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ABSTRACT

One of the main challenges in nonlinear Bayesian filtering
is the so-called curse of dimensionality, that is, the computa-
tional complexity increase and associated performance degra-
dation in high-dimensional systems. In the context of parti-
cle filtering (PF), a possible solution to mitigate such perfor-
mance loss is the multiple PF (MPF) approach, where the
original state is partitioned into several lower dimensional
subspaces, and a set of interconnected PFs are used to charac-
terize the marginal subspace posteriors. Two key issues are: i)
how to partition the state, which is application dependent, and
ii) how to let the filters (i.e., subspaces) fuse or merge depend-
ing on the time-varying conditions of the system, in order to
improve the overall estimation performance. We propose a
probabilistic approach to the adaptive state-partitioning prob-
lem within the MPF, which is based on the computation of
subspace second order statistics. An illustrative multiple tar-
get tracking example is considered to support the discussion.

Index Terms— Adaptive state-space partitioning, multi-
ple particle filtering, second order subspace statistics.

1. INTRODUCTION & BACKGROUND ON MPF

This paper deals with the problem of performing tracking
of potentially large state-space models that, in turn, can be
nonlinear and non-Gaussian. Whereas for linear systems the
Kalman filter (KF) is a standard solution [1], its performance
is degraded in nonlinear/non-Gaussian setups where an ap-
pealing solution is that of particle filters (PFs) due to their
versatility in adapting to a large variety of probabilistic mod-
els [2]. However, PFs are known to suffer from the curse of
dimensionality [3], which points out that their performance
will degrade dramatically as the dimension of the state-space
grows. Even in the context of nonlinear/Gaussian systems,
where more efficient approaches based on Gaussian filtering
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[4, 5] can be considered, one also encounters the so-called
curse of dimensionality [6].

In the context of PFs, a mitigation strategy was initially
proposed in [7, 8]. The solution was named multiple particle
filter (or MPF for short) and consists in splitting the state-
space into subspaces that are tracked by separate filters, thus
reducing the dimensionality at each of those filters. Those
filters composing the MPF need to interact since, typically,
subspaces cannot be fully decoupled (in which case indepen-
dent PFs could be used). Several strategies can be consid-
ered to implement such interaction including passing point
estimates, a set of particles, or a statistical summary of the
other filters’ marginal posteriors. On the other hand, within
nonlinear/Gaussian systems, an alternative is to apply such
partitioning to Gaussian filters. The approach was named,
analogously, multiple Gaussian filtering (MGF) [9–12] and is
conceptually similar.

An important component of MPFs (and MGFs) is the abil-
ity to decide which subspaces to split or merge such that the
approximations made by state-partitioning schemes are not
critically violated. That is, these methods should be able to
learn the correlations among states (ideally on-line) such that
a bank of coupled filters could be put in place. This issue was
first addressed in [13, 14], in the context of multiple target
tracking (MTT), where different filters merge or split depend-
ing on the distance between targets based on a predetermined
threshold. More recently, the authors investigated probabilis-
tic state-partitioning in MGFs [15] based on the estimated
cross-correlation among subspaces. In this contribution, we
propose merging and splitting methods based on second order
statistics of the distributions approximated by the PFs com-
posing the MPF.

The remainder of the paper is organized as follows. Sec-
tion 2 details the proposed probabilistic method to split and
merge subspaces based on second order statistics. Section
3 validates the methodology in a MTT problem, where the
MPF is used to compute the split/merge metrics. Section 4
concludes the paper with final remarks.



2. ADAPTIVESTATE-SPACEPARTITIONING

Standard MGFs[6,9–11]and MPFs[7,8,16]consider
apre-establishedstate-partitioning, whichisapplication-
dependent,andingeneraldoesnottakeintoaccountthe
possibletime-varyingcorrelationamongsubspaces. Math-
ematically,thisimpliestoassumethatthejointposterior
distributionofstatesxtgivendatay1:tisexpressedas1

p(xt|y1:t)=p(x
(s)
t |y1:t)p(x

(−s)
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Therefore,forageneralapplicabilityofsuchmultiplestate-
partitioningstrategiesacrucialstepinvolveshowto:i)parti-
tionthestate,andii)letthedifferentfilters(i.e.,subspaces)
fuseormergedependingonthetime-varyingconditionsof
thesystem(i.e.,takingintoaccountpossiblecorrelations).In
otherwords,toobtainagoodoverallestimationperformance,
uncorrelatedsubspacesshouldbedecoupledtoreducethedi-
mensionthateachfilterhastoexplore,butcorrelatedsub-
spacesshouldbekeptinasinglefilter. Apossiblesolution
fortargettrackingbasedonaninter-targetdistancethresh-
old,istoconsiderthattargetswhicharecloseindistanceare
mergedintoasinglesubspace,andtargetswhicharefarapart
canbetrackedwithdifferentfilters[13,14].IntheGaussian
case,somepreliminaryresultshavebeenproposedin[15],
wherethecross-correlation(i.e.,viathecross-subspaceco-
variance)amongsubspacesisusedtodecidewhichsubspaces
mustmergeintoasinglefilter. Let’srecallthatwearein-
terestedinstate-spacemodelswithstates,xt,whichcanbe
separatedintheprocessequation,butnotintheobservation
equation,
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whichistypicallythecasefor multipletargettrackingap-
plications(i.e.,eachtargetevolvesindependentlyfromthe
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whereposition-relatedmeasurementsarisefromthesuperpo-
sitionofindividualtargetcontributions(i.e.,receivedsignal
strengthobservations).νtandntarerandomnoiseterms.

Forthesakeofsimplicity,butwithoutlossofgenerality,
let’sconsiderthatthestateattispartitionedintothreesub-

spaces,xt =[x
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Todecidewhetherthepartitioningfromttot+1mustchange
orremainthesame,wehavetocharacterizethepossiblecor-
relationamongsubspaces. Weproposetoexploitthesub-
spacesecondorderstatistics. Notethatthemerge/splitdoes
notneedtobedoneateverytimestep.

2.1. SubspaceSplittingbySecondOrderStatistics

WearehereinterestedinthecaseofaPFwithinthe MPF
trackingseveralsubspaces(i.e.,targets)anddecidingwhether
tocontinueinthatwayorsplitintoseveralPFsoperating
onsmallersubspaces. Weproposetousetheestimation
ofthecovariance matrixanddeterminewhetherthecross-
correlationtermsbetweensubspacesarenegligible(then
decidetosplit)ornot(thendecidetokeepthejointfilter).

EachPFwithinthe MPFapproximatesthemarginalsub-
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Goingbacktotherunningexamplewiththreetargets,let’s

considerthePFwhichtracks{x
(1)
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(2)
t }. Noticethat(4)in

thiscaseisarrangedas
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andweareinterestedindeterminingwhetherΣ
(1,2)
t,x is0in

ordertodecidesplittingsubspaces1and2intoseparatePFs.
Weexplaintheproposedstrategyfirstassumingscalarsub-
spaces,inwhichcasetheabovereducesto
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with |ρ12| ∈ [0, 1] the correlation coefficient between state
variables x1 and x2. Given a correlation threshold β1 (i.e.,
β1 = 0.5), a binary correlation matrix B

({1,2})
t,x can be con-

structed by thresholding (7), that is, if |ρij | > β1 → 1

or 0 otherwise. For subspaces with n
(i)
x > 1, the corre-

lation coefficients ρij can be computed by pairs of vari-
ables. The binary correlation matrix B

({1,2})
t,x can be an-

alyzed via a graph approach to decide which state vari-
ables must be kept together and the ones which can be
split. Such concept is easy to understand graphically, for
instance, consider the following correlation matrix for four
state variables ({x1, x2, x3, x4}) and its associated graph,

B
({1:4})
t,x =


1 0 1 0
0 1 1 0
1 1 1 0
0 0 0 1

⇒
x1 x2

x3 x4

where it is clear that we must group {x1, x2, x3}, but x4 can
be separated from the original set. In the multiple target
tracking case of interest, we must take into account a mini-
mum subspace dimension constraint, that is, we might want
to keep together the state variables of a given target. In that
case, from the pairwise binary correlation matrix we must
construct an equivalent group subspace binary matrix. If
connections exist between variables among groups, then we
assume that the two groups are correlated. In the previous
example, if we define a group being g1 = {x1, x2}, and the
other one g2 = {x3, x4}, the group binary matrix reads,

B
({g1,g2})
t,x =

(
1 1
1 1

)
,

then, both groups are kept together. If the off-diagonal ele-
ments were equal to 0 the filter should decide to split in two.

2.2. Subspace Merging by KL Divergence

The problem of merging subspaces from two separate filters
into a joint filter is slightly different. In this case, we do not
have direct access to the cross-correlation term in (6), since
the filters are only characterizing the diagonal elements. We
propose instead to compare the marginal distributions of the
two filters, p(x(s)

t | y1:t) and p(x(p)
t | y1:t), to determine if the

subspaces are statistically close. We suggest to summarize the
particle approximation with its mean and covariance, and then
compare those Gaussian approximations using the Kullback-
Leibler (KL) divergence metric. More precisely, we approxi-
mate the marginal of the s-th subspace as

p(x
(s)
t | y1:t) ≈ N

(
x̂
(s)
t ,Σ

(s)
t,x

)
(8)

using the summaries provided by (4) and (5). We proceed
similarly for p(x(p)

t | y1:t). Then, we compute the KL diver-

gence, assessing if two marginals are statistically different:
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where k is the dimension of the subspaces.

3. COMPUTER SIMULATIONS

The validity of the proposed adaptive MPF approach is il-
lustrated through a simple MTT example, but notice that it
could be applied to other contexts. A received signal strength
(RSS) 2D MTT scenario is considered, where K targets are
tracked using a set of N sensors, uniformly distributed in a
grid. For each target i, both 2D position and velocity are to
be estimated, x

(i)
t = [p

(i)
x,t, p

(i)
y,t, v

(i)
x,t, v

(i)
y,t]
>. The m-th sen-

sor, at time t, receives the superposition of the different RSS
contributions from the targets present in the area,

ym,t =

K∑
i=1

10 log10

(
1

|rm − li,t|2

)
+ nm,t,

with nm,t ∼ N (0, σ2
m) being the sensor noise related to the

RSS measurement, li,t = [p
(i)
x,t, p

(i)
y,t]
>the i-th target position,

and rm the known 2D grid sensor position. The K targets
follow a constant velocity dynamic model,

x
(i)
t =

(
I2 Ts · I2
0 I2

)
x
(i)
t−1 + ν

(i)
t−1, ν

(i)
t−1 ∼ N (0,Q),

with Q = diag(σ2
px
, σ2

py
, σ2

vx
, σ2

vy
) accounting for a possible

dynamic model error, Ts the sampling period and I2 the 2×2
identity matrix. The full state to be estimated is the concatena-
tion of the set of target’s states x>t = [(x

(1)
t )>, · · · , (x(K)

t )>].
Only the K = 2 targets case (nx = 8) is analyzed in the sim-
ulations for the sake of simplicity. We consider N = 100
sensors in a 1000 × 1000 m2 grid and the same noise statis-
tics (σ2

m and Q) for all sensors and targets.

3.1. Case 1: Splitting Strategy

First, we analyze the validity of the splitting strategy pro-
posed in Section 2.1 based on the estimated subspace second
order statistics (4). We consider one of the PFs within the
MPF, using M = 2000 particles and tracking the two targets
x>t = [(x

(1)
t )>, (x

(2)
t )>]. In the top plot of Fig. 1 we show

the trajectory of both targets and the corresponding PF esti-
mate, where we can see that the PF is performing well. In the
bottom plot of Fig. 1 we show: i) the normalized distance
between targets, and ii) the off-diagonal value of the group
subspace binary matrix, where we considered a correlation
threshold β1 = 0.4. A value B

(g)
t,x(2, 1) equal to 0 implies



that both subspaces can be split (no correlation), otherwise
they should be kept together. In the figure we can see that this
value is only equal to 1 when both targets are close in dis-
tance, which confirms the validity of the proposed approach
based on the subspace covariance. To provide an insight of
the valuable information in the cross-covariance regarding the
correlation between subspaces, we also plot: iii) the normal-
ized trace of the cross-covariance between targets, and iv) the
corresponding normalized determinant. We can see that their
value increase only when both targets are close.
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Fig. 1. (Top) True trajectories and PF estimate; (Bottom)
Trace, determinant, off-diagonal element of the group sub-
space binary matrix and normalized distance between targets.

3.2. Case 2: Merging Strategy

To assess the validity of the merging strategy based on the KL
divergence between marginal subspace posteriors, we con-
sider a MPF with two filters, each one tracking one target,
and M1 = M2 = 200 particles. In the left plots of Fig. 2 we
show the true and estimated MPF trajectories for two different
examples, and the corresponding relative inter-target distance
and KL metric is shown in the right plots. In the top left plot,
the estimated trajectories are miss-associated after the targets
get close in distance. In the left bottom plot, the estimated
trajectories degrade after the targets get close. In both cases,
to avoid those issues, the two filters within the MPF should
have been merged in a single filter. This is clear in the right
plots, where the KL divergence drops when both targets get
close in distance, which confirms the validity of the metric.

In conclusion, it was shown that the MPF has to take into
account the correlation among subspaces: i) splitting sub-
spaces to avoid the curse of dimensionality and improve the

overall computational complexity, and ii) merging subspaces
to avoid performance degradation. The proposed strategies
based on the estimated second order subspace statistics pro-
vide a probabilistic solution to the problem.
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Fig. 2. (Left) Two examples of true and MPF estimated trajec-
tories; (Right) Normalized distance between targets and KL
divergence metric for both examples.

4. CONCLUSIONS

Multiple particle filtering (MPF) takes a divide-and-conquer
approach to deal with the curse of dimensionality of stan-
dard particle filters. A critical step is to decide how the full
state-space is to be splitted into multiple subspaces, poten-
tially doing so online as the filter operates. We have seen in
previous work that it is important to tackle subspaces jointly
when the states become correlated. In this paper we propose
a methodology for splitting/merging subspaces that accounts
for the correlation among the states associated to each target.
The method is based on the estimated second order subspace
statistics, which are obtained from the outputs provided by
the different PFs associated to the overall MPF. For splitting,
we operate directly on the cross-subspace covariance, while
for merging the KL divergence between the marginals is ex-
ploited since the cross-covariance is not available. The results
show promising performance of both processes in a multiple
target tracking case, being able to discriminate when to split
or merge the different subspace tracking filters.



5. REFERENCES

[1] B. Anderson and J. B. Moore, Optimal Filtering,
Prentice-Hall, Englewood Cliffs, New Jersey, USA,
1979.

[2] B. Ristic, S. Arulampalam, and N. Gordon, Eds., Be-
yond the Kalman Filter: Particle Filters for Tracking
Applications, Artech House, Boston, 2004.

[3] F. Daum and J. Huang, “Curse of Dimensionality and
Particle Filters,” in Proc. of IEEE Aerospace Confer-
ence, Big Sky, MT, USA, March 2003, vol. 4, pp. 1979–
1993.

[4] I. Arasaratnam and S. Haykin, “Cubature Kalman Fil-
ters,” IEEE Trans. Automatic Control, vol. 54, no. 6, pp.
1254–1269, June 2009.

[5] I. Arasaratnam, S. Haykin, and R. J. Elliot, “Discrete-
time Nonlinear Filtering Algorithms using Gauss-
Hermite Quadrature,” Proc. of the IEEE, vol. 95, no.
5, pp. 953–977, 2007.
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[15] J. Vilà-Valls, P. Closas, M. F. Bugallo, and J. Mı́guez,
“A Probabilistic Approach for Adaptive State-space Par-
titioning,” in Proc. of the IEEE SSP, Freiburg, Germany,
June 2018.

[16] P. Closas and M. F. Bugallo, “Improving Accuracy by
Iterated Multiple Particle Filtering,” IEEE Signal Pro-
cessing Letters, vol. 19, no. 8, pp. 359–362, August
2012.


