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DDM: Fast Near-Optimal Multi-Robot Path
Planning using Diversified-Path and Optimal
Sub-Problem Solution Database Heuristics

Shuai D. Han and Jingjin Yu

Abstract—We propose a novel centralized and decoupled
algorithm, DDM, for solving multi-robot path planning problems
in grid graphs, targeting on-demand and automated warehouse-
like settings. Two settings are studied: a traditional one whose
objective is to move a set of robots from their respective initial
vertices to the goal vertices as quickly as possible, and a dynamic
one which requires frequent re-planning to accommodate for
goal configuration adjustments. Among other techniques, DDM is
mainly enabled through exploiting two innovative heuristics: path
diversification and optimal sub-problem solution databases. The
two heuristics attack two distinct phases of a decoupling-based
planner: while path diversification allows the more effective use
of the entire workspace for robot travel, optimal sub-problem
solution databases facilitate the fast resolution of local path con-
flicts. Extensive evaluation demonstrates that DDM achieves high
levels of scalability and solution quality close to the optimum.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents; Planning, Scheduling and Coordination; Multi-Robot
Systems.

I. INTRODUCTION

LABLED optimal multi-robot path planning (MPP) prob-
lems, despite their high associated computational com-

plexity [1], have been actively studied for decades due to
the problems’ extensive applications. The general task is to
efficiently plan high-quality, collision-free paths to route a set
of robots from an initial configuration to a goal configuration.
Traditionally, the focus of studies on MPP is mainly with
one-shot problems where the initial and goal configurations
are pre-specified, and both are equal in cardinality to the
number of the robots. More recently, an alternative dynamic
formulation has started to attract more attention due to its
real-world relevance [2]. A dynamic instance keeps assigning
new goals to robots that already reached their current goals,
thus requiring algorithms that can actively re-plan the paths to
accommodate adjustments of goal configuration.

In this paper, we propose the DDM (Diversified-path Database-
driven Multi-robot Path Planning) algorithm, capable of quickly
computing near-optimal solutions to large-scale labeled MPPs,
under both one-shot and dynamic settings on grid graphs.
At a high-level, adapting the classic and effective decoupled
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planning paradigm [3]–[7], DDM first generates a shortest
path between each pair of start and goal vertices and then
resolves local conflicts among the initial paths. In generating the
initial paths, a path diversification heuristic is introduced that
attempts to make the path ensemble use all graph vertices in a
balanced manner, which minimizes the chance that many robots
aggregate in certain local areas, causing unwanted congestion.
Then, in resolving path conflicts, we observe that most conflicts
can be resolved in a local 2 × 3 or 3 × 3 area. Based on
the observation, a second novel heuristic is introduced which
builds a min-makespan solution database for all 2 × 3 and
3× 3 sub-problems, and ensures quick local conflict resolution
via database retrievals. Together, the two heuristics produce
simultaneous improvement on both computational efficiency
and solution optimality in terms of computing near-optimal
solutions under practical settings, as compared with state-of-the-
art methods, e.g., [8]. For example, our algorithm can compute
1.x optimal solutions for a few hundreds of robots on a 60×60
grid with 10% obstacles in under a second.

Related Work. MPP has been actively studied for
decades [3], [9]–[11], mainly due to its hardness and, simultane-
ously, its practical importance. Both one-shot and dynamic MPP
formulations find applications in a wide range of domains in-
cluding evacuation [12], formation [13], [14], localization [15],
microdroplet manipulation [16], object transportation [17],
search and rescue [18], human robot interaction [19], and
large-scale warehouse automation [2], [20], to list a few. MPP
is also known as Multi-Agent Pathfinding (MAPF) [21].

In the past decade, significant progress has been made on
solving one-shot MPP problems. Optimal and sub-optimal
solvers are achieved through reduction to other problems, e.g.,
SAT [22], answer set programming [23], and network flow [8].
Decoupled approaches [3], which first compute independent
paths and then try to avoid collision afterward, are also popular.
Commonly found decoupled approaches in a graph-based
setting include independence detection [24], sub-dimensional
expansion [25] and conflict-based search [26], [27]. Similar
to our approach, there is a decoupled algorithm [28] which
uses online calculations over local graph structures to handle
path interactions. However, [28] only explored simple local
interactions without much consideration to optimality. There
also exists prioritized methods [5]–[7], [29] and a divide-and-
conquer approach [30] which achieve decent scalability but at
the cost of either completeness or optimality. Some anytime
algorithms [31] are proposed to quickly find a feasible solution
and then improve it. A learning-assisted approach [32] has
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recently been developed to automatically pick the algorithm
that is likely to perform well on a given MPP task.

Dynamic MPP with new goals appearing over time, although
not as extensively studied as its one-shot counterpart, has started
to receive more attention. The problem is particularly applicable
to automated warehouse systems [2]. Recent work has focused
on the dynamic warehouse MPP setup, pursuing both better
planning algorithms [33] and robust execution schedules [34].
Prioritized planning method with a flexible priority sequence
has also been developed [35].

MPP is widely studied from many other perspectives. As
such, our literature coverage here is necessarily limited; readers
are referred to [36]–[43] for some additional algorithmic
developments on MPP under unlabeled (i.e., robots are in-
distinguishable), partially labeled, and continuous settings.

The topic of path diversification has been explored under
both single and multi-robot settings. For single robot exploring
a domain with many obstacles, obtaining a path ensemble can
increase the chance of succeeding in finding a longer horizon
plan [44], [45]. Similar to what we observe in the current
study, path diversity is just one of the relevant factors affecting
search success [46]. Survivability is also examined under a
probabilistic framework for multi-robot systems [47]. In a
similar context, a heuristic based on path conflicts expediates
the solution process of an MPP algorithm [48].

Finally, the use of a sub-problem solution database trades
off between offline and online computation, which is a general
principle that finds frequent applications in robotics, e.g., [49],
[50]. Relating to MPP, a similar technique called pattern
database has been used in solving large (n2 − 1)-puzzles [51],
[52], as well as problems like Sokoban [53].

Main Contributions. This work brings three main con-
tributions. First, based on the insight that decoupled MPP
solvers tend to generate individual paths that aggregate in
certain local areas (e.g., center of the workspace), we introduce
path diversification heuristics that make more effective uses
of the entire workspace. Second, the 2 × 3 and 3 × 3 sub-
problem optimal solution databases, constructed one-time-only
for resolving local path conflicts, bring significant on-line
computational savings. Lastly, the first two main contributions
jointly yield the DDM algorithm, which is effective not only
for one-shot settings but also for dynamic MPP problems, as
demonstrated through our extensive evaluation efforts.

Scope. We explicitly point out that DDM targets structured
warehouse-like environments. As such, DDM is not suitable for
MPPs with narrow passages, which remains challenging to be
effectively solved. The current work focuses on synchronous
path generation and does not address the equally important path
execution aspects. Nevertheless, DDM can be readily combined
with path execution approaches, e.g., [34], to form a complete
planning and execution pipeline.

Organization. In Section II, we formally define both
the one-shot and dynamic MPP formulations, and introduce
assumptions. In Section III, we provide an overview of DDM. In
Section IV and Section V, we describe the path diversification
heuristics and the sub-problem optimal solution database,
respectively. In Section VI, we provide evaluation results of
DDM. We conclude in Section VII.

Fig. 1. A k = 2 low-resolution graph with 20% obstacles. The white cells
are vertices, and the black cells are obstacles. The green and blue rectangles
visualize a 2× 3 and a 3× 3 sub-graph.

An initial introduction of this work appeared in [54].

II. PRELIMINARIES

A. One-shot Multi-Robot Path Planning

Consider n robots in an undirected grid graph G(V,E).
Given integers w and h as the width and height of the grid, we
define the vertex set of G as V ⊆ {(i, j)|1 ≤ i ≤ w, 1 ≤ j ≤
h}; the elements not in V are considered as static obstacles.
Following the traditional 4-way connectivity rule, for each
vertex (i, j) ∈ V , its neighborhood is N(i) = {(i+ 1, j), (i−
1, j), (i, j + 1), (i, j − 1)} ∩ V . For a robot i with initial and
goal vertices xI

i , x
G
i ∈ V , a path is defined as a sequence

of T + 1 vertices Pi = (p0i , . . . , p
T
i ) satisfying: (i) p0i = xI

i ;
(ii) pTi = xG

i ; (iii) ∀1 ≤ t ≤ T , pt−1
i = pti or pt−1

i ∈ N(pti).
Denoting the joint initial and goal configurations of the robots
as XI = {xI

1, . . . , x
I
n} ⊆ V and XG = {xG

1 , . . . , x
G
n } ⊆ V ,

the path set of all the robots is then P = {P1, . . . , Pn}.
For P to be collision-free, ∀1 ≤ t ≤ T , Pi, Pj ∈ P must

satisfy: (i) pti ̸= ptj (no conflicts on vertices); (ii) (pt−1
i , pti) ̸=

(ptj , p
t−1
j ) (no “head-to-head” collisions on edges).

An optimal solution minimizes the makespan T , which is
the time for all the robots to reach the goal vertices.

Problem 1. Time-optimal Multi-robot Path Planning
(MPP). Given ⟨G,XI , XG⟩, find a collision-free path set P
that routes the robots from XI to XG and minimizes T .

B. Dynamic Multi-Robot Path Planning

The dynamic MPP formulation inherits most of one-shot
MPP’s structure, but with a few key differences. First, a robot
i will be assigned a new goal vertex when reaching its current
goal xG

i . Such a new goal is sampled from V \XG using a
certain distribution. Note that XG is continuously updated as
new goals are assigned to the robots. Second, the optimization
criteria is changed since the problem has no specific end state.
In this paper, we maximize system throughput, which is the
average number of goal arrivals in a unit of time.

Problem 2. Dynamic Multi-robot Path Planning (DMP).
Given ⟨G,XI , XG⟩, route the robots in G, accommodate for
changes in XG, and maximize the system throughput.

C. Assumptions on the Graph Structure

In this paper, we assume that the graph G does not contain
narrow passages, and the width of a passage in G is at least
k ≥ 2. Formally speaking, we define G as a low resolution
graph: given k as the narrowest passage width, there exists
a bijection between the set of all grid graphs G to the set
of all low resolution graphs Gk

low: G → Gk
low, G(V,E) ↦→

Gk
low(V

k
low, E

k
low), where V k

low = {(ki + x, kj + y) | ∀(i, j) ∈
V, x, y ∈ {0, . . . , k − 1}}. A low-resolution graph example is
provided in Fig. 1. By the definition, k = 2 and k = 3 are
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(a) (b) (c)

(d) (e) (f)
Fig. 2. An illustration of the DDM solution pipeline. (a) In a 5 × 3 grid,
the initial configuration of 3 robots are shown as colored disks. (b) The goal
configuration. (c) The individual paths are shown as arrowed lines. (d) After
simulating the individual paths for one time step, we find a collision in the
next time step between the blue and orange robots. A local 3× 3 sub-graph
is used to resolve the conflict. The boundary of the sub-graph is highlighted
in red. (e) The paths are updated using the 3× 3 sub-problem solution. The
robots will now get to the goal configuration without collisions. (f) Alternative
initial paths that are collision-free, which can be generated by using the path
diversification heuristics.

sufficient to ensure that all vertices in G are contained in some
2× 3 or 3× 3 sub-graphs, respectively. The restriction on low-
resolution graphs effectively prevents environments with narrow
passages and mimics typical warehouse environments [2].

An essential component of our approach is the routing of
robots inside some obstacle-free 2× 3 and 3× 3 sub-graphs.
Examples of these sub-graphs are provided in Fig. 1. With
the problem setup introduced in Section II-A, an MPP sub-
problem in such a local sub-graph is always feasible [30],
even when the sub-graph is fully occupied by robots. As a
result, MPP problems on connected low-resolution graphs are
always feasible, since every edge is contained in some 2× 3
sub-graphs, and thus it is always possible to swap two robots
on the ends of an edge without affecting other robots [30].

Since DDM pipeline remains the same when using 2× 3 or
3 × 3 sub-graphs, in the following sections we only use the
3× 3 sub-graph structure to introduce DDM.

III. OVERVIEW OF THE DDM ALGORITHM

DDM follows the decoupled paradigm and first creates a
shortest path for each robot from its initial vertex to goal
vertex, ignoring other robots. Then, a simulated execution is
carried out. As conflicts are detected, they are resolved within
local sub-graphs. An illustration of the DDM pipeline is provided
in Fig. 2. Although DDM is described as a centralized method,
the conflict resolution phase can be readily decentralized. This
is especially applicable to DMP: after the initial paths are
acquired, collision avoidance can be implemented locally;
during the path execution stage, any robot may change its
desired path without causing a system failure since conflict
resolution is performed on the fly.

Algorithm 1 describes DDM. In line 1, two structures are
initialized: XC which keeps track of robots’current locations,
and G3×3 which keeps a record of currently occupied 3 × 3
sub-graphs used for collision avoidance.

Then, in line 2, DDM plans a shortest path from xI
i to xG

i

for each robot i, without considering any interactions with
the other robots. The detailed initial path generation process
and its optimization techniques (i.e. the path diversification
heuristics) are discussed in Section IV.

Algorithm 1: Centralized DDM for one-shot MPP
1 XC ← XI , G3×3 ← ∅
2 Pplanned = {P1, . . . , Pn} ← GETPATHS(G,XI , XG)
3 while XC ̸= XG do
4 XN ← GETNEXTSTEP(Pplanned)
5 for (i, j) ∈ COLLIDINGROBOTPAIRS(XC , XN ) do
6 if G3×3 ← FINDSUBGRAPH(G,XC , i, j,G3×3)

then
7 R← {i |xC

i ∈ G3×3, ∀xC
i ∈ XC}

8 XI
3×3 ← {xC

i | i ∈ R}
9 XG

3×3 ← TEMPGOALS(G3×3, R,Pplanned)
10 Pplanned ← CHECKDATABASE(XI

3×3, X
G
3×3)

11 G3×3 ← G3×3 ∪ {G3×3}

12 XC ,Pplanned ← SIMULATE3X3PATHS(XC ,Pplanned,G3×3)
13 XC ,Pplanned ← SIMULATEOTHERPATHS(XC ,Pplanned)
14 G3×3 ← REMOVEOUTDATEDSUBGRAPHS(G3×3)

After the initial paths are acquired, DDM starts to carry out
a simulated execution of these paths and resolves the conflicts
between them. At the beginning of each simulation time step,
DDM first checks whether collisions will occur if the robots all
move along their planned paths (line 4–5). If no collision is
detected, the collision avoidance procedures are skipped and
the pipeline enters the execution stage (line 12–14).

When collisions occur, DDM enters the collision avoidance
stage (line 5–11). Here, whenever we iterate through robots,
we give robots further away from their goal configurations a
higher priority for the potential decrease of global makespan.

In line 6, we iterate through all the pairs of conflicting
robots and for each pair of them, DDM first attempts to find an
obstacle-free 3×3 sub-graph which meets two requirements: (i)
it contains both conflicting robots. (ii) it does not overlap with
currently occupied 3× 3 graphs in G3×3. For requirement (i),
when G is obstacle-free, we can always find a 3× 3 graph that
covers the colliding robots. Examples of such 3×3 sub-graphs
for all collision types are provided in Fig. 3(a-d). Note that
since the 3 × 3 sub-graphs shown in the sub-figures are not
the only choices, when G is a k = 3 low-resolution graph,
we can still find 3× 3 sub-graphs that meet requirement (i),
except for the only outlier case shown in Fig. 3(e). In this
case, we postpone the conflict by letting one robot wait and the
other robot move. After one step of simulation, a 3× 3 graph
satisfies requirement (i) will be available (see Fig. 3(f)). Note
that a 3× 3 sub-graph satisfies requirement (i) may not meet
requirement (ii). If we cannot find a 3× 3 graph that satisfies
both requirements, we skip this pair of conflicting robots and
start to process the next pair.

If a 3×3 sub-graph G3×3 is acquired, in line 7, DDM locates
all the robots that are currently inside G3×3, whose paths will
be affected by the conflict resolution process. DDM then assigns
temporary goal configurations to all these robots (line 9) and
route them inside G3×3 by looking for the solution in the
database (line 10). For the temporary goal assignment, we
iterate through the affected robots and for each robot, we
inspect its desired path backwards (i.e., from the goal to the
robot’s current location) and check if a vertex in the path also
appears in G3×3. We try to assign the first vertex appearing in
G3×3 as the robot’s temporary goal. The purpose of such an
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(a) (b) (c)

(d) (e) (f)
Fig. 3. (a–d) All types of collisions, including collisions on a vertex and
head-to-head collisions on an edge, can be contained in some 3× 3 graphs
(drawn in red). (e) The only scenario that we cannot find a 3× 3 sub-graph
due to the black obstacle. (f) We can find a 3× 3 graph for the scenario in
sub-figure (e) by postponing one robot’s move.

assignment is to move robots closer to goals during collision
avoidance. If the desired vertex is already assigned to another
robot, we then opt for a random vertex in G3×3 that is not
assigned to other robots, since the temporary goals of different
robots cannot be identical. In line 10, the min-makespan paths
for routing these robots to the temporary goals are readily
found in the database; further details is provided in Section V.
The initial planned paths are updated according to the G3×3

solution. Note that we might call GETPATHS (in line 2) for a
robot in case the original path and the 3× 3 solution cannot
be simply concatenated due to a non-desirable temporary goal
assignment. The final step of the collision avoidance stage is
to put G3×3 into G3×3 (line 11).

Recall that when constructing a 3× 3 graph in line 6, we
require it not to overlap with other 3 × 3 graphs already in
use, i.e., the elements in G3×3. The requirement leaves some
conflicts untreated, which are avoided in the following path
execution process. In line 12, the robots in the current occupied
3×3 graphs move first, since their paths are generated from the
solution database and are guaranteed to be collision-free. Then,
in line 13, we move the other robots while avoiding collisions
between them: first, we find all robots that are moving into
the sub-graphs in G3×3 and stop them, to avoid interruptions
to the 3× 3 solutions’ execution; next, we detect collisions in
the current step, and recursively stop all the robots involved in
these collisions. An illustration of this path execution process is
provided in Fig. 4. Finally, in line 14, we remove elements from
G3×3 if we finished executing the corresponding 3×3 solutions.
The untreated collisions mentioned in the beginning of this
paragraph are either handled by the line 13, or by constructing
a 3 × 3 graph after the previous overlapping sub-graphs are
removed from G3×3.

The performance of DDM directly relates to the efficiency
of the collision avoidance process, which is in turn influenced
by the total number of path conflicts and the time to resolve a
conflict. In the next two sections, we introduce optimization
techniques including path diversification heuristics and the
sub-graph solution database. These techniques enable DDM to
achieve high levels of scalability and solution quality.

IV. PATH DIVERSIFICATION HEURISTICS

When individual paths are generated without care, their foot-
print tends to aggregate on portions of the graph environment,
leading to higher chances for path conflicts. To alleviate this
issue, multiple heuristics are attempted in this work. In the

Fig. 4. Executing the planned paths which do not belong to 3× 3 sub-graph
solutions. The red regions are the 3× 3 regions currently in G3×3; robots in
these regions are omitted. The remaining robots are visualized using blue and
gray disks, with arrows indicating the desired next time step moves. A blue
disk implies that the robot is permitted to move, while a gray disk implies
that the robot will stay still. The robots at top-right are stopped since one
of them is trying to move into a sub-graph in G3×3. The robots at top-left
and bottom are stopped due to collisions. We note that the figure is only for
illustrating purposes and do not reflect actual cases.

(a) (b) (c)
Fig. 5. Comparison of different path-finding heuristics in an obstacle-free
48× 27 grid graph. We uniformly randomly sample 100000 initial and goal
vertex pairs and generate the initial paths using the studied rules. The color
intensity of a cell reflects the number of time the cell is traversed by a path:
the darker the color, the heavier the cell is utilized. (a) When using random
paths, the center of the graph is congested. (b) When using single-turn paths,
we can avoid congestion in the center. (c) A balance (85%, 15%) between
two types of single-turn paths avoids graph center under-utilization.

case where the graph is obstacle-free, we can reduce collisions
by letting the robots go around the center. For graphs with
arbitrary obstacles, we can reduce collisions by modifying the
heuristic we used in the single robot path planning algorithm.
As the number of potential collisions drops, DDM can generate
solutions that are closer to optimal.

A. Graph without Obstacles

In an obstacle-free graph, the shortest path between the
initial and goal vertices of a robot is a set of axis-aligned
moves according to the vertices’ coordinate differences. For
example, it takes 3 steps along the x-axis and 2 steps along the
y-axis for a robot to move from 2D coordinate (2, 3) to (5, 5).
Obtaining a path requires an ordering of these moves. In this
work, we explore two ordering rules: one baseline Random rule
which uses a random order, and one Single-Turn rule which
generates L-shaped paths. As shown in Fig. 5, the Single-Turn
rule can prevent unbalanced vertex utilization. Further details
of the two heuristics are provided in [55].

B. Graph with Obstacles

In a graph with obstacles, it is a natural choice to use the
A* algorithm to generate the initial paths. The state space of
the A* algorithm corresponds to the vertex set V .

The Manhattan Distance Heuristic. As a well-known
traditional heuristic for path planning on a grid, the Manhattan
distance sums up the absolute differences of two points’
Cartesian coordinates. Given a goal vertex (k, ℓ), the heuristic
value of a search state at vertex (i, j) is calculated as

HManhattan[(i, j)] = |i− k|+ |j − ℓ|.
This heuristic extensively utilizes vertices around obstacles and
causes congestion on some high-traffic lanes (see Fig. 6(a)).
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(a) (b)
Fig. 6. Comparison of different path finding heuristics in a graph with
obstacles visualized in black. Other visual elements are the same as the ones
in Fig. 5. (a) Manhattan distance heuristic. (b) Vertex Occupancy heuristic.

Since the initial path planning is performed sequentially over
the n robots, a path generated later can avoid conflicts with
earlier paths. In this work, we realize this concept using two
innovative path diversification heuristics.

Path Diversification by Vertex Occupancy. We define the
occupancy of a vertex as the number of paths traverse through
the vertex. Denoting N0 as the set of all non-negative integers,
we construct a map O : V → N0 to actively track the occupancy
of all vertices throughout the initial path generation process.
At the beginning, for each (i, j) ∈ V , O[(i, j)] = 0. Then, we
sort the robots and generate initial paths for robots with goals
further away (in terms of the Manhattan distance) from the
initial vertices first. After each path is generated by the A*
algorithm, O is updated such that for each vertex (i, j) in the
path, O[(i, j)] increments by 1. The heuristic value for search
state (i, j) is calculated as

HOccupancy[(i, j)] = HManhattan[(i, j)] +O[(i, j)]/n.

Here, the last term of the equation refers to the additional cost
imposed by path intersections. A constant value n (i.e. the
number of robots) is used to balance between finding a shorter
path and finding a path with less interference with the others.
In practice, we notice that this constant value ensures path
diversification while keeps the initial paths short.

Fig. 6(b) demonstrates the effect of the vertex occupancy
heuristic on a graph with obstacles. Comparing the two sub-
figures, we observe reduced congestion around obstacles and
high-traffic lanes when using the path diversification heuristic.

Path Diversification by a State-Time Map. For this
heuristic, instead of just calculating vertex usage, we also
take the time domain into account. Since there are generally
two types of collisions (see Fig. 3(a)) between robots: on a
vertex or head-to-head on an edge, we now store the state-time
information in a map S : (V ∪ E,N0) → N0, which specifies
the number of times a vertex or an edge is used at a certain
time step. Now, for an A* search state at vertex (i, j) with
cost-to-go value t, its state-time heuristic value is calculated as

HStateTime[(i, j), t] =HManhattan[(i, j)]

+(S[(i, j), t] + S[(PARENT(i, j), (i, j)), t])/n,

with the first term on the second line refers to path conflicts
on vertices, and the second term refers to conflicts on edges.

When comparing the vertex occupancy heuristic with the
state-time heuristic, it is not hard to see that since the state-time
heuristic takes the time domain into consideration, it generates
initial path sets with less conflicts. However, due to the fact that
the initial paths might be modified during the DDM simulated
execution phase, as we will demonstrate in Section VI, the
vertex occupancy heuristic provides overall better solutions
in terms of makespan. This is as expected since the effect of

the vertex occupancy heuristic is less likely to be affected by
unsynchronized path execution.

V. 2× 3 AND 3× 3 PROBLEM SOLUTION DATABASE

We now provide the details of the optimal sub-problem
solution database, especially how the database is generated.

Generating the 2× 3 database and the 3× 3 database follow
largely similar steps. Here, we use the case of 3× 3 database
to illustrate the necessary computation, which requires a bit
more technical trickeries than the 2×3 case. Let Xn be the set
of all configurations of n (1 ≤ n ≤ 9) robots in a 3× 3 graph,
bijections exist between the set of all problem instances, the set
of all solutions, and all pairs of initial and goal combinations
Xn ×Xn. The solution space has a size

9∑︂
n=1

|Xn ×Xn| =
9∑︂

n=1

|Xn|2 =

9∑︂
n=1

(

(︃
9

n

)︃
n!)2 ≈ 3× 1011,

which is too large to compute and store. In this section, we
introduce how this issue is resolved by exploiting symmetry.

Permutation Elimination. Instead of exploring all possible
combinations of XI and XG, for each problem instance
recorded in the database, we always sort XI . Note that we
can still find the solution for an arbitrary pair of XI and XG:
we first apply a permutation π to both XI and XG, such that
π(XI) is sorted. Denoting P as the solution for π(XI) and
π(XG) in the database, the solution for XI and XG is then
π−1(P). More details are provided at the end of this section.
The size of the 3× 3 database is now reduced to

9∑︂
n=1

(︃
9

n

)︃
|Xn| =

9∑︂
n=1

(

(︃
9

n

)︃2

n!) ≈ 1.7× 107.

Group Actions. When generating the database, after we
calculated a solution P for certain XI , XG, this solution can
possibly be translated to the solutions for other related instances
by taking the same action to XI , XG and P .

In this work, we explore two types of actions. The first one,
based on rotational symmetry, is to rotate all the configurations
and the paths by the same degree. Denoting r as rotating
clockwise by 90 degrees, the set of all possible rotations is then
{1, r, r2, r3}. Here, 1 = r4, which is interpreted as rotating by
360 degrees, has no effect.

The second action, based on mirror symmetry, is to flip a
configuration by the vertical middle line of a 3× 3 graph. The
set of flip actions is denoted as {1, f}.

Combining the two types of actions, we have
{1, r, r2, r3} × {1, f} = {1, r, r2, r3, f, fr, fr2, fr3}.

Here, fr2 is interpreted as flipping the configuration, and then
rotate the flipped configuration clockwise by 180 degrees.

With a set of calculated XI , XG, P , applying each action
in this set results in a new problem and the solution to it. Note
that the group actions above already includes counter-clockwise
rotations and other types of flipping. In Fig. 7, we show the
result of applying these actions to a configuration.

Moreover, P can be reversed to route the robots from XG to
XI . All in all, we can generate up to 16 unique solutions out
of the solution for a pair of XI and XG using this reversing
process combined with group actions, which expedites the
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1 r r2 r3

f fr fr2 fr3

Fig. 7. Group actions generate up to eight unique configurations from one.

database generation process since we now only need to calculate
around 1.1× 106 problem instances.

By permutation elimination and group actions, the computa-
tion time for obtaining the database is significantly reduced.
Using an integer linear programming-based solver [8], gener-
ating the full 3× 3 solution database takes about six hours.

0 1 2

3 4 5

6 7 8

XI
3×3 = {0, 6, 5}

XG
3×3 = {2, 8, 3}

056 238

056 147 238

065 174 283

P = {(0, 1, 2),
(6, 7, 8),

(5, 4, 3)}

check database

π−1

π

Fig. 8. An illustration of database lookup. As demonstrated in the left figure,
we give each vertex in the 3 × 3 graph a unique id. The example on the
right is a database lookup for three robots. First, a permutation π is applied
to sort the initial configuration from 065 to 056; the goal configuration is
updated accordingly. After the transition steps between the sorted initial and
goal configurations are acquired from the database, a permutation π−1 is
applied to generate a solution for the original problem.

Database Lookup. When we run DDM, the database is pre-
loaded into a C++ STL map, with key and value both string
types. Here, the key is a composition of the initial and goal
configurations, and the value indicates the min-makespan paths
between the two configurations. For a database lookup, we first
apply a permutation to both the initial and goal configurations
so that the initial configuration is sorted. Then, we compile the
configurations into a single string and lookup for the value for
this key in the database. Finally, we translate the value string
into the solution paths. We provide an example of database
lookup in Fig. 8. Our database is light-weight and fast to query:
the 3× 3 database uses 500MB disk storage, and takes 2GB
memory when loaded into C++ STL map; the 2× 3 database
is less than 300KB. Accessing 1000 random keys sequentially
takes less than one millisecond in total.

VI. SIMULATION RESULT

In this section, we compare DDM with integer linear pro-
gramming (ILP) [8] and Enhanced Conflict-Based Search1

(ECBS) [48] under the one-shot MPP setting. The methods
compared are to the best of our knowledge some of the fastest
(near-)optimal solvers for MPP. For ILP, we evaluated an
optimal version ILP Exact and a sub-optimal variant ILP k-
way Split. For ECBS, we set its weight parameter w = 1.5
since it seems to be a good balance between optimality and
scalability in the original publication and from our observation.

1The original ECBS minimizes the sum of path length. We tested both the
original version and another customized one which optimizes makespan. We
find no significant performance difference between the two versions. Results
of the original version is reported in this section.
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Fig. 9. Average computation time (top sub-figure) and makespan (bottom
sub-figure), and the standard deviations of algorithms on MPP tested in a
24× 18 obstacle-free grid, with varied number of robots. We use notation
Random to indicate no path diversification heuristic is used.

Besides MPP, we also tested DDM on the dynamic formulation
DMP. All our experiments are performed on an Intel® CoreTM

i7-6900k CPU at 3.2GHz. Each data point is an average over
30 runs on randomly generated instances. Although we do not
provide a theoretical completeness and optimality guarantee
for DDM, the algorithm quickly solves all the problem instances
we have tested, and provides near-optimal solutions.

We first examine one-shot case on a 24× 18 grid without
obstacles. The starts and goals are uniformly randomly sampled.
The result is compiled in Fig. 9. The 2× 3 entires only uses
2×3 sub-graphs, and the 3×3 entry means a 3×3 sub-problem
is constructed whenever possible. The optimality ratio is
calculated as the resulting makespan over the optimal makespan
computed by ILP Exact. The comparison of computation time
(the top sub-figure) shows that DDM is the fastest method, which
is about one to two magnitudes faster than other approaches.
In particular, 2× 3 SingleTurn is about 104 times faster than
ILP Exact and 60 times faster than ECBS. At the same time,
most of the DDM variants maintained 1.x optimality.

The result suggests that using 2 × 3 sub-graphs generates
better solutions than using 3× 3 ones, which is due to 2× 3
graphs having a smaller footprint. Thus, interruptions to other
robots is less likely. We hypothesized that resolving local
conflicts using 3×3 sub-graphs could help improve optimality;
this turns out not to be the case in our tests. Nevertheless, for
completeness, we include results on 3× 3 sub-graphs.

In a second evaluation, we switch to a 69× 36 warehouse-
like environment (Fig. 10) with many blocks of static obstacles.
For this case, between 50 and 300 robots are attempted.
The evaluation results are shown in Fig. 11, which show
similar performance trends as Fig. 9. Here, because ILP
Exact can no longer finish each and every calculation in
ten minutes, comparison on optimality is made with respect
to an underestimated makespan which is calculated without
considering robot-robot collisions. DDM provides more than 50
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Fig. 10. A 69× 36 warehouse-style workspace with 8 row, 8 column 5× 2
obstacle blocks. A random configuration of 300 robots is colored in blue.

50 100 150 200 250 300
Number of Robots (n)

10−2

10−1

100

101

C
om

pu
ta

tio
n

Ti
m

e
(s

)

ILP 16-way split
ECBS w = 1.5
2×3 Occupancy

2×3 StateTime
2×3 Random
3×3 Occupancy

50 100 150 200 250 300
Number of Robots (n)

0.0

0.5

1.0

1.5

2.0

O
pt

im
al

ity
R

at
io

ILP 16-way split
ECBS w = 1.5
2×3 Occupancy

2×3 StateTime
2×3 Random
3×3 Occupancy

Fig. 11. Evaluation results of MPP in a warehouse-style workspace.

times speed up without sacrificing much optimality.
Evident in the MPP results, DDM can handle frequent

re-planning request of a few hundreds of robots in large
environments. We further compare the DDM variants in DMP
and see how the benefits of the proposed heuristics are carried
to the dynamic setting. Here, we do not involve other methods
since the DMP formulation is relatively new and we could not
locate comparable algorithms designed for DMP in the research
literature. Our evaluation of DMP measures system throughput
by the makespan for the robots to reach 10000 uniformly
randomly sampled goal configurations in total. Fig. 12 shows
the evaluation results. The performance comparison between
the DDM variants is consistent with the one-shot results. The
experiment also shows an interesting trend: the total makespan
initially drops quickly as the number of robots increases; as
the number of robots keeps increasing, the total makespan then
begins to get larger again. This makes intuitive sense because
too many robots are expected to make routing harder in more
complex environments. The optimal makespan is achieved
at around 150 and 300 robots. Viewing this together with
Fig. 11, we draw the conclusion that DDM achieves a much
faster computation speed with minor loss on optimality.

All tests are repeated with varied grid sizes and obstacle
percentages. The results, which are omitted due to space
constraint, are consistent in all cases.

A video of simulated DDM runs can be found at
https://youtu.be/0MUGrg5CphM.
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Fig. 12. Evaluation results of DMP in (top) a 30× 30 low-resolution grid
(k = 2) with 10% (90) obstacles, and (bottom) the warehouse-style workspace
in Fig. 10.

VII. CONCLUSION AND FUTURE WORK

In this work, we developed a decoupled multi-robot path
planning algorithm, DDM. With the proposed heuristics based
on path diversification, which seeks to balance the use of
graph vertices, and the employment of sub-problem solution
databases for fast and optimal local conflict resolution, DDM is
empirically shown to achieve significantly faster computational
speed while producing high quality solutions, for both one-shot
and dynamic problem settings.

In proposing DDM, our hope is to optimize the algorithm
for the two main phases of a decoupled approach. While
the initial iteration of DDM shows promising performance, in
future work, we would like to apply the novel heuristics from
DDM for solving multi-robot path planning problems beyond
warehouse-like settings. In addition, improvements to these
heuristics are possible. For example, we only attempted 2× 3
and 3 × 3 solution databases; databases using other graphs
might provide better performance. Also, tighter integration of
the two heuristics may further boost performance.
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