
Data-Driven Edge Computing Resource Scheduling
for Protest Crowds Incident Management

Jon Patman⇤, Peter Lovett†, Andrew Banning‡, Annie Barnett§, Dmitrii Chemodanov⇤, Prasad Calyam⇤

⇤Department of Electrical Engineering & Computer Science, University of Missouri, USA
†Computer & Information Science Department, University of Oregon, USA

‡Department of Computer Science, Southeast Missouri State University, USA
§Department of Computer Science, Cornell University, USA

{dycbt4, jpxrc}@mail.missouri.edu, plovett@uoregon.edu, arbanning1s@semo.edu,

akb222@cornell.edu, calyamp@missouri.edu

Abstract—Computation offloading has been shown to be a
viable solution for addressing the challenges of processing
compute-intensive workloads between low-power devices and
nearby servers known as cloudlets. However, factors such as
dynamic network conditions, concurrent user access, and limited
resource availability often result in offloading decisions negatively
impacting end users in terms of delay and energy consumption.
To address these shortcomings, we investigate the benefits of using
Machine Learning for predicting offloading costs for a facial
recognition service in a series of realistic wireless experiments.
We also perform a set of trace-driven simulations to emulate a
multi-edge protest crowd incident case study and formulate an
optimization model that minimizes the time taken for all service
tasks to be completed. Because optimizing offloading schedules
for such a system is a well-known NP-complete problem, we
use mixed integer programming and show that our scheduling
solution scales efficiently for a moderate number of user devices
(10-100) with a correspondingly small number of cloudlets (1-10),
a scale commonly sufficient for public safety officials in crowd
incident management. Moreover, our results indicate that using
Machine Learning for predicting offloading costs leads to near-
optimal scheduling in 70% of the cases we investigated and offers
a 40% gain in performance over baseline estimation techniques.

I. INTRODUCTION

The recent advances in cloud computing technologies and

smart mobile devices has given rise to new systems that bring

cloud-like applications and services to users on mobile de-

vices. The maturing Internet of Things (IoT) paradigm has also

provided an avenue for offering new services to users via low-

power, and often wireless, embedded devices. The applications

driven by IoT-based computing have emerged in a variety of

domains such as smart city infrastructure, industrial remote

sensing, disaster response, and protest crowd management.

One of the biggest challenges hindering the full realization of

IoT-based applications is how best to orchestrate user devices

and resources that have limited processing capabilities while

operating in potentially unreliable networks [1].

An emerging paradigm known as edge computing seeks to

augment low-power devices with access to more responsive

cloud-like services by migrating computational workloads

from devices to nearby servers known as cloudlets [2]. For

mobile devices in particular, Mobile Edge Computing (MEC)

can be used to prolong the device’s battery life and can

perform computationally intensive tasks with less delay for

the user [3]. ‘Computation offloading’ is a popular strategy

for mitigating the issues associated with resource management

in MEC networks. Offloading takes place by partitioning the

device’s application or workload (e.g. requests or data streams)

in order to distribute the partitions to nearby servers with the

aim of reducing latency or energy consumption for the device

or the overall system.

Recent approaches involving energy-aware offloading poli-

cies offer flexibility to users who require energy conservation

over low-latency or vice versa in visual IoT-based data pro-

cessing [3]. These approaches are limited in that offloading

policy selection is based on heuristics and domain-knowledge

experience, which may not fully capture the heterogeneity of

edge resources. The challenges of managing edge networks

are exacerbated by the fact that a lot of these services are

deployed on wireless networks, which are more susceptible

to noise and disruptions than traditional cloud computing

systems. Moreover, available edge resources are finite and

need to be efficiently managed in order to provide users with

the most cost-efficient policies for their device. To produce

more accurate and flexible estimates about networking and

computing behavior, machine learning models can be trained

to predict both the transmission and processing delays for data

being offloaded between a mobile device and a cloudlet.

Facial recognition and tracking applications which rely

on deep learning are rapidly growing in demand but have

traditionally been too computationally expensive to deploy on

low-power consumer devices [4]. Facial recognition services,

therefore, are an ideal use-case for studying the complexi-

ties of edge computing systems. Commercial services such

as Amazon’s Rekognition API and AWS Lambda functions

are streamlined in order to offer advanced visual processing

capabilities but also assume that users accessing those services

have reliable Internet connectivity. In urban areas experiencing

crowd protests or emergency situations, authorities may need

to quickly assess the location of ”bad actors” and act accord-

ingly. Transferring imagery collected by mobile devices to

nearby cloudlets allows for processing that provides incident-

related situational awareness for emergency personnel.978-1-5386-7659-2/18/$31.00 c�2018 IEEE

which is device agnostic and is only concerned with processing

the user’s raw data [10][11]. Our recent prior work pro-

vides researchers with publicly available datasets and testbed

configurations for reproducing experimental edge computing

methodologies [12].

Algorithms that schedule offloading decisions based on the

device profile and network information perform significantly

better than those that assume a static network model [13].

Researchers have previously addressed the problem of server

choice for offloading tasks when multiple servers are available

[3][14]. Other works have approximated the best offload-

ing node using heuristics and statistical estimation methods

for wireless network performance [15]. Several approaches

have re-purposed the popular job shop scheduling problem

to optimize their objective of choice (e.g. latency, energy

consumption, throughput, etc.) [16][17].

To the best of our knowledge, none of the prior approaches

consider the use of data-driven estimation techniques for

improving optimization in a multi-edge resource scheduling

context for a public safety application context.

III. MULTI-EDGE RESOURCE SCHEDULING

A. Protest Crowds Incident Management

As mentioned in Section I, an exemplar use case for a

distributed edge computing service involves offloading facial

recognition tasks from mobile devices to nearby cloudlets in

order to provide public safety officials with increased situa-

tional awareness. Visual data processing in a timely manner

with limited networking and computing resources is essential

in decision making of incident commanders e.g., in “force

escalation” decisions that rely on data processing related to

long time periods of crowd status monitoring.

In order to provide a generalized solution for multi-edge

scheduling in a protest crowds incident management scenarios,

we begin by discussing the inherent challenges present in such

a visual data processing system:

• Environmental conditions and large numbers of cloudlets

and devices may cause noisy and congested network

conditions

• Estimates about offloading costs prove challenging due

to the nonlinear behavior of wireless networks

• Remote mobile devices are usually low-power and have

limited processing and storage capabilities

• Scarce computing resources are available for performing

offloading functionality (high device-to-server ratio)

For the purposes of scheduling offloading tasks in such

a visual data processing system, we make the following

assumptions:

• Our focus is on theater-scale edge computing where a

maximum of 100 nodes is adequate for our use-case

• Computation should always be offloaded instead of exe-

cuted locally due to the global facial database accessible

only by the edge servers

• Network and device states are observable during runtime

• Every cloudlet is capable of accepting new jobs

Fig. 2. Data-driven edge computing system that shows the interplay between
the prediction and optimization engines for scheduling offloading tasks
involving multiple users and their devices. User data is transmitted to a central
node that acts as the scheduling middleware and contains the software stack
for performing the prediction and optimization functions. A central control
center acts as a remote authority for gathering processed data and implements
context-specific policies to aid in incident commander decision making.

• Scheduling middleware receives the metadata for all jobs

for prediction and offloading decision-making

• Only involved public safety management personnel have

access to the edge network; no other traffic is present

B. Proposed Computation Offloading Approach

We propose a data-driven computation offloading system

for use in multi-edge resource scheduling applications such

as e.g., the protest crowds incident management use case. To

overcome the inaccuracy and measurement overhead present in

traditional static estimation techniques, our offloading system

employs data-driven models for predicting the transmission

and computation times based on historical network and device

data. The use of ML models allows for more accurate net-

work performance predictions without the added measurement

overhead, which can be problematic for optimizing offloading

schedules in multi-edge resource environments.

Figure 2 shows an overview of our proposed data-driven

edge computation offloading system. An analytics platform

can be used for profiling network and device parameters,

which are then used as input features for designing the

predictive models. The resulting cost predictions are then

fed into an optimization engine in order to derive offloading

schedules. Offloading decisions can then be facilitated by

updating forwarding tables of routers using Software-Defined

Networking or similar technologies. Additionally, scheduling

policies can be implemented on the scheduling middleware

to allow for different edge computing scenarios (e.g. energy-

aware scheduling, prioritizing traffic for emergency personnel,

etc.). In this paper, our scope is limited to developing and eval-

uating the scheduling middleware, and higher-layer Control

Center orchestration is beyond the scope of this paper.

C. Job Shop Scheduling Problem

The multi-edge computation offloading problem in our

crowd protest incident management use case can be formulated

as the popular online job shop scheduling problem [18]. Our

scheduling problem objective is to minimize the maximum

makespan. To this aim, we model computation offloading

requests from remote devices as tasks for scheduling, while

the cloudlets are modeled as machines that process these tasks.

We start our formulation of the job shop scheduling problem

by introducing the following binary variable:

xi
jk =

(

1, if task i is assigned at machine j position k,

0, otherwise,
(1)

with i ∈ N , j ∈ M , and k ∈ {1, ..., |N |}, where N is the set

of all tasks and M is the set of all machines.

We then describe the assignment constraints which are

essential for the job scheduling problem. The first constraint

type ensures that each task is assigned to exactly one machine

position as follows:

M
X

j=1

N
X

k=1

xi
jk = 1, ∀i ∈ N. (2)

The second constraint type ensures that at most m tasks are

assigned to each machine position as follows:

N
X

i=1

xi
jk ≤ m, ∀j ∈ M,k ∈ N. (3)

Note that in general when the edge cloud provider policy m >

1, multiple tasks can be processed in parallel at the position

k of the machine j.

The following (optional) constraint type can be used to

ensure that each machine’s positions are filled sequentially

from the beginning:

N
X

i=1

xi
jk ≤

N
X

i=1

xi
j(k−1), ∀j ∈ M,k ∈ {2...N}. (4)

Note that constraints in Equations 2 and 3 are sufficient for

a feasible task assignment when no specific processing task

order is required (also known as precedence constraints). Note

also that we are processing batches of independent images, and

thus, we do not require having precedence constraints in our

problem. However, specific task order can be required, e.g.

for tracking computer vision applications that use results of

preceding video frames to track current frames [19].

Let us also introduce a positive continuous variable yjk that

denotes the time when m tasks at position k of machine j

finish processing. This time should be greater than or equal

to the sum of the time when machine j finishes processing

position k−1 and the processing/communication time of the m

tasks. Thus, we have to satisfy the following set of constraints:

yjk ≥ yj(k−1) + (tpij + tcij)x
i
jk, ∀i ∈ N, j ∈ M,k ∈ N, (5)

where t
p
ij and tcij are the processing and communication times

of task i at machine j. Note also that yj0 ≥ 0 is a machine

offset time — the time when machine j finishes processing

of the previously scheduled tasks which come online — and

yj0 = 0 for the offline job scheduling problem when all tasks

are known in advance.

TABLE I
SYMBOLS AND NOTATIONS OF OPTIMIZATION PROBLEM

Sets:

N , Set of tasks (offloading mobile devices)

M , Set of machines (edge servers)
Variables:

xi
jk

, Binary variable equal to 1 if task i is assigned at machine j

position k and 0 otherwise
yjk , Positive continuous variable that denotes the time when m

tasks at position k of machine j will finish being processed
α , Continuous variable that denotes the maximum makespan
Parameters:

t
p
ij , Task i processing time at machine j

tcij , Task i transmission time to machine j

Policies:

m , The maximum number of tasks that can be processed in
parallel at the same machine position

Let us finally introduce a continuous variable ↵ that denotes

the maximum makespan among all machines. Thus, ↵ has to

satisfy the following set of constraints:

yjN ≤ ↵, ∀j ∈ M. (6)

Having both variables and constraints discussed, the online

job shop scheduling problem that minimizes the maximum

makespan ↵ can be formulated as following:

minimize ↵

subject to (2) - (6)

xi
jk ∈ {0, 1}, ∀i ∈ N, j ∈ M,k ∈ N

yjk ≥ 0, ∀j ∈ M,k ∈ N,

(7)

where all variables, parameters and sets are listed in Table I.

D. Reducing the overall scheduling makespan

In order to solve Equation 7, which is known to be an NP-

hard problem, a method such as Mixed Integer Programming

(MIP) is suitable. To simplify this problem, we first omit op-

tional constraints in Equation 4 and ignore all idle intermediate

positions of each machine. Secondly, we subsume constraints

in Equation 5 with a reduced set of following constraints:

yjk ≥ yj(k−1) +
N
X

i=1

(tpij + tcij)x
i
jk, j ∈ M,k ∈ N. (8)

Note that this substitution is valid for m = 1 policy, i.e. when

a traditional job scheduling problem formulation is used where

only one task can be processed at a time [20]. Finally, we fix

all xi
jk = 0 if the device i is more than 1 wireless hop away

from the machine j. This is done to avoid the high bitrate

reduction and loss rate common for multi-hop wireless ad-hoc

mesh networking [21].

To solve Equation 7, we use the latest IBM ILOG CPLEX

v.12.8 [22] and a High Performance Computing (HPC) Cloud

server with two 16-core Intel Xeon Gold 6142 CPUs at 2.6

GHz, 384GB ECC DDR4-2666 RAM running Linux Ubuntu

18.04 STD that is allocated in the CloudLab platform [23]. Our

evaluation results in Section IV show that the 1% optimality

gap solution scales an order of magnitude faster than the

minimum makespan for moderate number of devices (up to

100). This occurs at the expense of a 2-3 second increase in

maximum makespan, with the average maximum makespan

value being 5-6 minutes.

E. Limitations of Current Estimation Techniques

Static transmission rate estimators can degrade the quality

of calculated schedules over time, particularly when relying

on measuring the link bitrate or using the iperf utility to

calculate the transmission time of data [12]. These inaccura-

cies can prevent scheduling algorithms from making efficient

offloading decisions, especially in situations where network

and device states are dynamic. Another common issue with

static measurement techniques is that they are not able to make

predictions a priori, and therefore need to take measurements

periodically. This can lead to increases in network overhead

and subsequent delays in scheduling large number of tasks.

The plots in Figure 3 show the transmission and processing

characteristics for a variety of machine types and network con-

ditions collected in our experiments. The benchmark used in

Figure 3a is from a study that used dlib for face detection [24]

on the same image dataset [25] used in our facial recognition

application based on the dlib library [26]. As expected,

there is a positive correlation between processing speed and

hardware type. Additionally, we observe small differences in

processing speed between image resolutions as well as a small

variance within each image resolution group which suggest

that the appearance of faces isn’t a compounding factor in

resulting processing times. In Figure 3b, each method provides

estimates that are much faster than the actual transmission time

measured, which we believe is due to the simplicity of the

underlying estimation techniques.

IV. EVALUATION RESULTS

A. Data Collection from Real-World Experiments

We conducted a series of realistic wireless network ex-

periments to measure the transmission and processing delays

for a facial recognition service. The image dataset was sub-

sampled from the ChokePoint facial recognition dataset [25].

The dataset was then partitioned into four groups of dif-

fering image resolutions (800x600, 1024x768, 1600x1200,

1920x1440), with 100 images per group. We divided the data

into transmission and processing datasets in order to more

accurately model each independent factor.

To measure transmission time, we configured a Mikrotik

router using the standard mesh routing protocol. A Raspberry

Pi served as an IoT-based cloudlet while using a wireless

laptop to vary the distance between the client and server. In

total, 2000 transmission delay samples were recorded, some

of which were removed due to being statistical outliers (i.e.

having a transmission time outside of three standard deviations

from the mean). This was done to reduce the impact of

presumably unrepresentative outliers on the models.

Processing time was captured by running a facial recog-

nition application that was implemented using the popular

dlib machine learning library [26] on each group of images.

800x600 1024x768 1600x1200 1920x1440

Image Resolution

0.05

0.5

5

11

P
ro

ce
ss

in
g
 S

p
ee

d
 [

fp
s]

Benchmark

RaspberryPi

XOMedium

XOLarge

(a) Processing speed based on hardware type

800x600 1024x768 1600x1200 1920x1440

Image Resolution

10
-2

10
-1

10
0

T
ra

n
sm

is
si

o
n
 T

im
e

[s
]

Actual

Iperf

SNR

Theoretical

(b) Transmission time estimates based on measurement type

Fig. 3. Experimental analysis for a set of image resolutions relating to: (a)
processing characteristics for various hardware profiles, and (b) transmission
estimates calculated using various methods and measurement tools.

Processing speed was measured in terms of frames per second,

while profiling the processor clock speed, RAM, and cache

size. This was done because they are most indicative of the

processing delay characteristics of the server. We measured

the processing characteristics of five different machine types:

Raspberry Pi v3, three ExoGENI nodes with various process-

ing capabilities, and one instaGENI XEN-based virtual node.

In total, 2000 processing delay samples were recorded, with

no outliers removed.

Table II shows the ‘features of interest’ that were collected

during our experiments. We collected features related to the

networking hardware, processing capabilities of the machines,

and attributes of the data to being offloaded. Signal level

and link quality are both measures of the strength of the

connection, while noise, packet loss, and jitter are measures of

connection interruptions. Bitrate and mean RTT are valuable

measurements of the capacity and speed of the connection.

Note, we have released this dataset for public use in order to

foster more research into improving offloading systems [27].

B. Predicting Offloading Costs with Machine Learning

Model selection and evaluation. We evaluated a mixture

of linear and nonlinear approaches in order to best survey

the accuracy of ML models for predicting transmission and

processing delays. All input feature values were normalized,

and the models were implemented using RapidMiner [28]. We

chose Linear Regression, Multi-Layer Perceptron, and Support

Vector Regression as our linear models, and Decision Tree,

TABLE II
COLLECTED FEATURES FOR TRAINING MODELS

Transmission Dataset Processing Dataset

Data Attributes:

Image Height (pixels) Image Height (pixels)
Image Width (pixels) Image Width (pixels)

Data Size (bytes) Data Size (bytes)

Hardware Parameters:

Signal Level (dB) Processor Speed (MHz)
Noise Level (dB) RAM (Kb)
Link Quality (%) L1d Cache (Kb)

Bitrate (Mb/s) L1i Cache (Kb)
Packet Loss (%) L2 Cache (Kb)
Mean RTT (sec) -

Jitter (sec) -

Mobility:

Distance (m) ± 15 N/A

Prediction Parameters:

Transmission Time (sec) Processing Speed (fps)

Random Forest, and k-Nearest Neighbors as our nonlinear

models. We anticipated that the nonlinear models would better

capture the nonlinearities inherent in wireless networks.
Our performance results in Table III show the benefits

of using data-driven models for predicting transmission and

processing speed over traditional estimation techniques that

use iperf utility and the facial recognition benchmark as a

baseline. Not only do the ML models on average have a

much lower RMSE than the baseline estimates, they also

have much better precision in terms of the variance observed

for predictions. These findings suggest that using data-driven

models for predicting offloading costs may lead to improved

and more reliable scheduling performance.

TABLE III
MACHINE LEARNING PREDICTOR RESULTS

Model Type
Transmission Time

RMSE
Processing Speed

RMSE

Baseline Estimate 2.700 ± 2.223 8.285 ± 6.520
Decision Tree 0.877 ± 0.227 0.231 ± 0.040

k-Nearest Neighbors 0.826 ± 0.174 0.250 ± 0.041
Linear Regression 0.835 ± 0.139 0.748 ± 0.041

Multi-Layer Perceptron 0.814 ± 0.179 0.307 ± 0.055
Random Forest Regressor 0.813 ± 0.263 0.741 ± 0.147
Support Vector Machine 0.837 ± 0.269 0.878 ± 0.079

We hypothesize that the Random Forest Regressor (RFR)

and Decision Tree (DT) models perform the best due to sev-

eral underlying factors inherent in their design. For instance,

decision trees have the ability to produce fine-grained decision

branches which tend to perform well for modeling various

complex relationships. For more complicated relationships

such as those exhibited in wireless networks, RFR is ideal

because it is composed of a collection of decision trees, where

each tree’s output is used in a voting system to determine

the final output of the forest. This voting system, known as

bagging reduces the bias and variance of the model.

C. Protest management case study results

Simulation settings. Our Java-based simulation environment

is composed by the latest IBM ILOG CPLEX v.12.8 [22] and

a High Performance Computing (HPC) Cloud server with two

16-core Intel Xeon Gold 6142 CPUs at 2.6 GHz, 384GB ECC

DDR4-2666 RAM running Linux Ubuntu 18.04 STD allocated

in the CloudLab platform [23].

Motivated by the challenges of protest crowds incident

management described in Section III-A, we generate a 1 km2

area similar to a typical university campus scale as shown

in Figure 4. We then uniformly generate from 1 to 5 protest

incident epicenters within this area. After that, we place both

servers and devices following a normal sampling distribution

N (~epi,�2), where the mean corresponds to some protest

epicenter coordinates ~epi, and the standard deviation � = 1
6

km. By default, we place a total of 50 devices, and use a

device-to-server ratio of 10 unless stated otherwise.

Finally, each device offloads from 1 to 10 images of some

resolution uniformly selected from an image resolution set

{800p, 1024p, 1600p, 1920p}. We then select a corresponding

trace for each device i and server j based on the image reso-

lution, server and device proximity, server type, etc. We then

use these traces to obtain either ground-truth communication

tcij and processing t
p
ij times or estimate/predict these times.

After setting up the environment, we attempt to offload each

task to exactly one server in a way to minimize the maximum

makespan among all servers. In this simulation, our main goal

is to understand how the prediction/estimation techniques used

for tcij and t
p
ij affects the optimal scheduling when ground-

truth data is used instead.

Comparison methods and metrics. We compare the solution

to Equation 7 when ground-truth values of tcij and t
p
ij are

known in advance (intractable in practice) with its solutions

when tcij and t
p
ij are either estimated or predicted. We refer

to the ground-truth-based Equation 7 solution as the optimal

solution Opt.

To estimate the communication time tcij , we use the follow-

ing formula:

tcij =
data sizei

throughputij
, (9)

where the average throughputij value between device i and

server j is estimated using iperf utility. We then estimate the

processing time t
p
ij as follows:

t
p
ij =

N

processing speed
, (10)

where N is a number of images, and processing speed is

an average face recognition speed (measured in frames per

second) for a specific image resolution obtained from prior

benchmark results [24]. We refer to the solution of Equation 7

that is estimated via Equations 9 and 10 values of tcij and t
p
ij

as the estimated solution Est.

Device

Server

Epicenter

(a)

Device

Server

Epicenter

(b)

Device

Server

Epicenter

(c)

Fig. 4. Geo-spatial maps showing an example of device and server placement during trace-driven simulations for the case of: 1(a), 3(b), and 5(c) Epicenters,
respectively. In our crowd protest incident case study, we represent each protest site as an Epicenter, with a set of heterogeneous resources available for
processing offloading requests from remote devices.

Finally, we use our ML models to predict values tcij and

t
p
ij , and represent the two best pairs of predictors as (P1) and

(P2). For predicting tcij and t
p
ij , we use the Random Forest and

Decision Tree models for (P1) and the Multi-Layer Perceptron

and k-Nearest Neighbors models for (P2), respectively.
The related solutions are compared using two metrics: the

Equation 7 objective — the maximum makespan ↵ (the lower

the better) and its optimality gap measured as a percentage.

We measure the optimality gap by substitution of ground-

truth values tcij and t
p
ij to the final schedule in order to

retrieve the ground-truth ↵. We then estimate the increase

in percentage for Est, P1 and P2 solutions with respect to

the Opt. Additionally, we compare the time it takes to solve

Equation 7 with its maximum/minimum makespan, and when

1% optimality gap is allowed.
Scheduling Performance. Our trace-driven simulations pro-

duced two significant results, described below:

(i) The branch-and-bound-based solution to Equation 7

scales sufficiently for moderate wireless network sizes of

up to 100 nodes when a 1% optimality gap is allowed.

Our trace-driven simulations indicate that optimally solving

Equation 7 is NP-hard and can be intractable for moderate

scale networks of 50-100 nodes. To address this intractability,

we can allow a 1% optimality gap that enables the branch-and-

bound-based solution using IBM CPLEX to scale sufficiently

for a large number of nodes. Figure 5a shows that for a

100-node edge network, a solution to Equation 7 with a 1%

optimality gap can be produced in an order of magnitude

less time than either the minimum or maximum makespan

requires. Because the optimization problem can be solved in

significantly less time, producing solutions will not increase

the blocking probability of our online offloading schemes.

The relatively shorter scheduling time also allows for the

scheduling middleware to begin another batch of tasks while

the previous batch is still being processed. Note however that

for the case of more than 100 nodes, existing (polynomial)

greedy or approximation algorithms can be used for solution.

(ii) Data-driven resource scheduling matches the ground-

truth optimal in 70% of cases and has an ↵ value no more

than 3 times higher in the worst case.

From our simulations, we also found that estimation based

edge offloading solutions produce significantly worse schedul-

ing results with respect to both the optimal ground-truth solu-

tion and our data-driven approach. Figure 5c shows estimation-

based offloading only matches the optimal scheduling in 50%

of cases, and can have a maximum makespan over ten times

higher in the worst case. In comparison, our data-driven

scheduling system matches the optimal ground-truth offloading

70% of the time and produces 2-3 times higher maximum

makespan in the worst case scenario.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose the use of data-driven techniques

for predicting offloading costs in multi-edge resource schedul-

ing that is used in conjunction with an optimization engine to

provide near-optimal scheduling solutions. We benchmarked

several state-of-the-art ML models in order to identify the

trade-offs between each model, and evaluated the models

to find the most appropriate ones for the data processing

needs in a protest crowd incident management use case. We

also investigated the scalability of our approach in a multi-

edge system testbed setup by performing a set of trace-driven

simulations for a large number of devices and machines. By

using a standard optimization approach such as Mixed Integer

Programming, we were able to derive near-optimal schedules

when allowing a 1% optimality gap.

In the future, we plan to explore online and incremental

machine learning models to investigate the robustness of

ML-based predictions for highly dynamic networking and

computing environments (e.g. user mobility, link failures. etc.).

In addition, consideration of deadline constraints for real-

time decision making scenarios in protest crowds incident

management is also part of potential future work.

10 20 50 100

Num. of Devices

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
[s

]

Max MS

Min MS

1% Gap

Opt

(a)

2 5 10 25 50

Device-to-Server Ratio

150

300

450

600

M
ax

 M
ak

es
p
an

 [
s]

Opt

Est

P1

P2

(b)

0 1 10 100 1000

Optimality Gap [%]

0

0.2

0.4

0.6

0.8

1

C
C

D
F

Est

P1

P2

(c)

Fig. 5. Evaluation results from trace-driven simulations. (a) Equation 7 scalability results of its optimal versus 1% optimality gap solutions with respect to the
min/max scheduling makespan (MS). (b) Resulting maximum makespan based on a server availability, i.e., device-to-server ratio. (c) Complement Cumulative
Distribution Function (CCDF) of the ground-truth optimality gap for estimation/prediction-based offloading methods.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National

Science Foundation under Award Numbers: CNS-1647182 and

CNS-1359125. Any opinions, findings, and conclusions or

recommendations expressed in this publication are those of

the author(s) and do not necessarily reflect the views of the

National Science Foundation.

REFERENCES

[1] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
“A survey on 5G networks for the Internet of Things: Communication
technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, 2018.

[2] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pillai,
“Cloudlets: at the leading edge of mobile-cloud convergence,” in 2014

6th International Conference on Mobile Computing, Applications and

Services (MobiCASE). IEEE, 2014, pp. 1–9.

[3] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Archi-
tecture and Computation Offloading,” IEEE Communications Surveys

Tutorials, vol. 19, no. 3, pp. 1628–1656, thirdquarter 2017.

[4] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A Survey of
Computation Offloading for Mobile Systems,” Mobile Networks and

Applications, vol. 18, no. 1, pp. 129–140, Feb 2013. [Online].
Available: https://doi.org/10.1007/s11036-012-0368-0

[5] D. Chemodanov, F. Esposito, P. Calyam, and A. Sukhov, “A constrained
shortest path scheme for virtual network service management,” IEEE

Transactions on Network and Service Management, 2018.

[6] S. Sthapit, J. R. Hopgood, N. M. Robertson, and J. Thompson, “Of-
floading to neighbouring nodes in smart camera network,” in Signal

Processing Conference (EUSIPCO), 2016 24th European. IEEE, 2016,
pp. 1823–1827.

[7] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,
“Computation offloading and resource allocation for low-power iot edge
devices,” in Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum

on. IEEE, 2016, pp. 7–12.

[8] M. Kulin, C. Fortuna, E. De Poorter, D. Deschrijver, and I. Moerman,
“Data-driven design of intelligent wireless networks: An overview and
tutorial,” vol. 16, no. 6. Multidisciplinary Digital Publishing Institute,
2016, p. 790.

[9] H. Eom, R. Figueiredo, H. Cai, Y. Zhang, and G. Huang, “MALMOS:
Machine Learning-Based Mobile Offloading Scheduler with Online
Training,” in 3rd IEEE International Conference on Mobile Cloud

Computing, Services, and Engineering, March 2015, pp. 51–60.

[10] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of

the sixth conference on Computer systems. ACM, 2011, pp. 301–314.

[11] A. Crutcher, C. Koch, K. Coleman, J. Patman, F. Esposito, and
P. Calyam, “Hyperprofile-Based Computation Offloading for Mobile
Edge Networks,” 2017 IEEE 14th International Conference on Mobile

Ad Hoc and Sensor Systems (MASS), pp. 525–529, 2017.

[12] J. Patman, M. Alfarhood, S. Islam, M. Lemus, P. Calyam, and K. Pala-
niappan, “Predictive Analytics for Fog Computing using Machine Learn-
ing and GENI,” in Computer Communications Workshops (INFOCOM

WKSHPS), 2017 IEEE Conference on. IEEE, 2018.
[13] Z. Liu, X. Zeng, W. Huang, J. Lin, X. Chen, and W. Guo, “Framework

for Context-Aware Computation Offloading in Mobile Cloud Comput-
ing,” in 2016 15th International Symposium on Parallel and Distributed

Computing (ISPDC), July 2016, pp. 172–177.
[14] K. Sato and T. Fujii, “Radio Environment Aware Computation Of-

floading with Multiple Mobile Edge Computing Servers,” in 2017

IEEE Wireless Communications and Networking Conference Workshops

(WCNCW), March 2017, pp. 1–5.
[15] M. A. Alsheikh, S. Lin, D. Niyato, and H. P. Tan, “Machine Learning

in Wireless Sensor Networks: Algorithms, Strategies, and Applications,”
IEEE Communications Surveys Tutorials, vol. 16, no. 4, pp. 1996–2018,
Fourthquarter 2014.

[16] P. Agrawal and S. Rao, “Energy-aware scheduling of distributed sys-
tems,” IEEE Transactions on Automation Science and Engineering,
vol. 11, no. 4, pp. 1163–1175, 2014.

[17] P. Lindberg, J. Leingang, D. Lysaker, K. Bilal, S. U. Khan, P. Bouvry,
N. Ghani, N. Min-Allah, and J. Li, “Comparison and analysis of greedy
energy-efficient scheduling algorithms for computational grids,” Energy

Aware Distributed Computing Systems, John Wiley & Sons, Hoboken,

NJ, USA, 2012.
[18] M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer,

2016.
[19] R. Gargees, B. Morago, R. Pelapur, D. Chemodanov, P. Calyam,

Z. Oraibi, Y. Duan, G. Seetharaman, and K. Palaniappan, “Incident-
Supporting Visual Cloud Computing Utilizing Software-Defined Net-
working,” vol. 27, no. 1. IEEE, 2017, pp. 182–197.

[20] D. Applegate and W. Cook, “A computational study of the job-shop
scheduling problem,” ORSA Journal on computing, vol. 3, no. 2, pp.
149–156, 1991.

[21] G. R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann,
and B. Walke, “IEEE 802.11s: The WLAN Mesh Standard,” IEEE

Wireless Communications, vol. 17, no. 1, pp. 104–111, February 2010.
[22] IBM, “ILOG CPLEX v.12.8. User’s Manual for CPLEX,” https://www.

ibm.com/products/ilog-cplex-optimization-studio.
[23] R. Ricci, E. Eide, and C. Team, “Introducing cloudlab: Scientific

infrastructure for advancing cloud architectures and applications,” ;

login:: the magazine of USENIX & SAGE, vol. 39, no. 6, pp. 36–38,
2014.

[24] Y. An, J. Wu, and C. Yue, “CNNs for Face Detection and Recognition,”
https://github.com/fusio-wu/CS231A project, 2017.

[25] Y. Wong, S. Chen, S. Mau, C. Sanderson, and B. C. Lovell, “Patch-based
Probabilistic Image Quality Assessment for Face Selection and Improved
Video-based Face Recognition,” in IEEE Biometrics Workshop, Com-

puter Vision and Pattern Recognition (CVPR) Workshops. IEEE, June
2011, pp. 81–88.

[26] D. E. King, “Dlib-ml: A Machine Learning Toolkit,” Journal of Machine

Learning Research, vol. 10, pp. 1755–1758, 2009.
[27] “Data-Driven Scheduling Raw Experimental Data,” https://missouri.box.

com/v/DDS-RawExpData.
[28] RapidMiner, “RapidMiner,” https://rapidminer.com/, 2001–2018.

