
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019 1

Toward Fast and Optimal Robotic Pick-and-Place
on a Moving Conveyor

Shuai D. Han1, Si Wei Feng1, and Jingjin Yu1

Abstract—Robotic pick-and-place (PNP) operations on moving
conveyors find a wide range of industrial applications. In practice,
simple greedy heuristics (e.g., prioritization based on the time
to process a single object) are applied that achieve reasonable
efficiency. We show analytically that, under a simplified telescop-
ing robot model, these greedy approaches do not ensure time
optimality of PNP operations. To address the shortcomings of
classical solutions, we develop algorithms that compute optimal
object picking sequences for a predetermined finite horizon.
Employing dynamic programming techniques and additional
heuristics, our methods scale to up to tens to hundreds of
objects. In particular, the fast algorithms we develop come
with running time guarantees, making them suitable for real-
time PNP applications demanding high throughput. Extensive
evaluation of our algorithmic solution over dominant industrial
PNP robots used in real-world applications, i.e., Delta robots
and Selective Compliance Assembly Robot Arm (SCARA) robots,
shows that a typical efficiency gain of around 10%-40% over
greedy approaches can be realized.

Index Terms—Factory Automation; Planning, Scheduling and
Coordination; Industrial Robots

I. INTRODUCTION

WE present a study aiming at developing fast algorithms
for optimal robotic pick-and-place (PNP) on a moving

conveyor. Modeling typical industrial robotic PNP scenarios,
we examine the setting where a robotic arm is tasked to
continuously pick up objects, one at a time, from a moving
conveyor and drop them off at a fixed location. Based on our
investigation, it would appear that greedy approaches had been
used in practice because of the fast online nature of the task,
which is explained in two aspects. First, estimating the poses
of multiple objects requires advanced sensing techniques,
whereas it is much easier to detect an object as it enters the
scene (e.g., by using a laser scanner). Nowadays, however,
computer vision algorithms are fast enough to accurately
report the poses of many objects. Second, on a fast-moving
conveyor, very limited computation can be done before an
object becomes inaccessible.

In this letter, we first work with a simplified robot model
to show analytically that commonly used greedy approaches
do not produce time-optimal solutions in general. Then, we

Manuscript received: August, 29, 2019; Revised November, 16, 2019;
Accepted December, 12, 2019.

This paper was recommended for publication by Editor Jingang Yi upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by NSF awards IIS-1617744, IIS-1734419, and IIS-1845888.

1Shuai D. Han, Si Wei Feng, and Jingjin Yu are with the De-
partment of Computer Science, Rutgers, the State University of New
Jersey, Piscataway, NJ, USA. E-Mails: {shuai.han, siwei.feng,
jingjin.yu} @ rutgers.edu.

Digital Object Identifier (DOI): see top of this page.

develop dynamic programming based algorithms capable of
computing (near-)optimal solutions for tens to hundreds of
objects under a second. Because the running time can be
accurately bounded for a given number of objects, our algorith-
mic solution can be customized for real-time PNP operations.
Extensive simulation studies on both simplified and practical
robot models including Delta and SCARA (Selective Com-
pliance Assembly Robot Arm) robots show that our methods
consistently yield about 10%-40% efficiency gain with respect
to the number of objects that can be successfully picked.

(a) (b) (c)
Fig. 1. A few conveyor-based robotic PNP systems (a) Two Selective
Compliance Assembly Robot Arm (SCARA) robots working on picking and
placing machine parts (b) (c) Delta robots packing food items.

The invention and development of conveyor belt systems
for material handling have revolutionized many industries over
the years [1]. With advances in computer vision and robotic
manipulation, conveyor-based robotic PNP solutions [2]–[6]
have seen rapid adoptions that have yielded increasing levels
of automation (see Fig. 1). The intrinsic goal in deploying
such systems is to realize continuous and fast PNP operations.
Therefore, a natural algorithmic question to ask here is how
optimal is a given solution [7], [8] and how better algorithms
may be designed to improve system throughput.

A fairly thorough fundamental algorithmic study of
conveyor-based robotic PNP is carried out [9], where several
polynomial-time approximation algorithms are provided for
a variety of PNP problems. The work also pointed out that
many such problems are at least NP-Hard [10], [11], given the
similarity between robotic PNP and the traveling salesperson
problem (TSP). This and other studies, e.g., [12], also link
the robotic PNP problem to classical vehicle routing problems
(VRP), which has many variations on its own [13]–[16]. We
note that while polynomial-time approximation algorithms for
PNP have been proposed [9], the algorithms optimize over
metrics like L1 and the approximately optimal solutions are
not practical. The study also does not sufficiently consider
robot geometry and dynamics, which are very important
factors in real-world applications.

When it comes to practically efficient algorithmic solutions
for PNP operations over a conveyer, the first proposed solu-



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

tions resorted to a first-in first-out (FIFO) rule for prioritizing
the object picking order [17], [18]. As pointed out, the FIFO
heuristic can result in fairly sub-optimal solutions [19]. To
address this, a job scheduling rule called shortest processing
time (SPT) [20] was employed [19]. With further improve-
ments, SPT and variants are shown to be consistently superior
to FIFO. Since [19], research on PNP over conveyor appears to
have shifted to using multiple robot arms to further boost the
throughput. Among these, non-cooperative game theory was
explored [21] whereas FIFO and SPT heuristics are employed
[22]. A recent approach combines randomized adaptive search
with Monte Carlo simulation [23].
Contributions. The main contributions of this work are two.
First, after observing and analytically characterizing sub-
optimality of existing greedy PNP solutions, we develop
a dynamic programming-based optimal finite-horizon PNP
algorithm that applies to arbitrary robot models for which the
dynamics can be simulated. Within a second, our algorithm is
capable of computing optimal solutions for over 20 objects,
which requires the exact processing of 20! possible picking
sequences. With additional locality-based heuristics, we can
compute near-optimal solutions for over 100 objects in un-
der one second. Second, through extensive simulation study
over typical industrial PNP robots (e.g., Delta and SCARA),
we show that our algorithmic solutions are computationally
efficient and outperform the existing state-of-the-art including
FIFO and SPT variants by 10% to 40% in real-time settings.
Such improvement is significant when it comes to real-world
applications, where a few percentages of efficiency gain could
provide a company a large competitive edge.
Organization. The rest of the letter is organized as follows.
The problem setting studied in the letter is explained in detail
in Section II. In Section III, we demonstrate the sub-optimality
of greedy methods and estimate the maximum potential gain
via optimization. Sections IV and V detail our algorithmic
development, with Sections IV focusing on how to quickly
obtain optimal PNP time for complex robots and Section V
describing how we deal with the combinatorial explosion as
we seek optimal finite-horizon solutions. A selection of our
extensive evaluation effort of the algorithms is presented in
Section VI, demonstrating the superior real-time performance
of our proposed methods. We then conclude with Section VII.

II. PRELIMINARIES

Consider a robotic pick-and-place (PNP) system composed
of a robot arm and a moving conveyor belt. Such systems [9],
[20] are generally modeled as residing in a two-dimensional
bounded rectangular workspace W ∈ R2. Let the base of the
robot arm be located at (xA, yA = 0). We assume that the
reachable area on the conveyor by the robot end-effector for
PNP actions is an axis-aligned rectangle W with the lower
left coordinate being (xL, yB = 0) and upper right coordinate
being (xR, yT ) (see. Fig. 2). The task for the robot is to pick
up objects located within W and drop them off at the origin
(xD = 0, yD = 0). We assume that the rest position of the
end-effector is also at the drop-off location. Since the robot
will execute a large number of PNP actions in a single run, this

assumption has little effect on optimality. The robot is assumed
to know all object locations within W . The assumption that
yA = yB = yD = 0 is for convenience and has no effect
on computational complexity and has negligible effects on
solution optimality.

(xL, 0)
W

(xR, yT )

robot base (xA, 0) drop-off location (0, 0)

moving direction

Fig. 2. Illustration of a conveyor workspace where the base of the robot arm
is located at (XA, 0). The end-effector picks up objects within a region W
with a lower left corner of (xL, 0) and an upper right corner of (xR, yT ),
and drops off objects at the drop-off location (0, 0).

Without loss of generality, we assume that the conveyor belt
moves at unit speed, e.g., vb = 1, from the right toward the left.
For the robot arm, we work with two types of motion models.
In a simplified model, the end-effector of the arm is assumed
to be able to extend or retract at a fixed speed ve > 1. That is,
the absolute speed of the end-effector along the straight line
between the robot base and the end-effector location is ve. In
other words, the robot arm behaves like a telescoping arm. We
use this model for the structural analysis as well as potions
of the simulation studies.1 Notice that in general, it is never
beneficial for a robot to run at a lower speed.

For the study, it is assumed that the robot can pick up
an object when its end-effector stops at the center of the
object on the conveyor belt. The pickup action and the drop-
off action are assumed to be instantaneous, i.e., they do
not induce delays. We make such an assumption because
the time involved in these actions is comparatively small in
applications. Whereas we assume infinite acceleration and de-
acceleration for the simplified telescoping robot model since it
is a velocity based model, as already mentioned, dynamics are
carefully considered for Delta and SCARA robots. The overall
goal is then to execute as many PNP actions as possible in a
given amount of time.

In developing the algorithms, we work with two object
distribution models. Under a one-shot setting, we fix the
dimensions of W and the number of objects n, and let the
n objects be uniformly distributed in a subset of W . More
precisely, the objects are spawned in a rectangular area with
the same y span as W and also the same maximum reach on
the x axis, i.e., both end at x = xR on the right. The left end of
the object spawning area has an x value larger than xL because
otherwise, objects appearing close to xL may immediately
move out of W on the conveyor, rendering it impossible to
pick them. Under a continuous setting, which models after
real application setups, the objects, following a some spatio-
temporal distribution, appear at x ≥ xR continuously for a

1We note that the algorithms we develop directly apply to Delta and
SCARA robots that are dominant in relevant industrial applications. We use
accurate models in Sections IV for Delta and SCARA robots that consider
both robot geometry and dynamics with bounded acceleration.



HAN et al.: TOWARD FAST AND OPTIMAL ROBOTIC PICK-AND-PLACE ON A MOVING CONVEYOR 3

period of time. For example, the distribution may be a Poisson
process with rate λ followed by a uniform distribution of
y ∈ (0, yT ). That is, as a new event is generated by the Poisson
process, a new object is placed at (xR, y) where y ∈ [0, yT ]
is uniformly selected.

Our proposed methods will be compared with greedy ap-
proaches, namely, FIFO and SPT [19], which pick objects
following simple heuristics. FIFO follows the first-in first-out
rule and always picks the object which enters the workspace
the earliest, i.e., with the smallest x location [19]. On the
other hand, SPT always picks the object with the smallest
PNP time, following the shortest processing time rule [19].
In addition, we add EUCLIDEAN which uses the Euclidean
distance between an object’s location and the drop-off location
instead of x for prioritizing. It is clear that these approaches
require little computational effort.

III. ANALYSIS OF THE OPTIMAL SOLUTION STRUCTURE

As greedy approaches (e.g., SPT, FIFO [19]) work with a
very short horizon, it can be expected that they are generally
sub-optimal. It appears, however, no quantitative analysis has
been performed in the literature to study this sub-optimality.
Thus, we begin our study with an analytical characterization
on the benefit of using a longer horizon for optimization.

A. Non-Optimality of Greedy Strategies

As mentioned in the introduction, the most commonly used
heuristics for PNP appear to be FIFO and SPT [19]. Whereas
these best-first like heuristics runs in O(n) time for selecting
a single picking candidate with n being the number of objects
accessible on the conveyor, the overall solution is generally
sub-optimal in terms of efficiency over long term. We now
establish this under a fairly general setting through examining
the PNP of two objects o1 and o2 located at (x1, y1) and
(x2, y2), respectively (Fig. 3). For the analysis, we further
assume that xA = xD = 0, i.e., the robot base and drop off
location are the same (we note that the analysis that follows
readily generalizes beyond this assumption).

o2 at (x2, y2)

o1 at (x1, y1)
d1

d2 2d1

ved1

ved2
A

B

Fig. 3. The relevant distances when object o1, initially located at (x1, y1),
is picked up first by the robot.

Under the setup, we can compute the time it takes the end-
effector to carry out PNP actions on the two objects for the
two possible picking orders (i.e., first picking the object o1 or
first picking the object o2). Assuming that object o1 is picked
first, we can compute the earliest location A where the end-
effector can pick up the object. At A, object o1 has traveled
some distance d1; the end-effector, with speed ve, would have
traveled a distance of ved1. We then have a single unknown
d1 and the quadratic equation (x1 − d1)

2 + y21 = v2ed
2
1, with

which we can solve for d1. We omit the solution here, which is
lengthy to write down. Based on d1 and similar reasoning, we
can compute the point B where the end-effector can pick up
the second object after dropping the first object at the origin.
At this point, the second object would have traveled a distance
of 2d1 + d2 for some d2. The equation for computing d2 is
readily obtained as (2d1 + d2 − x2)

2 + y22 = v2ed
2
2.

The total time required for handling both objects this way
is 2(d1+d2) since the conveyor runs at unit speed. We denote
this time as t12(x1, x2, y1, y2, ve). Similarly, we may compute
the time required if o2 is picked up first; denote the time as
t21(x1, x2, y1, y2, ve). It can be shown that, setting x1 = x2,
there is no general dominance between t12 and t21.

Proposition III.1. For two objects o1 and o2 initially located
at (x, y1) and (x, y2), the optimal pick-and-place sequence of
the objects depends on the horizontal offset x.

Proof. We define a function δt as
δt(x1, x2, y1, y2, ve) = t12(x1, x2, y1, y2, ve)

−t21(x1, x2, y1, y2, ve).

To prove the proposition, we only need to show that for some
fixed y1, y2, and ve, varying x = x1 = x2 will flip the sign of
the function δt(·). For this purpose, we let y1 = 0.4, y2 = 0.7
and ve = 2 and examine

f(x) = δt(x, x, 0.4, 0.7, 2).

Solving for f(x) = 0 with the restriction of x > 0 yields
a single solution x0 ≈ 0.65. This means that when x > x0

holds, it is more optimal to pick o2 first. When x < x0, it is
more optimal to pick o1 first.

Continuing from the proof of Proposition III.1, if we plot
f(x) over x ∈ [0.4, 1.4], Fig. 4 is obtained which clearly shows
that in this case, picking o1 first is only better when initial
x is less than 0.65. It also shows that δt can have relatively
large positive and negative values, meaning that the conclusion
of Proposition III.1 holds for proper x1 ̸= x2 and also for
xA ̸= xD when other conditions are proper.

0.10

0.05

-0.05

-0.10

0.8 1.2

Fig. 4. Plot of f(x) = δt(x, x, 0.4, 0.7, 2) for x ∈ [0.4, 1.4].

Practical Concerns. As one might expect, as indicated by
the SPT rule, it is generally better if the closer object is picked
first. In the example from the proof of Proposition III.1, the
maximum value of f(x) is reached when x ≈ 1.45, which
yields f(1.45) ≈ 0.09. The value of t21 in this case is
approximately 0.77 (therefore, t12 ≈ 0.86). That is, picking
o2 first in this case will lead to at most an optimality loss of
0.09/0.77 ≈ 12%. On the other hand, always picking o2 first
can lead to an optimality loss of about 40% when x ≈ −0.1.
Nevertheless, a 12% of optimality loss is very significant and
should be avoided in practice whenever possible. Lastly, since



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

the analysis is based on x1 = x2, it directly applies to the
FIFO setting as well, where the more sub-optimal choice of
picking o2 first can happen if x1 is just slightly larger than
x2.

B. Structure of Optimal PNP Solutions

The analysis and resulting observation from Section III-A
leads us to develop optimal PNP solutions via exhaustive
search (see Section V-A). Through running the exhaustive
search algorithm, we computed optimal solutions under vari-
ous configurations and studied the distribution pattern of the
optimal picking sequences. A typical outcome under the one-
shot setting is illustrated in Fig. 5. In the figure, the small
discs correspond to the initial locations of objects for 100
problems with n = 10 each, with 2 ≤ x ≤ 8, 0 ≤ y ≤ 3,
and ve = 5. After computing the optimal solution for each of
the 100 problems, we color the object that is picked first (out
of the 10 objects in a problem instance) dark red and the last
picked object dark blue. The colors for the other eight objects
are interpolated between these two. The majority of objects
are picked before their x coordinates fall below x = −2.

2 8

0

3

Fig. 5. Illustration of picking orders of 10 objects in 100 optimal solutions.

From the figure, we make the observation that the first few
objects that get picked are concentrated toward the left, though
a few are also from the far right. Generally, however, they all
have relatively large y coordinates. The last few objects, on the
other hand, fall more on the far right and are not concentrated
in terms of the y coordinate. The objects that are picked in
the middle in an optimal sequence tend to fall in the middle,
which more or less is as expected.

IV. COMPUTATION OF SHORTEST PNP TIME

A significant challenge in the design and implementation
of object picking sequence selection algorithms is how to deal
with the geometry and dynamics of the robots (see, e.g., [24])
that are involved. We encapsulate the complexity caused by
robot geometry and dynamics in a routine, GETPNPTIME, that
returns the best available PNP time for a given robot model
and the initial location of the moving object to be picked up.
This is achieved through a two-step process. First, a principled
method is designed for estimating a single optimal PNP time.
Second, we build a table of pre-computed PNP times to enable
real-time look-up in practice.

A. Computing Shortest PNP Time for Simple Robots

If the robot has trivial dynamics (note that this is a BIG
if that almost never happens in practice), it may be possible
for GETPNPTIME to compute the PNP time directly and

analytically. In the case of the simplified telescoping robot,
we may do so via solving the quadratic equation

(
√︂

x2
A + y2A ± vet)

2 = [(x− vbt)− xA]
2 + (y − yA)

2.

The sign of vet depends on whether the arm extends or
retracts, which directly correlates to whether the object’s
current location (x, y) is in the circle centered at (xA, yA) with
radius

√︁
x2
A + y2A (see Fig. 6). In this case, the arm extension

and retraction take the same amount of time.

(a) (b)

Fig. 6. Scenarios when robot (a) extends and (b) contracts the arm.
The orange and blue lines illustrate the drop-off and pick-up arm poses,
respectively. the arced arrows show the rotation movements of the arm.

B. Computing Shortest PNP Time for Complex Robots

Computing optimal PNP time is hard in general as
most robots have complex, interacting geometric con-
straints and physical constraints including robot kinematics,
speed/acceleration limits, and so on. For a given robot model,
e.g., SCARA, we first need a method for computing the
optimal (shortest) time it takes for the end-effector to reach a
point (x, y) within the robot’s workspace and then the optimal
time for the end-effector to return to the drop-off location. The
sum of the two times is the optimal total PNP time. In practice,
optimal PNP times are estimated [24].

Our implementation of the shortest PNP time computation
for a single 2D point is as follows. First, based on the robot’s
geometric structure, we compute the joint angles of the robot
(two for SCARA and three for Delta [24], [25]) at the initial
(drop-off) end-effector location and the target pick-up location
(x, y). Then, we invoke the Reflexxes Motion Library [26] to
obtain an estimated shortest transition time from the drop-
off pose to the pick-up pose and also the shortest transition
time from the pick-up pose to the drop-off pose, which may
be different. We denote this time as t(x, y), from which we
can readily obtain (x+ vbt(x, y), y) as the location where the
object is before the end-effector starts the PNP operation.

Because each computation of t(x, y) can be relatively time
consuming (easier for SCARA and slightly more involved
for Delta with 3 degrees of freedom), the procedure cannot
directly be used for real-time robot operations. Instead, we
build a table of pre-computed PNP times at a given resolu-
tion (in this work, a 100 × 100 discretization is used, with
interpolation), with which GETPNPTIME can then be realized
extremely efficiently with very high precision.

C. Visualizing Typical PNP Time Profiles

The GETPNPTIME subroutine can be readily adapted to
work with other robots. That is, GETPNPTIME is an abstrac-
tion layer that isolates the object picking sequence selection



HAN et al.: TOWARD FAST AND OPTIMAL ROBOTIC PICK-AND-PLACE ON A MOVING CONVEYOR 5

from physical robot models. It is clear that different robots
can have significantly different PNP time structure. For the
three robots that are examined in this work, their PNP time
profiles are shown in Fig. 7. We note that the (rotated) profiles
are slightly truncated at the bottom. Similarly, there are some
values missing at the top of the figures; this is because objects
initially located in these areas will exit workspace before the
arm can reach them.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(c)
Fig. 7. The (relative) time profile for PNP operations for difference arms.
The workspace is rotated 90 degrees clockwise. (a) The simplified telescoping
robot. (b) The Delta robot. (c) The SCARA robot.

V. EXACT AND APPROXIMATE ALGORITHMS FOR
SELECTING THE BEST PICKING SEQUENCE

The main algorithm developed in this work is an exhaustive-
search-based method which checks all possible object picking
sequences to find the optimal one. In addition, a local-
augmentation-based method is developed to further boost
computational efficiency.

A. Exhaustive Search Methods: OPTSEQ and OPTSEQDP
With the GETPNPTIME routine, a baseline exhaustive

search routine is straightforward to obtain. We call such a
routine OPTSEQ, which computes the optimal object picking
sequence for a given horizon (i.e., number of objects examined
at a time). Then, dynamic programming is applied to speed up
OPTSEQ, yielding the routine OPTSEQDP, which is signifi-
cantly faster yet without any loss of optimality.
1) OPTSEQ: As it is shown in Alg. 1, OPTSEQ iterates

through all permutations of objects (line 2) and finds the
picking sequence with the minimum execution time (lines 5–
5). The computation time of OPTSEQ is O(n!n), since there
are n! permutations to check and for each permutation, the
algorithm calls GETPNPTIME n times.

Algorithm 1: OPTSEQ

Input: objects’ initial location (x1, y1), . . . , (xn, yn)
Output: S∗: a time-optimal PNP sequence

1 t∗ ←∞, S∗ ← none
2 for P ∈ ALLPERMUTATIONS({1, . . . , n}) do
3 t← 0
4 for i ∈ P do t← t + GETPNPTIME (xi − vbt, yi)
5 if t < t∗ then t∗ ← t, S∗ ← P

6 return S∗

2) OPTSEQDP: Clearly, OPTSEQ contains redundant com-
putation. For example, for four objects, the time for first
picking up objects (1, 2) is calculated twice, during the compu-
tation for sequences (1, 2, 3, 4) and (1, 2, 4, 3). To avoid such

redundant calculations, we propose OPTSEQDP, a dynamic
programming algorithm similar to that in [27]. The pseudo
code for OPTSEQDP is provided in Alg. 2. In line 1, two
datasets are initialized: S which will contain the time-optimal
picking sequences of all the 2n subsets of objects, and T which
will contain the associated time costs. An n-step iterative
process starts from line 2. In line 4, the algorithm updates T
amd S for each k-combination U . The update process iterates
through all objects i ∈ U , finds the one that minimizes the
execution time when picked last:

T [U ] = min
i∈U

{T [U\{i}]+

GETPNPTIME(xi − vb T [U\{i}], yi) }.
During this process, S[U ] is also updated accordingly to store
the subsets’ optimal picking sequence. Finally, in line 5, a
time-optimal PNP sequence of all n objects is returned.

Algorithm 2: OPTSEQDP
Input: objects’ initial location (x1, y1), . . . , (xn, yn)
Output: a time-optimal PNP sequence

1 T = {∅ : 0}, S = {∅ : ()}
2 for 1 ≤ k ≤ n do
3 for U ← ALLCOMBINATIONS({1, . . . , n}, k) do
4 UPDATE(T , S , U )

5 return S[{1, . . . , n}]

Proposition V.1. OPTSEQDP finds the optimal PNP sequence.
Proof. Since it is trivial that S contains the optimal picking
sequence of the 0-combination of the objects, it suffices
to show that given the optimal sequences of all (k − 1)-
combinations, then the function UPDATE(T, S, U ) in line 4
calculates the optimal sequences of all k-combinations.

Given U as an arbitrary k-combination, its optimal picking
sequence must also be optimal when picking the first k − 1
objects in this sequence. The update process of T [U ] checks
all candidate sequences with the first k − 1 objects picked in
a time-optimal manner.

OPTSEQDP runs in O(2nn): there are O(2n) object subsets,
and processing a combination U calls the routine GETP-
NPTIME |U | times, taking O(n) time. Since 2n ≪ n! for
large n, OPTSEQDP is much faster than OPTSEQ.

B. A Local Augmentation Method: SUBOPTDP

While working on OPTSEQDP, we attempted many heuris-
tics to further boost its efficiency. Here, we report a particularly
effective method that appears to achieve optimality close
to OPTSEQDP but scales much better. We call this local
augmentation-based method SUBOPTDP, which uses OPT-
SEQDP as a subroutine. The pseudocode of SUBOPTDP is
provided in Alg. 3. In line 1, SUBOPTDP starts with an initial
picking sequence S, which can be selected in many different
ways, for example, using FIFO. Then, line 2-9 repeatedly call
OPTSEQDP over sub-sequences of S to reduce the execution
time. Specifically, the algorithm has two parameters m1 and
m2. The main loop is repeated m1 times, and for each
iteration, we call OPTSEQDP over the kth to (k + m2)

th

elements of S for 1 ≤ k ≤ n−m2.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

Algorithm 3: SUBOPTDP
Input: objects’ initial location (x1, y1), . . . , (xn, yn)
Output: a near-optimal PNP sequence

1 S ← GETINITIALPICKINGSEQUENCE()
2 for m1 times do
3 t← 0
4 for 1 ≤ k ≤ n−m2 do
5 O ← ∅
6 for i ∈ S[k : k +m2] do
7 O ← O ∪ {(xi − vbt, yi)}
8 S[k : k +m2]← OPTSEQDP (O)
9 t← t + GETPNPTIME (xS[k] − vbt, yS[k])

10 return S

The computation time for SUBOPTDP is O(m1n2
m2m2).

In our implementation, we found that initializing S using
FIFO and assigning m1 = n,m2 = 9 produce solutions
that are often indistinguishable from these computed by OPT-
SEQDP: in all test cases, the average performance difference
between SUBOPTDP and OPTSEQDP never exceeds 0.05%.
Remark (Adapting to a conveyor setting). Since it is expected
that a conveyor will run without stopping for extended periods
of time, for the continuous setting, OPTSEQDP or SUBOPTDP
are invoked repeatedly with real-time locations of all the pick-
able objects in the workspace.

VI. EXPERIMENTAL STUDIES

We performed an extensive evaluation of the newly devel-
oped algorithms. In this section, we present a small subset
of the evaluation that is most representative. In Section VI-A,
we measure the computation time of the algorithms under the
one-shot setting and conclusively show that our algorithms are
sufficiently fast for industrial applications. In Section VI-B, we
focus on the one-shot setting and check how much execution
time savings are possible. Selected results demonstrate that the
projected efficiency gain of our algorithms are very significant
across different robot models. Finally, in Section VI-C, we
evaluate the performance of the SCARA robot in realistic
continuous conveyor settings under two different object arrival
distribution models. Again, our proposed algorithm shows a
clear lead.

All algorithms are implemented in C++, and all experiments
are executed on an Intel R⃝ Xeon R⃝ CPU at 3.0GHz.

A. Computational Efficiency

Fig. 8 shows the computation time of our original algorithms
versus the number of objects n. With dynamic programming,
we can solve much larger problem instances (near-)optimally:
in around one second, OPTSEQ, OPTSEQDP, SUBOPTDP
can solve one-shot problems with 10, 22 and 100 objects,
respectively. We note that, while the test is done over the
simplified robot model, similar performance is observed for
Delta and SCARA robots. The shape of SUBOPTDP is due
to the choice of parameters (i.e. m2 = 9).

Our observation indicates that the active workspace in a con-
veyor PNP system contains a few to low tens of objects. From
the figure, we observe that both OPTSEQDP and SUBOPTDP
can complete a single sequence computation for ten objects

100 101 102

Number of Objects (n)

10−5

10−3

10−1

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

OPTSEQ

OPTSEQDP
SUBOPTDP

Fig. 8. Average computation time of our algorithms versus the number of
objects n. In all experiments, the error is within ±2%.

within 10−4 seconds and fifteen objects with 10−2 seconds.
Because, Delta and SCARA-based PNP systems generally
do not pick more than a single digit number of objects per
second, OPTSEQDP and SUBOPTDP impose negligible time
overhead. As such, they are sufficiently fast for the target
industrial applications.

B. PNP Performance under One-Shot Setting
Having shown that OPTSEQDP and SUBOPTDP are suf-

ficiently fast, next, we present their performance in one-shot
settings where only a single batch of objects are handled. In
a typical setting, we let xL = −5, xR = 5, yB = 0, and
yT = 5, i.e., the workspace is a 10× 5 rectangle. All objects
are initially uniformly randomly placed between x = 3 and
x = 5. Robots are configured so that they can reach anywhere
within the workspace but are forbidden to reach outside. We
first present Fig. 9, which illustrates the relative total PNP
time of different algorithms. For results in the top two figures,
since the number of objects is comparatively small, a faster
relative conveyor belt speed is used (5× of that used in the
bottom two figures). The parameters of the robots are set so
that all algorithms can successfully pick all objects (for each
figure, only a single set of robot parameters are used). Our
selection of the robot model is somewhat arbitrary because we
observe some but no substantial difference between different
robot models. Therefore, we decided to select a diverse set of
results given the limited available space.

0 5 10

1.0

1.1

1.2
Telescoping

0 5 10

1.0

1.1

1.2
Delta

0 25 50

1.0

1.1

1.2
SCARA

0 25 50

1.0

1.1

1.2
Delta

SUBOPTDP SPT EUCLIDEAN FIFO

Fig. 9. Execution time ratios of various algorithms as compared with
SUBOPTDP. The y-axes are the ratio and the x-axes are the number of objects
used in a given run. Each data point is an average over 100 randomly generated
instances. Standard deviations are plotted as error bars.

From the figure, we observe that SUBOPTDP (and therefore
OPTSEQDP, which is at least as fast as SUBOPTDP) yields



HAN et al.: TOWARD FAST AND OPTIMAL ROBOTIC PICK-AND-PLACE ON A MOVING CONVEYOR 7

significant savings in PNP execution time. For example, for
a SCARA robot, if we expect the workspace to have about
ten objects at a time, then FIFO, EUCLIDEAN, and SPT are
expected to spend around 10% to 20% more PNP execution
time as compared to our proposed solutions.

We also observe that there does not seem to be an upper
bound on the ratios as the number of objects increases. Though
it appears that the ratio for FIFO is tapering off in some
of the figures, adding more objects shows that these ratios
will eventually grow again. Though this may not be highly
relevant in practice as the the number of objects is not likely to
exceed a few tens, the phenomenon is structurally interesting.
Our interpretation is that the behavior is perhaps caused by
the optimal object picking sequence problem is similar in
structure as hard TSPs [28] where polynomial time constant
factor approximations are provably impossible.

We also evaluated the impact of different workspace settings
with the result given in Fig. 10 for the Delta robot model
(again, other robot models yield similar results). We note that
the execution time here is relative but provides a meaningful
comparison between different workspace settings. 10 objects
are used for each run, which are randomly allocated between
x = 3 and x = 5. We conclude that the impact of workspace
appears to be small.

(-5, 5, 0, 5) (-3, 5, 0, 5) (-5, 5, 2, 5) (-5, 5, 0, 3)
Workspace Configuration (xL,xR ,yB ,yT )

0

2

4

6

8

E
xe

cu
tio

n
Ti

m
e

OPTSEQDP
SPT

EUCLIDEAN
FIFO

Fig. 10. The execution time for PNP operations on 10 randomly placed
objects. Each bar is obtained as an average over 100 runs.

C. PNP Performance under Continuous Setting

After the one-shot setting, we examined a more realistic set-
ting and evaluated how the algorithms perform when the con-
veyor runs for an extended period of time. For this setting, we
fixed the conveyor speed and robot parameters so that there are
generally a few objects on the conveyor within the workspace,
mimicking practical settings. We attempted two distributions
with which objects are placed on the conveyor: Poisson and
uniform. For all experiments, we sample n = 10000 objects
and used a workspace with xL = −5, xR = 5, yB = 0, and
yT = 5. The SCARA robot model is used here for two reasons:
(i) SCARA is the most widely used industrial PNP robot and
(ii) the performance of SCARA is similar to Delta and the
simplified telescoping model.

For the Poisson setting, a Poisson process with parameter
λ > 0 is started at time t0 = 0. Each time an event is triggered
by the process at time t ≥ t0 (including at t = 0), we sample
the uniformly sample (yB , yT ) to get a y value. An object is
then placed at (xR, y) at time t. For the uniform setting, we
sample n points in the unit square and the scale the unit square
to have the same height as the workspace. We then adjust the

length of the unit square to simulate how densely the objects
are placed on the conveyor belt. At t0 = 0, the left side of the
scaled unit square is aligned with the line segment between
(xR, yB) and (xR, yT ).

In each experiment, we record the total number of objects
that can be successfully picked up before some leave the
left side of the workspace on the conveyor. The results are
then scaled as ratios divided by n = 10000 and the data is
visualized in Fig. 11 and Fig. 12.

0.8 1.0 1.2 1.4 1.6
Poisson Rate λ

40%

60%

80%

100%

O
bj

ec
ts

Pi
ck

ed

SUBOPTDP
SPT
EUCLIDEAN
FIFO

Fig. 11. Percentage of objects picked up out of 10000 using different
algorithms. The object distribution is generated by 1D uniform distribution
driven by a Poisson process with different Poisson rate λ. We mention that
the absolute value of λ does not bear much significance.

Looking at Fig. 11, except when the Poisson rate λ is
sufficiently low so that almost all objects can be picked up
using any method, SUBOPTDP maintain a lead of around
10% as compared with SPT and EUCLIDEAN. The lead over
FIFO is as large as 40%. We also point out that, unlike the
one-shot case, FIFO generally performs the worst, though it
works better than SPT and EUCLIDEAN initially. This is as
expected since FIFO does the least amount of optimization.
In the one-shot setting, requiring that all objects can be picked
up benefited FIFO since it never let an object travel too far to
the left side of the workspace. On the other hand, when there
are too many objects, FIFO suffer since it attempts to catch
objects that can be very far on the left side of the workspace,
inducing penalty.

6000 8000 10000 12000 14000
Length Scaling on x-axis

40%

60%

80%

100%

O
bj

ec
ts

Pi
ck

ed

SUBOPTDP
SPT
EUCLIDEAN
FIFO

Fig. 12. Percent of objects picked up out of 10000 using different algorithms.
The object distribution is generated by uniform distribution over the unit
square. The height is then scaled to 5 and length is scaled as indicated in
the figure, from 5000-14000.

For the uniform setting, e.g., Fig. 12, we observe a similar
outcome as the Poisson setting. The figure looks different
because larger scaling of the length of the unit square means
sparser object placement and thus an easier setting, whereas
larger λ values suggesting denser object placement.

From the experiments, we conclude that OPTSEQDP and
SUBOPTDP provide significant performance gain as compared
with FIFO, SPT, and EUCLIDEAN.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

An illustration video of the proposed algorithms is provided
at https://youtu.be/bIomJzjKXyc.

VII. CONCLUSION AND DISCUSSIONS

Seeing that the state-of-the-art for robotic PNP on a moving
conveyor from the literature generally take a greedy approach
in deciding the object picking order, we set out to explore how
sub-optimal such approaches may be and ways to improve
them. Using a simplified telescoping robot model, we show
that greedy methods may lead to the loss of 12% to 40% exe-
cution time efficiency. To address the shortcomings of greedy
methods, we propose the exhaustive OPTSEQ algorithm that
computes optimal picking sequences for a finite look-ahead
horizon. The algorithm is then further enhanced with dynamic
programming and heuristic techniques to yield OPTSEQDP
and SUBOPTDP that are sufficiently efficient for practical
setting. In doing so, we also establish a principled method
for computing shortest PNP time profiles for complex Delta
and SCARA robots, which have highly involved geometric and
dynamic constraints.

Extensive simulation-based experimentation indicates that
OPTSEQDP and SUBOPTDP fully realize the goal we set out
to achieve, as reflected in three aspects: (i) both algorithms
are computationally efficient for real-time PNP applications,
(ii) in the one-shot setting, our algorithms deliver up to 20%
saving in execution time as compared to FIFO, EUCLIDEAN,
and SPT, and (iii) in realistic PNP operations on continuously
running conveyors, our algorithms show 10-40% advantage
in terms of the number of picked objects. The magnitude
of the efficiency gain has significant practical implications;
a few percentage of difference in efficiency can separate
success from failure. We observe no substantial difference in
performance of our algorithms as we switch between robot
models (i.e., telescoping, Delta, and SCARA). We conclude
that OPTSEQDP and SUBOPTDP could potentially make
sizable impact to industrial PNP systems.

In future work, we would like to further explore two
directions. First, a natural next step is to develop algorithms
for the collaboration among multiple robots to further enhance
overall system throughput, which appears to require more
carefully object selection across multiple robots. As a second
direction, we are in the process of integrating our algorithms
on some real robot hardware, with the hope of bringing our
methods one step closer to real-world applications.

REFERENCES

[1] D. Hounshell, From the American system to mass production, 1800-
1932: The development of manufacturing technology in the United
States. JHU Press, 1985, no. 4.

[2] B. Mirtich, Y. Zhuang, K. Goldberg, J. Craig, R. Zanutta, B. Carlisle,
and J. Canny, “Estimating pose statistics for robotic part feeders,” in
Proceedings of IEEE international conference on robotics and automa-
tion, vol. 2. IEEE, 1996, pp. 1140–1146.

[3] B. Carlisle, K. Goldberg, A. Rao, and J. Wiegley, “A pivoting gripper for
feeding industrial parts,” in Proceedings of the 1994 IEEE International
Conference on Robotics and Automation. IEEE, 1994, pp. 1650–1655.

[4] G. C. Causey, R. D. Quinn, N. A. Barendt, D. M. Sargent, and W. S.
Newman, “Design of a flexible parts feeding system,” in Proceedings of
International Conference on Robotics and Automation, vol. 2. IEEE,
1997, pp. 1235–1240.

[5] D. R. Berkowitz and J. Canny, “Designing parts feeders using dy-
namic simulation,” in Proceedings of IEEE International Conference
on Robotics and Automation, vol. 2. IEEE, 1996, pp. 1127–1132.

[6] K. Goldberg, J. Craig, B. Carlisle, and R. Zanutta, “Estimating through-
put for a flexible part feeder,” in Experimental Robotics IV. Springer,
1997, pp. 486–497.

[7] G. C. Causey, R. D. Quinn, and M. S. Branicky, “Testing and analysis
of a flexible feeding system,” in Proceedings 1999 IEEE International
Conference on Robotics and Automation (Cat. No. 99CH36288C), vol. 4.
IEEE, 1999, pp. 2564–2571.

[8] M. S. Branicky, G. C. Causey, and R. D. Quinn, “Modeling and through-
put prediction for flexible parts feeders,” in Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 1.
IEEE, 2000, pp. 154–161.

[9] P. Chalasani, R. Motwani, and A. Rao, “Algorithms for robot grasp and
delivery,” in 2nd International Workshop on Algorithmic Foundations of
Robotics. Citeseer, 1996.

[10] J. K. Lenstra and A. R. Kan, “Complexity of vehicle routing and
scheduling problems,” Networks, vol. 11, no. 2, pp. 221–227, 1981.

[11] C. S. Helvig, G. Robins, and A. Zelikovsky, “Moving-target tsp and
related problems,” in European Symposium on Algorithms. Springer,
1998, pp. 453–464.

[12] S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu,
“Complexity results and fast methods for optimal tabletop rearrangement
with overhand grasps,” The International Journal of Robotics Research,
p. 0278364918780999, 2018.

[13] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte, “Static
pickup and delivery problems: a classification scheme and survey,” Top,
vol. 15, no. 1, pp. 1–31, 2007.

[14] N. Christofides and S. Eilon, “An algorithm for the vehicle-dispatching
problem,” Journal of the Operational Research Society, vol. 20, no. 3,
pp. 309–318, 1969.

[15] G. N. Frederickson, M. S. Hecht, and C. E. Kim, “Approximation
algorithms for some routing problems,” in 17th annual symposium on
foundations of computer science (sfcs 1976). IEEE, 1976, pp. 216–227.

[16] K. Treleaven, M. Pavone, and E. Frazzoli, “Asymptotically optimal al-
gorithms for one-to-one pickup and delivery problems with applications
to transportation systems,” IEEE Transactions on Automatic Control,
vol. 58, no. 9, pp. 2261–2276, 2013.

[17] T.-Y. Li and J.-C. Latombe, “On-line manipulation planning for two
robot arms in a dynamic environment,” The International Journal of
Robotics Research, vol. 16, no. 2, pp. 144–167, 1997.

[18] G. Pardo-Castellote, S. A. Schneider, and R. Cannon, “System design
and interfaces for intelligent manufacturing workcell,” in Proceedings
of 1995 IEEE International Conference on Robotics and Automation,
vol. 1. IEEE, 1995, pp. 1105–1112.

[19] R. Mattone, M. Divona, and A. Wolf, “Sorting of items on a moving
conveyor belt. part 2: performance evaluation and optimization of pick-
and-place operations,” Robotics and Computer-Integrated Manufactur-
ing, vol. 16, no. 2-3, pp. 81–90, 2000.

[20] L. Schrage, “Letter to the editor—a proof of the optimality of the shortest
remaining processing time discipline,” Operations Research, vol. 16,
no. 3, pp. 687–690, 1968.

[21] H. I. Bozma and M. Kalalıoğlu, “Multirobot coordination in pick-and-
place tasks on a moving conveyor,” Robotics and Computer-Integrated
Manufacturing, vol. 28, no. 4, pp. 530–538, 2012.

[22] S. Daoud, H. Chehade, F. Yalaoui, and L. Amodeo, “Efficient meta-
heuristics for pick and place robotic systems optimization,” Journal of
Intelligent Manufacturing, vol. 25, no. 1, pp. 27–41, 2014.

[23] Y. Huang, R. Chiba, T. Arai, T. Ueyama, and J. Ota, “Robust multi-robot
coordination in pick-and-place tasks based on part-dispatching rules,”
Robotics and Autonomous Systems, vol. 64, pp. 70–83, 2015.

[24] D. Carp-Ciocardia et al., “Dynamic analysis of clavel’s delta parallel
robot,” in 2003 IEEE International Conference on Robotics and Au-
tomation (Cat. No. 03CH37422), vol. 3. IEEE, 2003, pp. 4116–4121.

[25] R. Clavel, “A fast robot with parallel geometry,” in Proc. Int. Symposium
on Industrial Robots, 1988, pp. 91–100.

[26] P. Zsombor-Murray, “Descriptive geometric kinematic analysis of
Clavelś “delta” robot,” Centre of Intelligent Machines, McGill Univer-
sity, USA, 2004.

[27] M. Held and R. M. Karp, “A dynamic programming approach to
sequencing problems,” Journal of the Society for Industrial and Applied
mathematics, vol. 10, no. 1, pp. 196–210, 1962.

[28] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish
time,” Journal of the ACM (JACM), vol. 23, no. 4, pp. 665–679, 1976.


	Introduction
	Preliminaries
	Analysis of the Optimal Solution Structure
	Non-Optimality of Greedy Strategies
	Structure of Optimal PnP Solutions

	Computation of Shortest PnP Time
	Computing Shortest PnP Time for Simple Robots
	Computing Shortest PnP Time for Complex Robots
	Visualizing Typical PnP Time Profiles

	Exact And Approximate Algorithms for Selecting The Best Picking Sequence
	Exhaustive Search Methods: OptSeq and OptSeqDP
	OptSeq
	OptSeqDP

	A Local Augmentation Method: SubOptDP

	Experimental Studies
	Computational Efficiency
	PnP Performance under One-Shot Setting
	PnP Performance under Continuous Setting

	Conclusion and Discussions
	References

