t − 1 as the prior at t, then (30) are used for
the initial βi,1, and the posterior update becomes

pi,t = pi,t−1 −
1

2
; ai,t = ai,t−1 +

(
λi
σi

)2

, (34)

bi,t = bi,t−1 +

(
yi,t
σi
− hi,t(xt) + µi

σi

)2

. (35)

3. RESULTS

An illustrative 2D RSS object tracking example will be used
to support the discussion and to show the performance im-
provement of the proposed algorithm, with respect to the
standard centralized Cubature KF (CKF) [3] and decentral-
ized Cubature IF (CIF) [5], considering a zero-mean Gaus-
sian noise. As already stated in Section 1.1, an object is
localized using a set of N RSS sensors (M clusters of Nj
sensors), for which we estimate its 2D position and velocity,
xt = [px,t, py,t, vx,t, vy,t]

>. The object constant velocity
model is given in (1), and the observation model in (2).
As a measure of performance, the root mean square error
(RMSE) on the 2D position estimate is obtained from 100
Monte Carlo runs. We consider the following setup: Ts = 1s,
σ2
px = σ2

py = 0.025 and σ2
vx = σ2

vy = 0.1. The filters are
initialized at x̂0 ∼ N (x0,Σ0), Σ0 = diag(10, 10, 1, 1).
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Fig. 1. (Top) Empirical pdf for a skew-Laplace distribution
(λ = 0.2, 0.1), a Laplace distribution (λ = 0) and the corre-
sponding Gaussian distribution (µ = 0, σ2 = 0.1). (Bottom)
CKF performance considering Gaussian and a skew-Laplace
noise (λ = 0.2).
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Fig. 2. 3 tested scenarios: (left) set of 100 sensors, (middle)
4 clusters of 25 sensors, and (right) 9 clusters of 9 sensors.

In the case of the CKF and CIF, these filters assume
a zero-mean Gaussian noise with σ2

m = 0.1 for all sen-
sors. For the skew-Laplace distribution (µ = 0, σ2 = 0.1,
β ∼ G (β; 1, 2)), an example of the empirical pdf obtained for
different values of the skewness parameter (λ = 0, 0.1, 0.2)
is shown in Fig. 1 (top). We can clearly see that both Laplace
and skew-Laplace distributions have much heavier tails. To
further motivate the need for improved Gaussian filtering
techniques under non-Gaussian noise, Fig. 1 (bottom) shows
the RMSE obtained with the CKF for both Gaussian and a
skew-Laplace noise with λ = 0.2.

The new distributed SL-CIF taking into account the skew-
Laplace measurement noise (SL-CIF) is compared to the cor-
responding (Gaussian) CKF/CIF in the following scenarios
(see Fig. 2): i) CKF using 100 sensors in a 900 × 900 m2

grid, ii) CIF and SL-CIF using M = 4 clusters of 25 sensors,
and iii) CIF and SL-CIF using M = 9 clusters of 9 sensors.

Notice that as a performance benchmark, we compare the
results to the optimal CKF (CKFopt), that is, a filter using the
full set of sensors, and the true noise being Gaussian.

Figure 3 plots the results RMSE of the 2D position ob-
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tained for the three different localization scenarios using the
Gaussian CKF/CIF and the new SL-CIF. Notice that for the
distributed filters using different clusters of sensors, first each
cluster process the information independently, and then a fu-
sion center estimates the global estimate, which in turn is
shared with the different filters for the subsequent filtering
step. To avoid the communication feedback an alternative
(not considered in this contribution) would be that different
filters work independently from other clusters, and only the
fusion center obtains a global estimate, which may slightly
degrade the performance depending on the WSN geometry.

Regarding the results, first we can see that the perfor-
mance obtained with Gaussian filters (i.e., CKF and CIF),
not taking into account the non-Gaussian noise, clearly de-
grades with respect to the optimal Gaussian performance, and
the filters diverge due to the heavy-tailed nature of the skew-
Laplace noise. For the new SL-CIF, even if there is a small
performance loss with respect to the optimal, the filter is able
to mitigate the impact of the non-Gaussian noise within the
Gaussian filter, which confirms the validity of the proposed
formulation and the good behavior of the new methodology.

4. CONCLUSIONS

This article presented a new computationally light distributed
sigma-point information filter able to cope with non-Gaussian
skew-Laplace distributed measurement noise. This may be a
promising solution for RSS-based localization in large sensor
networks, where the skew-Laplace noise allows to correctly
model challenging indoor propagation conditions. The key
idea behind the new information filter is to exploit the hierar-
chically Gaussian formulation of the skew-Laplace distribu-
tion, which allows to resort to Gaussian filtering techniques,
and the analytic expression of the mixing distribution poste-

rior obtained by conjugate prior analysis, to cope with the un-
derlying non-Gaussianity. An illustrative example was given
to support the discussion and show the promising capabilities
of such distributed filtering approach.

5. REFERENCES
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