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ABSTRACT

Gaussian Process (GP) inference in dynamical piecewise sta-
tionary environments finds application in many modern real-world
problems. Here we focus on scenarios in which precise initial train-
ing data is available but each subsequent measurement is taken with
uncertainty with respect to the location at which it was taken. In
such a scenario, the ideal inference methodology should update the
GP only if a considerable change occurs. Furthermore, the update
strategy should preserve “correct” initial information in unchanged
regions. In this contribution, we propose a change detection method-
ology which operates in conjunction with the inference process. The
proposed detection method is based on the Kolmogorov-Smirnov
statistics in such way that an exact PDF can be derived under the
null hypothesis. Once detection has occurred, the GP can be naively
updated by replacing appropriate measurements in the data set by an
average computed from the new, noisy samples. Simulations with
synthetic data provide a proof of concept of the proposed strategy as
well as its robustness to noisy inputs.

Index Terms— Gaussian Process, change detection, uncertain
inputs, Kolmogorov-Smirnov test.

1. INTRODUCTION

Gaussian process (GP) regression methods consist of defining
stochastic models for functions and performing inference in func-
tional spaces [1]. These methods have been shown to be useful in a
wide variety of fields and tasks including regression and classifica-
tion [1], detection [2], unmixing [3], and Bayesian optimization [4],
to name but a few. The basic idea behind GP regression consists of
modelling a function ψ : X Ă Rd Ñ R, x ÞÑ ψpxq for which very
little information regarding ψ is available other than some smooth-
ness assumption. The GP inference is often performed considering a
training set D “ tyk,xku

N
k“1 comprised of paired known noiseless

inputs xk P Rd and measured noisy outputs yk P R.
In this paper, we are concerned with inference in environments

which are piecewise stationary such that the actual process connect-
ing inputs and outputs may present abrupt, localized changes over
time. Furthermore we assume that, apart from the initial training set,
any new collected sample has uncertainty with respect to the loca-
tion where it was measured (noisy inputs). This scenario is found
in many applications such as indoor positioning and tracking us-
ing fingerprinting [5], crowed-sourcing [6, 7], simultaneous local-
ization and mapping (SLAM) [8] and others. In such scenarios, the
GP should be adapted only if new arriving samples present a non-
neglectable change with respect to the GP learned from the initial
training set. Furthermore, if the change is confined to a finite region
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of the input space, the updating strategy must preserve the origi-
nal (“correct”) data outside of this region. Accomplishing each of
these design goals necessitates that one can detect changes (or point
changes) within the GP framework.

The problem of detecting abrupt changes in time series has a
broad literature under slightly variant taxonomies such as change de-
tection or change point detection; see [9, 10] and references therein.
Change point detection of Gaussian processes has also been studied
in the literature considering both online and offline inference strate-
gies [11, 12]. In [13] the authors proposed a Bayesian framework
to online change point detection. The methodology is built over an
underlying predictive model (UPM) and a hazard function which al-
lows for recursive inference regarding the “run length”, that is, the
time since last change point. This work was extended by the con-
sideration of nonparametric UPM using GP time series and autore-
gressive GPs [11]. In [14] the authors proposed a GP-based online
change point detection methodology for periodic time series and us-
ing Q-charting computed over the predicted and true time-series new
sample. In slightly different paradigm, in [15] a scalable GP model
was considered for identifying and characterizing smooth multidi-
mensional changepoints. The proposed methodology consists of
defining a change surface model as a mixture of latent functions.
The resulting methodology consists in performing joint inference of
the mixture coefficients and the latent functions. Recently, the au-
thors in [12] extended a Generalized likelihood ratio test (GLRT) to
detect mean shifts over time based on GPs. The method exploits
the structure of the covariance matrix and is shown to achieve nearly
asymptotically optimal rate in the minimax sense. In all such meth-
ods, GP inference was performed to model relevant temporal quan-
tities for unidimensional time-series. This presents challenges when
modeling fields acts over large, possibly multidimensional, domains.
Thus, different strategies should be sought.

In [16] and [17], the authors considered a Kolmogorov-Smirnov
(KS) test statistics for measuring the robustness of sequential meth-
ods. The resulting test matched a single new observation with K
samples from the predictive distribution of the dynamical model. In
this contribution, we propose a detection strategy that extends the
work presented in [16, 17] by modifying the test statics to exploit
the Gaussian characterization provided by the GP. This approach re-
sults in a test statistic which is low-complexity and can be computed
recursively during a stationary time window. Furthermore, the pro-
posed approach provides an exact probability density function (PDF)
for the test statistics under the null hypothesis, allowing the detec-
tor to be designed for a given probability of false alarm. Once, for
a specific point, a change has been detected we update the GP by
replacing the corresponding measurement in the data set by the av-
erage of the new points used in the detection process. By operat-
ing in such way we avoid the input-uncertainty dissemination across
the whole dataset. Simulations with synthetic data and Monte-Carlo
runs illustrate the capabilities of the proposed methodology.



This paper is organized as follows. Section 2 presents the stan-
dard GP regression formulation. Section 3 presents the proposed KS
detector. Simulations are presented and discussed in Section 4 while
the conclusions are presented in Section 5.

2. GAUSSIAN PROCESS REGRESSION

This section briefly presents the standard Gaussian process regres-
sion [1]. Given a set ofN input-output pairs txk, ykuNk“1, x P X Ă

Rd, y P R related according to an arbitrary model such as

yk “ ψpxkq ` ηk (1)

with η „ N p0, σ2
ηq, and ψ P H considered to be a function of

a reproducing kernel Hilbert space H defined over a compact set
X , GPs assume a Gaussian functional distribution as prior for the
function ψ|xk „ N p0, κpxk,xkqq, where κ is a kernel function
such that κp¨,xq P H. For a set of input points X “ rx1, . . . ,xN s
the prior distribution for ψ becomes ψ|X „ N p0,Kq, whereK P

RNˆN is the Gram matrix with entries rKsij “ κpxi,xjq. For a
given set of measurements y “ ry1, . . . , yN sJ associated with the
positionsX , the prior distribution becomes

y „ N p0,K ` σ2
ηIq. (2)

The predictive distribution allows one to “predict” the value of the
function ψ‹ for a new input value x‹. Thus, we have ψ‹|x‹ „
N p0, κ‹‹q, where κ‹‹ fi κpx‹,x‹q. Since y and ψ‹ are jointly
Gaussian their joint PDF is given by

„

y
ψ‹



„ N
ˆ

0,

„

K ` σ2
ηI κ‹

κJ‹ κ‹‹

˙

, (3)

where κ‹ fi rκpx1,x‹q, . . . , κpxN ,x‹qs
J. Finally the predictive

distribution can be obtained by conditioning ψ‹ over the observation
and the its respective positions as

ψ‹|y,X,x‹ „ N pµψ|y,X,x‹
, sψ|y,X,x‹

q (4)

with µψ|y,X,x‹
“ κJ‹

`

K ` σ2
ηI

˘´1
y, and sψ|y,X,x‹

“ κ‹‹ ´

κJ‹
`

K ` σ2
ηI

˘´1
κ‹. Using the GP distribution above, the distri-

bution of ppy‹q can be obtained by replacing (4) in (1)

p̂py‹q “ N pµψ|y,X,x‹
, sψ|y,X,x‹

` σ2
ηq. (5)

The Bayesian framework also provides strategies to estimate
free parameters, such as the kernel parameters θ and the noise power
σ2
η . The classical approach [1] aims at maximizing the marginal like-

lihood ppy|X, σ2
η,θq with respect to pσ2

η,θq.

3. KOLMOGOROV-SMIRNOV BASED DETECTION

In this section we present the detection approach used to deter-
mine if data should be replaced in a space region as new data arrives.
We assume that the estimated field is stationary during a period T
where new noisy observations may arrive for any given input x used
in learning the GP. The GP regression provides a distribution charac-
terization at any point x P X . However, directly using new measure-
ments for updating the GP may introduce new errors such as extra
uncertainty due to noisy inputs. This necessitates the institution of
a change detection metric, which should present the following de-
sirable characteristics: 1) be computed recursively; 2) be performed

using a single new observation; 3) use the Gaussian characterization
of field; 4) provide a distribution for the test statistics at least un-
der hypothesis H0, allowing one to design the detector to a given
probability of false alarm (PFA).

Let yptq be new samples for a given location x, with t “
1, . . . , L being a time index, drawn from a PDF with cumulative
distribution function (CDF) F p¨q, and Gp¨q be the CDF associated
with the GP at x. Our hypotheses are given by

#

H0 : F “ G

H1 : F ‰ G.
(6)

Since the distribution F is not readily available we follow the rea-
soning proposed in [16] and [17], wherein the F was replaced by the
single sample estimator F̂ such that the empirical CDF for the t-th
sample yptq is given by

F̂ pξq “

#

0, if ξ ă yptq,

1, otherwise.
(7)

Next, we present the Kolmogorov-Smirnov (KS) statistics that will
be used as the building block of the change detector.

3.1. The one-sample Kolmogorov-Smirnov statistic

Let F̂ and Ĝ be the empirical distributions with 1 and K samples,
respectively. Then, the KS statistic is given by

DpKq “ sup
y
|F̂ r1spyq ´ ĜrKspyq| . (8)

In [16], the authors showed that for any K ą 1 odd, DpKq|H0

is distributed according to a discrete uniform distribution confined
in the interval r0.5, 1s, with support S “ tpK ` 1q{2K, pK `

3q{2K, . . . ,Ku. One should note that as K Ñ 8, ĜrKs Ñ G, the
discrete support S tends to the continuous real line segment r0.5, 1s.
Thus, DpKq Ñ Dp8q fi D, with

D “ sup
y
|F̂ r1spyq ´Gpyq| (9)

It is thus reasonable to approximate the distribution of D|H0 as a
uniform continuous distribution with support Sc “ r0.5, 1s.

3.2. KS-Detector

Assuming that an arbitrary, usually small number of samples yptq

may arrive in a given interval T , we can combine the individual
statistics Dt to form a new KS-based test statistic. In [17], consider-
ing the mean KS statistics showed good performance for measuring
the robustness of sequential methods. Following the same reasoning,
we have:

sD “
1

L

L
ÿ

t“1

Dt , (10)

which leads to the detector:

sD
H0

ž
H1

τ , (11)

with τ P p0, 1q being the detection threshold.
The detection statistic in (10) is a linear combination of L inde-

pendent uniformly distributed random variables Dt and its distribu-
tion has being approximated as a Gaussian PDF by virtue of the cen-
tral limit theorem. Here, however, due to the constraint that L might



be very small we recur to a more exact solution. For this, we use the
result that the sum of i.i.d. random variables distributed according to
Ur0,1s is distributed according to an Irwin-Hall distribution [18, 19].

We propose to modify the test statistics (10) in order to use this
result. First, note that since Dt „ Ur0.5,1s, we have that rDt “
2Dt ´ 1 „ Ur0,1s and the test statistics can be reformulated as

rD “
1

L

L
ÿ

t“1

rDt , (12)

leading to the following detector

rD
H0

ž
H1

τ. (13)

Under H0, we have that L rD is distributed according to a Irwin-Hall
distribution whose CDF is given by:

ΘLĂDpyq “
1

L!

tyu
ÿ

q“0

p´1qq
˜

L

q

¸

py ´ qqL. (14)

For a complete characterization of a detector, the distribution under
H1 is also required. However, this distribution depends on sensible
information regarding the actual change happening to the modeled
function ψ. Such information is rarely available and, thus, we will
resort to empirical performance curves as will be discussed later.

The final missing piece in designing the detector is a strategy for
selecting the detection threshold τ . Typically one might select this
value in order to obtain a low probability of false-positives, that is, a
low PFA. The PFA is given by

PFA “ P p rD ą τ |H0q. (15)

Thus, by multiplying (13) by L in both sides, we can use (14) to
determine τ for a given PFA:

τ “
1

L
Θ´1

LĂD
p1´ PFAq . (16)

4. SIMULATION RESULTS

4.1. Toy Problem

To perform all simulations we consider the following toy example
where each observed noisy data point is given by

y
ptq
k “ fpxkq ´ ϕpxkqupt´ 1q ` n

ptq
k (17)

where t “ 0, 1, . . . is the time index of the observations,

fpxkq “ cospxkq expp´0.3xkq (18)

is the underlying generative function and nptqk is additive noise dis-
tributed as N p0, σ2

nq. Finally, ϕ is a function modeling an arbitrary
localized field change and uptq is the Heaviside step function.

In order to model a smooth and continuous field change over
space we consider the following bump-shaped function:

ϕpxq “

#

ξ exp
´

1´ 1
r´px´cq2

¯

, ifpx´ cq2 ă r

0, otherwise
(19)

where ξ ą 0 controls the maximum function amplitude, r is the
radius of the bump, and c is the point were the function is centered.

-6 -4 -2 0
-4

-2

0

2

4

6

8

10

12

-6 -4 -2 0
-4

-2

0

2

4

6

8

10

12

-6 -5 -4 -3 -2 -1 0 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1: The toy example before any detection (top left), after the
detection and replacement of points (top right), and the detection
statistics using L “ 3 new samples (bottom).
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Fig. 2: Histomgrams of D under H0 using the true distribution ppyq
(left) and the distribution p̂pyq obtained using the GP (right).

For the simulations we consider different values of σ2
n in order to

obtain SNRs (signal-to-noise ratios) of 5, 10 and 15 dB, in addition
to different values for ξ and different maximum values of t, that
is, L “ 3 and L “ 10. Here the SNR was defined as SNR “

10 log10

`

Er|fpxkq ´ Erfpxkqs|2s{σ2
n

˘

.
Fig. 1 presents an example of the devised strategy for a 10 dB

SNR and ξ “ 3σn. In the top left panel the initial function fpxq,
the initial noisy observations (yp0qk ), the GP fit, and the change that
will occur in the function after training (dashed line) are presented.
In the top right panel the function after the change happened and
the GP fit incorporating the samples detected as H1 (blue circles
are the average of the L samples for each position) are presented.
The bottom panel presents the test statistics rD and the threshold τ
computed for a PFA “ 0.1. It is evident that with as few as 3 samples
per location, the detection approach was able to identify the change
in the function with a high degree of precision.

Next, we will analyse the distributions of the test statistics and
the performance of the detectors for exact and uncertain inputs.
Since it is not possible to obtain the test statistics distribution under
H1, we measure the detection performance using empirical receiver
operating characteristic (ROC) curves. The empirical ROCs can
be obtained by computing empirical probabilities of false alarm and
detection from the available data [20]. All ROCs displayed in this
paper were averaged over 100 Monte Carlo runs.

4.2. Test statistics distribution

In Section 3, we showed how the one-sample KS statistic distribution
under H0 can be approximated as an uniform distribution Ur0.5,1s.
To confirm this hypothesis we performed the test in a scenario where
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Fig. 3: Histomgrams of L rD under H0 using the distribution p̂pyq
obtained using the GP using L “ 3 (left) and L “ 10 (right).

no change was made to the underlying function (i.e., ϕpxq “ 0, @x).
Fig. 2 presents the histograms performed using 2000 samples for the
one-sample test statistics D. In the left panel we considered G to
be the CDF associated with the true ppyq distribution while in the
right panel we considered G to be the CDF associated with Gaus-
sian process estimated PDF p̂pyq (see, Eq. (5)). By comparing both
histograms one can see that the uniform assumption is maintained
even when replacing G by Ĝ given by the GP.

We also analyze the distribution of L rD, the histograms for
which, accompanied by the plot of the analytucal Irwin-Hall PDF,
are displayed in Fig. 3 for L “ 3 (left) and L “ 10 (right). In
both panels we used G fi Ĝ obtained using the GP. By analyzing
Figure 3 we can notice the clear agreement between the Irwin-Hall
PDF and the histograms which indicates that our assumptions are
reasonable.

4.3. Detection performance analysis for exact inputs

In this section, we analyze the performance of the proposed detec-
tion and estimation methodology using new data observed for exact
inputs. We performed 100 Monte Carlo runs for each simulation and
plotted the average empirical ROC curves, see Fig. 4, for different
L (panel a), SNR (panel b) and maximum bump function amplitude
ξ (panel c). In all subplots the solid lines represent ROC curves
for which detection errors include all miss-detected points for which
ϕpxq ‰ 0. For the ROCs with dashed lines, we considered detec-
tion errors only the miss-detections occurring for points x for which
ϕpxq ą 2σn. This is reasonable since ϕpxq is smooth and goes
to zero in the edges. The plots indicates that the proposed detector
is not very sensitive to the number of new samples presenting high
detection probabilities even for L “ 3.

4.4. Detection performance analysis for uncertain inputs

In this section we examine the deterioration of the proposed detector
when location errors exist in the new samples yptqk , t ą 0. For this,
we modify the model as yptqk “ fpxk`ε

ptq
k q´ϕpxk`ε

ptq
k qupt´1q`

n
ptq
k where εptqk „ N p0, σ2

xq, and σ2
x is the variance of the location

uncertainty. It is important to discuss the notion of large and small
σx values. Since we are considering additive Gaussian noise, one
should recall that most (99.7%) of the realizations of the random
variable εk are expected to belong to the interval r´3σx,`3σxs.
Thus, the notion of large, or small, values of σx depends on the
variation of the function fpxq in such intervals around x. In the case
of the toy example, we can see that σx “ 0.1 can be taken to be a
moderate value, while σx “ 0.5 is very large. This can be seen if
we consider fp2` εq. If σx “ 0.1 then fp2` εq P r´0.07,´0.33s
which is a considerable variation and not by any means negligible.
However, if σx “ 0.5, then fp2 ` εq P r´0.33, 0.75s, the range
of which is considerably larger than the measurement noise power
σ2
n “ 0.65 used to provide an SNR of 10 dB. This situation is even
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(a) ξ “ 3σn, SNR=10dB.
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(b) L “ 3, ξ “ 3σn.
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Fig. 4: ROC curves for different values of L, different SNR, and
different ξ. Dashed ROCs where built by labeling as H1 only points
for which ϕpxq ą 2σn.
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Fig. 5: ROCs for different σx values.

worse if we consider x “ ´3 due to the larger slope of f in this
point: fp´3 ` εq P r´0.05, 2.72s and r´2.68, 6.86s for σx “ 0.1
and 0.5, respectively.

We performed 100 MC runs of the proposed algorithm and com-
puted the ROCs, displayed in Fig. 5, for different values of σx,
L “ 3 and σn adjusted to provide a SNR of 30 dB. It can be seen
that the proposed detector performs well under moderate input noise
power (σx “ 0.1). When σx increases to 0.3 and 0.5 a clear degra-
dation is noticeable. However, larger function changes (φpxq ą 2σ)
can still be detected with relatively high probability of detection. For
instance, for a PFA “ 0.1, we have PD « 0.84 and PD « 0.7 for
σx “ 0.3 and σx “ 0.5, respectively.

5. CONCLUSIONS

In this paper we proposed a KS-based change point detection method
with Gaussian processes. The ability of discriminating which new
data to include in the GP is important in order to iq keep the database
within a bounded dimension, and iiq avoid systematic replacement
of the noiseless initial dataset. The proposed methodology allowed
the construction of a recursive detection statistics with exact distri-
bution under H0. Once the detection is performed the GP can be
adapted by simply replacing measurements for the respective loca-
tions. Simulation clearly shows the accuracy of the proposed detec-
tor when no input noise is present and the robustness of the detector
under the presence of location errors.
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