
Optimal Perimeter Guarding with Heterogeneous Robot Teams: Complexity
Analysis and Effective Algorithms

Si Wei Feng Jingjin Yu

Abstract— We perform structural and algorithmic studies
of significantly generalized versions of the optimal perimeter
guarding (OPG) problem [1]. As compared with the original
OPG where robots are uniform, in this paper, many mobile
robots with heterogeneous sensing capabilities are to be de-
ployed to optimally guard a set of one-dimensional segments.
Two complimentary formulations are investigated where one
limits the number of available robots (OPGLR) and the other
seeks to minimize the total deployment cost (OPGMC ). In
contrast to the original OPG which admits low-polynomial
time solutions, both OPGLR and OPGMC are computationally
intractable with OPGLR being strongly NP-hard. Nevertheless,
we develop fairly scalable pseudo-polynomial time algorithms
for practical, fixed-parameter subcase of OPGLR; we also
develop pseudo-polynomial time algorithm for general OPGMC

and polynomial time algorithm for the fixed-parameter OPGMC

case. The applicability and effectiveness of selected algorithms
are demonstrated through extensive numerical experiments.

I. INTRODUCTION

Consider the scenario where many mobile guards (or
sensors) are to be deployed to patrol the perimeter of some
2D regions (Fig. 1) against intrusion, where each guard may
effectively cover a continuous segment of a region’s bound-
ary. When part of a boundary need not be secured, e.g., there
may already be some existing barriers (the blue segments in
Fig. 1), optimally distributing the robots so that each robot’s
coverage is minimized becomes an interesting and non-trivial
computational task [1]. It is established [1] that, when the
guards have the same capabilities, the problem, called the
optimal perimeter guarding (OPG), resides in the complexity
class P (polynomial time class), even when the robots must
be distributed across many different boundaries.

In this work, we investigate a significantly more general
version of OPG where the mobile guards may be hetero-
geneous. More specifically, two formulations with different
guarding/sensing models are addressed in our study. In the
first, the number of available robots is fixed where robots
of different types have a fixed ratio of capability (e.g., one
type of robot may be able to run faster or may have better
sensor). The guarding task must be evenly divided among the
robots so that each robot, regardless of type, will not need to
bear a too large coverage/capability ratio. This formulation is
denoted as optimal perimeter guarding with limited resources
or OPGLR. In the second, the number of robots is unlimited;
instead, for each type, the sensing range is fixed with a

S.-W. Feng and J. Yu are with the Department of Computer Science,
Rutgers, the State University of New Jersey, Piscataway, NJ, USA. E-
Mails: {siwei.feng, jingjin.yu} @ cs.rutgers.edu. This work is
supported by NSF awards IIS-1734419 and IIS-1845888.

Fig. 1. A scenario where boundaries of three (gray) regions must be
secured. Zooming in on part of the boundary of one of the regions (the part
inside the small circle), portions of the boundary (the red segments) must be
guarded while the rest (the blue dotted segments) does not need guarding.
For example, the zoomed-in part of the boundary may be monitored by two
mobile robots, each patrolling along one of the green segments.

fixed associated cost. The goal here is to find a deployment
plan so as to fully cover the perimeter while minimizing the
total cost. We call this the optimal perimeter guarding with
minimum cost problem, or OPGMC .

Unlike the plain vanilla version of the OPG problem,
we establish that both OPGLR and OPGMC are NP-hard
when the number of robot types is part of the problem input.
They are, however, at different hardness levels. OPGLR is
shown to be NP-hard in the strong sense, thus reducing the
likelihood of finding a fully polynomial time approximation
scheme (FPTAS). Nevertheless, for the more practical case
where the number of robot types is a constant, we show
that OPGLR can be solved using a pseudo-polynomial time
algorithm with reasonable scalability. On the other hand,
we show that OPGMC is weakly NP-hard through the
establishment of a pseudo-polynomial time algorithm for
OPGMC with arbitrary number of robot types. We further
show that, when the number of robot types is fixed, OPGMC

can be solved in polynomial time through a fixed-parameter
tractable (FPT) approach. This paragraph also summarizes
the main contributions of this work.

A main motivation behind our study of the OPG for-
mulations is to address a key missing element in executing
autonomous, scalable, and optimal robot deployment tasks.
Whereas much research has been devoted to multi-robot
motion planning [2], [3] with great success, e.g., [4]–[9],
existing results in the robotics literature appear to generally
assume that a target robot distribution is already provided; the
problem of how to effectively generate optimal deployment
patterns is largely left unaddressed. It should be noted
that control-based solutions to the multi-agent deployment
problem do exist, e.g., [10]–[16], but the final solutions



are obtained through many local iterations and generally do
not come with global optimality guarantees. For example,
in [12], Voronoi-based iterative methods compute locally
optimal target formations for various useful tasks. In contrast,
this work, as well as [1], targets the scalable computation of
globally optimal solutions.

As a coverage problem, OPG may be characterized as a
1D version of the well-studied Art Gallery problems [17],
[18], which commonly assume a sensing model based on
line-of-sight visibility [19]; the goal is to ensure that every
point in the interior of a given region is visible to at least one
of the deployed guards. Depending on the exact formulation,
guards may be placed on boundaries, corners, or the interior
of the region. Not surprisingly, Art Gallery problems are
typically NP-hard [20]. Other than Art Gallery, 2D coverage
problems with other sensing models, e.g., disc-based, have
also been considered [12], [21]–[25], where some formula-
tions prevent the overlapping of individual sensing ranges
[21], [22] while others seek to ensure a full coverage which
often requires intersection of sensor ranges. In viewing of
these studies, this study helps painting a broader landscape
of sensor coverage research.

In terms of structural resemblance, OPGLR and OPGMC

share many similarities with bin packing [26] and other
related problems. In a bin packing problem, objects are to
be selected to fit within bins of given sizes. Viewing the
segments (the red ones in Fig. 1) as bins, OPG seeks to
place guards so that the segments are fully contained in
the union of the guards’ joint coverage span. In this regard,
OPG is a dual problem to bin packing since the former must
overfill the bins and the later cannot fully fill the bins. In the
extreme, however, both bin packing and OPG converge to a
SUBSET SUM [27] like problem where one seeks to partition
objects into halves of equal total sizes, i.e., the objects
should fit exactly within the bins. With an additional cost
term, OPGMC has further similarities with the KNAPSACK
problem [28], which is weakly NP-hard [29].

The rest of the paper is organized as follows. In Section II,
mathematical formulations of the two OPG variants are
fully specified. In Section III, both OPGLR and OPGMC

are shown to be NP-hard. Despite the hardness hurdles,
in Section IV, multiple algorithms are derived for OPGLR

and OPGMC , including effective implementable solutions
for both. In Section V, we perform numerical evaluation
of selected algorithms and demonstrate how they may be
applied to address multi-robot deployment problems. We
discuss and conclude our study in Section VI. Please see
https://youtu.be/6gYL0_B3YTk for an illustration
of the problems and selected instances/solutions.

II. PRELIMINARIES

Let W ⊂ R2 be a compact (closed and bounded) two-
dimensional workspace. There are m pairwise disjoint re-
gions R = {R1, . . . , Rm} where each region Ri ⊂ W is
homeomorphic to the closed unit disc, i.e., there exists a
continuous bijection fi : Ri → {(x, y) | x2 + y2 ≤ 1}

for all 1 ≤ i ≤ m. For a given region Ri, let ∂Ri be
its (closed) boundary (therefore, fi maps ∂Ri to the unit
circle S1). With a slight abuse of notation, define ∂R =
{∂R1, . . . , ∂Rm}. Let Pi ⊂ ∂Ri be the part of ∂Ri that is
accessible, specifially, not blocked by obstacles in W . This
means that each Pi is either a single closed curve or formed
by a finite number of (possibly curved) line segments. Define
P = {P1, . . . , Pm} ⊂ W as the perimeter of R which
must be guarded. More formally, each Pi is homeomorphic
to a compact subset of the unit circle (i.e., it is assumed
that the maximal connected components of Pi are closed
line segments). For a given Pi, each one of its maximal
connected component is called a perimeter segment or simply
a segment, whereas each maximal connected component of
∂Ri\Pi is called a perimeter gap or simply a gap. An
example setting is illustrated in Fig. 2 with two regions.

R1

P1

R2

P2

W

Fig. 2. An example of a workspace W with two regions {R1, R2}. Due
to three gaps on ∂R1, marked as dotted lines within long rectangles, P1 ⊂
∂R1 has three segments (or maximal connected components); P2 = ∂R2

has a single segment with no gap.

After deployment, some number of robots are to cover
the perimeter P such that a robot j is assigned a continuous
closed subset Cj of some ∂Ri, 1 ≤ i ≤ m. All of P must
be covered by C, i.e.,

⋃︁
Pi∈P Pi ⊂

⋃︁
Cj∈C Cj , which implies

that elements of C need not intersect on their interiors. Hence,
it is assumed that any two elements of C may share at most
their endpoints. Such a C is called a cover of P . Given a
cover C, for a Cj ∈ C, let len(Cj) denote its length (more
formally, measure).

To model heterogeneity of the robots, two models are
explored in this study. In either model, there are t types
of robots. In the first model, the number of robots of each
type is fixed to be n1, . . . , nt with n = n1 + · · ·+ nt. For a
robot 1 ≤ j ≤ n, let τj denote its type. Each 1 ≤ τ ≤ t type
of robots has some level of capability or ability aτ ∈ Z+.
We wish to balance the load among all robots based on their
capabilities, i.e., the goal is to find cover C for all robots
such that the quantity

max
Cj∈C

len(Cj)

aτj
,

which represents the largest coverage-capacity ratio, is min-
imized. We note that when all capacities are the same, e.g.,
aτ = 1 for all robots, this becomes the standard OPG
problem studied in [1]. We call this version of the perimeter
guarding problem optimal perimeter guarding with limited
resources or OPGLR. The formal definition is as follows.

https://youtu.be/6gYL0_B3YTk


Problem II.1 (Optimal Perimeter Guarding with Limited
Resources (OPGLR)). Let there be t types of robots. For
each type 1 ≤ τ ≤ t, there are nτ such robots, each having
the same capability parameter aτ . Let n = n1 + · · · + nt.
Given the perimeter set P = {P1, . . . , Pm} of a set of 2D
regions R = {R1, . . . , Rm}, find a set of n continuous line
segments C∗ = {C∗

1 , . . . , C
∗
n} such that C∗ covers P , i.e.,⋃︂

Pi∈P
Pi ⊂

⋃︂
C∗

j ∈C∗

C∗
j , (1)

such that a C∗
j is covered by robot j of type τj , and such

that, among all covers C satisfying (1),

C∗ = argmin
C

max
Cj∈C

len(Cj)

aτj
. (2)

Whereas the first model caps the number of robots, the
second model fixes the maximum coverage of each type
of robot. That is, for each robot type 1 ≤ τ ≤ t, nτ , the
number of robots of type τ , is unlimited as long as it is non-
negative, but each such robot can only cover a maximum
length of ℓτ . At the same time, using each such robot incurs
a cost of cτ . The goal here is to guard the perimeters with
the minimum total cost. We denote this problem optimal
perimeter guarding with minimum cost or OPGMC .

Problem II.2 (Optimal Perimeter Guarding with Minimum
Cost (OPGMC)). Let there be t types of robots of unlimited
quantities. For each robot of type 1 ≤ τ ≤ t, it can guard
a length of ℓτ ∈ Z+ with a cost of cτ ∈ Z+. Given the
perimeter set P = {P1, . . . , Pm} of a set of 2D regions R =
{R1, . . . , Rm}, find a set of n = n1 + · · · + nt continuous
line segments C∗ = {C∗

1 , . . . , C
∗
n} where nτ such segments

are guarded by type τ robots, such that C∗ covers P , i.e.,⋃︂
Pi∈P

Pi ⊂
⋃︂

C∗
j ∈C∗

C∗
j , (3)

such that a C∗
j is covered by robot j of type τj , i.e., C∗

j ≤ ℓτj ,
and such that, among all covers C satisfying (3),

C∗ = argmin
C

∑︂
1≤τ≤t

nτ cτ . (4)

III. COMPUTATIONAL COMPLEXITY FOR VARIABLE
NUMBER OF ROBOT TYPES

We explore in this section the computational complexity of
OPGLR and OPGMC . Both problems are shown to be NP-
hard with OPGLR being strongly NP-hard. We later confirm
that OPGMC is weakly NP-hard (in Section IV).

A. Strong NP-hardness of OPGLR

When the number of types t is a variable, i.e., t is not a
constant and may be arbitrarily large, OPGLR is shown to
be NP-hard via the reduction from 3-PARTITION [30]:

PROBLEM: 3-PARTITION
INSTANCE: A finite set A of 3m elements, a bound B ∈
Z+, and a “size” s(a) ∈ Z+ for each a ∈ A, such that each
s(a) satisfies B/4 < s(a) < B/2 and

∑︁
a∈A s(a) = mB.

QUESTION: Is there a partition of S into m disjoint subsets
S1, . . . , Sm such that for 1 ≤ i ≤ m,

∑︁
a∈Si

s(a) = B?

3-PARTITION is shown to be NP-complete in the strong
sense [31], i.e., it is NP-complete even when all numeric
inputs are bounded by a polynomial of the input size.

For the reduction, it is more convenient to work with a
decision version of the OPGLR problem, denoted as D-
OPGLR. In the D-OPGLR problem, aτ is the actual length
robot type τ covers. That is, the coverage length of a robot
is fixed. The D-OPGLR problem is specified as follows.

PROBLEM: D-OPGLR

INSTANCE: t types of robots where there are nτ robots
for each type 1 ≤ τ ≤ t; n = n1 + · · · + nt. A robot of
type τ has a coverage capacity aτ . A set of perimeters P =
{P1, . . . , Pm} of a set of 2D regions R = {R1, . . . , Rm}.
QUESTION: Is there a deployment of n disjoint subsets
C1, . . . , Cn of {∂R1, . . . , ∂Rm} such that P1 ∪ . . . ∪ Pm ⊂
C1 ∪ . . . ∪ Cn, where Cj is a continuous segment for all
1 ≤ j ≤ n, and for each 1 ≤ j ≤ n, there is a unique robot
whose type τ , 1 ≤ τ ≤ t satisfies aτ ≥ len(Cj)?

Theorem III.1. OPGLR is strongly NP-hard.

Proof. A polynomial reduction from 3-PARTITION to D-
OPGLR is constructed by a restriction of D-OPGLR. Given
a 3-PARTITION instance with former notations, we apply
several restrictions on D-OPGLR: (i) there are 3m types of
robot and there is a single robot for each type, i.e., nτ = 1 for
1 ≤ τ ≤ t, so n = t = 3m (ii) the 3m capacities a1, . . . , a3m
are set to be equal to s(a) for each of the 3m elements a ∈ A,
and (iii) there are 3m perimeters and each perimeter Pi is
continuous and len(Pi) = B for all 1 ≤ i ≤ m.

With the setup, the reduction proof is straightforward.
Clearly, the 3-PARTITION instance admits a partition of A
into S1, . . . , Sm such that

∑︁
a∈Si

s(a) = B for all 1 ≤ i ≤
m if and only if a valid depolyment exists in the corre-
sponding D-OPGLR instance. It is clear that the reduction
from 3-PARTITION to D-OPGLR is polynomial (in fact,
linear). Based on the reduction and because 3-PARTITION
is strongly NP-hard, so is D-OPGLR and OPGLR.

Remark. One may also reduce weakly NP-hard problems,
e.g., PARTITION [27], to OPGLR for variable number of
robot types t. Being strongly NP-hard, OPGLR is unlikely
to admit pseudo-polynomial time solutions for variable t.
This contrasts with a later result which provides a pseudo-
polynomial time algorithm for OPGLR for constant t, as
one might expect in practice where robots have limited
number of types. We also note that Theorem III.1 continues
to hold for a single perimeter with multiple segments, each
having a length B in previous notation, separated by “long”
gaps. Obviously, D-OPGLR is in NP, thus rendering it NP-
complete.

B. NP-hardness of OPGMC

The minimum cost OPG variant, OPGMC , is also NP-
hard, which may be established through reduction from the



SUBSET SUM problem [27]:

PROBLEM: SUBSET SUM
INSTANCE: A set B with |B| = n and a weight function
w : B → Z+, and an integer W .
QUESTION: Is there a subset B′ ⊆ B such that∑︁

b∈B′ w(b) = W ?

Theorem III.2. OPGMC is NP-hard.

Proof. Given a SUBSET SUM instance, we construct an
OPGMC instance with a single perimeter containing a single
segment with length L to be specified shortly. Let there be
t = 2n types of robots. For 1 ≤ i ≤ n, let robot type
2i − 1 have ℓ2i−1 = c2i−1 = w(bi) + (2n+1 + 2i)W ′ and
let robot type 2i have ℓ2i = c2i = (2n+1 + 2i)W ′. Here,
W ′ can be any integer number no less than

∑︁
b∈B w(b). Set

L = W + (n2n+1 + 2n + . . .+ 21)W ′. We ask the “yes” or
“no’ decision question of whether there are robots that can be
allocated to have a total cost no more than L (equivalently,
equal to L, as the cost density cτ/lτ is always 1).

Suppose the SUBSET SUM instance has a yes answer that
uses a subset B′ ⊆ B. Then, the OPGMC instance has a
solution with cost L that can be constructed as follows. For
each 1 ≤ i ≤ n, a single robot of type 2i − 1 is taken if
bi ∈ B′. Otherwise, a single robot of type 2i is taken. This
allocation of robots yields a total length and cost of L.

For the other direction, we first show that if the OPGMC

instance is to be satisfied, it can only use a single robot from
type 2i−1 or 2i for all 1 ≤ i ≤ n. First, if more than n robots
are used, then the total cost exceeds (n+1)2n+1W ′ > L as
W ≤ W ′. Similarly, if less than n robots are used, the total
length is at most (n−1)2n+1W ′+(2n+1−1)W ′+W ′ < L.
Also, to match the (2n+ . . .+2)W ′ part of the cost, exactly
one robot from type 2i − 1 or 2i for all 1 ≤ i ≤ n must
be taken. Now, if the OPGMC decision instance has a yes
answer, if a robot of type 2i− 1 is used, let bi ∈ B be part
of B′, which constructs a B′ that gives a yes answer to the
SUBSET SUM instance.

Remark. It is also clear that the decision version of the
OPGMC problem is NP-complete. The SUBSET SUM is a
weakly NP-hard problem that admits a pseudo-polynomial
time algorithm [29]. As it turns out, OPGMC , which shares
similarities with SUBSET SUM and KNAPSACK (in particu-
lar, UNBOUNDED KNAPSACK [28]), though NP-hard, does
admit a pseudo-polynomial time algorithm as well.

IV. EXACT ALGORITHMS FOR OPGLR AND OPGMC

In this section, we describe three exact algorithms for
solving the two variations of the OPG problem. First, we
present a pseudo-polynomial time algorithm for OPGLR

when the number of robot types, t, is a fixed constant. Given
that OPGLR is strongly NP-hard, this is in a sense a best
possible solution. For OPGMC , in addition to providing a
pseudo-polynomial algorithm for arbitrary t, which confirms
that OPGMC is weakly NP-hard, we also provide a poly-
nomial time approximation scheme (PTAS). We then further

show the possibility of solving OPGMC in polynomial time
when t is a fixed constant. We mention that our development
in this section focuses on the single perimeter case, i.e.,
m = 1, as the generalization to arbitrary m is straightforward
using techniques described in [1]. With this in mind, we
also provide the running times for the general setting with
arbitrary m but refer the readers to [1] on how these running
times can be derived.

For presenting the analysis and results, for the a perimeter
P that we work with, assume that it has q perimeter segments
S1, . . . , Sq that need to be guarded; these segments are
separated by q gaps G1, . . . , Gq . For 1 ≤ i, i′ ≤ q, define
Si∼i′ = Si ∪ Gi ∪ Si+1 ∪ . . . ∪ Gi′−1 ∪ Si′ where i′ may
be smaller than i (i.e., Si∼i′ may wrap around Gq), For the
general case with m perimeters, assume that a perimeter Pi

has qi segments.

A. Pseudo-Polynomial Time Algorithm for OPGLR with
Fixed Number of Robot Types

We set to develop an algorithm for OPGLR for arbitrary
t, the number of robot types; the algorithm runs in pseudo-
polynomial time when t is a constant. At a higher level, our
proposed algorithm works as follows. First, our main effort
here goes into deriving a feasibility test for D-OPGLR as
defined in Section III-A. With such a feasibility test, we can
then find the optimal len(Cj)

aτj
in (2) via binary search. Let us

denote the optimal value of len(Cj)
aτj

as ℓ∗.

1) Feasibility Test for D-OPGLR: The feasibility test for
D-OPGLR essentially tries different candidate ℓ to find
ℓ∗. Our implementation uses ideas similar to the pseudo-
polynomial time algorithm for the KNAPSACK problem
which is based on dynamic programming (DP). In the test,
we work with a fixed starting point on P , which is set to be
the counterclockwise end point of a segment Si, 1 ≤ i ≤ q.
Essentially, we maintain a t dimensional array M where
dimension τ has a size of nτ + 1. An element of the
array, M [n′

1] . . . [n
′
t], holds the maximal distance starting

from Si that can be covered by n′
1 type 1 robots, n′

2 type
2 robots, and so on. The DP procedure OPG-LR-FEASIBLE
(i, ℓ), outlined in Algorithm 1, incrementally builds this array
M . For convenience, in the pseudo code, M [x⃗] denotes an
element of M with x⃗ being a t dimensional integer vector.

In Algorithm 1, the procedure INC (L, ℓ) checks how
much of the perimeter P can be covered when an additional
coverage length ℓ is added, assuming that a distance of L
(starting from some Si) is already covered. An illustration
of how INC (L, ℓ) works is given in Fig. 3.

By simple counting, the complexity of the algorithm is
O(q · t ·Πt

τ=1(nτ +1)). However, the amortized complexity
of INC (·) for each τ is O(q + nτ ); the algorithm thus runs
in O(t · Πt

τ=1(nτ + 1) + q ·
∑︁t

τ=1 Πτ ′ ̸=τ (nτ ′ + 1)), which
is pseudo-polynomial for fixed t. After trying every possible
starting position i with OPG-LR-FEASIBLE (i, ℓ), for a fixed
candidate ℓ, D-OPGLR is solved in O(q · t ·Πt

τ=1(nτ +1)+
q2 ·

∑︁t
τ=1 Πτ ′ ̸=τ (nτ ′ + 1)).



Algorithm 1: OPG-LR-FEASIBLE (i, ℓ)
Data: n1, . . . , nt, a1, . . . , at, S1, . . . , Sq , G1, . . . , Gq

Result: true or false, indicating whether S1, . . . , Sq can
be covered

1 Initialize M as a t dimensional array with dimension τ
having a size of nτ + 1;

2 ℓτ ← aτ ℓ for all 1 ≤ τ ≤ t;
3 for x⃗ ∈ [0, n1]× · · · × [0, nt] do
4 M [x⃗]← 0;
5 for j = 1 to t do
6 if x⃗j = 0 then continue;
7 x′⃗ ← x⃗; x′⃗

j ← x′⃗
j − 1;

8 M [x⃗]← max(M [x⃗], INC (M [x′⃗], ℓj));
9 end

10 end
11 return M [n1] . . . [nt] ≥ len(Si∼i−1);

L ℓ

INC(L, ℓ)

Fig. 3. Suppose starting from the fixed left point, a length of L on the
boundary is successfully guarded by a group of robots. Then, a robot with
coverage capacity ℓ is appended to the end of the group of robots to increase
the total guarded distance. In the figure, the added additional capacity ℓ can
fully cover the third red segment plus part of the third (dashed) gap. Because
there is no need to cover the rest of the third gap, INC(L, ℓ) extends to the
end of the gap.

2) Solving OPGLR using Feasibility Test for D-OPGLR:
Using OPG-LR-FEASIBLE (i, ℓ) as a subroutine to check
feasibility for a given ℓ, bisection can be applied over
candidate ℓ to obtain ℓ∗. For completing the algorithm, one
needs to establish when the bisection will stop (notice that,
even though we assume that aτ ∈ Z+, for each 1 ≤ τ ≤ t,
ℓ∗ need not be an integer).

To derive the stop criterion, we note that given the optimal
ℓ∗, there must exist some Si∼i′ that is “exactly” spanned by
the allocated robots. That is, assume that Si∼i′ is covered by
n′
1 of type 1 robots and n′

2 of type 2 robots, and so on, then

ℓ∗ =
len(Si∼i′)∑︁
1≤τ≤t aτ · n′

τ

. (5)

(5) must hold for some Si∼i′ because if not, the solution
is not tight and can be further improved. Therefore, the
bisection process for locating ℓ∗ does not need to go on
further after reaching a certain granularity [1]. With this
established, using similar techniques from [1] (we omit the
technical detail as it is quite complex but without additional
new ideas beyond beside what is already covered in [1]),
we could prove that the full algorithm needs no more
than O(q log(

∑︁
τ nτ + q) calls to OPG-LR-FEASIBLE (i, ℓ).

This directly implies that OPGLR also admits a pseudo-
polynomial algorithm for fixed t.
3) Multiple Perimeters: Also using techniques developed in

[1], the single perimeter result can be readily generalized to
multiple perimeters. We omit the mechanical details of the
derivation and point out that the computational complexity
in this case becomes Õ((m− 1) · ((Πt

τ=1nτ )/maxτ nτ )
2 +∑︁m

k=1(t · qk ·Πt
τ=1(nτ + 1) + q2k

∑︁t
τ=1 Πτ ′ ̸=τ (nτ ′ + 1))).

B. Polynomial Time Algorithm for OPGMC with Fixed Num-
ber of Robot Types

The solution to OPGMC will be discussed here. A method
based on DP will be provided first, which leads to a polyno-
mial time algorithm for a fixed number of robot types and
a pseudo-polynomial time algorithm when the number of
robot types is not fixed. For the latter case, a polynomial time
approximation scheme (PTAS) will also be briefly described.
1) Dynamic Programming Procedure for OPGMC: When

no gaps exist, the optimization problem becomes a covering
problem as follows. Let cτ , ℓτ , nτ correspond to the cost,
coverage length, and quantity of robot type τ , respectively,
and let total length to cover be L. We are to solve the
optimization problem

min
∑︂
τ

cτ · nτ s.t.
∑︂
τ

ℓτ · nτ ≥ L, nτ ≥ 0. (6)

Let the solution to the above integer program-
ming problem be SOL(L). Notice that, for Si∼i′ :=
{Si, Gi, . . . , Gi′−1, Si′}, the minimum cost cover is by
either: (i) covering the total boundary without skipping
any gaps, or (ii) skipping or partially covering some gap,
for example Gk, i ≤ k ≤ j − 1. In the first case, the
minimum cost is exactly SOL(⌈len(Si∼(i+k)⌉). In the second
case, the optimal structure for the two subsets of perimeter
segments Si∼k and S(k+1)∼j still holds. This means that the
continuous perimeter segments Si∼j can be divided into two
parts, each of which can be treated separately. This leads
to a DP approach for OPGMC . With M [i][j] denoting the
minimum cost to cover Si∼j , the DP recursion is given by

M [i][j] = min(SOL(⌈len(Si∼j)⌉),min
k

(M [i][k] +M [k + 1][j]))

The DP procedure is outlined in Algorithm 2. In the
pseudo code, it is assumed that indices of M are modulo
q, e.g., M [2][q+1] ≡ M [2][1]. tmp is a temporary variable.

Algorithm 2: OPG-MC-DP
Data: ℓ1, . . . , ℓt, c1, . . . , ct, S1, . . . , Sq , G1, . . . , Gq

Result: c∗, the minimum covering cost
1 M ← a q × q matrix; c∗ ←∞;
2 for k ← 0 to q − 1 do
3 for i← 1 to q do
4 tmp← SOL(⌈len(Si∼(i+k))⌉);
5 for j ← i to i+ k − 1 do
6 tmp← min(tmp,M [i][j] +M [j + 1][i+ k]);
7 end
8 M [i][i+ k]← tmp;
9 if k = q − 1 then c∗ ← min(c∗,M [i][i+ k]);

10 end
11 end
12 return c∗;

2) A Polynomial Time Algorithm for OPGMC for a Fixed
Number of Robot Types: We mention briefly that, by a result
of Lenstra [32], the optimization problem (6) is in P (i.e.,
polynomial time) when t is a constant. The running time of
the algorithm [32] is however exponential in t.



3) A Pseudo-polynomial Time Algorithm for Arbitrary t: As
demonstrated in the hardness proof, similarities exist between
OPG and the KNAPSACK problem. The connection actually
allows the derivation of a pseudo-polynomial time algorithm
for arbitrary t. To achieve this, we use a routine to pre-
compute SOL(L), called PRESOLVE(), which is itself a DP
procedure similar to that for the KNAPSACK problem. The
pseudo code of PRESOLVE() is given in Algorithm 3. PRE-
SOLVE() runs in time O(t·⌈len(∂R)⌉)). Overall, Algorithm 2
then runs in time O(q3 + t · ⌈len(∂R⌉)).

Algorithm 3: PRESOLVE

Data: ℓ1, . . . , ℓt, c1, . . . , ct
Result: A lookup table for retrieving SOL(L)

1 Imax = ⌈len(∂R)⌉; %Imax is an integer.
2 M ′ ← an array of length Imax + 1; M ′[0]← 0;
3 for L← 1 to Imax do
4 M ′[L]←∞;
5 for τ ← 1 to t do
6 tmp← (L < ℓτ ? 0 : M ′[L− ℓτ ]) + cτ ;
7 M ′[L]← min(M ′[L], tmp);
8 end
9 end

10 return M ′

With the establishment of a pseudo-polynomial time algo-
rithm for OPGMC , we have the following corollary.

Corollary IV.1. OPGMC is weakly NP-hard.

4) FPTAS for Arbitrary t: When the number of robot types
is not fixed, Lenstra’s algorithm [32] or its variants no longer
run in polynomial time. We briefly mention that, by slight
modifications of a FPTAS for UNBOUNDED KNAPSACK
problem from [33], a FPTAS for OPGMC can be obtained
that runs in time O(q3 + q2 · t

ϵ3 ), where (1 + ϵ) is the
approximation ratio for both OPGMC and (6).
5) Multiple Perimeters: For OPGMC , when there are mul-

tiple perimeters, e.g., P1, . . . , Pm, a optimal solution can be
obtained by optimally solving OPGMC for each perimeter
Pi individually and then put together the solutions.

V. PERFORMANCE EVALUATION AND APPLICATIONS

In this section, we provide examples illustrating the typical
optimal solution structures of OPGLR and OPGMC com-
puted by our DP algorithms. Using an application scenario,
solutions to OPGLR and OPGMC are also compared. Then,
computational results from extensive numerical evaluations
are presented, confirming the effectiveness of these algo-
rithms. The implementation is done using the Python and
all computations are performed on an Intel(R) Core(TM) i7-
7700 CPU@3.6GHz with 16GB RAM.

A. Basic Optimal Solution Structure

Fig. 4 shows the typical outcome of solving an OPGLR

instance with two perimeters (m = 2) for two types of robots
with n1 = 3, a1 = 5, and n2 = 5, a2 = 8. In the figure, the
red segments are parts of the two perimeters that must be
guarded. The three orange (resp., five green) segments across

the two perimeters indicate the desired coverage regions of
the three (resp., five) type 1 (resp., type 2) robots. These
coverage regions correspond to the optimal solution returned
by the DP algorithm. As may be observed, the optimal
solution is somewhat complex with robots of both types on
each of the two perimeters; a gap on the second boundary
also gets covered. The coverage lengths for a robot type
are generally different; this is due to adjustments that shrink
some robots’ coverage. For example, the first perimeter has a
very short orange cover because the corresponding perimeter
segment is short and gaps around it need not be covered (The
adjustment procedure is also shown in the video).

Fig. 4. An OPGLR problem and an associated optimal solution. The
problem has two perimeters and t = 2 with n1=3, n2=5, a1=5, a2=8. The
boundaries are shown as circles for ease of illustration.

Shifting our attention to OPGMC , Fig. 5 illustrates the
structure of an optimal solution to a problem with three types
of robots with capacities and costs being ℓ1 = 11, c1 = 2,
ℓt = 30, c2 = 4, and ℓ3 = 55, c3 = 7, respectively. In
this case, the majority of the deployed robots are of type
2 with ℓ2 = 30, c2 = 4. Only one type 1 and one type 3
robots are used. The four perimeter segments are covered by
three robot groups. The only type 3 robot guards (the purple
segment) across two different perimeter segments. Coverage
length adjustment is also performed to avoid the unnecessary
coverage of some gaps.

Fig. 5. An OPGMC problem and an associated optimal solution. The
problem has four (red) perimeter segments and three types of robots with
ℓ1 = 11, c1 = 2 (orange), ℓt = 30, c2 = 4 (green), and ℓ3 = 55, c3 = 7
(purple), respectively.

B. A Robotic Guarding and Patrolling Application

In this subsection, as a potential application, the DP
algorithms for OPGLR and OPGMC are employed to solve
the problem of securing the perimeter of the Edinburgh
castle, an example used in [1]. As shown in Fig. 6 (minus
the orange and green segments showing the solutions), the
central region of the Edinburgh castle has tall buildings on



its boundary (the blocks in brick red); these parts of the
boundary are the gaps that do not need guarding. In the
figure, the top sub-figure shows the optimal solution for an
OPGLR instance and an OPGMC instance with a total of 11
robots. The bottom sub-figure is a slightly updated OPGMC

instance with slightly higher c2.

Fig. 6. [top] OPGLR solution with n1 = 4, n2 = 7, c1 : c2 = 2 : 3 and
OPGMC solution with ℓ1 = 150, c1 = 100, ℓ2 = 225, c2 = 145, and
total boundary 3058. Cost of OPGMC solution is 1415. [bottom] OPGMC

solution with ℓ1 = 150, c1 = 100, ℓ2 = 225, c2 = 155. Cost of solution
(13 type 1, 1 type 2) is 1455. In both solutions, covers by type 1 (resp.,
type 2) robots are shown in orange (resp., green).

It can be observed that the results, while having non-
trivial structures, make intuitive sense. For the top sub-figure,
solutions to both OPGLR and OPGMC (because robot with
larger capacity is slightly lower in relative cost) use mainly
higher capacity robots to cover longer perimeter segments
and use the lower capacity robots mostly fillers. The solution
covers a small gap at the bottom. For the bottom sub-figure,
while only small changes are made to the cost, because the
longer segment is more expensive to use now, the first type
of robot is used mainly.

C. Computational Performance

With Section IV fully establishing the correctness and
asymptotic complexity of the pseudo-polynomial time al-
gorithms, here, the running time of these algorithms are
experimentally evaluated. In doing so, the main goal is
demonstrating that, despite the hardness of OPGLR and
OPGMC , the proposed algorithms could solve the target
problems under reasonably broad settings in a scalable way.
For results presented in this subsection, each data point is an
average over 10 randomly generated instances.

The first two numerical evaluations (Table I and Table II)
focus on the running times of the pseudo-polynomial time
algorithms for OPGLR over single and multiple perimeters,
respectively. In these two tables, t and q are the number of
types and the number of segments, respectively. For each
type τ , a capacity (aτ ) is randomly sampled as an integer
between 1 and 100, inclusive. The number of robots available

for each type (nτ ) is sampled uniformly between 5 and 15,
inclusive. For the multiple perimeters case, the parameter m
represents the number of perimeters for a given instance.

For the single perimeter case (Table I), the results show
that the pseudo-polynomial time algorithm is effective for
up to five types of robots, for dozens of robots. We expect
a more efficient (e.g., C++ based) implementation should be
able to effectively handle up to five types of robots with the
total number of robots being around a hundred, on a typical
PC. This is likely sufficient for many practical applications
which have limited types and numbers of robots. Since the
algorithm has exponential dependency on t, it becomes less
efficient for larger t as expected.

t
q 5 10 20 30 40 50

2 0.022 0.044 0.131 0.208 0.326 0.516
3 0.281 0.714 1.670 2.577 4.107 4.708
4 5.504 16.07 41.68 71.55 109.9 138.9
5 29.53 75.60 243.6 443.4 528.0 725.0

TABLE I
RUNNING TIME IN SECONDS USED BY THE DP ALGORITHM FOR OPGLR

OVER A SINGLE PERIMETER.

Table II illustrates the running time of the DP algorithm
for OPGLR over multiple perimeters. As can be readily
observed, the impact of the number of perimeters m on the
running time is relatively small; the number of robot types
is still the determining factor for running time. In this case,
our proposed solution is effective for t up to 4 and starts to
slow down a robot types become larger than 4.

m
q 10 20 30

t=3 t=4 t=3 t=4 t=3 t=4
2 3.148 133.2 7.077 198.4 10.33 260.0
3 4.828 194.1 10.125 290.6 15.52 376.7
4 6.131 256.8 12.485 381.3 19.75 514.3
5 7.622 321.7 15.355 476.2 24.31 605.8

TABLE II
RUNNING TIME IN SECONDS USED BY THE DP ALGORITHM FOR OPGLR

OVER MULTIPLE PERIMETERS.

Table III provides performance evaluation of OPG-MC-
DP. Since there is no difference between single and multiple
perimeters for OPGMC , only problems with single perime-
ters are attempted. Here, for each robot type, the cost is an
integer randomly sampled between 1 and 20, and the capacity
is computed as five times the cost plus a random integer
between 1 and 20. In the table, L = ∂R, the total length of
the entire boundary. Given OPGMC’s lower computational
complexity, the DP algorithm, OPG-MC-DP, can effectively
deal with over a few hundred types of robots with ease.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we investigate two natural models of optimal
perimeter guarding using heterogeneous robots, where one
model (OPGLR) limits the number of available robots and
the second (OPGMC) seeks to optimize the total cost of
coverage. On the computational complexity side, we prove
that both OPGLR and OPGMC are NP-hard, with OPGLR



t
L 102 104 106

q=20 q=50 q=20 q=50 q=20 q=50
3 0.006 0.064 0.041 0.098 3.040 3.144
10 0.005 0.066 0.094 0.155 9.423 9.409
30 0.009 0.070 0.261 0.320 26.10 28.59

100 0.014 0.077 0.910 0.969 91.28 93.20
300 0.030 0.091 2.652 2.938 275.6 270.7

TABLE III
RUNNING TIME IN SECONDS USED BY OPG-MC-DP ALGORITHM.

directly shown to be strongly NP-hard. This is in stark con-
trast to the homogeneous case, which admits highly efficient
low polynomial time solutions [1]. The complexity study also
establishes structural similarities between these problems
and classical NP-hard problems including 3-PARTITION,
KNAPSACK, and SUBSET SUM.

On the algorithmic side, we provide methods for solving
both OPGLR and OPGMC exactly. For OPGLR, the algo-
rithm runs in pseudo-polynomial time in practical settings
with limited types of robots. In this case, the approach
is shown to be computationally effective. For OPGMC , a
pseudo-polynomial time algorithm is derived for the general
problem, which implies that OPGMC is weakly NP-hard. In
practice, this allows us to solve large instances of OPGMC .
We further show that a polynomial time algorithm is possible
for OPGMC when the types of robots are fixed.

With the study of OPG [1] for homogeneous and hetero-
geneous cases, some preliminary understanding has been ob-
tained on how to approach complex 1D guarding problems.
Nevertheless, the study so far is limited to one-shot settings
where the perimeters do not change. In future research, we
would like to explore the more challenging case where the
perimeters evolve over time, which requires the solution to be
dynamic as well. Given the results on the one-shot settings,
we expect the dynamic setting to be generally intractable if
global optimal solutions are desired, potentially calling for
iterative and/or approximate solutions.

REFERENCES

[1] S. W. Feng, S. D. Han, K. Gao, and J. Yu, “Efficient algorithms
for optimal perimeter guarding,” in Robotics: Sciences and Systems.
Robotics: Sciences and Systems, 2019.

[2] M. A. Erdmann and T. Lozano-Pérez, “On multiple moving objects,”
in Proceedings IEEE International Conference on Robotics & Automa-
tion, 1986, pp. 1419–1424.

[3] T. Arai, E. Pagello, and L. E. Parker, “Advances in multi-robot
systems,” IEEE Transactions on robotics and automation, vol. 18,
no. 5, pp. 655–661, 2002.

[4] J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in Proceedings IEEE
International Conference on Robotics & Automation, 2008, pp. 1928–
1935.

[5] S. L. Smith and F. Bullo, “Monotonic target assignment for robotic
networks,” IEEE Transactions on Automatic Control, vol. 54, no. 9,
pp. 2042–2057, 2009.

[6] N. Ayanian and V. Kumar, “Decentralized feedback controllers for
multiagent teams in environments with obstacles,” IEEE Transactions
on Robotics, vol. 26, no. 5, pp. 878–887, 2010.

[7] M. Turpin, N. Michael, and V. Kumar, “Capt: Concurrent assignment
and planning of trajectories for multiple robots,” The International
Journal of Robotics Research, vol. 33, no. 1, pp. 98–112, 2014.

[8] J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot navigation in
formation via sequential convex programming,” in Intelligent Robots

and Systems (IROS), 2015 IEEE/RSJ International Conference on.
IEEE, 2015, pp. 4634–4641.

[9] K. Solovey, J. Yu, O. Zamir, and D. Halperin, “Motion planning for
unlabeled discs with optimality guarantees,” in Robotics: Science and
Systems, 2015.

[10] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “Distributed mem-
oryless point convergence algorithm for mobile robots with limited
visibility,” IEEE Transactions on Robotics and Automation, vol. 15,
no. 5, pp. 818–828, 1999.

[11] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[12] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[13] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Transac-
tions on automatic control, vol. 50, no. 5, pp. 655–661, 2005.

[14] M. Schwager, B. J. Julian, and D. Rus, “Optimal coverage for
multiple hovering robots with downward facing cameras,” in 2009
IEEE international conference on robotics and automation. IEEE,
2009, pp. 3515–3522.

[15] J. Yu, S. M. LaValle, and D. Liberzon, “Rendezvous without coordi-
nates,” IEEE Transactions on Automatic Control, vol. 57, no. 2, pp.
421–434, 2012.

[16] D. Morgan, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh,
“Swarm assignment and trajectory optimization using variable-swarm,
distributed auction assignment and sequential convex programming,”
The International Journal of Robotics Research, vol. 35, no. 10, pp.
1261–1285, 2016.

[17] J. O’rourke, Art gallery theorems and algorithms. Oxford University
Press Oxford, 1987, vol. 57.

[18] T. C. Shermer, “Recent results in art galleries (geometry),” Proceed-
ings of the IEEE, vol. 80, no. 9, pp. 1384–1399, 1992.

[19] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Communications of
the ACM, vol. 22, no. 10, pp. 560–570, 1979.

[20] D. Lee and A. Lin, “Computational complexity of art gallery prob-
lems,” IEEE Transactions on Information Theory, vol. 32, no. 2, pp.
276–282, 1986.

[21] A. Thue, Über die dichteste Zusammenstellung von kongruenten
Kreisen in einer Ebene, von Axel Thue... J. Dybwad, 1910.

[22] T. C. Hales, “A proof of the kepler conjecture,” Annals of mathematics,
pp. 1065–1185, 2005.

[23] Z. Drezner, Facility location: a survey of applications and methods.
Springer Verlag, 1995.

[24] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Equitable partitioning
policies for robotic networks,” in Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on. IEEE, 2009, pp. 2356–
2361.

[25] A. Pierson, L. C. Figueiredo, L. C. Pimenta, and M. Schwager,
“Adapting to sensing and actuation variations in multi-robot coverage,”
The International Journal of Robotics Research, vol. 36, no. 3, pp.
337–354, 2017.

[26] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 1973.

[27] R. M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of computer computations. Springer, 1972, pp. 85–103.

[28] G. Lueker, “Two np-complete problems in nonnegative integer pro-
gramming,” in Technical Report TR-178. Computer Science lab-
oratory, Department of Electrical Engineering, Princeton University,
1975.

[29] G. B. Dantzig, “Discrete-variable extremum problems,” Operations
research, vol. 5, no. 2, pp. 266–277, 1957.

[30] M. R. Garey and D. S. Johnson, “Complexity results for multiprocessor
scheduling under resource constraints,” SIAM Journal on Computing,
vol. 4, no. 4, pp. 397–411, 1975.

[31] ——, Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[32] L. Jr and H. W., “Integer programming with a fixed number of
variables,” Mathematics of Operations Research, vol. 8, no. 4, pp.
538–548, 1983.

[33] O. H. Ibarra and C. E. Kim, “Fast approximation algorithms for the
knapsack and sum of subset problems,” Journal of the ACM, vol. 22,
no. 4, pp. 463–468, 1975.


	Introduction
	Preliminaries
	Computational Complexity for Variable Number of Robot Types
	Strong NP-hardness of OPGLR
	NP-hardness of OPGMC

	Exact Algorithms for OPGLR and OPGMC
	Pseudo-Polynomial Time Algorithm for OPGLR with Fixed Number of Robot Types
	Feasibility Test for D-OPGLR
	Solving OPGLR using Feasibility Test for D-OPGLR
	Multiple Perimeters

	Polynomial Time Algorithm for OPGMC with Fixed Number of Robot Types
	Dynamic Programming Procedure for OPGMC
	A Polynomial Time Algorithm for OPGMC for a Fixed Number of Robot Types
	A Pseudo-polynomial Time Algorithm for Arbitrary t
	FPTAS for Arbitrary t
	Multiple Perimeters


	Performance Evaluation and Applications
	Basic Optimal Solution Structure
	A Robotic Guarding and Patrolling Application
	Computational Performance

	Conclusion and Discussions
	References

