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ABSTRACT

One of the main challenges in nonlinear Bayesian filtering
is the so-called curse of dimensionality, that is, the computa-
tional complexity increase and associated performance degra-
dation in high-dimensional systems. In the context of parti-
cle filtering (PF), a possible solution to mitigate such perfor-
mance loss is the multiple PF (MPF) approach, where the
original state is partitioned into several lower dimensional
subspaces, and a set of interconnected PFs are used to charac-
terize the marginal subspace posteriors. Two key issues are: 1)
how to partition the state, which is application dependent, and
i) how to let the filters (i.e., subspaces) fuse or merge depend-
ing on the time-varying conditions of the system, in order to
improve the overall estimation performance. We propose a
probabilistic approach to the adaptive state-partitioning prob-
lem within the MPF, which is based on the computation of
subspace second order statistics. An illustrative multiple tar-
get tracking example is considered to support the discussion.

Index Terms— Adaptive state-space partitioning, multi-
ple particle filtering, second order subspace statistics.

1. INTRODUCTION & BACKGROUND ON MPF

This paper deals with the problem of performing tracking
of potentially large state-space models that, in turn, can be
nonlinear and non-Gaussian. Whereas for linear systems the
Kalman filter (KF) is a standard solution [1], its performance
is degraded in nonlinear/non-Gaussian setups where an ap-
pealing solution is that of particle filters (PFs) due to their
versatility in adapting to a large variety of probabilistic mod-
els [2]. However, PFs are known to suffer from the curse of
dimensionality [3], which points out that their performance
will degrade dramatically as the dimension of the state-space
grows. Even in the context of nonlinear/Gaussian systems,
where more efficient approaches based on Gaussian filtering
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[4, 5] can be considered, one also encounters the so-called
curse of dimensionality [6].

In the context of PFs, a mitigation strategy was initially
proposed in [7,8]. The solution was named multiple particle
filter (or MPF for short) and consists in splitting the state-
space into subspaces that are tracked by separate filters, thus
reducing the dimensionality at each of those filters. Those
filters composing the MPF need to interact since, typically,
subspaces cannot be fully decoupled (in which case indepen-
dent PFs could be used). Several strategies can be consid-
ered to implement such interaction including passing point
estimates, a set of particles, or a statistical summary of the
other filters” marginal posteriors. On the other hand, within
nonlinear/Gaussian systems, an alternative is to apply such
partitioning to Gaussian filters. The approach was named,
analogously, multiple Gaussian filtering (MGF) [9-12] and is
conceptually similar.

An important component of MPFs (and MGFs) is the abil-
ity to decide which subspaces to split or merge such that the
approximations made by state-partitioning schemes are not
critically violated. That is, these methods should be able to
learn the correlations among states (ideally on-line) such that
a bank of coupled filters could be put in place. This issue was
first addressed in [13, 14], in the context of multiple target
tracking (MTT), where different filters merge or split depend-
ing on the distance between targets based on a predetermined
threshold. More recently, the authors investigated probabilis-
tic state-partitioning in MGFs [15] based on the estimated
cross-correlation among subspaces. In this contribution, we
propose merging and splitting methods based on second order
statistics of the distributions approximated by the PFs com-
posing the MPF.

The remainder of the paper is organized as follows. Sec-
tion 2 details the proposed probabilistic method to split and
merge subspaces based on second order statistics. Section
3 validates the methodology in a MTT problem, where the
MPF is used to compute the split/merge metrics. Section 4
concludes the paper with final remarks.



2. ADAPTIVE STATE-SPACE PARTITIONING

Standard MGFs [6, 9-11] and MPFs [7, 8, 16] consider
a pre-established state-partitioning, which is application-
dependent, and in general does not take into account the
possible time-varying correlation among subspaces. Math-
ematically, this implies to assume that the joint posterior
distribution of states x; given data y1.; is expressed as!

S
p(xe| y1:2) = P y1)p (x| 1) = [[ (] ye)-
i=1

Therefore, for a general applicability of such multiple state-
partitioning strategies a crucial step involves how to: 7) parti-
tion the state, and z) let the different filters (i.e., subspaces)
fuse or merge depending on the time-varying conditions of
the system (i.e., taking into account possible correlations). In
other words, to obtain a good overall estimation performance,
uncorrelated subspaces should be decoupled to reduce the di-
mension that each filter has to explore, but correlated sub-
spaces should be kept in a single filter. A possible solution
for target tracking based on an inter-target distance thresh-
old, is to consider that targets which are close in distance are
merged into a single subspace, and targets which are far apart
can be tracked with different filters [13, 14]. In the Gaussian
case, some preliminary results have been proposed in [15],
where the cross-correlation (i.e., via the cross-subspace co-
variance) among subspaces is used to decide which subspaces
must merge into a single filter. Let’s recall that we are in-
terested in state-space models with states, x;, which can be
separated in the process equation, but not in the observation
equation,

Xt = ft—l(Xt—h Vt—l) = ft_1(X§1_}1, cee ,Xg}]: Vt—l); (1)
x() =t (xP,, x(ZP,vP)), fori=1,...,8, )
ye = hy(x¢,n4) = ht(xgl): .- ,XES}: n;) (3)

which is typically the case for multiple target tracking ap-
plications (i.e., each target evolves independently from the
others. x" = £ (%", %77, %)) = £ (2, v ).
where position-related measurements arise from the superpo-
sition of individual target contributions (i.e., received signal
strength observations). v; and n; are random noise terms.
For the sake of simplicity, but without loss of generality,
let’s consider that the state at ¢ is partitioned into three sub-
spaces, X; = [xgl),xgz),xgs)]. The MPF is build up from
two PFs running in parallel, the first one approximating the
marginal subspace posterior p(xgl}, X£2}| ¥1:t), and the sec-
ond one approximating p(x£3)| ¥1:t)- The goal is to design a

1x(s) denotes the s-th element (possibly a vector) in a vector x and x{ <)
is the vector of all elements in x except for x(5). The dimension of each

subspace n(IS) = dim{xgs)} is defined such that Zf:l 'R;(cs) s E
S={1,...,8}andn{ * =dim{x{ 9}.

probabilistic methodology to decide if at time ¢ + 1 the parti-
tioning must be:

. {Xgl), Xiz)}, {xf')} (the same 2 filters as at time t)
o {xV}, (xP1, {xP} (3 separate filters)
o {x(,x®,x¥} (1 filter)

s {xV) (P ) or (7). (V) xV) @ filters
but different combination of subspaces)

To decide whether the partitioning from ¢ to ¢+ 1 must change
or remain the same, we have to characterize the possible cor-
relation among subspaces. We propose to exploit the sub-
space second order statistics. Note that the merge/split does
not need to be done at every time step.

2.1. Subspace Splitting by Second Order Statistics

We are here interested in the case of a PF within the MPF
tracking several subspaces (i.e., targets) and deciding whether
to continue in that way or split into several PFs operating
on smaller subspaces. We propose to use the estimation
of the covariance matrix and determine whether the cross-
correlation terms between subspaces are negligible (then
decide to split) or not (then decide to keep the joint filter).
Each PF within the MPF approximates the marginal sub-

space posterior, p(x£5)| ¥1:). Considering that the PF uses

M, particles and weights, {x} ., w} }Me | the second order

statistics can be approximated as
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where p(x\”)] y1.) ~ S2M wﬁrsé(xgs} — X} ) and the sub-
space MMSE estimate is
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Going back to the running example with three targets, let’s

consider the PF which tracks {x{", x{?}. Notice that (4) in
this case is arranged as
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and we are interested in determining whether Eg};z) is 0 in

order to decide splitting subspaces 1 and 2 into separate PFs.
We explain the proposed strategy first assuming scalar sub-
spaces, in which case the above reduces to
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with |p12| € [0, 1] the correlation coefficient between state
variables x1 and x5. Given a correlation threshold 37 (i.e.,
B1 = 0.5), a binary correlation matrix Bg{rl 21 can be con-
structed by thresholding (7), that is, if |p;;| > 1 — 1
or 0 otherwise. For subspaces with ngf) > 1, the corre-
lation coefficients p;; can be computed by pairs of vari-
ables. The binary correlation matrix BE{; 21 can be an-
alyzed via a graph approach to decide which state vari-
ables must be kept together and the ones which can be
split. Such concept is easy to understand graphlcally, for
instance, consider the followin, "

state variables ({z1, z2, x3, 24

e
) @)

-

where it is clear that we must group {z1, z2, 23}, but 24 can
be separated from the original set. In the multiple target
tracking case of interest, we must take into account a mini-
mum subspace dimension constraint, that is, we might want
to keep together the state variables of a given target. In that
case, from the pairwise binary correlation matrix we must
construct an equivalent group subspace binary matrix. If
connections exist between variables among groups, then we
assume that the two groups are correlated. In the previous
example, if we define a group being g1 = {z1, 22}, and the
other one go = {3, x4}, the group binary matrix reads,

1,92 L1
Bl = (] ).

then, both groups are kept together. If the off-diagonal ele-
ments were equal to 0 the filter should decide to split in two.

B =
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2.2. Subspace Merging by KL Divergence

The problem of merging subspaces from two separate filters
into a joint filter is slightly different. In this case, we do not
have direct access to the cross-correlation term in (6), since
the filters are only characterizing the diagonal elements. We
propose instead to compare the marginal distributions of the
two filters, p(x§8)| y1:¢) and p(xgp)| y1:¢), to determine if the
subspaces are statistically close. We suggest to summarize the
particle approximation with its mean and covariance, and then
compare those Gaussian approximations using the Kullback-
Leibler (KL) divergence metric. More precisely, we approxi-
mate the marginal of the s-th subspace as

(ot yr) = N (307,24 (®)

using the summaries provided by (4) and (5). We proceed
similarly for p(ng’ )| v1:t). Then, we compute the KL diver-

gence, assessing if two marginals are statistically different:

1 -1 det )
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where £ is the dimension of the subspaces.

3. COMPUTER SIMULATIONS

The validity of the proposed adaptive MPF approach is il-
lustrated through a simple MTT example, but notice that it
could be applied to other contexts. A received signal strength
(RSS) 2D MTT scenario is considered, where K targets are
tracked using a set of N sensors, uniformly distributed in a
grid. For each target ¢, both 2D position and velocity are to
be estimated, x" = [py)t, p(y}t, it,vz(f)t]T. The m-th sen-
sor, at time ¢, receives the superposition of the different RSS
contributions from the targets present in the area,

us 1
Ym,t = Z 101log;, (|rm_1”|2) + Nt

=1

with n,, ; ~ N(0,02) being the sensor noise related to the

RSS measurement, 1; ; = [p; )t, pz(] )t]Tthe i-th target position,

and r,, the known 2D grid sensor position. The K targets
follow a constant velocity dynamic model,

7 I TSI 7
Xg):(()2 122) ()1+Vt()1th1NN(0Q)

with Q = diag(oy 0} , 07,05 ) accounting for a possible
dynamic model error, T the samphng period and I the 2 x 2
identity matrix. The full state to be estimated is the concatena-
tion of the set of target’s states x; = [(x")7T, -, (x5 7).
Only the K = 2 targets case (n, = 8) is analyzed in the sim-
ulations for the sake of simplicity. We consider N = 100
sensors in a 1000 x 1000 m? grid and the same noise statis-

tics (02, and Q) for all sensors and targets.

3.1. Case 1: Splitting Strategy

First, we analyze the validity of the splitting strategy pro-
posed in Section 2.1 based on the estimated subspace second
order statistics (4). We consider one of the PFs within the
MPF, using M = 2000 particles and tracking the two targets
x7 = [(x")T, (x*)T]. In the top plot of Fig. 1 we show
the trajectory of both targets and the corresponding PF esti-
mate, where we can see that the PF is performing well. In the
bottom plot of Fig. 1 we show: i) the normalized distance
between targets, and i) the off-diagonal value of the group
subspace binary matrix, where we considered a correlation
threshold 5; = 0.4. A value B§?£(2, 1) equal to O implies



that both subspaces can be split (no correlation), otherwise
they should be kept together. In the figure we can see that this
value is only equal to 1 when both targets are close in dis-
tance, which confirms the validity of the proposed approach
based on the subspace covariance. To provide an insight of
the valuable information in the cross-covariance regarding the
correlation between subspaces, we also plot: i) the normal-
ized trace of the cross-covariance between targets, and iv) the
corresponding normalized determinant. We can see that their
value increase only when both targets are close.
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Fig. 1. (Top) True trajectories and PF estimate; (Bottom)
Trace, determinant, off-diagonal element of the group sub-
space binary matrix and normalized distance between targets.

3.2. Case 2: Merging Strategy

To assess the validity of the merging strategy based on the KL
divergence between marginal subspace posteriors, we con-
sider a MPF with two filters, each one tracking one target,
and M; = My = 200 particles. In the left plots of Fig. 2 we
show the true and estimated MPF trajectories for two different
examples, and the corresponding relative inter-target distance
and KL metric is shown in the right plots. In the top left plot,
the estimated trajectories are miss-associated after the targets
get close in distance. In the left bottom plot, the estimated
trajectories degrade after the targets get close. In both cases,
to avoid those issues, the two filters within the MPF should
have been merged in a single filter. This is clear in the right
plots, where the KL divergence drops when both targets get
close in distance, which confirms the validity of the metric.
In conclusion, it was shown that the MPF has to take into
account the correlation among subspaces: ¢) splitting sub-
spaces to avoid the curse of dimensionality and improve the

overall computational complexity, and i7) merging subspaces
to avoid performance degradation. The proposed strategies
based on the estimated second order subspace statistics pro-
vide a probabilistic solution to the problem.
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Fig. 2. (Left) Two examples of true and MPF estimated trajec-
tories; (Right) Normalized distance between targets and KL
divergence metric for both examples.

4. CONCLUSIONS

Multiple particle filtering (MPF) takes a divide-and-conquer
approach to deal with the curse of dimensionality of stan-
dard particle filters. A critical step is to decide how the full
state-space is to be splitted into multiple subspaces, poten-
tially doing so online as the filter operates. We have seen in
previous work that it is important to tackle subspaces jointly
when the states become correlated. In this paper we propose
a methodology for splitting/merging subspaces that accounts
for the correlation among the states associated to each target.
The method is based on the estimated second order subspace
statistics, which are obtained from the outputs provided by
the different PFs associated to the overall MPF. For splitting,
we operate directly on the cross-subspace covariance, while
for merging the KL divergence between the marginals is ex-
ploited since the cross-covariance is not available. The results
show promising performance of both processes in a multiple
target tracking case, being able to discriminate when to split
or merge the different subspace tracking filters.
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