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Abstract—Computation offloading has been shown to be a
viable solution for addressing the challenges of processing
compute-intensive workloads between low-power devices and
nearby servers known as cloudlets. However, factors such as
dynamic network conditions, concurrent user access, and limited
resource availability often result in offloading decisions negatively
impacting end users in terms of delay and energy consumption.
To address these shortcomings, we investigate the benefits of using
Machine Learning for predicting offloading costs for a facial
recognition service in a series of realistic wireless experiments.
We also perform a set of trace-driven simulations to emulate a
multi-edge protest crowd incident case study and formulate an
optimization model that minimizes the time taken for all service
tasks to be completed. Because optimizing offloading schedules
for such a system is a well-known NP-complete problem, we
use mixed integer programming and show that our scheduling
solution scales efficiently for a moderate number of user devices
(10-100) with a correspondingly small number of cloudlets (1-10),
a scale commonly sufficient for public safety officials in crowd
incident management. Moreover, our results indicate that using
Machine Learning for predicting offloading costs leads to near-
optimal scheduling in 70% of the cases we investigated and offers
a 40% gain in performance over baseline estimation techniques.

I. INTRODUCTION

The recent advances in cloud computing technologies and
smart mobile devices has given rise to new systems that bring
cloud-like applications and services to users on mobile de-
vices. The maturing Internet of Things (IoT) paradigm has also
provided an avenue for offering new services to users via low-
power, and often wireless, embedded devices. The applications
driven by IoT-based computing have emerged in a variety of
domains such as smart city infrastructure, industrial remote
sensing, disaster response, and protest crowd management.
One of the biggest challenges hindering the full realization of
IoT-based applications is how best to orchestrate user devices
and resources that have limited processing capabilities while
operating in potentially unreliable networks [1].

An emerging paradigm known as edge computing seeks to
augment low-power devices with access to more responsive
cloud-like services by migrating computational workloads
from devices to nearby servers known as cloudlets [2]. For
mobile devices in particular, Mobile Edge Computing (MEC)

978-1-5386-7659-2/18/$31.00 (©2018 IEEE

can be used to prolong the device’s battery life and can
perform computationally intensive tasks with less delay for
the user [3]. ‘Computation offloading’ is a popular strategy
for mitigating the issues associated with resource management
in MEC networks. Offloading takes place by partitioning the
device’s application or workload (e.g. requests or data streams)
in order to distribute the partitions to nearby servers with the
aim of reducing latency or energy consumption for the device
or the overall system.

Recent approaches involving energy-aware offloading poli-
cies offer flexibility to users who require energy conservation
over low-latency or vice versa in visual IoT-based data pro-
cessing [3]. These approaches are limited in that offloading
policy selection is based on heuristics and domain-knowledge
experience, which may not fully capture the heterogeneity of
edge resources. The challenges of managing edge networks
are exacerbated by the fact that a lot of these services are
deployed on wireless networks, which are more susceptible
to noise and disruptions than traditional cloud computing
systems. Moreover, available edge resources are finite and
need to be efficiently managed in order to provide users with
the most cost-efficient policies for their device. To produce
more accurate and flexible estimates about networking and
computing behavior, machine learning models can be trained
to predict both the transmission and processing delays for data
being offloaded between a mobile device and a cloudlet.

Facial recognition and tracking applications which rely
on deep learning are rapidly growing in demand but have
traditionally been too computationally expensive to deploy on
low-power consumer devices [4]. Facial recognition services,
therefore, are an ideal use-case for studying the complexi-
ties of edge computing systems. Commercial services such
as Amazon’s Rekognition API and AWS Lambda functions
are streamlined in order to offer advanced visual processing
capabilities but also assume that users accessing those services
have reliable Internet connectivity. In urban areas experiencing
crowd protests or emergency situations, authorities may need
to quickly assess the location of “’bad actors” and act accord-
ingly. Transferring imagery collected by mobile devices to
nearby cloudlets allows for processing that provides incident-
related situational awareness for emergency personnel.
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Fig. 1. Protest crowd management use case involving IoT and other remote
devices that can be augmented via cloudlets; aim of the visual data processing
services is to assist public safety personnel with gaining timely situational
awareness in potentially hostile environments, where network and computing
resources are limited.

Figure 1 shows an example of an edge computing use-
case for protest crowds incident management where data
distributed data in the form of images or video streams is
transmitted wirelessly to nearby cloudlets for processing and
storage. The challenges in such use cases typically include:
noisy and congested networks, high device-to-server ratios,
and heterogeneous computing resources, all of which pose
unique challenges for accurately estimating offloading costs.
Furthermore, static network profiling techniques may fail to
capture the complexities of such systems, which in turn makes:
(a) efficient scheduling of tasks problematic, and (b) offloading
performance to degrade over time.

In this paper, we propose a multi-edge resource scheduling
scheme that provides the following contributions that can be
organized under two major research thrusts:

Predicting offloading cost in wireless edge networks.

We conduct several real-world wireless experiments (see Sub-
section IV-A) for a range of computing devices and networking
conditions. In particular, we are interested in measuring the
corresponding transmission and processing delays for each
experiment. Observations of the collected data indicate that
there is wide variability in estimating transmission delay using
standard network measurement tools. Furthermore, we discov-
ered that the task of estimating processing speed is non-trivial
as it often relies on installing application profiling software
which may not be compatible with virtual or heterogeneous
resources available at the edge.

To address these shortcomings, we leverage the statistical
capabilities of data-driven techniques, namely Machine Learn-
ing (ML) algorithms to estimate the offloading costs for dif-
ferent workloads under various experimental conditions. Using
historical data from our wireless experiments, we train several
state-of-the-art ML models on a total of 4000 data points for
predicting transmission and processing delays. Based on our
evaluation results (see Section IV-B), we evaluate the extent to
which the ML-based models outperform traditional estimation
techniques in terms of both accuracy and precision.

Optimal scheduling of offloading tasks for data processing.
We formulate the challenge of offloading tasks from various
mobile devices to nearby cloudlets as the popular job shop
scheduling problem where we seek to minimize the ‘maximum
schedule time’ when all the tasks have finished processing
(also known as the makespan) across all edge servers. Such an
objective minimization allows us to better balance the available
physical resources. This in turn increases the acceptance ratio
for future offloading requests [5] (i.e., the online optimization),
which further improves the overall application throughput.

To evaluate our approach, we conduct a series of trace-
driven simulations consisting of multiple devices offloading
computational tasks (e.g. recognizing faces in images) to
nearby cloudlets in a multi-edge environment. We vary the
number of user devices from 10-100 while also scaling the
number of available cloudlets from 1-10 in order to investigate
the scalability of our approach for a commonly experienced
scale of protest crowd incident management.

Using the (NP-hard) Mixed Integer Programming (MIP),
we formulate an optimization problem of minimizing the
maximum scheduling makespan. To address the scheduling
overhead for a large system of devices (up to 100), we use a
branch-and-bound-based solution and show that by allowing
a 1% optimality gap, a scheduling solution becomes feasible
as it can be produced faster than the resulting minimum or
maximum makespan by an entire order of magnitude.

The rest of the paper is organized as follows: Section II
discusses related work. In Section III-A and Section III-E, we
motivate the need for accurate multi-edge resource schedul-
ing. Sections III-B, IV-A, and IV-B describe our proposed
offloading system approach. Subsection III-C and Section
II-D formulate the job scheduling problem and optimization
steps. Section IV details the results from our trace-driven
simulations. Lastly, Section V concludes the paper.

II. RELATED WORK

Several computation offloading frameworks have been pro-
posed in recent years including heuristic-based algorithms that
offer negligible overhead for handling requests. These algo-
rithms typically perform poorly in dynamic environments [6],
or are only evaluated for a limited number of devices [7].
Alternatively, the recent popular approaches tend to be data-
driven, meaning they use historical information to build pre-
dictive models in order to forecast offloading behavior [8].
MALMOS is an exemplar machine learning-based runtime
scheduler that outperforms static scheduling policies [9].

The main limitations of many data-driven approaches are
that they are only evaluated for a small number of devices,
use a limited number of features for training, and are of-
ten comprised of simple offloading decisions (i.e. deciding
between offloading or executing locally) [9]. Furthermore,
related methods focus on code partitioning rather than data
migration which requires developers to re-factor sections of
their code in order to enable offloading in their applications.
Conversely, other approaches focus instead on data migration



which is device agnostic and is only concerned with processing
the user’s raw data [10][11]. Our recent prior work pro-
vides researchers with publicly available datasets and testbed
configurations for reproducing experimental edge computing
methodologies [12].

Algorithms that schedule offloading decisions based on the
device profile and network information perform significantly
better than those that assume a static network model [13].
Researchers have previously addressed the problem of server
choice for offloading tasks when multiple servers are available
[3][14]. Other works have approximated the best offload-
ing node using heuristics and statistical estimation methods
for wireless network performance [15]. Several approaches
have re-purposed the popular job shop scheduling problem
to optimize their objective of choice (e.g. latency, energy
consumption, throughput, etc.) [16][17].

To the best of our knowledge, none of the prior approaches
consider the use of data-driven estimation techniques for
improving optimization in a multi-edge resource scheduling
context for a public safety application context.

III. MULTI-EDGE RESOURCE SCHEDULING
A. Protest Crowds Incident Management

As mentioned in Section I, an exemplar use case for a
distributed edge computing service involves offloading facial
recognition tasks from mobile devices to nearby cloudlets in
order to provide public safety officials with increased situa-
tional awareness. Visual data processing in a timely manner
with limited networking and computing resources is essential
in decision making of incident commanders e.g., in “force
escalation” decisions that rely on data processing related to
long time periods of crowd status monitoring.

In order to provide a generalized solution for multi-edge
scheduling in a protest crowds incident management scenarios,
we begin by discussing the inherent challenges present in such
a visual data processing system:

« Environmental conditions and large numbers of cloudlets
and devices may cause noisy and congested network
conditions

« Estimates about offloading costs prove challenging due
to the nonlinear behavior of wireless networks

« Remote mobile devices are usually low-power and have
limited processing and storage capabilities

e Scarce computing resources are available for performing
offloading functionality (high device-to-server ratio)

For the purposes of scheduling offloading tasks in such
a visual data processing system, we make the following
assumptions:

e Our focus is on theater-scale edge computing where a
maximum of 100 nodes is adequate for our use-case

o Computation should always be offloaded instead of exe-
cuted locally due to the global facial database accessible
only by the edge servers

o Network and device states are observable during runtime

o Every cloudlet is capable of accepting new jobs
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Fig. 2. Data-driven edge computing system that shows the interplay between
the prediction and optimization engines for scheduling offloading tasks
involving multiple users and their devices. User data is transmitted to a central
node that acts as the scheduling middleware and contains the software stack
for performing the prediction and optimization functions. A central control
center acts as a remote authority for gathering processed data and implements
context-specific policies to aid in incident commander decision making.

o Scheduling middleware receives the metadata for all jobs
for prediction and offloading decision-making

e Only involved public safety management personnel have
access to the edge network; no other traffic is present

B. Proposed Computation Offloading Approach

We propose a data-driven computation offloading system
for use in multi-edge resource scheduling applications such
as e.g., the protest crowds incident management use case. To
overcome the inaccuracy and measurement overhead present in
traditional static estimation techniques, our offloading system
employs data-driven models for predicting the transmission
and computation times based on historical network and device
data. The use of ML models allows for more accurate net-
work performance predictions without the added measurement
overhead, which can be problematic for optimizing offloading
schedules in multi-edge resource environments.

Figure 2 shows an overview of our proposed data-driven
edge computation offloading system. An analytics platform
can be used for profiling network and device parameters,
which are then used as input features for designing the
predictive models. The resulting cost predictions are then
fed into an optimization engine in order to derive offloading
schedules. Offloading decisions can then be facilitated by
updating forwarding tables of routers using Software-Defined
Networking or similar technologies. Additionally, scheduling
policies can be implemented on the scheduling middleware
to allow for different edge computing scenarios (e.g. energy-
aware scheduling, prioritizing traffic for emergency personnel,
etc.). In this paper, our scope is limited to developing and eval-
uating the scheduling middleware, and higher-layer Control
Center orchestration is beyond the scope of this paper.

C. Job Shop Scheduling Problem

The multi-edge computation offloading problem in our
crowd protest incident management use case can be formulated
as the popular online job shop scheduling problem [18]. Our



scheduling problem objective is to minimize the maximum
makespan. To this aim, we model computation offloading
requests from remote devices as tasks for scheduling, while
the cloudlets are modeled as machines that process these tasks.

We start our formulation of the job shop scheduling problem
by introducing the following binary variable:

i 1, if task 4 is assigned at machine j position k,

oy = , )
0, otherwise,

withi € N, j € M, and k € {1,...,|N|}, where N is the set

of all tasks and M is the set of all machines.

We then describe the assignment constraints which are
essential for the job scheduling problem. The first constraint
type ensures that each task is assigned to exactly one machine
position as follows:

M N

D> aly=1VieN. )

j=1k=1

The second constraint type ensures that at most m tasks are
assigned to each machine position as follows:

N
> @l <m,VjeMkeN. (3)
i=1
Note that in general when the edge cloud provider policy m >
1, multiple tasks can be processed in parallel at the position
k of the machine j.
The following (optional) constraint type can be used to
ensure that each machine’s positions are filled sequentially
from the beginning:

N N
doah <> aly g VieMke{2.N}. 4
i=1 i=1

Note that constraints in Equations 2 and 3 are sufficient for

a feasible task assignment when no specific processing task

order is required (also known as precedence constraints). Note

also that we are processing batches of independent images, and
thus, we do not require having precedence constraints in our

problem. However, specific task order can be required, e.g.

for tracking computer vision applications that use results of

preceding video frames to track current frames [19].

Let us also introduce a positive continuous variable ;. that
denotes the time when m tasks at position k of machine j
finish processing. This time should be greater than or equal
to the sum of the time when machine j finishes processing
position k—1 and the processing/communication time of the m
tasks. Thus, we have to satisfy the following set of constraints:

Yik > Yje—1) + (8 +t5)2%,Vie N,j € Mk e N, (5)

where ¢ ; and ¢7; are the processing and communication times
of task 4 at machine j. Note also that y;o > 0 is a machine
offset time — the time when machine j finishes processing
of the previously scheduled tasks which come online — and
;0 = 0 for the offline job scheduling problem when all tasks
are known in advance.

TABLE I
SYMBOLS AND NOTATIONS OF OPTIMIZATION PROBLEM
Sets:
N £ Set of tasks (offloading mobile devices)
M £ Set of machines (edge servers)
Variables:
r; & £ Binary variable equal to 1 if task 4 is assigned at machine j
position k and 0 otherwise
yjk = Positive continuous variable that denotes the time when m
tasks at position k of machine j will finish being processed
« £ Continuous variable that denotes the maximum makespan
Parameters:
tfj £ Task 4 processing time at machine j
tfj £ Task 4 transmission time to machine j
Policies:
m £ The maximum number of tasks that can be processed in
parallel at the same machine position

Let us finally introduce a continuous variable « that denotes
the maximum makespan among all machines. Thus, « has to
satisfy the following set of constraints:

yin <a,VjeM. (6)

Having both variables and constraints discussed, the online
job shop scheduling problem that minimizes the maximum
makespan « can be formulated as following:

minimize «
subject to (2) - (6)
ok, €{0,1}, VieN,jeMkeN
Vjie M,keN,

(7

Yjk = 0,

where all variables, parameters and sets are listed in Table I.

D. Reducing the overall scheduling makespan

In order to solve Equation 7, which is known to be an NP-
hard problem, a method such as Mixed Integer Programming
(MIP) is suitable. To simplify this problem, we first omit op-
tional constraints in Equation 4 and ignore all idle intermediate
positions of each machine. Secondly, we subsume constraints
in Equation 5 with a reduced set of following constraints:

N
Uik = Y- + Yt +5)ah, i € MJEE N, (8)
i=1
Note that this substitution is valid for m = 1 policy, i.e. when
a traditional job scheduling problem formulation is used where
only one task can be processed at a time [20]. Finally, we fix
all x; . = 0 if the device ¢ is more than 1 wireless hop away
from the machine j. This is done to avoid the high bitrate
reduction and loss rate common for multi-hop wireless ad-hoc
mesh networking [21].

To solve Equation 7, we use the latest IBM ILOG CPLEX
v.12.8 [22] and a High Performance Computing (HPC) Cloud
server with two 16-core Intel Xeon Gold 6142 CPUs at 2.6
GHz, 384GB ECC DDR4-2666 RAM running Linux Ubuntu
18.04 STD that is allocated in the CloudLab platform [23]. Our
evaluation results in Section IV show that the 1% optimality
gap solution scales an order of magnitude faster than the



minimum makespan for moderate number of devices (up to
100). This occurs at the expense of a 2-3 second increase in
maximum makespan, with the average maximum makespan
value being 5-6 minutes.

E. Limitations of Current Estimation Techniques

Static transmission rate estimators can degrade the quality
of calculated schedules over time, particularly when relying
on measuring the link bitrate or using the iperf utility to
calculate the transmission time of data [12]. These inaccura-
cies can prevent scheduling algorithms from making efficient
offloading decisions, especially in situations where network
and device states are dynamic. Another common issue with
static measurement techniques is that they are not able to make
predictions a priori, and therefore need to take measurements
periodically. This can lead to increases in network overhead
and subsequent delays in scheduling large number of tasks.

The plots in Figure 3 show the transmission and processing
characteristics for a variety of machine types and network con-
ditions collected in our experiments. The benchmark used in
Figure 3a is from a study that used dlib for face detection [24]
on the same image dataset [25] used in our facial recognition
application based on the dlib library [26]. As expected,
there is a positive correlation between processing speed and
hardware type. Additionally, we observe small differences in
processing speed between image resolutions as well as a small
variance within each image resolution group which suggest
that the appearance of faces isn’t a compounding factor in
resulting processing times. In Figure 3b, each method provides
estimates that are much faster than the actual transmission time
measured, which we believe is due to the simplicity of the
underlying estimation techniques.

IV. EVALUATION RESULTS
A. Data Collection from Real-World Experiments

We conducted a series of realistic wireless network ex-
periments to measure the transmission and processing delays
for a facial recognition service. The image dataset was sub-
sampled from the ChokePoint facial recognition dataset [25].
The dataset was then partitioned into four groups of dif-
fering image resolutions (800x600, 1024x768, 1600x1200,
1920x1440), with 100 images per group. We divided the data
into transmission and processing datasets in order to more
accurately model each independent factor.

To measure transmission time, we configured a Mikrotik
router using the standard mesh routing protocol. A Raspberry
Pi served as an IoT-based cloudlet while using a wireless
laptop to vary the distance between the client and server. In
total, 2000 transmission delay samples were recorded, some
of which were removed due to being statistical outliers (i.e.
having a transmission time outside of three standard deviations
from the mean). This was done to reduce the impact of
presumably unrepresentative outliers on the models.

Processing time was captured by running a facial recog-
nition application that was implemented using the popular
d1lib machine learning library [26] on each group of images.
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Fig. 3. Experimental analysis for a set of image resolutions relating to: (a)
processing characteristics for various hardware profiles, and (b) transmission
estimates calculated using various methods and measurement tools.

Processing speed was measured in terms of frames per second,
while profiling the processor clock speed, RAM, and cache
size. This was done because they are most indicative of the
processing delay characteristics of the server. We measured
the processing characteristics of five different machine types:
Raspberry Pi v3, three ExoGENI nodes with various process-
ing capabilities, and one instaGENI XEN-based virtual node.
In total, 2000 processing delay samples were recorded, with
no outliers removed.

Table II shows the ‘features of interest’ that were collected
during our experiments. We collected features related to the
networking hardware, processing capabilities of the machines,
and attributes of the data to being offloaded. Signal level
and link quality are both measures of the strength of the
connection, while noise, packet loss, and jitter are measures of
connection interruptions. Bitrate and mean RTT are valuable
measurements of the capacity and speed of the connection.
Note, we have released this dataset for public use in order to
foster more research into improving offloading systems [27].

B. Predicting Offloading Costs with Machine Learning

Model selection and evaluation. We evaluated a mixture
of linear and nonlinear approaches in order to best survey
the accuracy of ML models for predicting transmission and
processing delays. All input feature values were normalized,
and the models were implemented using RapidMiner [28]. We
chose Linear Regression, Multi-Layer Perceptron, and Support
Vector Regression as our linear models, and Decision Tree,



TABLE II
COLLECTED FEATURES FOR TRAINING MODELS

Transmission Dataset Processing Dataset

Data Attributes:

Image Height (pixels)
Image Width (pixels)
Data Size (bytes)

Image Height (pixels)
Image Width (pixels)
Data Size (bytes)

Hardware Parameters:

Signal Level (dB) Processor Speed (MHz)
Noise Level (dB) RAM (Kb)
Link Quality (%) L1d Cache (Kb)
Bitrate (Mb/s) L1i Cache (Kb)
Packet Loss (%) L2 Cache (Kb)
Mean RTT (sec) -
Jitter (sec) -

Mobility:
Distance (m) + 15 |

N/A

Prediction Parameters:

Transmission Time (sec) ‘ Processing Speed (fps)

Random Forest, and k-Nearest Neighbors as our nonlinear
models. We anticipated that the nonlinear models would better
capture the nonlinearities inherent in wireless networks.

Our performance results in Table III show the benefits
of using data-driven models for predicting transmission and
processing speed over traditional estimation techniques that
use iperf utility and the facial recognition benchmark as a
baseline. Not only do the ML models on average have a
much lower RMSE than the baseline estimates, they also
have much better precision in terms of the variance observed
for predictions. These findings suggest that using data-driven
models for predicting offloading costs may lead to improved
and more reliable scheduling performance.

TABLE IIT
MACHINE LEARNING PREDICTOR RESULTS

Transmission Time  Processing Speed

Model Type RMSE RMSE
Baseline Estimate 2.700 + 2.223 8.285 + 6.520
Decision Tree 0.877 £ 0.227 0.231 + 0.040
k-Nearest Neighbors 0.826 + 0.174 0.250 + 0.041
Linear Regression 0.835 + 0.139 0.748 + 0.041
Multi-Layer Perceptron 0.814 + 0.179 0.307 £+ 0.055
Random Forest Regressor 0.813 + 0.263 0.741 £+ 0.147
Support Vector Machine 0.837 £+ 0.269 0.878 + 0.079

We hypothesize that the Random Forest Regressor (RFR)
and Decision Tree (DT) models perform the best due to sev-
eral underlying factors inherent in their design. For instance,
decision trees have the ability to produce fine-grained decision
branches which tend to perform well for modeling various
complex relationships. For more complicated relationships
such as those exhibited in wireless networks, RFR is ideal
because it is composed of a collection of decision trees, where
each tree’s output is used in a voting system to determine

the final output of the forest. This voting system, known as
bagging reduces the bias and variance of the model.

C. Protest management case study results

Simulation settings. Our Java-based simulation environment
is composed by the latest IBM ILOG CPLEX v.12.8 [22] and
a High Performance Computing (HPC) Cloud server with two
16-core Intel Xeon Gold 6142 CPUs at 2.6 GHz, 384GB ECC
DDR4-2666 RAM running Linux Ubuntu 18.04 STD allocated
in the CloudLab platform [23].

Motivated by the challenges of protest crowds incident
management described in Section III-A, we generate a 1 km?
area similar to a typical university campus scale as shown
in Figure 4. We then uniformly generate from 1 to 5 protest
incident epicenters within this area. After that, we place both
servers and devices following a normal sampling distribution
N (epi,o?), where the mean corresponds to some protest
epicenter coordinates ef)i, and the standard deviation o = %
km. By default, we place a total of 50 devices, and use a
device-to-server ratio of 10 unless stated otherwise.

Finally, each device offloads from 1 to 10 images of some
resolution uniformly selected from an image resolution set
{800p, 1024p, 1600p, 1920p}. We then select a corresponding
trace for each device ¢ and server j based on the image reso-
lution, server and device proximity, server type, etc. We then
use these traces to obtain either ground-truth communication
t7; and processing tfj times or estimate/predict these times.

After setting up the environment, we attempt to offload each

task to exactly one server in a way to minimize the maximum
makespan among all servers. In this simulation, our main goal
is to understand how the prediction/estimation techniques used
for ¢7; and tfj affects the optimal scheduling when ground-
truth data is used instead.
Comparison methods and metrics. We compare the solution
to Equation 7 when ground-truth values of ¢7; and tfj are
known in advance (intractable in practice) with its solutions
when 7, and t}; are either estimated or predicted. We refer
to the ground-truth-based Equation 7 solution as the optimal
solution Opt.

To estimate the communication time tfj, we use the follow-
ing formula:

data_size;
tfj — ;17 9)
throughput;;
where the average throughput;; value between device ¢ and
server j is estimated using iperf utility. We then estimate the
processing time ¢? ; as follows:

» N
Y processing_speed’

(10)

where N is a number of images, and processing_speed is
an average face recognition speed (measured in frames per
second) for a specific image resolution obtained from prior
benchmark results [24]. We refer to the solution of Equation 7
that is estimated via Equations 9 and 10 values of t{; and ¢}
as the estimated solution E'st.
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Fig. 4. Geo-spatial maps showing an example of device and server placement during trace-driven simulations for the case of: 1(a), 3(b), and 5(c) Epicenters,
respectively. In our crowd protest incident case study, we represent each protest site as an Epicenter, with a set of heterogeneous resources available for

processing offloading requests from remote devices.

Finally, we use our ML models to predict values t{; and
tfj, and represent the two best pairs of predictors as (P1) and
(P2). For predicting t{; and t};, we use the Random Forest and
Decision Tree models for (P1) and the Multi-Layer Perceptron
and k-Nearest Neighbors models for (P2), respectively.

The related solutions are compared using two metrics: the
Equation 7 objective — the maximum makespan « (the lower
the better) and its optimality gap measured as a percentage.
We measure the optimality gap by substitution of ground-
truth values ¢; and tfj to the final schedule in order to
retrieve the ground-truth . We then estimate the increase
in percentage for Est, P1 and P2 solutions with respect to
the Opt. Additionally, we compare the time it takes to solve
Equation 7 with its maximum/minimum makespan, and when
1% optimality gap is allowed.

Scheduling Performance. Our trace-driven simulations pro-
duced two significant results, described below:

(i) The branch-and-bound-based solution to Equation 7
scales sufficiently for moderate wireless network sizes of
up to 100 nodes when a 1% optimality gap is allowed.

Our trace-driven simulations indicate that optimally solving
Equation 7 is NP-hard and can be intractable for moderate
scale networks of 50-100 nodes. To address this intractability,
we can allow a 1% optimality gap that enables the branch-and-
bound-based solution using IBM CPLEX to scale sufficiently
for a large number of nodes. Figure 5a shows that for a
100-node edge network, a solution to Equation 7 with a 1%
optimality gap can be produced in an order of magnitude
less time than either the minimum or maximum makespan
requires. Because the optimization problem can be solved in
significantly less time, producing solutions will not increase
the blocking probability of our online offloading schemes.
The relatively shorter scheduling time also allows for the
scheduling middleware to begin another batch of tasks while
the previous batch is still being processed. Note however that
for the case of more than 100 nodes, existing (polynomial)
greedy or approximation algorithms can be used for solution.

(i) Data-driven resource scheduling matches the ground-
truth optimal in 70% of cases and has an « value no more
than 3 times higher in the worst case.

From our simulations, we also found that estimation based
edge offloading solutions produce significantly worse schedul-
ing results with respect to both the optimal ground-truth solu-
tion and our data-driven approach. Figure 5c shows estimation-
based offloading only matches the optimal scheduling in 50%
of cases, and can have a maximum makespan over ten times
higher in the worst case. In comparison, our data-driven
scheduling system matches the optimal ground-truth offloading
70% of the time and produces 2-3 times higher maximum
makespan in the worst case scenario.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose the use of data-driven techniques
for predicting offloading costs in multi-edge resource schedul-
ing that is used in conjunction with an optimization engine to
provide near-optimal scheduling solutions. We benchmarked
several state-of-the-art ML models in order to identify the
trade-offs between each model, and evaluated the models
to find the most appropriate ones for the data processing
needs in a protest crowd incident management use case. We
also investigated the scalability of our approach in a multi-
edge system testbed setup by performing a set of trace-driven
simulations for a large number of devices and machines. By
using a standard optimization approach such as Mixed Integer
Programming, we were able to derive near-optimal schedules
when allowing a 1% optimality gap.

In the future, we plan to explore online and incremental
machine learning models to investigate the robustness of
ML-based predictions for highly dynamic networking and
computing environments (e.g. user mobility, link failures. etc.).
In addition, consideration of deadline constraints for real-
time decision making scenarios in protest crowds incident
management is also part of potential future work.
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Fig. 5. Evaluation results from trace-driven simulations. (a) Equation 7 scalability results of its optimal versus 1% optimality gap solutions with respect to the
min/max scheduling makespan (MS). (b) Resulting maximum makespan based on a server availability, i.e., device-to-server ratio. (c) Complement Cumulative
Distribution Function (CCDF) of the ground-truth optimality gap for estimation/prediction-based offloading methods.
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