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Abstract

The so-called “pinched disk” model of the Mandelbrot set is due to A. Douady,
J. H. Hubbard and W. P. Thurston. It can be described in the language of geodesic
laminations. The combinatorial model is the quotient space of the unit disk un-
der an equivalence relation that, loosely speaking, “pinches” the disk in the plane
(whence the name of the model). The significance of the model lies in particu-
lar in the fact that this quotient is planar and therefore can be easily visualized.
The conjecture that the Mandelbrot set is actually homeomorphic to this model
is equivalent to the celebrated MLC conjecture stating that the Mandelbrot set is
locally connected.

For parameter spaces of higher degree polynomials no combinatorial model is
known. One possible reason may be that the higher degree analog of the MLC con-
jecture is known to be false. We investigate to which extent a geodesic lamination
is determined by the location of its critical sets and when different choices of critical
sets lead to essentially the same lamination. This yields models of various param-
eter spaces of laminations similar to the “pinched disk” model of the Mandelbrot
set.
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CHAPTER 1

Introduction

The parameter space of complex degree d polynomials is by definition the
space of affine conjugacy classes of these polynomials. An important subset of the
parameter space is the connectedness locus Md consisting of classes of all degree
d polynomials P , whose Julia sets J(P ) are connected. General properties of the
connectedness locus Md of degree d polynomials have been studied for quite some
time. For instance, it is known that Md is a compact cellular set in the parameter
space of complex degree d polynomials (this was proven in [BrHu88] in the cubic
case and in [Lav89] for higher degrees, see also [Bra86]; by definition, going back to
Morton Brown [Bro60], a subsetX of a Euclidean space Rn is cellular if there exists
a sequence Qn of topological n-cells such that Qn+1 ⊂ Int(Qn) and X = ∩Qn ).

For d = 2, the connectedness locus is the famous Mandelbrot set M2, which
can be identified with the set of complex numbers c such that 0 does not escape to
infinity under the iterations of the polynomial Pc(z) = z2 + c. The identification
is based on the fact that every quadratic polynomial is affinely conjugate to Pc

for some c ∈ C as well as a classical theorem of Fatou and Julia. The Mandel-
brot set M2 has a complicated self-similar structure (for instance, homeomorphic
copies of the Mandelbrot set are dense in the Mandelbrot set itself). A crucial role
in understanding its structure is played by the “pinched disk” model by Adrien
Douady, John Hamal Hubbard and William Thurston [DH82,DH8485,Thu85].
This model can be described as a geodesic lamination (see the index in the back
for the definitions of non-standard terms).

In this paper, we will partially generalize these results to the higher degree
case. We replace the notion of non-disjoint minors by linked or essentially equal
critical quadrilaterals and show that in certain cases two linked or essentially equal
laminations must coincide. We apply these results to construct models of some
spaces of laminations.

In what follows we assume basic knowledge of complex dynamics (a good ref-
erence is John Milnor’s book [Mil00]). Important developments can be found in
Curtis McMullen’s book [McM94b]. We use standard notation. However, we
describe in detail less well known facts concerning, e.g., combinatorial concepts
(such as geodesic laminations developed by Thurston in [Thu85], or laminational
equivalence relations) that will serve as important tools for us.

1.1. Laminations

Laminations were introduced by Thurston in his paper [Thu85] and have been
used as a major tool in complex dynamics ever since.

We will write C for the plane of complex numbers, Ĉ for the Riemann sphere,
and D = {z ∈ C : |z| < 1} for the open unit disk. A laminational equivalence
relation is a closed equivalence relation ∼ on the unit circle S = {z ∈ C : |z| = 1},
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2 1. INTRODUCTION

whose classes are finite sets, such that the convex hulls of distinct classes are disjoint.
A laminational equivalence relation is (σd-)invariant if the map σd : S → S, defined
by σd(z) = zd, takes classes to classes, and the restriction of σd to every class g

can be extended to an orientation preserving covering map τ of the circle of some
degree k � d so that g is a full preimage of τ (g).

If a polynomial P has a connected filled Julia set K, then, by the Riemann
mapping theorem, there exists a conformal map ϕ : C \D → C \K so that ϕ ◦σd =
P ◦ϕ. The image of the radial segment {reiθ | r > 1} under ϕ is called an external
ray of K with argument θ. If, in addition, J = Bd(K) is locally connected, then ϕ
extends over S. In this case, there is a laminational equivalence relation ∼P on S

which identifies pairs of angles if the corresponding external rays land at the same
point in J . The quotient J∼P

= S/∼P is homeomorphic to J , and the self-mapping
f∼P

of J∼P
induced by σd is topologically conjugate to P |JP

; the map f∼P
and the

set J∼P
are called a topological polynomial and a topological Julia set , respectively.

Laminational equivalence relations can play a significant role even for some
polynomials whose connected Julia sets are not locally connected. For these poly-
nomials ∼P still can be defined, although P |JP

and f∼P
|J∼P

are no longer con-

jugate. However, they are semiconjugate by a monotone map (a continuous map,
whose fibers are continua). A topological polynomial and topological Julia set can
be defined for every σd-invariant laminational equivalence relation even if it does
not correspond (in the above sense) to a complex polynomial.

With every laminational equivalence relation ∼, it is useful to associate geo-
metric objects defined below. We identify S with R/Z. For a pair of points a,
b ∈ S, we will write ab for the chord (a straight line segment in C) connecting a
and b (in particular, a chord is always contained in the closed unit disk D). If G
is the convex hull CH(G′) of some closed set G′ ⊂ S, then we write σd(G) for the
set CH(σd(G

′)). The boundary of G will be denoted by Bd(G). If A is a ∼-class,
then we call a chord ab in Bd(CH(A)) a leaf of ∼. All points of S are also called
(degenerate) leaves . The family L∼ of all leaves of ∼ is called the (σd-)invariant
geodesic lamination generated by the relation ∼.

Let us explain the terminology. The set L∼ is called invariant for two reasons:
for every non-degenerate leaf xy ∈ L∼ we have σd(xy) ∈ L∼, and, on the other
hand, there exist d disjoint leaves in L∼ such that their σd-images equal xy. The
set L∼ is called geodesic because the standard visual interpretation of chords of
L∼ uses geodesics in the unit disk with respect to the Euclidean (or, equivalently,
Poincaré) metric (see Figure 1 for an illustration). Denote by L+

∼ the union of
the unit circle and all the leaves in L∼. Then L+

∼ is a subcontinuum of the closed
unit disk D. In general, collections of leaves with properties similar to those of
collections L∼ are also called invariant geodesic laminations. In fact, it is these
collections that Thurston introduced and studied in [Thu85].

Let L be an invariant geodesic lamination (for instance, we may have L = L∼
for some invariant lamination ∼). The closure in C of a non-empty component of
D \ L+ is called a gap of L. Edges of a gap G are defined as leaves of L on the
boundary of G and we call G ∩ S the basis of the gap G. A gap is said to be finite
(infinite) if its basis is finite (infinite). Gaps of L with uncountable basis are called
Fatou gaps .

The first application of geodesic laminations was in the quadratic case [Thu85].
Let us discuss it in more detail.
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Figure 1. Left: Douady rabbit, the Julia set of the polynomial
f(z) = z2 − 0.12..+ 0.74..i Right: its geodesic lamination.

1.2. “Pinched disk” model of the Mandelbrot set

The “pinched disk” model for M2 is constructed as follows, cf. [Dou93,
Thu85]. We will identify S with R/Z by means of the mapping taking an an-
gle θ ∈ R/Z to the point e2πiθ ∈ S. Under this identification, we have σ2(θ) = 2θ.

If the Julia set J(Pc) is locally connected, then, as was explained above in
Section 1.1, Thurston associates to the polynomial Pc (and hence to the parameter
value c) a laminational equivalence relation ∼Pc

and then the corresponding σ2-
invariant geodesic lamination L∼Pc

= Lc. The dynamics of σ2 : S → S descends to
the quotient space, and the induced dynamics f∼Pc

: S/ ∼Pc
→ S/ ∼Pc

is topolog-
ically conjugate to Pc|J(Pc) : J(Pc) → J(Pc). A σ2-invariant geodesic lamination
is also called a quadratic invariant geodesic lamination. The lamination Lc is also
called the (quadratic invariant) geodesic lamination of Pc. In what follows when
talking about quadratic invariant geodesic laminations we often omit “invariant”
or “geodesic” (indeed, we only deal with geodesic laminations, and “quadratic”
already assumes “invariant”).

Thurston’s geodesic laminations model the topological dynamics of quadratic
polynomials with locally connected Julia sets. So far, this construction only pro-
vides topological models for individual quadratic polynomials, and not even for all
of them, since there are polynomials Pc such that J(Pc) is connected but not lo-
cally connected; however, we need to model the space of all polynomials Pc with
connected Julia sets. Metaphorically speaking, there are two parallel worlds: the
“analytic” world of complex polynomials and the “combinatorial” world of geodesic
laminations. Both worlds often come close to each other: whenever we have a poly-
nomial Pc with locally connected J(Pc), then we have the corresponding invariant
geodesic lamination Lc. On the other hand, sometimes the two worlds diverge.
Still, a model for M2 can be built within the combinatorial world.

Since the space C(D) of all subcontinua of the closed unit disk with the Haus-
dorff metric is a continuum, it makes sense to consider the closure L2 of the family
of all quadratic geodesic laminations Lc in C(D), where J(Pc) is locally connected.
Limit points of this family (called quadratic geodesic limit laminations) do not im-
mediately correspond to polynomials with connected Julia sets. However, one can
extend the correspondence between polynomials and geodesic laminations to all
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polynomials. More precisely, one can associate to each polynomial P all Hausdorff
limits of geodesic laminations obtained by approximating P by polynomials with
locally connected Julia sets.

The main property of the leaves of an invariant geodesic lamination is that
they are not linked , that is, they do not cross in D. Thurston gave a simple
parameterization of a quotient of L2. The idea is to take one particular leaf from
every quadratic limit geodesic lamination L, namely, the leaf, called the minor of
L, whose endpoints are the σ2-images of the endpoints of a longest leaf of L called
a major of L (it is easy to see that a quadratic invariant geodesic lamination can
have at most two longest leaves, each of which is the rotation of the other leaf by
one half of the full angle around the center of D).

One of the main results of [Thu85] is that the minors of all quadratic limit
geodesic laminations are pairwise unlinked and hence form a geodesic lamination
called the quadratic minor lamination QML (observe that QML is not invariant).
The geodesic lamination QML generates a laminational equivalence relation ≈QML

where two points x, y of the unit circle are declared to be ≈QML-equivalent if there
exists a finite chain of minors connecting x and y (the fact that ∼QML indeed is a
laminational equivalence relation follows from [Thu85]). This gives a conjectural
model for the Mandelbrot set, in the sense that the boundary Bd(M2) of M2 is
conjecturally homeomorphic to S/ ≈QML (it is known that there exists a monotone
map from Bd(M2) to S/ ≈QML and, hence, S/ ≈QML is at least a monotone model
of Bd(M2)).

The leaves of QML can be described without referring to quadratic geodesic
limit laminations. To this end, let us denote by |x− y|, x, y ∈ S = R/Z, the length
of the shortest circle arc with endpoints x and y. Hence the length of a diameter is
1
2 . Denote by ab the chord with endpoints a ∈ S and b ∈ S. Consider the chord ab

assuming that λ = |a − b| � 1/3. Let Q be the convex hull of the set σ−1
2 ({a, b})

in the plane. Assume that all four sides of Q are unlinked with all images
σn
2 (a)σ

n
2 (b) (n = 0, 1, 2 . . . ) of ab (this holds automatically if ab is a minor of a

quadratic invariant geodesic lamination).
The set Q is called a critical quadrilateral (Q is a quadrilateral that maps onto

its image ab two-to-one). The set Q has two pairs of sides of equal length opposite
to each other. Clearly, two opposite sides are of lengths λ/2 � 1/6 and the other
two are of length 1/2− λ/2 � 1/3. Denote by �1 and �2 the two longer sides of Q
(so that the circle arcs “behind” �1 and �2 are of length 1/2−λ/2 � 1/3). Then the
strip S, the part of the unit disk D located between �1 and �2, is called the critical
strip (of �1 or �2).

Comparing the lengths of various chords involved in the described picture, we
see that the points a and b do not belong to S; indeed otherwise we would have
had either that λ < λ/2 or that λ > 1/2 − λ/2 > 1/3, a contradiction. In other
words, σ2(�1) = σ2(�2) = ab is disjoint from S (it can be contained in the boundary
of S if a = 1

3 and b = 2
3 ). Similar considerations involving critical strips play an

important role in [Thu85] and, in particular, lead to the so-called Central Strip
Lemma (see Section 3.3.1). This lemma yields that minors of quadratic invariant
geodesic laminations are pairwise unlinked. In the paper [CHMMO15] the Central
Strip Lemma is studied and extensions of this lemma to the case of degree greater
than two are obtained, however the conclusions of these extensions are weaker than
the conclusion of the original Central Strip Lemma.
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By [Thu85], if, for every positive integer n, the chord σn
2 (�1) = σn

2 (�2) is
disjoint from the interior of S, then Thurston’s pullback construction yields a
quadratic invariant geodesic lamination with the majors �1 and �2. Therefore, the
condition that for every positive integer n, the chord σn

2 (�1) = σn
2 (�2) is disjoint

from the interior of S, describes all chords �1 and �2 that are majors of quadratic ge-
odesic laminations. Clearly, this description does not depend on quadratic invariant
geodesic laminations.

Observe that if a = b, then Q is a diameter of S. In this case, Q is trivially a
major. However, if a 
= b, then the conditions from the previous paragraph (that
σn
2 (ab) is disjoint from the interior of S) are non-trivial. An alternative — and

more straightforward — way of defining QML is by saying that QML is formed by
minors of all quadratic invariant geodesic laminations, that is by chords σ2(�) taken
for all majors � of all quadratic invariant geodesic laminations.

As was mentioned above, one of the main results of Thurston’s from [Thu85] is
that QML is in fact a geodesic lamination itself (it is not at all obvious that minors
described above are pairwise unlinked). Moreover, Thurston shows in [Thu85]
that leaves of QML can be broken into single (“stand alone”) leaves and finite
collections of leaves with each such collection being the boundary of a geodesic
polygon in D. One can then collapse all such leaves and geodesic polygons to
points thus defining the quotient space D/ ≈QML, which serves as a combinatorial
model for M2, see [Dou93,Sch09]. Denote the corresponding quotient map by
π : D → D/ ≈QML. Also, denote D/ ≈QML by Mcomb

2 reflecting the combinatorial
nature of the “pinched disk” model of M2.

The importance of results of [Thu85] lies, in particular, in the fact that thanks
to the minors being unlinked one can visualize QML and, hence, a quotient of
the space L2 (distinct quadratic invariant geodesic laminations may have the same
minor and our parameterization identifies such laminations). This in turn allows
for a visualization of D/ ≈QML as the result of “planar pinching” of the unit disk
which collapses all the above described geodesic polygons formed by minors. More
precisely, by [Dav86], there exists a homotopy γ : C× [0, 1] → C such that, for each
t ∈ [0, 1), the map γt : z → γ(z, t) is an orientation preserving homeomorphism that
shrinks every geodesic polygon formed by minors more and more (as t approaches
1) so that, for t = 1, we do not have a homeomorphism, rather a “pinching” map
γ1 : z → γ(z, 1) representing the quotient map of D to D/ ≈QML.

Recall that a continuous mapping from one continuum to another continuum
is monotone if the fibers (that is, preimages of points) are connected. It is known
[Sch09] that there exists a monotone map π : M2 → MComb

2 = S/QML. The
set M2 is locally connected if and only if the fibers of π are points, hence, π gives
the desired homeomorphism between Bd(M2) and S/ ≈QML provided that the
MLC conjecture holds. In other words, the conjecture that the boundary of M2

is homeomorphic to S/ ≈QML is equivalent to the celebrated MLC conjecture
claiming that the Mandelbrot set is locally connected.

1.3. Previous work

The structure of the cubic connectedness locus M3 (or some parts of it) has
been studied by many authors. There are several approaches. In some papers,
higher degree connectedness loci are considered too. In the rest of this section we
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briefly describe some relevant results. Let us emphasize that our short overview is
far from being complete.

Branner and Hubbard [BrHu88] initiated the study of M3, and investigated
the complement of M3 in the full parameter space of cubic polynomials. The
complement is foliated by so-called stretching rays that are in a sense analogous to
external rays of the Mandelbrot set. The combinatorics of M3 is closely related
to landing patterns of stretching rays. However, we do not explore this connection
here. A significant complication is caused by the fact that there are non-landing
stretching rays. Landing properties of stretching rays in the parameter space of
real polynomials have been studied by Komori and Nakane [KN04]. Of special
interest is a certain subset of the complement of M3 in the parameter space called
the shift locus (see, for example, [BrHu88,BrHu92,deM12,DP11]).

Another approach to understanding parameter spaces of polynomials is based
on a new notion, due to Thurston, of core entropy (entropy on the Hubbard tree of
a polynomial) studied, for example, in [Thu14,Tio15,Tio14,DS14].

Lavaurs [Lav89] proved thatM3 is not locally connected. Epstein and Yampol-
sky [EY99] showed that the bifurcation locus in the space of real cubic polynomials
is not locally connected either. This makes the problem of defining a combinatorial
model of M3 that would admit visual interpretation very delicate. Buff and Henrik-
sen [BH01] presented copies of quadratic Julia sets, including not locally connected
Julia sets, in slices of M3. By McMullen [McM07], slices of M3 contain lots of
copies of M2. In addition, Gauthier [Gau14] has shown that M3 contains copies
of M2 ×M2. In fact, the last two papers contain more general results than what
we mention here; we now confine ourselves to the cubic case. Various spaces of
cubic polynomials are studied in [Zak99,BKM10].

In his thesis, D. Faught [Fau92] considered the slice A of M3 consisting of
polynomials with a fixed critical point and showed that A contains countably many
homeomorphic copies of M2 and is locally connected everywhere else. P. Roesch
[Roe06] filled some gaps in Faught’s arguments and generalized Faught’s results
to higher degrees. Milnor [Mil09] gave a classification of hyperbolic components
in Md; however, this description does not involve combinatorial tags. Schleicher
[Sch04] constructed a geodesic lamination modeling the space of unicritical cubic
polynomials, that is, polynomials with a unique multiple critical point. We have
also heard of an unpublished old work of D. Ahmadi and M. Rees, in which cubic
geodesic laminations were studied, however we have not seen it. Finally, a paper
by J. Kiwi [Kiw05] studies the parameter space of all central monic polynomials of
arbitrary degree, focusing upon the intersection of the connectedness locus and the
closure of the shift locus (i.e. the set of all polynomials so that all critical points
escape). However, [Kiw05] does not deal with the combinatorial structure of the
connectedness locus.

1.4. Overview of the method

We now sketch the main tools developed in the present paper. The need for
them is justified by the fact that Thurston’s tools used in the construction of QML
do not generalize to the cubic case. His tools are based on the Central Strip Lemma
stated in Section 3.3.1, and include the No Wandering Triangles Theorem (also
stated in Section 3.3.1). A straightforward extension of the Central Strip Lemma
as well as that of the No Wandering Triangles Theorem to the cubic case fail (see a
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recent paper [CHMMO15] with possible extensions of the Central Strip Lemma).
As a consequence, cubic invariant geodesic laminations may have wandering trian-
gles (see [BO08]). Thus, one needs a different set of combinatorial tools. Such tools
are developed in the present paper and are based upon a principle which we call
smart criticality. Smart criticality works for geodesic laminations of any degree.

Recall, that given a geodesic lamination L in D, one defines gaps of L as
closures of components of D \ L+ where L+ ⊂ D is the union of all leaves of L.
The statement about quadratic geodesic laminations we are trying to generalize is
the following: if the minors of two quadratic geodesic laminations intersect in D,
then they coincide. However, although minors can also be defined for higher degree
laminations, they are not the right objects to consider because they do not define
geodesic laminations in a unique way. The sets that essentially determine a given
invariant geodesic lamination are in fact its critical sets rather than their images.
Thus, for the purpose of characterizing invariant geodesic laminations we propose
different objects.

For a quadratic invariant geodesic lamination L, instead of its non-degenerate
minorm, we can consider the quadrilateral, whose vertices are the four σ2-preimages
of the endpoints of m. Such a quadrilateral Q is called a critical quadrilateral . Note
that Q is not necessarily a gap of L. Thus, Q lies in some critical gap of L or, if
m is a point, coincides with the critical leaf of L which we see as a generalized
critical quadrilateral. Similarly, for a degree d invariant geodesic lamination L,
we can define critical quadrilaterals as (possibly degenerate) quadrilaterals lying in
gaps or leaves of L (opposite vertices of these quadrilaterals must have the same
σd-images). These critical quadrilaterals will play the role of minors and will be
used to tag higher degree geodesic laminations.

The method of smart criticality helps to verify that, under suitable assumptions,
two linked leaves �1, �2 (i.e., leaves such that �1∩ �2∩D 
= ∅) of different geodesic
laminations have linked images σn

d (�1), σ
n
d (�2), for all n. One possible reason, for

which σd(�1), σd(�2) may be linked if �1, �2 are linked, is the following: �1 and �2
are contained in a part of the unit disk bounded by several circle arcs and such
that these circle arcs map forward under σd so that the circular order among their
points is (non-strictly) preserved.

A typical reason for that phenomenon is that �1 and �2 are disjoint from a
full collection of critical chords (here a σd-critical chord is a chord of D, whose
endpoints map to the same point under σd, and a full collection of critical chords
is a collection of d − 1 critical chords without loops). Implementing this idea, we
prove that σn

d (�1), σ
n
d (�2) are linked for all n by choosing, for every n, a different

and thus depending on n full collection of critical chords — this is the meaning of
“smart” as in “smart criticality” above (alternatively, one could call this “adjustable
criticality”).

Smart criticality can be implemented in the following situation. Let L1 and L2

be two invariant geodesic laminations. Suppose that we can choose full collections
of critical quadrilaterals in L1 and L2 (i.e., such collections that on the boundaries
of components of their complement the map σd is one-to-one except perhaps for
boundary critical chords); then we say that L1 and L2 are quadratically critical .
Critical quadrilaterals of a quadratically critical σd-invariant geodesic lamination L
can be ordered; if we fix that order we call the corresponding (d−1)-tuple of critical
quadrilaterals a quadratically critical portrait of L, and L is said to be marked .
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Suppose that two quadratically critical portraits QCP1,QCP2 are such that
equally numbered critical quadrilaterals in them either have alternating vertices, or
share a diagonal; then we say that QCP1,QCP2 are linked (if at least one pair of
corresponding critical quadrilaterals with alternating vertices exists) or essentially
equal (if all pairs of corresponding quadrilaterals share a common diagonal). Two
marked invariant quadratically critical geodesic laminations are said to be linked
(essentially equal) if their quadratically critical portraits are linked (essentially
equal).

In fact, being linked or essentially equal is slightly more general than the prop-
erty just stated; the precise statements can be found in Definition 3.10 and in
Definition 3.75. The main result of the paper is that in a lot of cases linked or es-
sentially equal invariant geodesic laminations must coincide, or at least they must
share a significant common portion. This fact can be viewed as a version of rigid-
ity of critical data of invariant geodesic laminations. It serves as a basis for the
applications discussed in Section 1.5.

To be more specific, we need to introduce a few notions. Suppose that L is a σd-
invariant geodesic lamination. Then there are two types of leaves of L. First, there
are leaves � of L such that in any neighborhood of � there are uncountably many
leaves of L (that is, if � = ab, then, for every ε > 0, there are uncountably many
leaves xy ∈ L such that d(x, a) < ε and d(y, b) < ε where d(·, ·) is a distance between
points on the unit circle S). The union of all such leaves (perhaps only consisting of
the unit circle, but normally much more significant), is itself an invariant geodesic
lamination denoted by Lp. Since every leaf of Lp is a limit of other leaves of Lp we
call Lp the perfect part of L.

Another important part of L is related to so-called periodic Siegel gaps. Namely,
an n-periodic Fatou gap U of an invariant geodesic lamination L is said to be a
periodic Siegel gap if σn

d : Bd(U) → Bd(U) is a degree one map monotonically semi-
conjugate to an irrational rotation of the unit circle. It is easy to see that edges of
periodic Siegel gaps are isolated in L. The closure of the union of the grand orbits
of all periodic Siegel gaps of an invariant geodesic lamination L is denoted by LSie

and is called the Siegel part of L. It is not hard to see that the union of the perfect
part and the Siegel part of an invariant geodesic lamination is itself an invariant
geodesic lamination.

We can also consider pullbacks of periodic Fatou gaps U . If there is an eventual
non-periodic pullback W of U that maps forward by σd in a k-to-1 fashion with
k > 1, then U is said to be of capture type. The terminology, due to Milnor
[Mil93,Mil09], comes from the fact that in the case of complex polynomials the
periodic Fatou domain corresponding to U captures a critical point that belongs
to the appropriate non-periodic pullback Fatou domain.

Our two main rigidity theorems show that the fact that two invariant geo-
desic laminations are linked or essentially equal implies that the laminations them-
selves are “almost” equal. Thus, we obtain a tool allowing us to conclude that
certain distinct geodesic laminations cannot be linked/essentially equal. As the
linkage/essential equality of geodesic laminations is related to the mutual location
of their critical sets, out of this we choose appropriate tags of the critical sets
and draw conclusions about those tags being pairwise disjoint. This in the end
yields parameterization of the corresponding space of geodesic laminations similar
to Thurston’s QML.
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First Rigidity Theorem. If two marked invariant quadratically critical ge-
odesic laminations are linked or essentially equal, then the unions of their perfect
parts and their Siegel parts are the same.

To state the Second Rigidity Theorem we need the following definition. Let ∼
be an invariant laminational equivalence relation and L∼ be the geodesic lamination
generated by ∼. Let U be an n-periodic Fatou gap of L∼ such that σn

d : Bd(U) →
Bd(U) has degree two. Then we call U a quadratic Fatou gap. If U is quadratic,
then there is a unique edge M (possibly degenerate) of Bd(U) of period n; we call
M a refixed edge of U . Let us also denote by M∗ the unique edge of U distinct
from M but with the same image as M .

The convex hull of M ∪ M∗ is said to be a legal critical quadrilateral . There
may exist a finite gap G sharing the leaf M with U and, accordingly, a finite
gap G∗ sharing the leaf M∗ with U such that σd(G) = σd(G

∗). Then in some
cases one can erase M and its entire grand orbit from L∼ and, possibly, replace
it by a different leaf contained in G and its entire grand so that the new geodesic
lamination generates the same laminational equivalence relation. In these cases one
can insert in U ∪G ∪G∗ a critical quadrilateral Q with edges in G and G∗ so that
leaves from the forward orbit of Q do not cross each other. Thurston’s pullback
construction implies that we can pull Q back inside the grand orbit of U and add
the thus constructed grand orbit of Q to L∼. We will call such quadrilaterals legal
too. Also, if a critical set G of L∼ is finite, then any critical quadrilateral inserted
in G and such that sets from its forward orbit do not cross is called legal .

Finally, suppose that an invariant geodesic lamination L∼ is such that all crit-
ical sets of Lp

∼i
∪LSie

∼i
are either finite sets or periodic quadratic Fatou gaps. Then

we say that ∼ (and L∼) are quadratically almost perfect-Siegel non-capture. A
full ordered collection of legal critical quadrilaterals inserted in critical sets of a
quadratically almost perfect-Siegel non-capture geodesic laminations is said to be
a legal quadratically critical portrait of ∼ if chords from the forward orbits of these
quadrilaterals are not linked (these forward orbits are “dynamically consistent”).
If such a portrait is chosen for L, then L is said to be marked . Two marked
quadratically almost perfect-Siegel non-capture laminational equivalence relations
are said to be linked (essentially equal) if their legal quadratically critical portraits
are linked (essentially equal).

Second Rigidity Theorem. If two marked invariant geodesic quadratically
almost perfect-Siegel non-capture laminations L∼1

and L∼2
are linked or essentially

equal, then they coincide (that is, ∼1=∼2 and L∼1
= L∼2

).

1.5. Main applications

Questions concerning the existence of combinatorial models of the connected-
ness loci Md of degree d polynomials arose soon after Thurston’s construction of
a combinatorial model for M2 (see, for example, [Thu85,McM94]). The main
aim of the present paper is to generalize the “pinched disk” model onto some
classes of invariant geodesic laminations as well as polynomials. Inevitably, the
increase in the degree makes the problem more difficult. Thurston’s work was
based on his Central Strip Lemma [Thu85, Lemma II.5.1], which implied his No
Wandering Triangle Theorem and the transitivity of the first return map of fi-
nite periodic polygons. However, the Central Strip Lemma fails in degrees higher
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than two. Moreover, it is known that in the cubic case wandering triangles exist
[BO04,BO08,BCO12,BCO13] and that the first return map on a finite periodic
polygon is not necessarily transitive in higher degree cases [Kiw02]. This shows
that a new approach is necessary.

Furthermore, the connectedness locus M3 in the parameter space of complex
cubic polynomials is a four-dimensional set, which is known to be non-locally con-
nected [Lav89]. Thus, it is hopeless to look for a precise topological model of the
boundary of M3 as a quotient of a locally connected space (any quotient space
of a locally connected space is locally connected!). Yet another indication of the
fact that a new approach is needed is the fact that in the cubic case the so-called
combinatorial rigidity fails as shown by Henriksen in [Hen03].

In the present paper we concentrate on the part of Thurston’s work (see
[Thu85]) where it is shown that the family of quadratic invariant geodesic lamina-
tion can be tagged by their minors, which, by [Thu85], are pairwise unlinked. This
yields the “pinched disk” model QML for the Mandelbrot set. We prove similar
results, which allow us to describe various spaces of invariant geodesic laminations.

The first application can be found in Section 4.1. Consider the space of all
polynomials with connected Julia sets such that all their periodic points are re-
pelling. Such polynomials exhibit rich dynamics and have been actively studied
before. In particular, there is a nice association, due to Jan Kiwi [Kiw04], be-
tween these polynomials and a certain class of invariant geodesic laminations of
the same degree. These invariant geodesic laminations L = L∼ are generated by
invariant laminational equivalence relations ∼ that have the following property:
the associated topological Julia set J∼ is a dendrite (that is, a locally connected
one-dimensional continuum that contains no Jordan curves); equivalently, all gaps
of L∼ must be finite. Then the corresponding invariant geodesic lamination and
the corresponding invariant laminational equivalence are called dendritic.

Kiwi proves in [Kiw04] that in this case for a given polynomial P of degree d
there exists an invariant laminational equivalence relation ∼P such that the filled
Julia set J(P ) of the polynomial P can be monotonically (recall that this means
that point-preimages are connected) mapped onto J∼P

. Moreover, the monotone
map ψP : J(P ) → J∼P

in question semiconjugates P |J(P ) and the associated
topological polynomial f∼P

: J∼P
→ J∼P

induced by σd on the topological Julia
set J∼P

= S/ ∼P . Denote by ϕP the quotient map ϕP : S → S/ ∼P .
Take a point z ∈ J(P ), project it by the map ψP to a point ψP (z) of the topo-

logical Julia set J∼P
, lift the point ψP (z) to the corresponding ϕP -fiber ϕ

−1
P (ψP (z)),

and then to its convex hull CH(ϕ−1
P (ψP (z))) denoted by Gz. Clearly, Gz is a gap or

(possibly degenerate) leaf of L∼P
; loosely, Gz is the laminational counterpart of the

point z. This geometric association is important for a combinatorial interpretation
of the dynamics of P . In particular, each critical point c of P is associated with
the critical gap or leaf Gc of L∼P

(all dendritic invariant geodesic laminations have
finite critical sets).

We call polynomials with connected Julia sets, all of whose cycles are repelling,
dendritic. Let us emphasize that we do not mean that the Julia sets of dendritic
polynomials are dendrites themselves; rather our terminology is justified because by
[Kiw04] the Julia sets of dendritic polynomials can be mapped to a non-trivial den-
drite under a monotone map. In particular, the Julia set of a dendritic polynomial
may be non-locally connected and, hence, not a dendrite.
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Dealing with polynomials, we specify the order of their critical points and talk
about (critically) marked polynomials . In that we follow Milnor [Mil12]. More pre-
cisely, a (critically) marked polynomial is a polynomial P with an ordered collection
C(P ) of its critical points, so that every multiple critical point is repeated several
times according to its multiplicity (thus, C(P ) is a (d − 1)-tuple, where d is the
degree of P ). Marked polynomials do not have to be dendritic (in fact, the notion
is used by Milnor and Poirier for hyperbolic polynomials, that is, in the situation
diametrically opposite to that of dendritic polynomials). However, we consider only
dendritic marked polynomials. Thus, speaking of a marked polynomial, we mean a
pair (P,C(P )).

In what follows, C(P ) is called an ordered critical collection of P ; normally
we use the notation C(P ) = (c1, . . . , cd−1), where a multiple critical point c is
repeated in C(P ) according to its multiplicity. Since we want to reflect convergence
of polynomials, we allow for the same critical point of multiplicity k to be repeated
k − 1 times not in a row. For example, let a polynomial P of degree 5 have two
critical points c and d of multiplicity 3 each. Then we can mark P with any ordered
collection of points c and d as long as each point is repeated twice, such as (c, d, c, d),
or (d, d, c, c), or (c, c, d, d) etc.

Endow the family of all critically marked polynomials with the natural topology
that takes into account the order among critical points so that marked polynomials
(Pi, C(Pi)) converge to a marked polynomial (P,C(P )) if and only if Pi → P
and C(Pi) → C(P ). Our aim is to provide local laminational models for some
dendritic polynomials of arbitrary degree d. In other words, we suggest a class
of marked dendritic polynomials (P,C(P )) with the following property. There
exists a neighborhood U of (P,C(P )) and a continuous map from U to a special
laminational parameter space. The definition of this map is based upon information
on laminational equivalence relations ∼Q defined by dendritic polynomials Q ∈ U .
This approach is close to Thurston’s original approach which led to the proof of
the existence of a monotone map from the entire quadratic Mandelbrot set onto
its laminational counterpart, the “pinched disk” model Mcomb

2 . We implement this
approach on open subsets of the space of marked polynomials of arbitrary degree d.

As polynomials P , we choose dendritic polynomials with the following addi-
tional property: the invariant dendritic geodesic lamination L∼P

has d−1 pairwise
distinct critical sets. We will call such polynomials simple dendritic. If (P,C(P ))
is a critically marked simple dendritic polynomial, then all critical points in C(P )
must be distinct. However, the mere fact that P is dendritic and has d− 1 distinct
critical points is not sufficient to conclude that (P,C(P )) is a simple dendritic poly-
nomial. This is because distinct critical points of P may belong to the same fiber
of ψP resulting in some critical sets of L∼P

being of multiplicity greater than two.
One can show that the space of simple dendritic critically marked polynomials is
open in the space of all critically marked dendritic polynomials.

Denote the space of all degree d simple critically marked dendritic polynomials
by CMDsim

d . Consider the ordered postcritical collection(P (c1), . . . , P (cd−1)). The
sets Gci , 1 � i � d − 1 are critical sets of the invariant geodesic lamination L∼P

and the sets GP (ci), 1 � i � d − 1 are their σd-images. Define the following two

maps from CMDsim
d to the space of compact subsets of D

d−1
. First, it is the
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map Ψ̂d defined as follows:

Ψ̂d(P ) = Gc1 ×Gc2 × · · · ×Gcd−1
.

Second, it is the map Ψd, defined as follows:

Ψd(P ) = GP (c1) ×GP (c2) × · · · ×GP (cd−1).

These maps associate to any marked simple dendritic polynomial a compact subset

of D
d−1

(moreover, this subset itself is the product of convex hulls of certain ∼P -
classes). Notice that each set Gcj maps onto its image two-to-one. We call the set
Ψd(P ) the postcritical tag of the critically marked polynomial (P,C(P )).

Theorem on Local Charts for Dendritic Polynomials. Suppose that
(P, C(P )) is a marked simple dendritic polynomial of degree d. Then there is
a neighborhood U of (P,C(P )) in CMDsim

d such that for any two polynomials

(Q,C(Q)), (R,C(R)) ∈ U with Ψ̂(Q) 
= Ψ̂(R) we have that their Ψd-images Ψd(Q)
and Ψd(R) are disjoint.

The Theorem on Local Charts for Dendritic Polynomials implies the following
corollary, in which the notation of the Theorem is used.

Local Pinched Polydisk Model for Dendritic Polynomials. Consider
the union of all postcritical tags of polynomials in U in D

d−1
and its quotient space

obtained by collapsing these tags to points. The constructed space is separable and
metric. Moreover, the map Ψd viewed as a map from U to this space is continuous.

The second application extends the results of [BOPT15a] and can be found in
Section 4.2. In [BOPT15a], we studied the space LP

np
3 (ab) of all cubic invariant

geodesic laminations generated by cubic invariant laminational equivalence relations
∼ such that for some fixed critical leaf D = ab with non-periodic endpoints we have
a ∼ b, and there are no gaps of capture type. The main result of [BOPT15a] is
that this family of cubic invariant geodesic laminations is modeled by a lamination.
This result resembles the description of the combinatorial Mandelbrot set.

More specifically, to each cubic invariant geodesic lamination L from LP
np
3 (D)

we associate its critical set C whose criticality “manifests” itself inside the circle
arc (b, a) of length 2

3 . We show that either C is finite, or C is a periodic Fatou gap
of degree two and period k. Now, if L ∈ LP

np
3 (D) then a pair of sets QCP = (Q,D)

is called a quadratically critical portrait privileged for L if and only if Q ⊂ C is
a critical leaf or a collapsing quadrilateral (by a collapsing quadrilateral we mean
a quadrilateral whose boundary maps two-to-one to a chord). In the case when
C is a critical periodic Fatou gap of period k, we require that Q be a collapsing
quadrilateral obtained as the convex hull of a (possibly degenerate) edge � of C of

period k and another edge �̂ of C such that σ3(�) = σ3(�̂).
In [BOPT15], we show that for each L ∈ LP

np
3 (D) there are only finitely

many privileged quadratically critical portraits. Let SD denote the collection of
all privileged for L quadratically critical portraits (Q,D). To each such (Q,D) we
associate its minor (a chord or a point) σ3(Q) ⊂ D. For each such chord we identify
its endpoints, extend this identification by transitivity and define the corresponding
equivalence relation �D on S. The main result of [BOPT15] is that �D is itself a
laminational equivalence (non-invariant!) whose quotient is a parameterization of
LP

np
3 (D).
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In Section 4.2 of the present paper, we generalize the results of the paper
[BOPT15] onto the degree d case. In order to do so we introduce the appropriate
space analogous to LP

np
3 (D). Namely, fix a collection Y of d − 2 pairwise disjoint

critical chords of σd with non-periodic endpoints. Let L(Y) be the space of all
invariant geodesic laminations generated by laminational equivalence relations that
are compatible with this collection in the sense that L∼ belongs to L(Y) if and only
if the endpoints of each critical leaf from Y are ∼-equivalent. Moreover, similar to
the case of LPnp

3 (D) we also require that L∼ has no gaps of capture type. We prove
in Corollary 4.24 that L(Y) is non-empty.

Let Y+ be the union of all critical leaves from Y . There exists a unique compo-
nent A(Y) = A of D\Y+ on whose boundary the map σd is two-to-one except for its
critical boundary edges (σd is one-to-one in the same sense on all other components
of D \Y+). Moreover, in Lemma 4.26 we show that for each L ∈ L(Y), there exists
a unique critical set C that contains a critical chord c ⊂ A. We then use the set
C to define the minor set of L. Namely, it is shown that C is either finite, or a
periodic (of period, say, n) Fatou gap such that σn

d : Bd(U) → Bd(U) is two-to-one.
In the former case, set m(L) = σd(C). In the latter case, choose a maximal finite
gap whose vertices are fixed under σn

d and share an edge with U , and let m(L) be
its σd-image. The main result of Section 4.2 is the following theorem.

Theorem on Critically Defined Slices of Laminations. There exists
a non-invariant laminational equivalence relation ∼Y such that minor sets of in-
variant geodesic laminations from L(Y) are convex hulls of classes of equivalence
of ∼Y ; this gives rise to the quotient space S/ ∼Y= MY that parameterizes L(Y).

Yet another application of the results of this paper will be contained in a forth-
coming paper by the authors where we construct a higher dimensional lamination
of a subset of D × D whose quotient space is a combinatorial model for the space
of all marked cubic polynomials with connected Julia set that only have repelling
cycles [BOPT16,BOPT17].

1.6. Organization of the paper

In Section 2.1, we introduce invariant geodesic laminations. In Section 2.2, we
discuss laminational equivalence relations in detail. General properties of invariant
geodesic laminations are considered in Section 2.3. In Section 3.1, we introduce
and study our major tool, quadratically critical portraits, for invariant geodesic
laminations. The most useful results, based upon quadratically critical portraits,
can be obtained for some special types of invariant geodesic laminations investigated
in Section 3.2. In Section 3.3, we introduce another major tool, so-called accordions ,
which are basically sets of linked leaves of distinct invariant geodesic laminations.
We first study accordions by postulating certain properties of them related to the
orientation of leaves comprising these accordions. In Section 3.4, we develop the
principle of smart criticality and show that owing to this principle we can apply
the results of Section 3.3 to accordions of two linked or essentially equal invariant
geodesic laminations. Arguments based upon smart criticality yield that accordions
of linked or essentially equal geodesic laminations behave much like gaps of a single
invariant geodesic lamination. This is established in Section 3.5, where the method
of smart criticality is developed. Finally, in Chapter 4, we will prove the Main
Theorems.
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CHAPTER 2

Invariant laminations: general properties

2.1. Invariant geodesic laminations

In this chapter, we give basic definitions, list some known results concerning
(invariant) geodesic laminations, and establish some less known facts about them.

2.1.1. Basic definitions. We begin with simple geometry.

Definition 2.1 (Chords). A chord is a closed segment connecting two points
of the unit circle, not necessarily distinct. If the two points coincide, then the chord
connecting them is said to be degenerate.

Let us now consider collections of chords.

Definition 2.2 (Solids of chord collections). Let R be a collection of chords.
Then we set

⋃
R = R+ and call R+ the solid of R.

We are mostly interested in collections of chords with specific properties.

Definition 2.3 (Geodesic laminations). A geodesic lamination is a collection
L of (perhaps degenerate) chords called leaves such that the leaves are pairwise
disjoint in D (that is, in the open unit disk), L+ is closed, and all points of S are
elements of L. Gaps of L are defined as the closures of the components of D \ L+.
The solid L+ is called the solid of the geodesic lamination L.

The notion of geodesic lamination is static in the sense that no map is even
considered with resect to L. In order to relate it to the dynamics of the map σd, it
is useful to extend σd as described below.

Definition 2.4 (Extensions of σd). Extend σd over leaves of L so that the
restriction of the extended σd to every leaf is an affine map. This extension is con-
tinuous on L+ and well-defined (provided that L is given). By Thurston [Thu85],
define a canonical barycentric extension of the map σd to the entire closed disk
D. Namely, after σd is extended affinely over all leaves of an invariant geodesic
lamination L, extend it piecewise affinely over the interiors of all gaps of L, using
the barycentric subdivision. We will use the same notation for both σd and all its
extensions.

Observe that while the extensions of σd can be defined for any geodesic lami-
nation, they are really sensible only in the case of σd-invariant geodesic laminations
considered below; thus, when talking about σd on D, we always have some invari-
ant geodesic lamination in mind and we extend σd using Thurston’s barycentric
extension (see [Thu85] for details).

15
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2.1.2. Sibling invariant geodesic laminations. Let us introduce the no-
tion of a (sibling) σd-invariant geodesic lamination, which is a slight modification
of the notion of an invariant geodesic lamination introduced by Thurston [Thu85];
in the case when d is fixed, we will often write “invariant” instead of “σd-invariant”
without causing ambiguity.

Definition 2.5 (Invariant geodesic laminations [BMOV13]). A geodesic la-
mination L is (sibling) (σd)-invariant provided that:

(1) for each � ∈ L, we have σd(�) ∈ L,
(2) for each � ∈ L there exists �∗ ∈ L so that σd(�

∗) = �.
(3) for each � ∈ L such that σd(�) is a non-degenerate leaf, there exist d

pairwise disjoint leaves �1, . . . , �d in L such that �1 = � and σd(�i) =
σd(�) for all i = 2, . . . , d.

Observe that since leaves are chords, and chords are closed segments, pairwise
disjoint leaves in part (3) of the above definition cannot intersect even on the
unit circle (that is, they cannot even have common endpoints). Notice also, that
Definition 2.5 can be given without condition (2); in that case we will talk about
forward (sibling) invariant geodesic lamination. In particular, forward (sibling)
invariant geodesic laminations may well contain finitely many non-degenerate leaves
(in that case we will call it finite).

We call the leaf �∗ in (2) a pullback of � and the leaves �2, . . . , �d in (3) sibling
leaves or just siblings of � = �1. In a broad sense, a sibling of � is a leaf with
the same image but distinct from �. Definition 2.5 is slightly more restrictive than
Thurston’s definition of an invariant geodesic lamination, which we give below. In
what follows, given a set A, we let CH(A) denote the convex hull of A.

Definition 2.6 (Invariant geodesic laminations in the sense of Thurston). A
geodesic lamination is said to be invariant (in the sense of Thurston) if the following
holds:

(1) for each non-degenerate � ∈ L, we have σd(�) ∈ L;
(2) L is gap invariant : if G is a gap of L and H = CH(σd(G ∩ S)) is the

convex hull of σd(G∩S), then H is a point, a leaf of L, or a gap of L, and,
in the latter case, the map σd|Bd(G) : Bd(G) → Bd(H) of the boundary
of G onto the boundary of H is a positively oriented composition of a
monotone map and a covering map (in fact the set H as above will be
called the σd-image of G and will be denoted by σd(G) in what follows).

(3) there are d pairwise disjoint leaves �∗ ∈ L such that σd(�
∗) = �.

If L satisfies conditions (1) and (2) only, then L is called forward invariant (in
the sense of Thurston).

The above quoted result of [BMOV13] claims that if L is sibling σd-invariant,
then it is σd-invariant in the sense of Thurston. From now on, by (σd-)invariant ge-
odesic laminations, we mean sibling σd-invariant geodesic laminations and consider
only such invariant geodesic laminations.

The next definition is crucial for our investigation and shows in what ways
different chords can coexist.

Definition 2.7 (Linked chords). Two distinct chords of D are linked if they
intersect inside D (we will also sometimes say that these chords cross each other).
Otherwise two chords are said to be unlinked .
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Definition 2.8 deals with gaps of geodesic laminations and their edges.

Definition 2.8 (Gaps and their edges). A gap G is said to be infinite (finite,
uncountable) if G ∩ S is infinite (finite, uncountable). Uncountable gaps are also
called Fatou gaps. For a closed convex set H ⊂ C, straight segments from Bd(H)
are called edges of H.

The degree of a gap or leaf G is defined as follows.

Definition 2.9 (Degree of a gap or leaf). Let G be a gap or a leaf. If σd(G) is
degenerate (that is, if σd(G) is a singleton), then the degree of G is the cardinality
of G ∩ S. Suppose now that σd(G) is not a singleton. Consider σd|Bd(G). Then
the degree of G equals the number of components in the preimage of a point z ∈
σd(Bd(G)) under the map σd|Bd(G).

Note that we talk about the number of components rather than the number of
points since, say, an entire critical leaf is mapped to a single point, thus the full
preimage of this point is infinite.

We say that � is a chord of a geodesic lamination L if � is a chord of D unlinked
with all leaves of L.

Definition 2.10 (Critical sets). A critical chord (leaf) ab of L is a chord (leaf)
of L such that σd(a) = σd(b). A gap is all-critical if all its edges are critical. An
all-critical gap or a critical leaf (of L) is called an all-critical set (of L). A gap G
is said to be critical if the degree of G is greater than one. A critical set is either
a critical leaf or a critical gap.

Observe that a gap G may be such that σd|Bd(G) is not one-to-one, yet G is not
critical in the above sense. More precisely, a gap may have critical edges while not
being critical. Indeed, let G be a triangle with one critical edge and two non-critical
edges. Let G∩S = {x, y, z} where xy is critical. Then σd(G) = σd(y)σd(z) is a leaf
of L and σd|Bd(G) is not one-to-one, but G is not critical because the degree of G
is one.

Finally, we need to define a metric on the set of geodesic laminations. Heuris-
tically two laminations should be close if for every leaf in one lamination there is a
leaf in the other lamination that is close to it.

We will use the Hausdorff metric H to define the required metric. Given a
compact metric space X with metric (distance function) ρ, let 2X denote the set
of all non-empty closed subsets of X. Let Ballρ(A, ε) denote the set of all points
x ∈ X so that ρ(x,A) < ε. Given A, B ∈ 2X , the metric

Hρ(A,B) = inf{ε > 0 | A ⊂ Ballρ(B, ε) and B ⊂ Ballρ(A, ε)}

is called the Hausdorff metric. It is well known that with this metric 2X is a compact
metric space. Since every point of S is a degenerate leaf of a geodesic lamination
L, the solid L+ is a compact (and connected) subset of D. It is tempting to define
the distance between L1 and L2 as Hρ(L+

1 ,L+
2 ), where ρ is the usual Euclidean

metric on the closed unit disk. Unfortunately, if d > 2, there exist distinct geodesic
laminations L1, L2 such that L+

1 = L+
2 = D and, hence, Hρ(L1,L2) = 0. For

example, in the cubic case, the two laminations consisting of all vertical and of all
horizontal chords are two such laminations. Hence we need two refine the choice of
the metric.
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Clearly, every element � of L is a compact set and, hence, a point in 2D. Thus

each geodesic lamination is a closed subset of 2D. Let HH denote the Hausdorff

metric on 2D. Then the required distance on the set of geodesic laminations is
HH(L1,L2). With this metric, the set of geodesic laminations is a compact metric
space.

Theorem 2.11 (Theorem 3.21 [BMOV13]). The family of sets L+ of all in-
variant geodesic laminations L is closed in the Hausdorff metric HH . In particular,
this family is compact.

Theorem 2.11 allows us to give the following definition.

Definition 2.12. Suppose that a sequence L+
i of solids of invariant geodesic

laminations converges to a compact set T . Then by Theorem 2.11 there exists an
invariant geodesic lamination L such that T = L+ is its solid. In this case we
say that geodesic laminations Li converge to L. Thus, from now on we will write
Li → L if L+

i → L+ in the Hausdorff metric HH ..

Clearly, L+
i → L+ implies that the collections of chords Li converge to the

collection of chords L (that is, each leaf of L is the limit of a sequence of leaves
from Li, and each converging sequence of leaves of Li converges to a leaf of L).

2.2. Laminational equivalence relations

In this section, we discuss (invariant) laminational equivalence relations and
(invariant) geodesic laminations generated by them. The relation between certain
polynomials with connected Julia sets and laminational equivalence relations is also
discussed. Finally, we introduce a few useful concepts, which we will rely upon in
the rest of the paper.

2.2.1. Laminational equivalence relations and their relations to com-
plex polynomials. A lot of geodesic laminations naturally appear in the context
of invariant equivalence relations on S satisfying special conditions. We will call
such equivalence relations laminational .

Definition 2.13 (Laminational equivalence relations). An equivalence rela-
tion ∼ on the unit circle S is said to be laminational if either S is one ∼-equivalence
class (such laminational equivalence relations are called degenerate), or the following
holds:
(E1) the graph of ∼ is a closed subset of S× S;
(E2) the convex hulls of distinct equivalence classes are disjoint;
(E3) each equivalence class of ∼ is finite.

As with geodesic laminations, the above definition is static. However for us the
most interesting case is the dynamical case described below.

Definition 2.14 (Laminational equivalence relations and dynamics). A lami-
national equivalence relation ∼ is called (σd-)invariant if:
(D1) ∼ is forward invariant: for a ∼-equivalence class g, the set σd(g) is a ∼-
equivalence class;
(D2) for any ∼-equivalence class g, the map σd : g → σd(g) extends to S as an
orientation preserving covering map such that g is the full preimage of σd(g) under
this covering map.
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For an invariant laminational equivalence relation ∼ consider the topological
Julia set S/∼= J∼ and the topological polynomial f∼ : J∼ → J∼ induced by σd. The
quotient map π∼ : S → S/∼= J∼ semi-conjugates σd with f∼|J∼ . A laminational
equivalence relation ∼ canonically extends over C: non-trivial classes of the
extension are convex hulls of classes of ∼. By Moore’s Theorem, the quotient space
C/∼ is homeomorphic to C.

The quotient map π∼ : S → S/∼ extends to the plane with the only non-trivial
point-preimages (fibers) being the convex hulls of non-degenerate ∼-equivalence
classes. With any fixed identification between C/ ∼ and C, one extends f∼ to
a branched-covering map f∼ : C → C of degree d called a topological polynomial
too. The complement K∼ of the unique unbounded component U∞(J∼) of C \ J∼
is called the filled topological Julia set . The (canonical) geodesic lamination L∼
generated by ∼ is the collection of edges of convex hulls of all ∼-equivalence classes
and all points of S.

Lemma 2.15 (Theorem 3.21 [BMOV13]). Geodesic laminations L∼ gener-
ated by σd-invariant laminational equivalence relations are sibling invariant. If a
sequence of sets L+

∼i
converges to a compact set T , then there exists a sibling in-

variant geodesic lamination L such that T = L+.

We would like to motivate the usage of laminational equivalence relations by
showing in what way they are related to polynomials. Let P : C → C be a poly-
nomial of degree d � 2, let A∞ be the basin of attraction of infinity, and let
J(P ) = Bd(A∞) be the Julia set of P . When J(P ) is connected, A∞ is simply con-
nected and conformally isomorphic to C\D by a unique isomorphism φ : C\D → A∞
asymptotic to the identity at ∞. By a theorem of Böttcher (see, e.g., [Mil00, The-
orem 9.1]), the map φ conjugates P |A∞ with zd|

C\D. If J(P ) is locally connected,

then φ extends continuously to a semiconjugacy φ between σd = z �→ zd|S and
P |J(P ):

(2.2.1)

S
σd|S−−−−→ S

φ

⏐⏐� φ

⏐⏐�

J(P )
P |J(P )−−−−→ J(P )

The laminational equivalence generated by P is the equivalence relation ∼P on
S whose classes are φ-fibers, i.e. point-preimages under φ. Call J∼P

= S/ ∼P the
topological Julia set associated with the polynomial P . The map f∼P

, induced on
J∼P

by σd, will be called the topological polynomial associated to the polynomial
P . Evidently P |J(P ) and f∼P

|J∼P
are topologically conjugate. The collection LP

of chords of D that are edges of convex hulls of ∼P classes is called the geodesic
lamination generated by the polynomial P .

In fact, this connection between polynomials and appropriately chosen topolog-
ical polynomials can be extended onto a wider class of polynomials with connected
Julia sets. The first steps in this direction were made in a nice paper by Jan Kiwi
[Kiw04].

Definition 2.16 (Irrationally indifferent periodic points). Let x be a periodic
point of a polynomial P of period n. Then x is said to be irrationally indifferent
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if the multiplier (Pn)′(x) of P at x is of the form e2πiθ for some irrational θ. If
there exists an open Pn-invariant neighborhood of x, on which Pn is conjugate to
an irrational rotation of an open unit disk, then x is said to be a periodic Siegel
point . If such a neighborhood of x does not exist, then x is said to be a periodic
Cremer point .

We also need to introduce a few topological concepts. Observe that in our def-
inition of a laminational equivalence relation we require that classes of equivalence
be finite. However the definitions may be given without this requirement; in these
cases we will talk about laminational equivalence relations possibly with infinite
classes.

Definition 2.17 (Dendrites and dendritic laminations). A locally connected
continuum is said to be a dendrite if it contains no subsets homeomorphic to the
unit circle. If ∼ is a laminational equivalence relation on the unit circle S such
that the quotient space S/ ∼ is a dendrite, then we call ∼ and the corresponding
geodesic lamination L∼ dendritic. Observe that, in this case, every ∼-class is finite,
and hence every point x of the quotient space S/ ∼ is such that S/ ∼ \{x} consists
of finitely many components (in that case x is said to be of finite order). If, however,
∼ is a laminational equivalence relation on the unit circle S possibly with infinite
classes such that S/ ∼ is a dendrite, then we call ∼ and L∼ dendritic possibly with
infinite classes.

In what follows when we talk about a preperiodic object (point, set etc) we mean
that it is not periodic but maps to a periodic object after some (positive) number
of iterations of the map. On the other hand when we talk about a (pre)periodic
object, we mean that it is either preperiodic or periodic. In particular, when talking
about (pre)periodic points we mean points that have finite forward orbits. Now we
can state one of the important results proven in [Kiw04].

Theorem 2.18. Suppose that a polynomial P with connected Julia set J = J(P )
has no Siegel or Cremer periodic points. Then there exist a laminational equivalence
relation ∼P , the corresponding topological polynomial f∼P

: J∼P
→ J∼P

restricted
to the topological Julia set, and a monotone semiconjugacy ϕP : J → J∼P

. The
semiconjugacy ϕP is one-to-one on all (pre)periodic points of P belonging to the
Julia set. If all periodic points of P are repelling, then J∼P

is a dendrite.

In what follows, denote by D the space of all polynomials with connected Julia
sets and only repelling periodic points. Let Dd be the space of all such polynomials
of degree d.

Theorem 2.18 was extended [BCO11] onto all polynomials with connected Ju-
lia sets. Call a monotone map ϕP of a connected polynomial Julia set J(P ) = J
onto a locally connected continuum L the finest monotone map of J(P ) onto a
locally connected continuum if, for any monotone ψ : J → J ′ with J ′ locally con-
nected, there is a monotone map h with ψ = h◦ϕP . Then it is proven in [BCO11]
that the finest monotone map on a connected polynomial Julia set semiconjugates
P |J(P ) to the corresponding topological polynomial f∼P

on its topological Julia
set J∼P

generated by the laminational equivalence relation possibly with infinite
classes ∼P . It follows that the following diagram is commutative (recall that by
π∼P

we denote the quotient map corresponding to the lamination ∼P ).



2.2. LAMINATIONAL EQUIVALENCE RELATIONS 21

J(P ) J(P ) S
1

S
1

J∼P
J∼P

�P |J(P )

�
�
�
�
���

ϕP

�
�
�
�
���

ϕP

�σd

�
�

�
�

���

π∼P

�
�

�
�

���

π∼P

�
f∼P

|J∼P

2.2.2. Other useful notions. Considering objects related to geodesic lami-
nations, we do not have to fix these geodesic laminations. Recall that, given two
points a, b ∈ S, we write ab for the chord connecting a with b.

Definition 2.19. By a periodic gap or leaf , we mean a gap or a leaf G, for
which there exists the least number n (called the period of G) such that σn

d (G) = G.
Then we call the map σn

d : G → G the remap. An edge (vertex) of G, on which the
remap is the identity, is said to be refixed .

Given points a, b ∈ S, denote by (a, b) the positively oriented open arc from a
to b (that is, moving from a to be b within (a, b) takes place in the counterclockwise
direction). For a closed set G′ ⊂ S, we call components of S \ G′ holes (of G′ or
of the convex hull G = CH(G′) of G′). If � = ab is an edge of the convex hull
G = CH(G′) of G′, then we let HG(�) denote the component of S \ {a, b} disjoint
from G′ and call it the hole of G behind � (it is only unique if G′ contains at least
three points). The relative interior of a gap is its interior in the plane; the relative
interior of a segment is the segment minus its endpoints.

Definition 2.20. If A ⊂ S is a closed set and all the sets CH(σi
d(A)) are

pairwise disjoint, then A is called wandering . If there exists n � 1 such that the
sets CH(σi

d(A)) with i = 0, . . ., n− 1 have pairwise disjoint relative interiors while
σn
d (A) = A, then A is called periodic of period n. If there exists a minimal m > 0

such that all CH(σi
d(A)) with 0 � i � m + n − 1 have pairwise disjoint relative

interiors and σm
d (A) is periodic of period n, then we call A preperiodic of period n

and preperiod m. A set is called (pre)periodic if it is periodic or preperiodic. If A
is wandering, periodic or preperiodic, and, for every i � 0 and every hole (a, b) of
σi
d(A), either σd(a) = σd(b), or the positively oriented arc (σd(a), σd(b)) is a hole

of σi+1
d (A), then we call A (and CH(A)) a (σd)-laminational set . We call CH(A)

finite if A is finite. A (σd-)stand alone gap is defined as a laminational set with
non-empty interior in the plane.

Recall that when talking about a Jordan curve K that encloses a simply con-
nected domain W in the plane, by the positive direction on K one means the
counterclockwise direction with respect to W , i.e., the direction of a particle mov-
ing along K so that W remains on its left. When considering a Jordan curve K in
the plane we always do so with positive direction on it. In particulary, we consider
the boundary of a gap with positive direction on it. Accordingly, denote by < the
positive (counterclockwise) circular order on S = R/Z induced by the usual order
of R. Note that this order is only meaningful for sets of cardinality at least three.
For example, we say that x < y < z provided that moving from x in the positive
direction along S we meet y before meeting z.
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Definition 2.21 (Order preserving maps of the circle). Let X ⊂ S be a set
with at least three points. We call σd order preserving on X if σd|X is one-to-one
and, for every triple x, y, z ∈ X with x < y < z, we have σd(x) < σd(y) < σd(z).

Finally, we discuss in this section proper invariant geodesic laminations.

Definition 2.22 (Proper invariant geodesic lamination). Two leaves with a
common endpoint v and the same image are said to form a critical wedge (the
point v the is said to be its vertex). An invariant geodesic lamination L is proper
if it contains no critical leaf with a periodic endpoint and no critical wedge with
periodic vertex.

Given an invariant geodesic lamination L, define an equivalence relation ≈L by
declaring that x ≈L z if and only if there exists a finite concatenation of leaves of
L connecting x and z.

Theorem 2.23 (Theorem 4.9 [BMOV13]). Let L be a proper Thurston in-
variant lamination. Then ≈L is a nonempty invariant laminational equivalence
relation.

2.3. General properties of invariant geodesic laminations

Some results of this section are taken from [BMOV13].

Lemma 2.24 (Lemma 3.7 [BMOV13]). If ab and ac are two leaves of an
invariant geodesic lamination L such that σd(a), σd(b) and σd(c) are all distinct
points, then the order among points a, b, c is preserved under σd.

We prove a few corollaries of Lemma 2.24

Lemma 2.25. If L is an invariant geodesic lamination, � = ab is a leaf of L,
and a is periodic of period n, then b is (pre)periodic of period n.

Proof. Assume that, while the point a is of period n, the point b is not σn
d -

fixed. Then, by Lemma 2.24, either the circular order among the points bi = σni
d (b)

is the same as the order of subscripts or bi = bi+1 for some i. In the former case
bi converge to some limit point, a contradiction with the expansion property of σn

d .
Hence for some (minimal) i we have bi = bi+1. It follows that the period m of bi
cannot be less than n as otherwise we can consider σm

d which fixes bi and does not
fix a yielding the same contradiction with Lemma 2.24. �

We will need the following elementary lemma. The notion of a (pre)critical
object is similar to the notion of a (pre)periodic object; thus, a (pre)critical point
is either a precritical point, or a critical point.

Lemma 2.26. If x ∈ S, and the chords σi
d(x)σ

i+1
d (x), i = 0, 1, . . . are pairwise

unlinked, then the point x, and therefore the leaf xσd(x) = �, are (pre)periodic.

Proof. The sequence of leaves from the lemma is the σd-orbit of �, in which
consecutive images are concatenated and no two leaves are linked. If, for some i, the

leaf σi
d(x)σ

i+1
d (x) = σi

d(�) is critical, then σi+1
d (�) = {σi+1

d (x)} is a σd-fixed point,
which proves the claim in this case. Assume now that the leaf � is not (pre)critical.
If the point x is not (pre)periodic, then, by topological considerations, leaves σn

d (�)
must converge to a limit leaf or a limit point. Clearly, this limit set is σd-invariant.
However, the map σd is expanding, a contradiction. �
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Lemma 2.26 easily implies Lemma 2.27.

Lemma 2.27. Let L be a geodesic lamination. Then the following holds.

(1) If � is a leaf of L and, for some n > 0, the leaf σn
d (�) is concatenated to

�, then � is (pre)periodic.
(2) If � has a (pre)periodic endpoint, then � is (pre)periodic.
(3) If two leaves �1, �2 from geodesic laminations L1, L2 share the same (pre)-

periodic endpoint, then they are (pre)periodic with the same eventual pe-
riod of their endpoints.

Proof. Let � = uv. First, assume that σn
d (u) = u. Then the statement (1)

follows from Lemma 2.25. Second, assume that σn
d (u) = v. Then the statement

(1) follows from Lemma 2.26. The statements (2) and (3) follow from (1) and
Lemma 2.25. �

A similar conclusion can be made for edges of periodic gaps.

Lemma 2.28. Suppose that G is a gap of a geodesic lamination. Then, for every
edge � of G, there exists an integer k such that the length of the hole Hσk

d (G)(σ
k
d(�))

exceeds 1
d+1 . Moreover, suppose that a gap G is periodic of period m. Then, for

every edge � of G which is not (pre)critical, there exists an edge �∗ of G from the
orbit of � such that the length of the hole HG(�∗) exceeds

1
dm+1 . In particular, any

edge of a periodic gap is (pre)periodic or (pre)critical, and any periodic gap can
have at most finitely many non-degenerate periodic edges.

Proof. To prove the first statement of the lemma, observe that the length sn
of the hole Hσn

d (G)(σ
n
d (�)) of σ

n
d (G) behind the leaf σn

d (�) grows with n as long as sn
stays sufficiently small. In fact, it is easy to see that the correct bound on sn is that
sn < 1

d+1 . Indeed, suppose that sn < 1
d+1 . Then the restriction σd|Hσn

d
(G)(σ

n
d (�))

is one-to-one and the hole σd(Hσn
d (G)(σ

n
d (�))) is of length dsn > sn. Clearly, this

implies that for some k the length of the hole Hσk
d (G)(σ

k
d(ell)) will exceed 1

d+1 as

desired.
Now, suppose that G is periodic of period m and � is not (pre)critical. Then

G is σm
d -invariant, and the second claim of the lemma follows from the first one.

Observe that for any edge �̂ of G such that |HG(�̂)| = s it is impossible that
1

dm+1 � s < 1
dm as in that case the arc T complementary to the arc σm

d (HG(�̂)) is

of length 1− dms < s, a contradiction (all the vertices of G must belong to T and

hence T must contain HG(�̂), a contradiction). The remaining claims of the lemma
now easily follow. �

Given v ∈ S, let E(v) be the closure of the set {u |uv ∈ L}.

Lemma 2.29. If v is not (pre)periodic, then E(v) is at most finite. If v is
(pre)periodic, then E(v) is at most countable.

Proof. The first claim is proven in [BMOV13, Lemma 4.7]. The second
claim follows from Lemma 2.27 as by that lemma both vertices of any leaf with an
endpoint v must be preperiodic. �

Properties of individual wandering polygons were studied in [Kiw02]; proper-
ties of collections of wandering polygons were studied in [BL02]; their existence
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was established in [BO08]. The most detailed results on wandering polygons and
their collections are due to Childers [Chi07].

Let us describe the entire σd-orbit of a finite periodic laminational set.

Proposition 2.30. Let T be a σd-periodic finite laminational set and X be the
union of the forward images of T . Then, for every connected component R of X,
there is an m-tuple of points a0 < a1 < · · · < am−1 < am = a0 in S such that R
consists of eventual images of T containing aiai+1 for i = 0, . . ., m− 1. If m > 1,
then the remap of R is a transitive combinatorial rotation on the collection of all
images of T in R.

Loosely speaking, one can say that, under the appropriate power of σd, the set
T “rotates” around the convex hull of {a0, . . . , am−1}. Note that the case m = 1 is
possible. In this case, R consists of several images of T sharing a common vertex
a0, there is a natural cyclic order among the images of T , and the remap of R is
a cyclic permutation of these images, not necessarily a combinatorial rotation. In
particular, it may happen that there is a unique image of T containing a0; in this
case we deal with more standard dynamics where the sets T, σd(T ), . . . , σ

k−1
d (T )

are pairwise disjoint while σk
d(T ) = T .

Proof. Set Tk = σk
d(T ). Let k be the smallest positive integer such that Tk

intersects T0; we may suppose that Tk 
= T0. There is a vertex a0 of T0 such that
a1 = σk

d(a0) is also a vertex of T0. Clearly, both a1 and a2 = σk
d(a1) are vertices

of Tk. Set ai = σki
d (a0). Then we have am = a0 for some minimal m > 0. Let Q

be the convex hull of the points a0, . . . , am−1. Then Q is a convex polygon, or a
chord, or a point. If m > 1, then ai and ai+1 are the endpoints of the same edge of
Q (otherwise some edges of the polygons Tki would cross in D). Set R = ∪m−1

i=0 Tki.
If m = 1, then the sets Tki share the vertex a0. If m = 2 then Q is a leaf that
flips under the action of σk

d . Finally, if m > 2, then it follows from the fact that
the boundary of Q is a simple closed curve that every chord aiai+1 is an edge of
Tki, i = 0, . . . ,m − 1 shared with Q and the sets Tki are disjoint from the interior
of Q.

Since the case m = 2 is straightforward, let us assume now that m > 2.
Notice that, by the construction, the map σk

d sends each set Tki to the set Tk(i+1)

adjacent to Tki, and σk
d(aiai+1) = ai+1ai+2. Now, let s be the least integer such

that σs
d(a0a1) = ajaj+1 is an edge of Q for some j. Evidently, the number s

does not have to be equal to k. Still, it follows that σs
d(a1a2) = aj+1aj+2, . . . ,

σs
d(am−1a0) = aj−1aj . Thus, the map σs

d|R is a combinatorial rotation. Moreover,
the choice of s and the fact that a1a2 = σk

d(a0a1) imply that the σs
d-orbit of a0a1

is the collection of all edges of Q, i.e. that σs
d is transitive on the collection of all

images of T forming R.
It remains to prove that R is disjoint from Rj = σj

d(R) for j < s. By way of
contradiction suppose that Rj intersects some Tsi. Note that the “shape” of the

set Rj mimics that of R: the set Rj consists of m sets that are σj
d-images of sets

Tki, i = 0, . . . ,m− 1 adjacent to a convex polygon σj
d(Q) in the same way the sets

Tki, i = 0, . . . ,m− 1 are adjacent to Q.
Let us show that sets Q, σd(Q), . . . , σs−1

d (Q) have at most a vertex in common

and that each set Rj is contained in one component of D \ Q. Indeed, consider

the set σj
d(Q). If all images of T adjacent to σj

d(Q) are distinct from the images of
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T adjacent to Q, then all the images of T adjacent to σj
d(Q) are contained in the

same component of D\Q. Hence σj
d(Q) can have at most a common vertex with Q.

Moreover, suppose that a set σj
d(T ), adjacent to σj

d(Q), j < s, in fact coincides with

set σis
d (T ) adjacent to Q. Then by the choice of s it follows that the edge σj

d(a0a1)

cannot coincide with the edge of σj
d(T ) = σis

d (T ) shared by this set and Q. Since

σj
d(Q) is adjacent to σj

d(T ) along the edge σj
d(a0a1), it follows again that σj

d(Q) and
Q cannot have more than one vertex in common, and that Rj is contained in the

corresponding component of D \Q.
Now, suppose that x ∈ Rj ∩ R. Assume that x belongs to a component A of

D \Q. Then on the one hand σs
d sends x to a component B of D \Q distinct from

A. On the other hand, by the previous paragraph the entire Rj must be contained
in A which implies that σs

d(x) must belong to A, a contradiction. �

It is well-known (see [Kiw02]) that any infinite gap G of an invariant geodesic
lamination L is (pre)periodic. By a vertex of a gap or leaf G we mean any point
of G ∩ S.

Lemma 2.31. Let G be a periodic gap of period n and set K = Bd(G). Then
σn
d |K is the composition of a covering map and a monotone map of K. If σn

d |K is
of degree one, then either statement (1) or statement (2) below holds.

(1) The gap G has at most countably many vertices, only finitely many of
which are periodic, and no edge is preperiodic. All non-periodic edges of
G are (pre)critical and isolated.

(2) The map σn
d |K is monotonically semiconjugate to an irrational circle ro-

tation so that each fiber of this semiconjugacy is a finite concatenation of
(pre)critical edges of G.

Proof. The first claim of the lemma holds since by [BMOV13] sibling invari-
ant geodesic laminations are invariant in the sense of Thurston (see the beginning
of Subsection 2.1.2). Consider now the case when G is of degree one. Then it
follows that no edge of G can have two preimages under σn

d . In particular, G has
no preperiodic edges. All other claims in the statement (1) of the lemma follow
from Lemma 2.28. Observe that a critical edge � of G must be isolated because
by definition of an invariant geodesic lamination (more precisely, because geodesic
invariant laminations are gap-invariant) there is another gap of L sharing the edge
� with L and mapping onto σd(G) under σd.

In the statement (2) of the lemma we will prove only the very last claim. Denote
by ϕ the semiconjugacy from (2). Let T ⊂ K be a fiber of ϕ. By Lemma 2.28 all
edges of G are (pre)critical. Hence if T contains infinitely many edges, then the
forward images of T will hit critical leaves of σn

d infinitely many times as T cannot
collapse under a finite power of σn

d . This would imply that an irrational circle
rotation has periodic points, a contradiction that completes the proof. �

We can now recall the notion of a periodic Siegel gap; we will also introduce a
useful notion of the skeleton of an infinite gap.

Definition 2.32. Let G be an infinite gap of a geodesic lamination L. If
G∩S is at most countable, then we say that the skeleton of G is empty. Otherwise
the skeleton of G is defined as the convex hull of the maximal Cantor subset of
G∩ S. Periodic infinite gaps G of geodesic laminations such that the remap on the
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boundary of G is monotonically semiconjugate to an irrational rotation are said to
be (periodic) Siegel gaps.

Observe that the skeleton of a periodic Siegel gap is non-empty. Observe also
that edges of the skeleton of a periodic Siegel gap G do not have to be edges of G
itself.

By [BL02], if ∼ is an invariant laminational equivalence relation possibly with
infinite classes then there are no countable infinite gaps of ∼, and the skeleton of
a Siegel gap G coincides with G. In other words, in this case infinite gaps of ∼ are
either periodic Siegel gaps or periodic Fatou gaps of degree greater than one, or
their preimages.

It is known that periodic Siegel gaps must have critical edges that are iso-
lated. Therefore, both countable and Siegel gaps must have isolated edges. Let us
investigate other properties of periodic Siegel gaps.

Lemma 2.33. Suppose that L is a geodesic lamination. Let G be a periodic
Siegel gap of L of period n. Let H be the skeleton of G and � = ab be an edge of
H. Consider the union of all finite concatenations of leaves of L coming out of a
or b and let L be the convex hull of all such leaves. Then L is a finite polyhedron
so that every two vertices can be connected by a chain of leaves from L and � is
an edge of L. Moreover, for a minimal m > 0, the σm

d -image of L is a singleton
in H that is a limit from both sides of points of H. The semiconjugacy ϕ between
σn
d and the corresponding irrational rotation can be extended onto the union of G

and all sets L by collapsing each set L to the point ϕ(a) = ϕ(b). Moreover, at each
edge �∗ = a∗b∗ of L, there is an infinite gap of L that has on its boundary a finite
concatenation of leaves of L connecting a∗ and b∗ and that maps onto G under σm

d .

Proof. It follows from Lemma 2.31 that for every edge � = ab of H there
exists m such that σm

d (a) = σm
d (b) = x is a point of the Cantor set H ∩ S that

is a limit point of H ∩ S from both sides. This implies that there are no leaves
of L coming out of x. Therefore, any finite concatenation of leaves of L coming
out of a or b maps to x under σm

d and must be contained in the appropriate finite
polygon mapped to x under σm

d . This implies the first two claims of the lemma.
The existence of infinite gaps at edges of L follows now from the definition of an
invariant geodesic lamination. �

Observe that, by Lemma 2.33, the σm−1
d -image of L is an all-critical gap. We

will need Lemma 2.33 in what follows, in particular, when we study Siegel gaps of
two linked geodesic laminations.

Definition 2.34. In what follows sets L defined in Lemma 2.33 are said to be
decorations of G. The union of G with all its decorations is said to be the extension
of G.

In particular, Lemma 2.33 shows that the semiconjugacy ϕ can be defined on
the extension of the corresponding Siegel gap. Then the fibers of ϕ (i.e., point-
preimages under ϕ) are either decorations of G or single points of the set G∩S that
are limit points of G ∩ S from both sides.

Lemma 2.31 implies Corollary 2.35.

Corollary 2.35. Suppose that G is a periodic gap of an invariant geodesic
lamination L, whose remap has degree one. Then at most countably many pairwise
unlinked leaves of other invariant geodesic laminations can be located inside G.
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We say that a chord is located inside G if it is a subset of G and intersects the
interior of G.

Proof. Any chord located inside G has its endpoints at vertices of G. Since
in case (1) of Lemma 2.31 there are countably many vertices of G, we may assume
that case (2) of Lemma 2.31 holds. Applying the semiconjugacy ϕ from this lemma,
we see that if a leaf � is located in G and its endpoints do not map to the same point
by ϕ, then an iterated image of � will eventually cross �. If there are uncountably
many leaves of geodesic laminations inside G, then among them there must exist a
leaf � with endpoints in distinct fibers of ϕ. By the above, some forward images of
� cross each other, a contradiction. �





CHAPTER 3

Special types of invariant laminations

3.1. Invariant geodesic laminations with quadratically critical portraits

Here we define invariant geodesic laminations with quadratically critical por-
traits and discuss linked or essentially equal invariant geodesic laminations with
quadratically critical portraits. First we motivate our approach and study fami-
lies of collections of quadratic quadrilaterals with certain natural properties. Then
we discuss properties of families of invariant geodesic laminations, for which the
corresponding collections of critical quadrilaterals can be defined.

3.1.1. Collections of critical quadrilaterals and their properties.
Thurston defines the minor m of a σ2-invariant geodesic lamination L as the

image of a longest leaf M of L. Any longest leaf of L is said to be a major of L.
If m is non-degenerate, then L has two disjoint majors, both mapping to m; if m
is degenerate, then L has a unique major that is a critical leaf. In the quadratic
case, the majors are uniquely determined by the minor. Thus, a quadratic invariant
geodesic lamination is essentially defined by its minor. Even though, in the cubic
case, one could define majors and minors similarly, unlike in the quadratic case,
these “minors” do not uniquely determine the corresponding majors.

The simplest way to see that is to consider distinct pairs of critical leaves
with the same images. More precisely, choose an all-critical triangle Δ1 with non-
periodic vertices so that the common image x1 of the vertices of Δ1 is periodic
(alternatively, has a dense orbit in S). Choose a different all-critical triangle Δ2

with similar properties. Now, choose an edge c of Δ1. Clearly, there is a unique edge
d of Δ2 disjoint from c. Under the assumptions made about Δ1 and Δ2 it is easy
to see that the two critical leaves c and d have so-called aperiodic kneadings as
defined by Kiwi in [Kiw04]. Therefore, by [Kiw04], these critical leaves generate
the corresponding cubic invariant geodesic lamination. Any other similar choice
of critical edges of Δ1 and Δ2 gives rise to a cubic invariant geodesic lamination
too; clearly, these two invariant geodesic laminations are very different even though
they have the same images of their critical leaves, that is, the same minors (see
Figure 1). Thus, in the cubic case we should be concerned with critical sets, not
only their images.

We study how ordered collections of critical sets of invariant geodesic lamina-
tions are located with respect to each other. The fact that critical sets may have
different degrees complicates such study. So, it is natural to adjust our invariant
geodesic laminations to make sure that the associated critical sets of two invariant
geodesic laminations are of the same type. As associated critical sets we choose
(generalized) critical quadrilaterals.

Definition 3.1. A (generalized) critical quadrilateral Q is the circularly or-
dered 4-tuple [a0, a1, a2, a3] of marked points a0 � a1 � a2 � a3 � a0 in S so
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Figure 1. Two all-critical triangles in the cubic case. Taking
similar outlined edges (thick and thick, thin and thin, or dashed
and dashed), one from each of the two triangles, generates three
different laminations with the same pair of minors.

that a0a2 and a1a3 are critical chords (called spikes); here critical quadrilaterals
[a0, a1, a2, a3], [a1, a2, a3, a0], [a2, a3, a0, a1] and [a3, a0, a1, a2] are viewed as equal.

We want to comment upon our notation. By (X1, . . . , Xk), we always mean
a k-tuple, that is, an ordered collection of elements X1, . . . , Xk. On the other
hand, by {X1, . . . , Xk} we mean a collection of elements X1, . . . , Xk with no fixed
order. Since, for critical quadrilaterals, we need to emphasize the circular order
among its vertices, we choose the notation [a0, a1, a2, a3] distinct from either of the
two just described notations.

For brevity, we will often use the expression “critical quadrilateral” when talk-
ing about the convex hull of a critical quadrilateral. Clearly, if all vertices of a
critical quadrilateral are distinct or if its convex hull is a critical leaf, then the
quadrilateral is uniquely defined by its convex hull. However, if the convex hull of a
critical quadrilateral is a triangle, this is no longer true. Indeed, let T = CH(a, b, c)
be an all-critical triangle. Then [a, a, b, c] is a critical quadrilateral, but so are
[a, b, b, c] and [a, b, c, c].

A collapsing quadrilateral is a critical quadrilateral, whose σd-image is a leaf. A
critical quadrilateral Q has two intersecting spikes and is either a collapsing quadri-
lateral, or a critical leaf, or an all-critical triangle, or an all-critical quadrilateral. If
all its vertices are pairwise distinct, then we call Q non-degenerate, otherwise Q is
called degenerate. Vertices a0 and a2 (a1 and a3) are called opposite. Considering
invariant geodesic laminations, all of whose critical sets are critical quadrilaterals,
is not very restrictive: we can “tune” a given invariant geodesic lamination by in-
serting new leaves into its critical sets in order to construct a new invariant geodesic
lamination with all critical sets being critical quadrilaterals.

Lemma 3.2. The family of all critical quadrilaterals is closed. The family of
all critical quadrilaterals that are critical sets of invariant geodesic laminations is
closed too.
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Proof. The first claim follows easily because if a sequence of critical quadri-
laterals converges then the limit is again a critical quadrilateral. The second one
follows from Theorem 2.11 and the fact that if Li → L, then the critical quadri-
laterals of invariant geodesic laminations Li converge to critical quadrilaterals that
are critical sets of L. �

In the quadratic case, we have less variety of critical quadrilaterals: only collaps-
ing quadrilaterals and critical leaves. As mentioned above, each quadratic invariant
geodesic lamination L either already has a critical quadrilateral, or can be tuned
to have one. The latter can be done in several ways if L has a finite critical set
(on which σ2 acts in a two-to-one fashion). If, however, L does not have a finite
critical set, then its critical set must be a periodic Fatou gap U of degree two. It
follows from [Thu85] that it has a unique refixed edge M ; then one can tune L by
inserting into U the quadrilateral that is the convex hull of M and its sibling leaf.

Thurston’s parameterization [Thu85] can be viewed as associating to every
quadratic invariant geodesic lamination L with critical quadrilateral Q its minor
m. It is easy to see that m is the σ2-image of Q and that Q = σ−1

2 (m) is the full
σ2-preimage ofm. We would like to translate some crucial results of Thurston’s into
the language of critical quadrilaterals of quadratic invariant geodesic laminations.

To this end, observe, that, by the above, two minors cross if and only if their
full pullbacks (which are collapsing quadrilaterals coinciding with convex hulls of
pairs of majors) have a rather specific mutual location: their vertices alternate on
the circle. A major result of Thurston’s from [Thu85] is that minors of different
quadratic invariant geodesic laminations are unlinked; in the language of
critical quadrilaterals this can be restated as follows: critical quadrilaterals of
distinct quadratic invariant geodesic laminations cannot have vertices
that alternate on the circle. All this motivates Definition 3.3.

Definition 3.3 (cf with [Thu85]). Let A and B be two quadrilaterals. Say
that A and B are strongly linked if the vertices of A and B can be numbered so
that the following holds:

a0 � b0 � a1 � b1 � a2 � b2 � a3 � b3 � a0

where ai, 0 � i � 3, are vertices of A and bi, 0 � i � 3 are vertices of B.
Equivalently, A and B are strongly linked if no hole of either quadrilateral contains
more than one vertex of the other one.

Strong linkage is a closed condition: if two variable critical quadrilaterals are
strongly linked and converge, then they must converge to two strongly linked criti-
cal quadrilaterals. An obvious case of strong linkage is between two non-degenerate
critical quadrilaterals, whose vertices alternate on the circle so that all the inequal-
ities in Definition 3.3 are strict. Yet even if both critical quadrilaterals are non-
degenerate, some inequalities may be non-strict, which means that some vertices of
both quadrilaterals may coincide.

For example, two coinciding critical leaves can be viewed as strongly linked
critical quadrilaterals. Otherwise, an all-critical triangle A with vertices x, y, z
and its edge B = yz can be viewed as strongly linked quadrilaterals if the vertices
are chosen as follows: a0 = x, a1 = a2 = y, a3 = z and b0 = b1 = y, b2 = b3 = z.
Observe that if a critical quadrilateral Q is a critical leaf or has all vertices distinct,
then Q as a critical quadrilateral has a well-defined assignment of vertices; the only
ambiguous case is when Q is an all-critical triangle.
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If an ordered collection of a few chords can be concatenated to form a Jordan
curve, or if there are two identical chords, then we say that they form a loop. In
particular, one chord does not form a loop while two equal chords do. If an ordered
collection of chords (�1, . . . , �k) contains no chords forming a loop, then we call it
a no loop collection.

Lemma 3.4. The family of no loop collections of critical chords is closed.

Proof. Suppose that there is a sequence of no loop collections of critical chords
N i = (�i1, . . . , �

i
s) such that N i → N = (�1, . . . , �s). Clearly, all chords �i are

critical. We need to show that N is a no loop collection. By way of contradiction

assume that, say, chords �1 = a1a2, . . . , �k = aka1 form a loop N̂ , in which the

order of points a1, . . . , ak is positive. We claim that N̂ cannot be the limit of no
loop collections of critical chords, contradicting the convergence assumption that
N i → N . This follows from the fact that if G′ ⊂ S is a union of finitely many
sufficiently small circle arcs such that all straight edges in the boundary of the
convex hull G = CH(G′) are critical, then in fact all circle arcs in G′ are degenerate,
so that G is a finite polygon.

A more formal proof follows. Consider chords �i1 = bi1d
i
1, . . . , �

i
k = bikd

i
k such

that points bij converge to aj and points dij converge to aj+1 (j + 1 is understood
here and in the rest of the argument modulo k) as i → ∞. Then for a well-
defined collection of integers m1, . . . ,mk we have that aj+1 = aj + mj · 1

d and

dij = bij +mj · 1
d . Moreover, since N̂ is a loop, then m1 + · · ·+mk = d. Now, since

N i is a no loop collection and all leaves in N i are unlinked, for each 1 � j � k
we have dij = bij +mj · 1

d � bij+1 and there exists at least one 1 � j � k such that

dij < bij+1. Since by the above m1 + · · · +mk = d it follows that after we follow k

chords �i1 = bi1d
i
1, . . . , �

i
k = bikd

i
k along the circle considering bij as the initial point

of �ij and dij as the terminal point of �ij we see that the terminal point dik of �ik is

located slightly beyond the initial point bi1 of �i1 which implies that �ik crosses �i1, a
contradiction. �

We will need the following definition.

Definition 3.5 (Full collections and complete samples of spikes). Call a no
loop collection of d− 1 pairwise unlinked critical chords a full collection (of critical
chords). Given a collection Q of d−1 distinct critical quadrilaterals of an invariant
geodesic lamination L, we choose one spike in each of them and call this collection
of d− 1 critical chords a complete sample of spikes (of Q).

Now we are ready to investigate invariant geodesic laminations for which the
appropriate collections of critical quadrilaterals can be defined.

3.1.2. Quadratically critical invariant geodesic laminations. Suppose
that L is the invariant geodesic lamination generated by a laminational equivalence
relation all of whose critical sets are critical quadrilaterals. Then any complete
sample of spikes is a full collection because in this case distinct critical sets are
disjoint. Observe that, by Lemma 3.4, full collections of critical chords form a
closed family. It follows that the fact that complete samples of spikes form a
full collection survives limit transition (unlike pairwise disjointness). This inspires
another definition.



3.1. INVARIANT GEODESIC LAMINATIONS 33

Definition 3.6 (Quadratic criticality). Let (L,QCP) be an invariant geodesic
lamination with a (d − 1)-tuple QCP of critical quadrilaterals that are gaps or
leaves of L such that any complete sample of spikes is a full collection. Then QCP
is called a quadratically critical portrait for L while the pair (L,QCP) is called an
invariant geodesic lamination with quadratically critical portrait (if the appropriate
invariant geodesic lamination L for QCP exists but is not emphasized we simply
call QCP a quadratically critical portrait). The space of all quadratically critical
portraits is denoted by QCPd. The family of all invariant geodesic laminations with
quadratically critical portraits is denoted by LQCPd.

Observe that any full collection of critical chords is a quadratically critical
portrait. Notice also, that if C is a complementary component of a full collection of
critical chords in D, then σd is one-to-one on the boundary of C except for critical
chords contained in the boundary of C. Therefore, if L admits a quadratically
critical portrait then there are no gaps of L of degree greater than one that are
different from critical quadrilaterals from this quadratically critical portrait. In
particular, L cannot have infinite gaps of degree greater than one.

Corollary 3.7. The spaces QCPd and LQCPd are compact.

Proof. Let (Li,QCPi) → (L, C), where convergence as always is understood
in the Hausdorff (HH) sense. By Theorem 2.11 and Lemma 3.2, here in the limit we
have an invariant geodesic lamination L and an ordered collection C of d−1 critical
quadrilaterals. Let C = (Cj)

d−1
j=1 be these limit critical quadrilaterals. Choose a

collection of spikes �j , j = 1, . . . , d− 1 of quadrilaterals of C. Suppose that there is
a loop formed by some of these spikes. By construction, there exist collections of
spikes from quadratically critical portraits QCPi converging to (�1, . . . , �d−1). Since
by definition these are full collections of critical chords, this contradicts Lemma 3.4.
Hence (�1, . . . , �d−1) is a full collection of critical chords too. That implies that C is
a quadratically critical portrait for L and proves that QCPd and LLPd are compact
spaces. �

The following lemma describes invariant geodesic laminations admitting a
quadratically critical portrait. Recall that by a collapsing quadrilateral we mean a
critical quadrilateral that maps to a non-degenerate leaf.

Lemma 3.8. An invariant geodesic lamination L has a quadratically critical
portrait if and only if all its critical sets are collapsing quadrilaterals or all-critical
sets.

Proof. If L has a quadratically critical portrait, then the claim of the lemma
follows by definition. Assume that the critical sets of L are collapsing quadrilaterals
and all-critical sets. Then Lmay have several critical leaves (some of them are edges
of all-critical gaps, some are edges of other gaps, some are not edges of any gaps
at all). Choose a no loop collection of critical leaves of L which is maximal by
cardinality. Add to them the collapsing quadrilaterals of L. Include all selected
sets in the family of pairwise distinct sets C = (C1, . . . , Cm) consisting of critical
leaves and collapsing quadrilaterals.

We claim that C is a quadratically critical portrait. To this end we need to
show that m = d− 1 and that any collection N of spikes of sets from C is a no loop
collection. First of all, let us show that any such collection N contains no loops.
Indeed, suppose that N contains a loop �1 ∈ C1, . . . , �r ∈ Cr. By construction
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there must be a collapsing quadrilateral among sets C1, . . . , Cr. We may assume
that, say, C1 = [a, x, b, y] is a collapsing quadrilateral and �1 = ab is contained in
the interior of C1 except for points a and b. The spikes �2, . . . , �r form a chain of
concatenated critical chords which has, say, b as its initial point and a as its terminal
point. Since these spikes come from sets C2, . . . , Cr distinct from C1, they have to
pass through either x or y as a vertex, a contradiction with C1 being collapsing.
Thus, N contains no loops, which implies that the number m of chords in N is at
most d− 1.

Assume now that m < d − 1 and show that this leads to a contradiction.
Indeed, if m < d − 1, then we can find a component U of D \ N+ with boundary
including some circle arcs such that σd on the boundary of U is k-to-1 or higher
with k > 1 (images of critical edges of U may have more than k preimages). We
claim that there exists a critical chord � of L inside U that connects points in
Bd(U) not connected by a chain of critical edges in Bd(U). Observe that an arc
on Bd(U) may include several critical chords from the collection N . Consider all
open arcs A ⊂ Bd(U) such that σd is non-monotone on A, and the endpoints of A
are connected by a leaf of L. Call such open arcs and the corresponding closed arcs
non-monotone. Non-monotone arcs exist; indeed, by the assumptions there exist
leaves � of L inside U , and at least one of the two arcs in the boundary of U that
connect the endpoints of � must be non-monotone.

The intersection of a decreasing sequence of non-monotone arcs is a closed arc
A0 with endpoints connected with a leaf �0 ∈ L such that either �0 is the desired
critical leaf of L (the leaf �0 cannot connect two points otherwise connected by
a chain of critical edges from Bd(U) as this would contradict the fact that arcs
approaching A0 are non-monotone), or A0 is still non-monotone. Thus, it will
be enough to show that if A0 is a closed non-monotone arc which is minimal by
inclusion, then there exists the desired critical chord of L.

Clearly, A0 ∪ �0 is a Jordan curve enclosing a Jordan disk T , and A0 is not a
union of spikes. If �0 is not critical, then, by the assumption of minimality of A0,
the leaf �0 cannot be approached by leaves of L from within T , thus �0 is an edge
of a gap G ⊂ T . Take a component W of T \ G that shares an edge m with G.
Then, by minimality of A0, either Bd(W ) collapses to a point or Bd(W ) maps in a
monotone fashion to the hole of σd(G) located “behind” σd(m) united with σd(m).
This implies that G is critical as otherwise the quoted properties of components
W of T \G and the fact that σd maps G onto σd(G) in a one-to-one fashion show
that σd|A0

is (non-strictly) monotone, a contradiction. The gap G cannot be all-
critical, since �0 is an edge of G. Therefore, G is a collapsing quadrilateral, which
contradicts our choice of C. �

Observe that there might exist several quadratically critical portraits for an
invariant geodesic lamination L from Lemma 3.8. For example, consider a σ4-
invariant geodesic lamination L with two all-critical triangles Δ1 = CH(a, b, c),
Δ2 = CH(a, c, d) sharing an edge � = ac. The proof of Lemma 3.8 leads to a
quadratically critical portrait consisting of any three edges of Δ1, Δ2 not equal
to � in some order (recall that for each critical leaf its structure as a quadrilateral
is unique). However it is easy to check that the collection ([a, b, b, c], [a, a, c, c],
[a, c, d, d]) is a quadratically critical portrait too. Notice that, in the definition of a
complete sample of spikes, we do not allow to use more than one spike from each
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Figure 2. This figure illustrates the case with two all-critical tri-
angles Δ1 and Δ2 described in the text.

critical set, hence the pair of coinciding spikes in [a, a, c, c] does not form a loop of
spikes.

Given a quadratically critical portrait QCP, any complete sample of spikes is a
full collection of critical chords. If QCP includes sets that are not leaves, then there
are several complete samples of spikes as the choice of spikes is ambiguous. This
is important for Section 3.4, where we introduce and study the so-called smart
criticality and its applications to linked invariant geodesic laminations with
quadratically critical portraits introduced below. First we need a technical
definition.

Definition 3.9. A critical cluster of L is a convex subset of D which is maximal
by inclusion, whose boundary is a union of critical leaves of L.

A critical leaf disjoint from all other leaves is itself a critical cluster. Consider
also the example discussed after Lemma 3.8. There, a σ4-invariant geodesic lam-
ination L has two all-critical triangles sharing a critical edge; the union of these
triangles is a critical cluster of L.

Definition 3.10 (Linked invariant geodesic laminations). Let L1 and L2 be

geolaminations with quadratically critical portraits QCP1 = (Ci
1)

d−1
i=1 and QCP2 =

(Ci
2)

d−1
i=1 and a number 0 � k � d− 1 such that:
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(1) for each j > k the sets Cj
1 and Cj

2 are contained in a common critical
cluster of L1 and L2 (in what follows these clusters will be called special
critical clusters and leaves contained in them will be called special critical
leaves).

(2) for every i with 1 � i � k, the sets Ci
1 and Ci

2 are either strongly linked
critical quadrilaterals or share a spike.

Then we use the following terminology:

(a) if in (1) for every i with 1 � i � k, the quadrilaterals Ci
1 and Ci

2

share a spike, we say that QCP1 and QCP2, (as well as (L1,QCP1) and
(L2,QCP2)) are essentially equal),

(b) if in (1) there exists i with 1 � i � k such that the quadrilaterals Ci
1 and

Ci
2 are strongly linked and do not share a spike, we say that QCP1 and

QCP2 (as well as (L1,QCP1) and (L2,QCP2)) are linked .

The critical sets Ci
1 and Ci

2, 1 � i � d − 1 are called associated (critical sets of
invariant geodesic laminations with quadratically critical portraits (L1,QCP1) and
(L2,QCP2)).

3.2. Some special types of invariant geodesic laminations

Below, we discuss perfect invariant geodesic laminations and dendritic invariant
geodesic laminations.

3.2.1. Perfect invariant geodesic laminations. The following is a natural
basic definition.

Definition 3.11. An invariant geodesic lamination L is said to be perfect if no
leaf of L is isolated. Given any invariant geodesic lamination L, we can consider
it with the Hausdorff metric; clearly this makes L a compact metric space. Define
the perfect part of L as the maximal perfect subset Lp of L.

Since points of S, considered as degenerate leaves, belong to L, it follows from
Definition 3.11 that Lp must contain all singletons of S. Lemma 3.12 easily follows
from the definitions. Recall that by a collapsing polygon we mean a critical polygon
that maps onto a non-degenerate leaf. In other words, if G is a collapsing polygon,
then all its edges map to the image leaf.

Lemma 3.12. The collection Lp is an invariant perfect geodesic lamination.
For every � ∈ Lp and every neighborhood U of �, there exist uncountably many
leaves of Lp in U .

Proof. The fact that no leaf of Lp is isolated follows immediately. To see that
Lp is invariant, notice that by definition only edges of collapsing quadrilaterals or
their sibling leaves can have ambiguous collections of d pairwise disjoint sibling
leaves. Indeed, if a leaf � has more than d− 1 sibling leaves, then two sibling leaves
of � must have a common vertex. This implies the claimed. It follows that there are
at most finitely many leaves for which the choice of a collection of pairwise disjoint
sibling leaves is ambiguous.

Now, let � = xy be a non-critical leaf of Lp. Choose a sequence of leaves
�i = xiyi of Lp such that xi → x, yi → y and for every i there are exactly d leaves
in L (including �i) with the σd-image σd(xi)σd(yi). Moreover, their images are of
length close to that of σd(�) and therefore are bounded away from zero. This easily
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implies that the distance between any two endpoints of any two leaves from the
collection of all sibling leaves of �i is bounded away from zero too. Therefore, the
limits of these leaves form a collection of d leaves of Lp (including �) with the same
image σd(�). By definition, this shows that Lp is invariant, as desired. �

While the existence of the perfect part Lp of L is thus established, the actual
construction of it in the dynamical case is not obvious at all. The process of finding
Lp was described in detail in [BOPT14]. In what follows we will need a few facts
and concepts established in [BOPT14].

Definition 3.13 (Supergaps [BOPT14]). Consider a (periodic) infinite gap
U of Lp. Then U is said to be a (periodic) super-gap of L.

Clearly, the part of the invariant geodesic lamination L contained in the orbit
of U consists of no more than countably many non-degenerate leaves.

Suppose that ∼ is an invariant laminational equivalence relation and L∼ is
the corresponding invariant geodesic lamination. Let L0

∼ = L∼ and define Lk
∼

inductively by removing all isolated leaves from Lk−1
∼ (one may call each step in this

process a countable cleaning). It is proven in [BOPT14] that after finitely many
countable cleaning steps we will obtain the invariant perfect geodesic lamination
Lp
∼. This result is then used in proving the following lemma.

Lemma 3.14 (Lemma 3.2 [BOPT14]). If ∼ is a laminational equivalence re-
lation, then the following holds.

(1) Every leaf of L∼ inside a super-gap G of ∼ is (pre)periodic or (pre)critical;
every edge of a super-gap is (pre)periodic.

(2) Every edge of any gap H of Lp
∼ is not isolated in Lp

∼ from outside of H;
all gaps of Lp

∼ are pairwise disjoint. Moreover, gaps of Lp
∼ are disjoint

from leaves that are not their edges.
(3) There are no infinite concatenations of leaves in Lp

∼. Moreover, the in-
variant geodesic lamination Lp

∼ is generated by a laminational equivalence
relation ∼p except that there may be the following leaves of L∼p which
by definition should not be included in Lp

∼: it is possible that one edge of
certain finite gap of ∼p is a leaf passing inside an infinite gap of Lp

∼.
(4) Any periodic Siegel gap is a proper subset of its super-gap.

The next lemma specifies some properties of any perfect invariant geodesic
lamination Lp.

Lemma 3.15. If Lp is a perfect invariant geodesic lamination, then at most two
leaves of Lp share an endpoint. Moreover, any leaf of Lp is a limit of uncountably
many leaves of Lp disjoint from �. If a leaf � is critical, then σd(�) is a point
separated from the rest of the circle by images of those leaves converging to � so
that � is either disjoint from all other leaves or gaps of Lp or is an edge of an
all-critical gap of Lp disjoint from all other leaves or gaps of Lp.

Proof. Suppose that there are more than two leaves of Lp coming out of the
same point. Then, since, by Lemma 2.29, there are at most countably many leaves
of Lp sharing an endpoint, Lp has isolated leaves, a contradiction. This implies
that any leaf of Lp is a limit of an uncountably many leaves of Lp disjoint from �.
The rest of the lemma easily follows. �

Clearly, Lemma 3.15 implies the following corollary.
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Corollary 3.16. Let L be a perfect invariant geodesic lamination. Then the
critical sets of L are pairwise disjoint and are either all-critical sets, or critical sets
mapping exactly k-to-1, k > 1, onto their images.

In this paper, we study, in particular, perfect invariant geodesic laminations
and dendritic invariant geodesic laminations, which are a particular case of perfect
ones. By Corollary 3.16, all such geodesic laminations have critical sets with certain
natural properties. To avoid unnecessary complications, we will consider invariant
geodesic laminations with similar properties even if we do not necessarily assume
that they are perfect.

Definition 3.17. Let L be an invariant geodesic lamination. Suppose that
their critical sets are pairwise disjoint except for the case when a critical leaf is a
boundary edge of an all-critical set. Then we say that L is regular .

If an invariant geodesic lamination L is regular, then all its critical leaves are
boundary leaves of all-critical sets. In particular, if C is a critical set of L which
is not an all-critical set then it maps onto its image in exactly k-to-1 fashion. By
Corollary 3.16, perfect invariant geodesic laminations are regular. However, it is
easy to give examples of regular invariant geodesic laminations that are not perfect.
Indeed, all quadratic invariant geodesic laminations corresponding to parabolic qua-
dratic polynomials from the main cardioid are regular while it is well-known that
they have only countably many non-degenerate leaves. Therefore, these lamina-
tions are not perfect, and the perfect part in any such lamination is the set of all
points of S.

We will use quadratically critical portraits to parameterize (“tag”) certain
classes of regular invariant geodesic laminations. An obstacle to this is the fact
that an invariant geodesic lamination L with a k-to-1 critical set such that k > 2
does not admit a quadratically critical portrait. However, using Lemma 3.8, it is
easy to see that in this case one can insert critical quadrilaterals in critical sets of
higher degree in order to “tune” L into an invariant geodesic lamination with a
quadratically critical portrait. This motivates the following definition.

Definition 3.18. Let L be a regular invariant geodesic lamination with pair-
wise disjoint critical sets (gaps or leaves) D1, . . . , Dk. Let L ⊂ L1 and QCP =
(E1, . . . , Ed−1) be a quadratically critical portrait for L1. Clearly, there is a unique
(d−1)-tuple Z = (C1, . . . , Cd−1) such that for every 1 � i � d−1 we have Ei ⊂ Ci

and there is 1 � j(i) � k with Ci = Dj(i). Then Z is called the critical pattern
of QCP in L; we will also say that QCP generates Z. Observe that each Dj(i) is
repeated in Z exactly mj(i) − 1 times, where mj(i) is the degree of Dj(i).

In general, given a regular invariant geodesic lamination L with (pairwise dis-
joint) critical sets D1, . . . , Dk, by an invariant geodesic lamination with critical
pattern we mean a pair (L,Z), where Z = (C1, . . . , Cd−1) is a (d− 1)-tuple of sets
such that every Ci coincides with some Dj , and every Dj is repeated in Z exactly
mj − 1 times, where mj is the degree of Dj . Then Z is called a critical pattern for
L.

Let us show that critical patterns from the second part of Definition 3.18 are
always generated by quadratically critical portraits.

Lemma 3.19. Given a regular invariant geodesic lamination with a critical pat-
tern (L,Z), where L has (pairwise disjoint) critical sets D1, . . . , Dk of degrees m1,
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. . . , mk respectively, there exists a full collection of critical chords of sets D1, . . . ,
Dk that generates Z.

Recall that a full collection of critical chords is a collection of d − 1 pairwise
unlinked critical chords with no loops. As was noticed before, a full collection can

be viewed as a quadratically critical portrait. Observe also that
∑k

i=1 mi−1 = d−1.

Proof. If Di is an all-critical set, then we can simply choose any mi − 1 of
its (critical) edges. If the critical set Di is not all-critical, then we can still choose
mi points of Di ∩ S with the same image, take the convex hull of this collection of
points, and, finally, choose mi − 1 edges of this convex hull. Putting together the
collections of critical chords just constructed, we will create a desired full collection
of critical chords. It is easy to see now that one can order them so that they generate
Z as desired. It remains to apply Thurston’s pullback construction and this way
construct the geodesic lamination with the critical sets just chosen as required. �

Observe that the choice of a full collection that generates a given critical pattern
as explained above is far from unique. Notice also that by changing the order of
the critical sets in which they show in a critical pattern, various critical patterns
for the same invariant geodesic lamination can be obtained.

3.2.2. Dendritic invariant geodesic laminations with critical patterns.
Below we introduce a useful notation. Recall that in Definition 2.17 we define
dendritic laminations (in which case we do not allow for infinite classes of the cor-
responding laminational equivalence relations) and dendritic laminations possibly
with infinite classes (in which case we do allow for infinite classes). Observe that by
Kiwi [Kiw02] an infinite class of a lamination possibly with infinite classes must
be (pre)periodic.

Definition 3.20. The family of all dendritic invariant geodesic laminations is
denoted by LDd. The family of all dendritic invariant geodesic laminations possibly
with infinite classes is denoted by LD∞

d . The space of all dendritic invariant geodesic
laminations with critical patterns is denoted by LCPDd. The space of all dendritic
invariant geodesic laminations possibly with infinite classes and critical patterns is
denoted by LCPD∞

d .

Observe that if L = L∼ is a dendritic invariant geodesic lamination then all
its gaps are finite (by definition) and correspond to ∼-equivalence classes. The
situation is a little more complicated if L = L∼ is a dendritic invariant geodesic
lamination possibly with infinite classes. Lemma 3.21 deals with these cases.

Lemma 3.21. Dendritic invariant geodesic laminations L possibly with infinite
classes are perfect. On the other hand, every perfect geodesic lamination can be
viewed as a dendritic invariant lamination possibly with infinite classes.

Proof. Let � be a leaf of L. By way of contradiction, suppose that � is isolated.
Then � is a common edge of two gaps. Denote these gaps by G and H. Since L is
dendritic, it follows that in fact L = L∼ is generated by a dendritic laminational
equivalence relation ∼ possibly with infinite classes. On the other hand, both
G and H must be ∼-classes because ∼ is dendritic. This shows that G and H
must be forming one ∼-class and therefore, by definition of the geodesic lamination
generated by a laminational equivalence relation, we see that � cannot be a leaf of
L∼, a contradiction.
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Now, suppose that L is a perfect invariant geodesic lamination. Then, by
Lemma 3.15, gaps of L are pairwise disjoint. Hence the set L+ can be partitioned
into pairwise disjoint leaves or gaps. Declaring these sets as classes of equivalence
of ∼ we see that L is generated by ∼ in the usual sense. Moreover, the fact that
the corresponding quotient map collapses all gaps of L to points implies that the
corresponding quotient space is a dendrite. This completes the proof. �

Since Siegel gaps and countable gaps have isolated edges, it follows that the
only gaps of a perfect geodesic lamination L are either finite gaps, or periodic Fatou
gaps of degree greater than one, or their preimages. As we noticed in the proof of
Lemma 3.21, the fact that L is perfect implies that no two gaps of L can intersect.
In particular, all Fatou gaps of L are disjoint from other gaps, both finite and Fatou.
Moreover, Fatou gaps of a perfect geodesic lamination have no critical edges as by
the properties of invariant geodesic laminations such edges would be isolated.

Thus, by Lemma 2.28, if U is a periodic Fatou gap of an invariant perfect
geodesic lamination L, then there are finitely many periodic edges of U and all
other edges are their preimages. Observe that if a perfect geodesic lamination L
has some Fatou gaps, then L can be generated by several laminational equivalence
relations depending on whether the corresponding quotient map collapses certain
grand orbits of Fatou gaps. In particular, all these gaps must be collapsed under
the quotient map in the case when the corresponding quotient space is a dendrite.

Strong conclusions about the topology of the Julia sets of non-renormalizable
polynomials P ∈ D follow from [KvS06]. Building upon earlier results by Jeremy
Kahn and Misha Lyubich [KL09a,KL09b] and by Oleg Kozlovskii, Weixiao Shen
and Sebastian van Strien [KSvS07a,KSvS07b], Kozlovskii and van Strien gener-
alized results of Artur Avila, Kahn, Lyubich and Shen [AKLS09] and proved in
[KvS06] that if all periodic points of P are repelling, and P is non-renormalizable,
then J(P ) is locally connected; moreover, by [KvS06], two such polynomials that
are topologically conjugate are in fact quasi-conformally conjugate. Thus, in this
case f∼P

|J∼P
is a precise model of P |J(P ). Finally, for a given dendritic lamina-

tional equivalence relation ∼, it follows from another result of Jan Kiwi [Kiw05]
that there exists a polynomial P with ∼=∼P . This polynomial does not have
to have a locally connected Julia set. Thus, by [Kiw05] associating polynomials
from D with their laminational equivalence relations ∼P and invariant geodesic
laminations LP = L∼P

, one maps polynomials from Dd onto LDd.
To study the association of polynomials with their invariant geodesic lamina-

tions, we need Lemma 3.22 (it is stated as a lemma in [GM93] but goes back to
Douady and Hubbard [DH8485]).

Lemma 3.22 ([GM93,DH8485]). Let P be a polynomial of degree d > 1, and
let R be an external ray of P landing at an iterated preimage y of a repelling periodic
point x. We write n for the minimal non-negative integer such that Pn(y) = x.
Then, for every polynomial P ∗ of degree d that is sufficiently close to P , the external
ray R∗ of P ∗ with the same argument as R lands at a point y∗ that is close to y
and such that x∗ = P ∗n(y) is a repelling periodic point of P ∗ close to x.

In what follows we need a result from [BL02] that deals with subcontinua of
topological Julia sets.
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Theorem 3.23 (No Wandering Continua [BL02]). Let ∼ be a laminational
equivalence relation possibly with infinite classes and f∼ : J∼ → J∼ be the corre-
sponding topological polynomial. Then for any non-degenerate continuum K ⊂ J∼
there exist 0 � l < m such that f l

∼(K) ∩ fm
∼ (K) 
= ∅.

We will also need the following result, which combines Theorem 7.2.6 of
[BFMOT10] and a part of Theorem 7.2.7 of [BFMOT10].

Theorem 3.24 (Theorems 7.2.6 and 7.2.7 of [BFMOT10]). Let D ⊂ J∼ be a
dendrite such that f∼(D) ⊂ D. Then f∼ has infinitely many periodic cutpoints in
D.

We are ready to prove the following lemma. Similar to the previously intro-
duced terminology, by a precritical point we mean a non-critical point that even-
tually maps to a critical point while by a (pre)critical point we mean a critical or
precritical point.

Lemma 3.25. Suppose that ∼ is a dendritic laminational equivalence relation
possibly with infinite classes. Then the following holds.

(1) Each subcontinuum of J∼ contains a (pre)periodic non-(pre)critical point.
(2) Each subcontinuum of J∼ contains a (pre)critical point.
(3) Each leaf of L∼ can be approximated by (pre)periodic leaves that will never

map to a critical set of L∼.

Proof. (1) Consider the topological polynomial f∼. Choose a continuum I ⊂
J∼. Assume that the sets I and fk

∼(I) are non-disjoint. Consider the union T of
all iterated fk

∼-images of I (this union is connected) and take its closure T . Then
T ⊂ J∼ is an fk

∼-invariant dendrite. By Theorem 3.24, there are infinitely many
periodic cutpoints in T . Since fk

∼ has only finitely many critical points, there are
infinitely many periodic non-(pre)critical cutpoints in T . Since T is connected and
dense in T , it follows that T contains periodic non-(pre)critical points. Hence I
contains (pre)periodic non-(pre)critical points as desired.

Now, suppose thatK ⊂ J∼ is any subcontinuum of J∼. Then, by Theorem 3.23,
there exist an eventual image I of K such that, for some k > 0, the sets I and fk

∼(I)
are non-disjoint. By the previous paragraph, it follows that I, and therefore K,
contains (pre)periodic points as desired.

(2) The arguments are similar to those in the proof of the statement (1). Sup-
pose that a continuum I ⊂ J∼ does not contain (pre)critical points of f∼. Then
its forward images do not contain critical points. By Theorem 3.23 we may assume
that I and fk

∼(I) are non-disjoint. Consider the union T of all fk
∼-images of I (this

union is connected) and take its closure K. Then K ⊂ J∼ is an fk
∼-invariant den-

drite. Since by the construction K and its images can only contain critical points
of f∼ as its endpoints, it follows that fk

∼|K is one-to-one. By Theorem 3.24 there
are infinitely many periodic cutpoints of K. Hence we can find two periodic points
x, y ∈ K such that fn

∼(x) = x, fn
∼(y) = y and fn

∼|[x, y] is one-to-one where by [x, y]
we denote the unique arc inside J∼ with endpoints x and y. Moreover, we may
assume that there are no fn

∼-fixed points in (x, y). This implies that either x or y
attracts points of [x, y] close to it, a contradiction.

(3) Let � be a leaf of L∼. Since by Lemma 3.21 the invariant geodesic lamination
L∼ is perfect, we can find a side of � from which this leaf is non-isolated. Applying
the quotient map, we can find an arc in J∼ and its preimage under the quotient
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map that is a connected union of a family of pairwise disjoint leaves and gaps of L∼
(they are convex hulls of ∼-equivalence classes) including �. These convex hulls of
∼-equivalence classes are approaching � from the side from which � is not isolated.
By (1) there are (pre)periodic leaves or gaps in this family; moreover, we can choose
them so that they never map to a critical set of L∼. Since by the previous results
all edges of a (pre)periodic gap of L are (pre)periodic themselves, it follows that
� can be approximated (from the above chosen side) by (pre)periodic leaves that
never map to a critical set of L∼ as desired. �

In the dendritic case, the connection between critical patterns and invariant
geodesic laminations can be studied using results of Jan Kiwi [Kiw04]. One of
the results that can be easily deduced from [Kiw04] is the following theorem. We
provide a sketch of an alternative geometric proof here.

Theorem 3.26 (cf [Kiw04]). If L is a dendritic invariant geodesic lamination
and L′ is an invariant geodesic lamination such that L and L′ share a collection of
d− 1 critical chords with no loops among them, then L′ ⊃ L and L′ \ L consists of
at most countably many leaves inserted in certain gaps of L.

Proof. Denote by ∼ a laminational equivalence relation generating L. The
critical chords shared by L and L′ define d− 1 complementary components to the
closed unit disk D. Clearly, the closure A of each such component A intersected
with S maps (under σd) onto the entire circle S in a one-to-one order preserving
fashion (except for the endpoints). The boundary of A consists of circle arcs and
concatenations of critical chords.

This allows one to consider pullbacks of chords into each such set A. Indeed,
given a chord � and a set A as above, we can consider a set of all points in A ∩ S

that map to the endpoints of �. Generically, either endpoint will have exactly
one preimage there. However if exactly one endpoint of � equals the image of
a boundary critical chord of A (or of a concatenation of boundary chords of A)
then � will have two preimages in A. Finally, if both endpoints of � are images of
boundary concatenations of critical chords of A, then we choose two preimages of
� that are disjoint (it is easy to see that such choice is unique).

The fact that the critical chords are shared by L and L′ and the definition of a
invariant geodesic lamination imply that all pullback chords constructed like that,
except possibly for finitely many chords, are shared by L′ and L. Therefore, limits
of these pullback chords are leaves of both L and L′. As follows from [Thu85],
these limits form an invariant geodesic lamination L′′. Moreover, by Lemma 3.25,
each subcontinuum of J∼ contains (pre)critical points, which implies that L′′ = L.
Since all gaps of L are finite, it follows that L′ \ L consists of at most countably
many leaves inserted in certain gaps of L. �

Critical patterns were introduced in Definition 3.18. We are ready to consider
critical patterns of quadratically critical portraits in dendritic geodesic lamina-
tions. This notion is closely related to that of critically marked (dendritic)
polynomial, which was introduced in the Introduction as we discussed there the
Theorem on Local Charts for Dendritic Polynomials (in that we follow Milnor
[Mil93,Mil09]). Recall that the space of all dendritic invariant geodesic lamina-
tions with critical patterns is denoted by LCPDd.
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Definition 3.27. To each marked dendritic polynomial (P,C(P )) of degree d
we associate the corresponding dendritic invariant geodesic lamination with critical
pattern (L∼P

,Z(P,C(P ))) by defining Z(P,C(P )) = Z as the ordered collection of
convex hulls of ∼P -classes associated to critical points of P in the order they appear
in C(P ); in the notation from the Introduction C(P ) = (c1, . . . , cd−1) and Z =

(Gc1 , . . . , Gcd−1
). Also, define the map Ψ̂d so that Ψ̂d(P,C(P )) = Gc1 ×· · ·×Gcd−1

.

Suppose that a sequence of regular invariant geodesic laminations with critical
patterns (Li,Zi) converges in the Hausdorff sense. Then, by Theorem 2.11, the
limit L∞ of σd-invariant geodesic laminations Li is itself a σd-invariant geodesic
lamination. Moreover, then critical patterns Zi converge to the limit collection of
d− 1 critical sets of L∞. We are interested in the case when the σd-invariant geo-
desic lamination L∞ is in a sense compatible with a dendritic σd-invariant geodesic
lamination.

Lemma 3.28. Suppose that a sequence of regular invariant geodesic lamina-
tions with critical patterns (Li,Zi) converges in the sense of the Hausdorff metric
HH to an invariant geodesic lamination L∞ with a collection of limit critical sets
C1, . . . , Cd−1 and there exists a dendritic invariant geodesic lamination L with a
critical pattern Z = (Z1, . . . , Zd−1) such that Ci ⊂ Zi, 1 � i � d − 1. Then
L∞ ⊃ L.

Proof. By Lemma 3.19, for every i, we can choose a full collection F i =
(ci1, . . . , c

i
d) of critical chords that generates Zi. By Lemma 3.4, we may assume

that these full collections converge to a full collection F = (c1, . . . , cd) as i tends
to infinity. Clearly, elements of F are critical chords compatible with L∞. On
the other hand, by the assumptions they are compatible with dendritic invariant
geodesic lamination L. Therefore by Theorem 3.26 L∞ ⊃ L as desired. �

For an integer m > 0, we use a partial order by inclusion among m-tuples:
(A1, . . . , Am) � (B1, . . . , Bm) (or (B1, . . . , Bm) ≺ (A1, . . . , Am)) if and only if
Ai ⊃ Bi for all i = 1, . . . , m. Thus m-tuples and k-tuples with m 
= k are al-
ways incomparable. Lemma 3.28 says that if critical patterns of regular invariant
geodesic laminations converge into a critical pattern of a dendritic invariant geo-
desic lamination L, then the corresponding regular invariant geodesic laminations
themselves converge over L.

Definition 3.29. Let F be a map from a topological space A to the space 2B

of compact subsets of a compactum B. Then F is said to be upper semicontinuous
if xi → x in A implies that the limit of every convergent subsequence yik ∈ F (xik)
belongs to F (x). Equivalently, for any neighborhood U of F (x) there exists a
neighborhood V of x such that F (y) ⊂ U if y ∈ V .

The fact that F is upper semicontinuous does not necessarily mean that sets
F (xi) must converge in the Hausdorff sense whenever xi → x. However all existing
Hausdorff limits of subsequences of the sets F (xi) are contained in the set F (x) as
long as xi → x.

Corollary 3.30 easily follows from Lemmas 3.22, 3.25 and 3.28.

Corollary 3.30. Suppose that a sequence (Pi, C(Pi)) of critically marked den-
dritic polynomials converges to a critically marked dendritic polynomial (P,C(P )).
Consider invariant geodesic laminations with critical patterns (L∼Pi

,Z(Pi, C(Pi)))
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and (L∼P
,Z(P,C(P ))). If (L∼Pi

,Z(Pi, C(Pi))) converge in the sense of the Haus-

dorff metric to (L∞,Z∞), then L∞ ⊃ L∼P
and Z∞ ≺ Z(P,C(P )). In particular,

the map Ψ̂d is upper semicontinuous.

By Corollary 3.30, critical sets of dendritic invariant geodesic laminations L∼P

associated with polynomials P ∈ Dd cannot explode under perturbation of P (they
may implode though). Provided that a geometric (visual) way to parameterize

LCPDd is given, the map Ψ̂d may yield the corresponding parameterization of
the space of all dendritic critically marked polynomials and gives an important
application of our tools. This justifies the introduction and studying dendritic geo-
desic laminations with critical patterns, which are natural counterparts of critically
marked dendritic polynomials [Mil12].

3.3. Accordions of invariant geodesic laminations

In the Introduction, we mentioned that some of Thurston’s tools from [Thu85]
fail in the cubic case. This motivates us to develop new tools (so-called accordions),
which basically track linked leaves from different invariant geodesic laminations.
In this section, we study accordions in detail. In Sections 3.3–3.5, we assume
that L1, L2 are σd-invariant geodesic laminations, and �1, �2 are leaves of L1, L2,
respectively.

3.3.1. Motivation. For a quadratic invariant geodesic lamination L and a
leaf � of L that is not a diameter, let �′ be the sibling of �. Denote by C(�) the
open strip of D between � and �′ and by L(�) the length of the shorter component
of S \ �. Suppose that 1

3 � L(�) and notice that by the assumptions we always have

L(�) < 1
2 . Denote by k the smallest number such that σk

2 (�) ⊂ C(�) except perhaps
for the endpoints (depending on the dynamics of �, the number k is not necessarily
defined, so the forthcoming conclusions should be understood conditionally). The
Central Strip Lemma (Lemma II.5.1 of [Thu85]) claims that provided the number
k is defined, we have σk

2 (�) separates � and �′. In particular, if � = M is a major ,
that is, a longest leaf of some quadratic invariant geodesic lamination, then an
eventual image of M cannot enter C(M).

Let us list Thurston’s results for which the Central Strip Lemma is crucial. A
σ2-wandering triangle is a triangle with vertices a, b, c on S such that the convex
hull Tn of σn

2 (a), σ
n
2 (b), σ

n
2 (c) is a non-degenerate triangle for every n = 0, 1, . . . ,

and all these triangles are pairwise disjoint.

Theorem 3.31 (No Wandering Triangle Theorem [Thu85]). Wandering trian-
gles for σ2 do not exist.

Theorem 3.32 stated below follows from the Central Strip Lemma and is due
to Thurston [Thu85] for d = 2. For arbitrary d, it is due to Jan Kiwi [Kiw02]
who used different tools. Observe that by definition a gap must have at least three
vertices (this trivial observation is important for the last claim of the theorem
dealing with the quadratic case).

Theorem 3.32 ([Thu85,Kiw02]). If A is a finite σd-periodic gap of period k,
then either A is a d-gon, and σk

d fixes all vertices of A, or there are at most d− 1
orbits of vertices of A under σk

d . Thus, for d = 2, the remap is transitive on the
vertices of any finite periodic gap.
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M1

1
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c

Figure 3. This figure illustrates Thurston’s proof that quadratic
minors are unlinked. The Central Strip Lemma forces orbits of
both minors to not cross c.

Another crucial result of Thurston is that minors of distinct quadratic invariant
geodesic laminations are disjoint in D. A sketch of the argument follows. Let m1

andm2 be the minors of two invariant geodesic laminations L1 
= L2 that cross in D.
Let M1, M

′
1 and M2, M

′
2 be the two pairs of corresponding majors. We may assume

that M1, M2 cross in D and M ′
1, M

′
2 cross in D, but (M1∪M2)∩(M ′

1∪M ′
2) = ∅ (see

Figure 3) so that there is a diameter c with strictly preperiodic endpoints separating
M1 ∪M2 from M ′

1 ∪M ′
2. Thurston shows that there is a unique invariant geodesic

lamination L, with only finite gaps, whose major is c. By the Central Strip Lemma,
forward images of m1, m2 do not intersect c. Hence m1∪m2 is contained in a finite
gap G of L. By the No Wandering Triangle Theorem, G is eventually periodic. By
Theorem 3.32, some images of m1 intersect inside D, a contradiction.

Examples indicate that statements analogous to the Central Strip Lemma fail

in the cubic case. Indeed, Figure 4 shows a leaf M = 342
728

579
728 of period 6 under

σ3 and its σ3-orbit together with the leaf M ′ (which has the same image as M
forming together with M a narrower “critical strip” Sn) and the leaf N ′ (which
has the same image as N = (σ3)

4(M) forming together with N a wider “critical
strip” Sw). Observe that σ3(M) ⊂ Sw, which shows that the Central Strip Lemma
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M

Σ3�M �

Σ 2�M �

Σ 3�M �

N�Σ 4�M �

M �
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Figure 4. This figure shows that the Central Strip Lemma fails in
the cubic case. Its left part has a fragment in which two endpoints
of leaves are located very close to each other. Its right part is
the zoomed-in version of the fragment indicating that the periodic
points do not coincide.

does not hold in the cubic case (orbits of periodic leaves may give rise to “critical
strips” containing some elements of these orbits of leaves). This apparently makes
a direct extension of the arguments from the previous paragraph impossible leaving
the issue of whether and how minors of cubic invariant geodesic laminations can be
linked unresolved.

Another consequence of the failure of the Central Strip Lemma in the cubic case
is the failure of the No Wandering Triangle Theorem (a counterexample was given
in [BO08]; in fact, it was shown in [BCO12,BCO13] that there exists a large set
of dendritic invariant geodesic laminations with wandering triangles). Properties
of wandering polygons were studied in [Kiw02,BL02,Chi07].

3.3.2. Properties of accordions. We now give a definition of accordions.

Definition 3.33. Let AL2
(�1) be the collection of leaves of L2 linked with

�1, together with �1. Let A�2(�1) be the collection of leaves from the forward
orbit of �2 that are linked with �1, together with �1. The sets defined above are
called accordions (of �1) while �1 is called the axis (of the appropriate accordion).
Sometimes we will also use AL2

(�1) and A�2(�1) to mean the union of the leaves
constituting these accordions.

In general, accordions do not behave nicely under σd as linked leaves may have
unlinked images. To avoid these problems, for the rest of this section, we will
impose the following conditions on accordions.

Definition 3.34. A leaf �1 is said to have order preserving accordions with
respect to L2 (respectively, to a leaf �2) if AL2

(�1) 
= {�1} (respectively, A�2(�1) 
=
{�1}), and, for each k � 0, the map σd restricted to AL2

(σk
d(�1))∩S (respectively, to

A�2(σ
k
d(�1))∩S) is order preserving (in particular, it is one-to-one). Say that �1 and

�2 have mutually order preserving accordions if �1 has order preserving accordions
with respect to �2, and vice versa (in particular, �1 and �2 are not precritical).

Though fairly strong, these conditions naturally arise in the study of linked or
essentially equal invariant geodesic laminations. In Section 3.5, we show that they
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are often satisfied by pairs of linked leaves of linked or essentially equal invariant
geodesic laminations (Lemma 3.51) so that there are at most countably many pairs
of linked leaves that do not have mutually order preserving accordions. If invariant
geodesic laminations are perfect, this will imply that every accordion consisting
of more than one leaf contains a pair of leaves with mutually order preserving
accordions. Understanding the rigid dynamics of such pairs is crucial to our main
results.

Proposition 3.35. If σd is order preserving on an accordion A with axis �1
and � ∈ A, � 
= �1, then σd(�) and σd(�1) are linked. In particular, if �1 has
order preserving accordions with respect to �2 then σk

d(�) ∈ A�2(σ
k
d(�1)) for every

� ∈ A�2(�1), � 
= �1, and every k � 0.

Proof. The proof of Proposition 3.35 immediately follows from the definitions
and is left to the reader. �

We now explore more closely the orbits of leaves from Definition 3.34.

Proposition 3.36. Suppose that �1 and �2 are linked, �1 has order preserving
accordions with respect to �2, and σk

d(�2) ∈ A�2(�1) for some k > 0. In this case, if
�2 = xy, then either �1 separates x from σk

d(x) and y from σk
d(y), or �2 has σk

d -fixed
endpoints.

Proof. Suppose that �2 is not σk
d -fixed. Denote by x0 = x, y0 = y the end-

points of �2; set xi = σik
d (x0), yi = σik

d (y0) and At = A�2(σ
t
d(�1)), where t = 0,

1, . . .. If �1 does not separate x0 and x1, then either x0 � x1 < y1 � y0 < x0 or
x0 < y0 � y1 < x1 � x0. We may assume the latter (cf. Figure 5).

Since σk
d is order preserving on A0 ∩ S, then x0 < y0 � y1 � y2 < x2 � x1 �

x0 while the leaves x1y1 and x2y2 belong to the accordion Ak so that the above
inequalities can be iterated. Inductively we see that

x0 < y0 � . . . � ym−1 � ym < xm � xm−1 � . . . � x0.

All leaves xiyi are pairwise distinct as otherwise there exists n such that xn−1yn−1 
=
xnyn = xn+1yn+1 contradicting σk

d being order preserving on Ak(n−1). Hence the

leaves xiyi converge to a σ
k
d -fixed point or leaf, contradicting the expansion property

of σk
d . �



48 3. SPECIAL TYPES OF INVARIANT LAMINATIONS

�1

y0

x0 x1

y1

x2

y2

�2

Figure 5. This figure illustrates Proposition 3.36. Although in
the figure x2y2 is linked with �1, the argument does not assume
this. In this and forthcoming figures, leaves marked in the same
fashion belong to the same grand orbits of leaves.

In what follows, we often use one of the endpoints of a leaf as the subscript in
the notation for this leaf.

Lemma 3.37. If �a = ab and �x = xy, where a < x < b < y, are linked leaves
with mutually order preserving accordions, and a, b are of period k, then x, y are
also of period k.

Proof. By the order preservation, σk
d(x) is not separated from x by �a. It

follows from Proposition 3.36 that x = σk
d(x), y = σk

d(y). Since, by Lemma 2.25,
the points x and y have the same period (say, m), then m divides k. Similarly, k
divides m. Hence k = m. �

We will mostly use the following corollary of the above results.

Corollary 3.38. Suppose that �a = ab and �x = xy with x < a < y < b are
linked leaves. If �a and �x have mutually order preserving accordions, then there
are the following possibilities for A = A�x(�a).

(1) A = {�a, �x} and no forward image of �x crosses �a.

(2) A = {�a, �x}, the points a, b, x, y are of period 2j for some j, σj
d(x) =

y, σj
d(y) = x, and either σj

d(a) = b, σj
d(b) = a, or σj

d(�a) 
= �a, and �x
separates the points a, σj

d(b) from the points b, σj
d(a).

(3) A = {�a, �x}, the points a, b, x, y are of the same period, x, y have distinct
orbits, and a, b have distinct orbits.

(4) There exists i > 0 such that A = {�a, �x, σi
d(�x)} and either x < a < y �

σi
d(x) < b < σi

d(y) � x or x � σi
d(y) < a < σi

d(x) � y < b, as shown in
Figure 7.
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Figure 6. This figure illustrates the proof of Corollary 3.38.

Proof. Three distinct images of �x cannot cross �a as if they do, then it is
impossible for the separation required in Proposition 3.36 to occur for all of the
pairs of images of �x. Hence at most two images of �x cross �a.

If two distinct leaves from the orbit of �x cross �a, then, by Proposition 3.36
and the order preservation, case (4) holds. Thus we can assume that A = {�a, �x}.
If no forward image of �x is linked with �a, then we have case (1).

In all remaining cases we have σk
d(�x) = �x for some k > 0. By Lemma 2.25,

points x and y are of the same period. Suppose that x, y belong to the same
periodic orbit. Choose the least j such that σj

d(x) = y.

Let us show that then σj
d(y) = x. Indeed, assume that σj

d(y) 
= x. Since by the
assumption the only leaf from the forward orbit of �x, linked with �a, is �x, we may
assume (for the sake of definiteness) that y < σj

d(y) � b. Then a finite concatenation

of further σj
d-images of �x will connect y with x. Again, since A = {�a, �x}, one of

their endpoints will coincide with b. Thus, y < σj
d(y) � b < σj

d(b) � x, see Figure

6. Let us now apply σj
d to A; by the order preservation y < σj

d(a) < σj
d(y) � b <

σj
d(b) � x < a. Hence, σj

d(�a) is linked with �a, a contradiction.

Thus, σj
d(y) = x (that is, σj

d flips �x onto itself), k = j, the points x and y
are of period 2j and, by Lemma 3.37, the points a and b are also of period 2j. If
σj
d(a) = b, then σj

d(b) = a, and if σj
d(b) = a, then σj

d(a) = b (since both points have
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Figure 7. This figure shows two cases listed in Corollary 3.38,
part (4).

period 2j). Now, if σj
d(a) 
= b and σj

d(b) 
= a, then, by the order preservation, �x
separates the points a, σj

d(b) from the points b, σj
d(a). So, case (2) holds.

Assume that x and y belong to distinct periodic orbits of period k. By
Lemma 3.37, the points a, b are of period k. Let points a and b have the same
orbit. Then, if k = 2i and σi

d flips �a onto itself, it would follow from the order
preservation that σi

d(�x) is linked with �a. Since �x is the unique leaf from the orbit
of �x linked with �a this would imply that σi

d flips �x onto itself, a contradiction
with x, y having disjoint orbits. Hence we may assume that, for some j and m > 2,
we have that σj

d(a) = b, jm = k, and a concatenation of leaves �a, σ
j
d(�a), . . . ,

σ
j(m−1)
d (�a) forms a polygon P .

If one of these leaves distinct from �a (say, σjs
d (�a)) is linked with �x, we can

apply the map σ
j(m−s)
d to σjs

d (�a) and �x; by order preservation we will see then

that �a and σ
j(m−s)
d (�x) 
= �x are linked, a contradiction with the assumption that

A = {�a, �x}. If none of the leaves σj
d(�a), . . . , σ

j(m−1)
d (�a) is linked with �x, then

P has an endpoint of �x as one of its vertices. As in the argument given above, we
can then apply σj

d to A and observe that, by the order preservation, the σj
d-image

of �x is forced to be linked with �x, a contradiction. Hence a and b have disjoint
orbits, and case (3) holds. �

3.3.3. Accordions are (pre-)periodic or wandering. Here we prove The-
orem 3.42, which is the main result of Section 3.3.

Definition 3.39. A finite sequence of points x0, . . . , xk−1 ∈ S is positively
ordered if x0 < x1 < · · · < xk−1 < x0. If the inequality is reversed, then we say
that points x0, . . . , xk−1 ∈ S are negatively ordered . A sequence y0, y1, . . . is said
to be positively circularly ordered if it is either positively ordered or there exists
k such that yi = yi mod k and y0 < y1 < · · · < yk−1 < y0. Similarly we define
sequences that are negatively circularly ordered .

A positively (negatively) circularly ordered sequence that is not positively
(negatively) ordered is a sequence, whose points repeat themselves after the initial
collection of points that are positively (negatively) ordered.
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Figure 8. This figure illustrates Lemma 3.41. Images of �a cannot
cross other images of �a, neither can they cross images of �x that are
already linked with two images of �a (by Corollary 3.38). Similar
claims hold for �x.

Definition 3.40. Suppose that the chords t1, . . . , tn are edges of the closure
Q of a single component of D \

⋃
ti. For each i, let mi be the midpoint of the hole

HQ(ti). We write t1 < t2 < · · · < tn if the points mi form a positively ordered
set and call the chords t1, . . . , tn positively ordered . If the points mi are positively
circularly ordered, then we say that t1, . . . , tn are positively circularly ordered .
Negatively ordered and negatively circularly ordered chords are defined similarly.

Lemma 3.41 is used in the main result of this section.

Lemma 3.41. If �a and �x are linked, have mutually order preserving accordions,
and σk

d(�x) ∈ A�x(�a) for some k > 0, then, for every j > 0, the leaves σki
d (�x),

i = 0, . . . , j, are circularly ordered, and �a, �x are periodic with endpoints of the
same period.

Proof. By Lemma 3.37, we may assume that case (4) of Corollary 3.38 holds
(and so σk

d(�x) 
= �x). Set B = {�a, �x}, �a = ab, �x = xy and let ai, bi, xi, yi denote
the σik

d -images of a, b, x, y, respectively (i � 0). We may assume that the first
possibility from case (4) holds and x0 < a0 < y0 � x1 < b0 < y1 � x0 (see the left
part of Figure 7 and Figure 8). By the assumption of mutually order preserving
accordions applied to B, we have xi < ai < yi � xi+1 < bi < yi+1 � xi (i � 0), in
particular x1 < a1 < y1.
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There are two cases depending on the location of a1. Consider one of them as
the other one can be considered similarly. Namely, assume that b0 < a1 < y1 and
proceed by induction for m steps observing that

x0 < a0 < y0 � x1 < b0 � a1 < . . . � xm < bm−1 < am < ym � x0.

Thus, the first m iterated σk
d -images of �x are circularly ordered and alternately

linked with the first m − 1 iterated images of �a under σk
d (see Figure 8). In the

rest of the proof, we exploit the following fact.

Claim A. Further images of �a or �x distinct from the already existing ones cannot

cross the leaves �a, σ
k
d(�x), . . . , σ

k(m−1)
d (�a), σ

km
d (�x) because either it would mean

that leaves from the same invariant geodesic lamination are linked, or it would
contradict Corollary 3.38.

By Claim A, we have bm ∈ (ym, a0]. Consider possible locations of bm.
(1) If x0 < bm � a0, then ambm is linked with xmym, xm+1ym+1 and x0y0,

which, by Corollary 3.38, implies that xm+1ym+1 = x0y0, and we are done (observe
that, in this case, by Lemma 3.37, points a0, b0 are periodic of the same period as
x0, y0).

(2) The case x0 = bm is impossible because if x0 = bm, then, by the order

preservation and by Claim A, the leaf xm+1ym+1 = σ
k(m+1)
d (�x) is forced to be

linked with �a, a contradiction.
(3) Otherwise we have ym < bm < x0 and hence, by the order preservation,

ym � xm+1 < bm. Then, by Claim A and because images of �x do not cross, bm <
ym+1 � x0. Suppose that ym+1 = x0 while y0 
= x1. Applying σk

d to leaves xm+1x0

and x0y0 and using Claim A we see that y0 � xm+2 < x1. However, the order
preservation then implies that am+1bm+1 crosses both xm+1x0 and xm+2x1 and
therefore crosses �a itself, a contradiction. Hence the situation when ym+1 coincides
with x0 can only happen if y0 = x1. It follows that then σk

d(xm+1ym+1) = x0y0,
and we are done (as before, we need to rely on Lemma 3.37 here).

Otherwise bm < ym+1 < x0 and the arguments can be repeated as leaves
σki
d (�x), i = 0, . . . ,m+ 1 are circularly ordered. Thus, either �x is periodic, xnyn =

x0y0 for some n, and all leaves in the σk
d -orbit of �x are circularly ordered, or the

leaves xiyi converge monotonically to a point of S. The latter is impossible since
σk
d is expanding. By Lemma 3.37, the leaf �a is periodic and its endpoints have the

same period as the endpoints of �x. �
Theorem 3.42 is the main result of this section.

Theorem 3.42. Consider linked chords �a = ab, �x = xy with mutually order
preserving accordions, and set B = CH(�a, �x). Suppose that not all forward images
of B have pairwise disjoint interiors. Then there exists a finite periodic stand alone
gap Q such that all vertices of Q are in the forward orbit of σr

d(B) for some minimal
r, they belong to two, three, or four distinct periodic orbits of the same period, and
the remap of Q ∩ S is not the identity unless Q = σr

d(B) is a quadrilateral.

Proof. We may assume that there are two forward images of B with non-
disjoint interiors. Choose the least r such that the interior of σr

d(B) intersects some
forward images of B. We may assume that r = 0 and, for some (minimal) k > 0,
the interior of the set σk

d(B) intersects the interior of B so that σk
d(�x) ∈ A�x(�a).

We write xi, yi for the endpoints of σik
d (�x), and ai, bi for the endpoints of σik

d (�a).
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T0

T1

I t

Figure 9. This figure illustrates the proof of Theorem 3.42 in the
case m > 1.

By Lemma 3.41 applied to both leaves, by the assumption of mutually order
preserving accordions, and because leaves in the forward orbits of �a, �x are pairwise
unlinked, we may assume without loss of generality that, for some m � 1,

x0 < a0 < y0 � x1 < b0 � a1 < . . . � xm < bm−1 � am < ym < bm

and xm = x0, ym = y0, am = a0, bm = b0, that is, we have the situation shown in
Figure 8. Thus, for every i = 0, . . . , k − 1, there is a loop Li of alternately linked
σk
d -images of σi

d(�a) and σi
d(�x). If the σk

d -images of σi
d(�a) are concatenated to

each other, then their endpoints belong to the same periodic orbit, otherwise they
belong to two distinct periodic orbits.

A similar claim holds for σk
d -images of σi

d(�x). Thus, the endpoints of B belong
to two, three or four distinct periodic orbits of the same period (the latter follows
by Corollary 3.38 and Lemma 3.41). Set CH(Li) = Ti and consider some cases.

(1) Letm > 1 (this includes the “flipping” case from part (2) of Corollary 3.38).

Let us show that the sets Ti either coincide or are disjoint. Every image �̂ of �a
in Li crosses two images of �x in Li (if m = 2 and �x is “flipped” by σk

d , we still
consider �x and σk

d(�x) as distinct leaves). By Corollary 3.38, no other image of �x
crosses �̂.

Suppose that interiors of Ti and Tj intersect. Let t be an edge of Ti and
I = HTi

(t) be the corresponding hole of Ti. Then the union of two or three images



54 3. SPECIAL TYPES OF INVARIANT LAMINATIONS

T0

T1

Σd
i

Σd
i

a0

b0�

�a0�

�b0�

Σd
i

Σd
i

x0

y0

�x0�

�y0�

Figure 10. This figure illustrates the proof of Theorem 3.42 in
the case m = 1.

of �a or �x from Li separates I from S\I in D (meaning that any curve connecting
I with S \ I must intersect the union of these two or three images of �a or �x, see
Figure 9). Hence if there are vertices of Tj in I and in S \ I then there is a leaf of
Lj crossing leaves of Li, a contradiction with the above and Corollary 3.38.

Thus, the only way Ti 
= Tj can intersect is if they share a vertex or an edge.
We claim that this is impossible. Indeed, Ti 
= Tj cannot share a vertex as otherwise
this vertex must be σk

d -invariant while all vertices of any Tr map to other vertices
(sets Tr “rotate” under σk

d). Finally, if Ti and Tj share an edge � then the same
argument shows that σk

d cannot fix the endpoints of �, hence it “flips” under σk
d .

However this is impossible as each set Tr has at least four vertices and its edges
“rotate” under σk

d .

So, the component Qi of X =
⋃k−1

i=0 Ti containing σi
d(�a) is Ti. By Lemma 3.41,

the map σd|Ti∩S is order preserving or reversing. As σd preserves order on any single
accordion, σd|Ti∩S is order preserving. The result now follows; note that the first
return map on Q is not the identity map.

(2) Let m = 1. This corresponds to part (3) of Corollary 3.38: both �a and �x
have endpoints of minimal period k, and the orbit of �a (�x) consists of k pairwise
disjoint leaves. Note that T0 is a quadrilateral, and the first return map on T0 is
the identity map. Consider the case when not all sets Ti are pairwise disjoint. Note
that, by the above, T0 is a periodic stand alone gap satisfying the assumptions of
Proposition 2.30. It follows that every component of the union of Ti is a concate-
nation of gaps sharing edges with the same polygon. See Figure 10, in which the
polygon is a triangle.

�
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For a leaf �1 ∈ L1, let BL2
(�1) be the collection of all leaves �2 ∈ L2 that are

linked with �1 and have mutually order preserving accordions with �1. Observe that
if �1 is (pre)critical, then BL2

(�1) = ∅ by Definition 3.34. Similarly, no leaf from
BL2

(�1) is (pre)critical.

Corollary 3.43. The collection BL2
(�1) is finite.

Proof. Suppose first that �1 is not (pre)periodic. Let us show that the convex
hull B of �1 and leaves n1, . . . , ns from BL2

(�1) is wandering. By Theorem 3.42,
for each i, the set Bi = CH(�1, ni) is wandering (because �1 is not (pre)periodic).

This implies that if i 
= j then σi
d(�1) and σj

d(nt) are disjoint (otherwise σ
i
d(Bt) and

σj
d(Bt) are non-disjoint). Moreover, σi

d(�1) and σj
d(�1) are disjoint as otherwise, by

Lemma 2.27, the leaf �1 is (pre)periodic. Therefore σj
d(�1) is disjoint from σi

d(B).

Suppose that σi
d(B) and σj

d(B) are non-disjoint. By the just proven then,

say, σj
d(n1) is non-disjoint from σi

d(B). Again by the just proven σj
d(n1) is dis-

joint from σi
d(�1). Hence the only possible intersection is between σj

d(n1) and, say,

σi
d(n2). Moreover, since σj

d(�1) is disjoint from σi
d(B), then σj

d(n1) 
= σi
d(n2) and,

moreover, as distinct leaves of the same invariant geodesic lamination, the leaves
σj
d(n1), σ

i
d(n2) cannot cross. Hence the only way σj

d(n1) and σi
d(n2) are non-disjoint

is that σj
d(n1) and σi

d(n2) are concatenated.
Assume that σt

d(n2) is concatenated with n1 at an endpoint x of n1. Clearly, x is
a common vertex of B and of σt

d(B). Hence σt
d(x) is a common vertex of σt

d(B) and
σ2t
d (B), etc. Connect points x, σt

d(x), σ
2t
d (x), . . . with consecutive chords m0, m1,

. . . . These chords are pairwise unlinked because, as it follows from the above, the
sets σr

d(B), r = 0, 1, . . . have pairwise disjoint interiors. Hence, by Lemma 2.26, the
point x is (pre)periodic, a contradiction with the fact that all sets Bi = CH(�1, ni)
are wandering. Thus, B is wandering. Hence, by [Kiw02], the collection BL2

(�1)
is finite. In fact, [Kiw02] implies a nice upper bound on the number of vertices
of B. Indeed, it is proven in [Kiw02] that a wandering non-(pre)critical gap of a
lamination has at most d vertices; in particular, B has at most d vertices (notice
that by the assumptions any power of σd in B is one-to-one).

Suppose now that �1 is periodic. Then by Theorem 3.42 any leaf of BL2
(�1)

is periodic with the same periods of endpoints. This implies that in this case the
collection BL2

(�1) is finite. Finally, if k > 0 is the minimal number such that σk
d(�1)

is periodic and �2 ∈ BL2
(�1) then σk

d(�2) is linked with σk
d(�1), which implies that

�2 is a σk
d -preimage of one of finitely many leaves from BL2

(σk
d(�1)). Thus, in this

case BL2
(�1) is finite too. �

3.4. Smart criticality

Throughout this section, we assume that L1 and L2 are linked or es-
sentially equal geodesic invariant laminations with quadratically critical
portraits, see Definition 3.10. Our aim in Section 3.4 is to introduce smart
criticality, a principle that allows one to use a flexible choice of critical chords of L1

and L2 in order to treat certain sets of linked leaves of L1 and L2 as if they were
sets of one invariant geodesic lamination. However, first we need simple claims
dealing with critical clusters and special critical leaves; these claims follow from
the definitions almost immediately. Critical clusters are defined in 3.9 and special
critical leaves and special critical clusters in 3.10.
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Lemma 3.44. Suppose that �1 is a special critical leaf of L1. Then the only
leaves of L2 it can be linked with are special critical leaves of L2. Moreover these
leaves have the same image as �1. Otherwise �1 may have a common endpoint with
some leaves of L2, in which case its forward images are endpoints of the correspond-
ing images of these leaves.

Proof. By definition, if �1 is a special critical leaf then �1 ⊂ C where C is a
critical cluster common for both L1 and L2. Since edges of C are leaves of L2, it
follows that the only leaves of L2 that are linked with �1 are chords of C connecting
vertices of C. This implies the first claim of the lemma. The second claim is left
to the reader. �

In the next several lemmas we study the dynamics of a leaf �1 of L1 assuming
that �1 is not a special critical leaf of L1.

Lemma 3.45. If �1 ∈ L1 is not a special critical leaf, then each critical set
C of QCP2 has a spike c unlinked with �1; these spikes form a full collection E
of spikes of L2 unlinked with �1. If an endpoint x of �1 is neither a vertex of a
special critical cluster nor a common vertex of associated critical quadrilaterals of
the invariant geodesic laminations L1 and L2, then E can be chosen so that x is
not an endpoint of a spike from E .

Proof. Since �1 is not a special critical leaf, spikes of L2 from special critical
clusters are unlinked with �1. Otherwise take a pair of associated critical quadri-
laterals A ∈ L1, B ∈ L2 with vertices alternating non-strictly on S

a0 � b0 � a1 � b1 � a2 � b2 � a3 � b3 � a0

and observe, that �1 is contained, say, in [a0, a1] and hence is unlinked with the
spike b1b3 of B.

The second claim follows because by the assumptions, as we choose a spike
from a critical quadrilateral of QCP2, we can always choose it to avoid x. This
completes the proof. �

We apply Lemma 3.45 to studying accordions. Denote by EL2
(�1) a full collec-

tion of spikes from Lemma 3.45.

Corollary 3.46. If �1 = ab ∈ L1 is not a special critical leaf, then A =
AL2

(�1) is contained in the closure of a component of D \ EL2
(�1)

+, and σd|A∩S is
(non-strictly) monotone. Let �2 = xy ∈ L2 and �1 ∩ �2 
= ∅. Then:

(1) if �1 and �2 are concatenated at a point x that is neither a vertex of a
special critical cluster nor a common vertex of associated critical quadri-
laterals of our invariant geodesic laminations, then σd is (non-strictly)
monotone on �1 ∪ �2;

(2) if �2 crosses �1, then, for each i, we have σi
d(�1) ∩ σi

d(�2) 
= ∅, and one
the following holds:
(a) σi

d(�1) = σi
d(�2) is a point or a leaf shared by L1,L2;

(b) σi
d(�1), σ

i
d(�2) share an endpoint;

(c) σi
d(�1), σ

i
d(�2) are linked and have the same order of endpoints as

�1, �2;
(3) points a, b, x, y are either all (pre)periodic of the same eventual period,

or are all not (pre)periodic.
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Proof. Set E = EL2
(�1). If �1 coincides with one of spikes from E , then the

claim follows (observe that then by definition A = �1 as spikes of sets of L2 do not
cross leaves of L2). Otherwise there exists a unique complementary component Y
of E+ with �1 ⊂ Y (except perhaps for the endpoints). The fact that each leaf of
L2 is unlinked with spikes from E implies that AL2

(�1) ⊂ Y . This proves the main
claim of the lemma.

(1) By Lemma 3.45, the collection E can be chosen so that x is not an endpoint
of a chord from E . The construction of Y then implies that σd is monotone on
�1 ∪ �2.

(2) We use induction. By Definition 3.10, if a critical leaf n1 ∈ L1 crosses a leaf
m2 ∈ L2 and comes from a special critical cluster (see Definition 3.9), then both
n1 and m2 come from a special critical cluster and have the same image. Thus we
may assume that neither σi

d(�1) nor σi
d(�2) are from a special critical cluster. We

may also assume that σi
d(�1) and σi

d(�2) do not share an endpoint as otherwise the
claim is obvious. Hence it remains to consider the case when σi

d(�1) and σi
d(�2)

are linked and are not special critical leaves. Then by the main claim either their
images are linked or at least they share an endpoint.

(3) By Lemma 2.27, if an endpoint of a leaf of an invariant geodesic lamination
is (pre)periodic, then so is the other endpoint of the leaf. Consider two cases.
Suppose first that an image of �1 and an image of �2 “collide” (that is, have a
common endpoint z). By the above, if z is (pre)periodic, then all endpoints of our
leaves are, and if z is not (pre)periodic, then all endpoints of our leaves are not
(pre)periodic. Suppose now that no two images of �1, �2 collide. Then it follows
that �1 and �2 have mutually order preserving accordions, and the claim follows
from Theorem 3.42. �

Lemma 3.45 and Corollary 3.46 implement smart criticality. Indeed, given an
invariant geodesic lamination L, a finite gap or leaf G of it is such that the set
G ∩ S (loosely) consists of points whose orbits avoid critical sets of L. It follows
that any power of the map is order preserving on G ∩ S. It turns out that we can
treat sets X formed by linked leaves of two linked or essentially equal invariant
geodesic laminations similarly by varying our choice of the full collection of spikes
at each step so that the orbit of X avoids that particular full collection of spikes
at that particular step (thus smart criticality). Therefore, similarly to the case
of one invariant geodesic lamination, any power of the map is order preserving on
X. This allows one to treat such sets X almost as sets of one invariant geodesic
lamination.

Combining Corollary 3.46 and Corollary 3.44 we obtain Corollary 3.47.

Corollary 3.47. Suppose that �1 ∈ L1, �2 ∈ L2; moreover, let �1 and �2 be
non-disjoint. Then σn

d (�1) and σn
d (�2) are non-disjoint for any n � 0.

The proof of Corollary 3.47 is left to the reader.
The purpose of our investigation is to see how much two linked (or essentially

equal) geodesic laminations can differ. In other words, we study the rigidity of geo-
desic laminations with respect to their quadratically critical portraits (we consider
quadratically critical portraits as critical data associated with the corresponding
geodesic lamination). In fact, we can already discuss the extent to which geodesic
laminations L1 and L2 differ in the particular case of periodic Siegel gaps. Recall
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the notions of the skeleton, decorations and the extension of an infinite gap G in-
troduced in Definitions 2.32 and 2.34. The skeleton of G is the convex hull of the
maximal Cantor subset of G∩S. Decorations of G are the convex hulls of maximal
connected unions of leaves attached to edges of G. The extension of G is the union
of G and all its decorations. Recall also that, by Lemma 2.33, for every edge � of a
decoration of G, there is a gap in the grand orbit of G that has � on its boundary.

Lemma 3.48. Gaps from the grand orbits of periodic Siegel gaps of L1 and L2

can be paired up so that gaps in the same pair have the same skeletons and the same
decorations.

Proof. Let G be a periodic Siegel gap of L1 of period n. Let H be the skeleton
of G. Below when talking about fibers we mean fibers (point-preimages) of the
semiconjugacy between σn

d restricted onto the extension of G and the corresponding
irrational rotation. Suppose that �2 is a leaf of L2 that intersects the extension of
G. If �2 intersects two distinct fibers of the extension of G, then, by Corollary 3.47,
the σn

d -images of �2 will keep intersecting the σn
d -images of these fibers. The fact

that σn
d restricted onto the extension of G is semiconjugate to an irrational rotation

implies then that some images of �2 are linked with each other, a contradiction.
Thus, �2 and all its images intersect exactly one fiber. For geometric reasons

this is equivalent to the fact that no leaf of L2 intersects the interior ofH. Therefore,
there exists a gap G2 of L2 that contains H. Since L2 is a quadratically critical
geodesic lamination, it cannot have infinite gaps of degree two. It follows that G2

is also a periodic Siegel gap of period n with the same skeleton H as G.
Consider a gap T of L1 such that for some minimal m � 0 we have that

σm
d (T ) = G. The properties of geodesic laminations, the fact that L1 has no

infinite critical gaps, and the fact that H ∩ S is a Cantor set imply that T maps
onto G with degree one and the maximal Cantor subset S of T ∩S maps onto H ∩S

one-to-one except, perhaps, for the endpoints a, b of σm
d -critical chords such that

(a, b) is a complementary arc of S (clearly, there are at most finitely many such
pairs of points a, b). Each hole (a, b) of S corresponds to a finite concatenation
of leaves of T connecting a and b with endpoints in [a, b]. Properties of geodesic
laminations imply that there are maximal connected finite concatenations of leaves
growing from a and b, and their unions map onto the corresponding decorations of
G.

Now, if there exists a leaf �2 of L2 that intersects the convex hull of S, then
by Corollary 3.47 the leaf σm

d (�2) connects two distinct fibers on the boundary of
G, a contradiction. Therefore there exists a gap T2 of L2 that contains S in T2 ∩ S

as its maximal Cantor subset (observe that the arguments can be repeated in the
opposite direction, which shows that S is a common maximal Cantor set in T ∩ S

and in T2 ∩ S). It follows that σm
d maps T2 onto G2 with degree one. Since this

argument does not depend on the choice of T and the corresponding choice of m,
we see that the grand orbit of the gap G and the grand orbit of the gap G2 consist
of pairs of infinite gaps that share the same skeleton (because they share maximal
Cantor subsets of their intersections with the unit circle).

The description of the dynamics of extensions of periodic Siegel gaps implies
that given a decoration A of a periodic Siegel gap Q, we see a finite collection of
eventual preimages of Q attached to this decoration so that the following holds:
the convex hull of A has finitely many edges at each of which a skeleton of the
corresponding preimage of Q is attached. Since by the above the family of skeletons
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of gaps from the grand orbits of periodic Siegel disks is the same for both L1 and
L2, we conclude that the family of convex hulls of decorations of these gaps is also
the same. �

Let us now continue studying orbits of pairs of non-disjoint leaves of geodesic
laminations L1 ad L2. Lemma 3.49 describes how σd can be non-strictly mono-
tone on A∩S taken from Corollary 3.46. A concatenationR of spikes of an invariant
geodesic lamination L such that the endpoints of its chords are monotonically or-
dered on the circle will be called a chain of spikes (of L). Recall that for a collection
of chords of D such as R we use R+ to denote

⋃
R.

Lemma 3.49. Suppose that �a = ab ∈ L1 and �x = xy ∈ L2, where a < x < b �
y < a (see Figure 11) and, if b = y, then b is neither a vertex of a special critical
cluster nor a common vertex of associated critical quadrilaterals of our invariant
geodesic laminations. Suppose also that σd(a) = σd(x). Then either both �a, �x are
contained inside the same special critical cluster, or there are chains of spikes R1

of L1 and R2 of L2 connecting a with x. If one of the leaves �a, �x is not critical,
then we may assume that R+

1 ∩ S ⊂ [a, x] and that R+
2 ∩ S ⊂ [a, x]. In any case,

the points a and x belong to the critical sets of both laminations.

Recall that, according to our terminology, a chord is contained inside S if it is
a subset of S intersecting the interior of S.

Proof. First assume that one of the leaves �a, �x (say, �a) is a special critical
leaf. Then both a and b are vertices of a special critical cluster. By the assumptions,
this implies that b 
= y and hence �a and �x are linked and are inside a special critical
cluster. Assume from now on that neither �a nor �x is a special critical leaf.

By Lemma 3.45, choose a full collection A2 of spikes of L2 unlinked with �a
and a full collection A1 of spikes of L1 unlinked with �x. By the assumptions and
Lemma 3.45, we may choose these collections so that if b = y, then b = y /∈ A+

1 ∪A+
2 .

Thus in any case the point �a ∩ �x = w ∈ D does not belong to A+
1 ∪ A+

2 .

It follows that there is a well-defined component Y of D\ [A+
1 ∪A+

2 ] containing
�a ∪ �x except perhaps for the endpoints. Since σd(a) = σd(x), there is a chain of
spikes R2 ⊂ A2 of L2 and a chain of spikes R1 ⊂ A1 of L1 connecting a and x. In
particular, a ∈ A1, x ∈ A2, and both a and x must belong to the critical sets of
both laminations.

Suppose that, say, R+
1 ∩S ⊂ [x, a]. Since all spikes are critical chords that cross

neither �a nor �x, this implies that both �a and �x are critical. Therefore, if at least
one of the leaves �a, �x is not critical, then we may assume that R+

1 ∩ S ⊂ [a, x]
and that R+

2 ∩ S ⊂ [a, x]. �

The assumptions of Lemma 3.49 automatically hold if leaves �a, �x are linked
and one of them (say, �a) is critical; in this case, by Corollary 3.46, the point
σd(�a) is an endpoint of σd(�x), and, renaming the points, we may assume that
σd(a) = σd(x).

Definition 3.50. Non-disjoint leaves �1 
= �2 are said to collapse around chains
of spikes if there are two chains of spikes, one in each of the two invariant geodesic
laminations, connecting two adjacent endpoints of �1, �2 as in Lemma 3.49.

Smart criticality allows one to treat accordions as gaps of one invariant geodesic
lamination provided images of leaves do not collapse around chains of spikes.
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a b�a

y

x

�x

Figure 11. This figure illustrates Lemma 3.49. Here the leaves
�a, �x collapse around a chain of spikes shown as dashed grey
geodesics.

Lemma 3.51. Let �1, �2 be linked leaves from L1, L2 such that there is no t
with σt

d(�1), σ
t
d(�2) collapsing around chains of spikes (in particular, this holds if

the endpoints of σt
d(�1) are disjoint from the endpoints of σt

d(�2) for all t). Then
there exists an N such that the σN

d -images of �1, �2 are linked and have mutually
order preserving accordions. Conclusions of Theorem 3.42 hold for �1, �2, and
B = CH(�1, �2) is either wandering or (pre)periodic so that �1, �2 are (pre)periodic
of the same eventual period of endpoints.

Proof. By way of contradiction, suppose that there exists the minimal t such
that σt+1

d (�1) is not linked with σt+1
d (�2). Then σt

d(�1) crosses σt
d(�2) while their

images have a common endpoint. Hence Lemma 3.49, applied to σt
d(�1) and σt

d(�2),
implies that σt

d(�1), σ
t
d(�2) collapse around a chain of spikes, a contradiction. Thus,

σt
d(�1) and σt

d(�2) cross for any t � 0. In particular, no image of either �1 or �2 is
ever critical.

By Lemma 2.27, choose N so that leaves σN
d (�1) = ab and σN

d (�2) = xy are

periodic or have no (pre)periodic endpoints. If ab and xy are periodic, then no
collapse around chains of critical leaves on any images of ab, xy is possible (for
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set-theoretic reasons). Hence σN
d (�1), σ

N
d (�2) are linked and have mutually order

preserving accordions as desired.
Suppose now that our leaves have non-(pre)periodic endpoints. Evidently, the

set E of all endpoints of all possible chains of spikes is finite. Thus, there exists an
N such that if n � N , then σn

d (a) is disjoint from E as otherwise by the pigeonhole
principle a would have to be (pre)periodic. The same holds for b, x and y, so we
may assume that, for n � N , no endpoint of σn

d (�1) or σ
n
d (�2) is in E. Hence, the

σN
d -images of �1, �2 are linked and have mutually order preserving accordions. �

3.5. Linked quadratically critical invariant geodesic laminations

The main results of Section 3.5 are based on the principle of Smart Criticality
and the results describing the dynamics of accordions. Basically, we are studying
two linked or essentially equal invariant geodesic laminations with quadratically
critical portraits and establish the extent to which they must resemble each other.
Therefore our results can be viewed as rigidity results of certain subsets (or certain
dynamical properties) of geodesic invariant laminations with respect to their linked
perturbations. For instance, we show that two linked or essentially equal invariant
geodesic laminations with quadratically critical portraits have the same perfect parts
(see Definition 3.11). We also show that two linked or essentially equal invariant
geodesic laminations with quadratically critical portraits have the same Siegel parts
defined below (see also page 8).

Definition 3.52. The closure of the union of the grand orbits of all periodic
Siegel gaps of an invariant geodesic lamination L is denoted by LSie and is called
the Siegel part of L.

However the relations between the remaining parts of two linked or essentially
equal invariant geodesic laminations are less rigid. We study them in the next sec-
tion concentrating upon the case when invariant geodesic laminations are generated
by invariant laminational equivalence relations.

In this section, we will always assume that the invariant geodesic laminations
with quadratically critical portraits (L1,QCP1) and (L2,QCP2) are linked or es-
sentially equal.

The next lemma studies cardinalities of certain collections of leaves.

Lemma 3.53. Suppose that invariant geodesic laminations (L1,QCP1) and
(L2,QCP2) with quadratically critical portraits are linked or essentially equal. The
set T of all leaves of L2 non-disjoint from a leaf �1 of L1 is at most countable.
Thus, if � is a leaf on which uncountably many leaves of one of the geodesic lami-
nations L1 or L2 accumulate then � is unlinked with any leaf of the other geodesic
lamination.

Proof. If �1 has (pre)periodic endpoints, then, by Corollary 3.46, any leaf of
L2 non-disjoint from �1 has (pre)periodic endpoints implying the first claim of the
lemma in this case. Let �1 have no (pre)periodic endpoints. Then, by Corollary 3.46,
leaves of L2 non-disjoint from �1 have no (pre)periodic endpoints. By Lemma 2.29,
for every eventual image x of an endpoint of �1 there are finitely many leaves with
endpoint x. Hence the set of all leaves of L2 with endpoint whose orbit collides
with the orbit of an endpoint of �1 is countable. If we remove them from T , then
we obtain a new collection T ′ of leaves; by Lemma 3.51, they have mutually order
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preserving accordions with �1. By Corollary 3.43, the collection T ′ is finite. This
completes the proof of the first claim of the lemma. The second claim follows
immediately. �

Let QCP be a quadratically critical portrait of an invariant geodesic lamination
L. Since, by Corollary 3.16, distinct critical sets of the perfect part Lp are disjoint,
each critical set of L is contained in a unique critical set of Lp. Hence QCP generates
the critical pattern Z(QCP) of QCP in Lp, and so each invariant geodesic
lamination with critical portrait (L,QCP) gives rise to the perfect invariant geodesic
lamination with critical pattern (Lp,Z(QCP)).

Definition 3.54 (Perfect-Siegel part). The union LpS of the perfect and the
Siegel parts of an invariant geodesic lamination L is called the perfect-Siegel part
of L (it is easy to see LpS is a geodesic lamination).

In fact, LpS is a proper geodesic lamination (see Definition 2.22) because critical
leaves with periodic endpoints or critical wedges with periodic vertices are impossi-
ble in the perfect-Siegel part of L (hence, they are not present in LpS). Hence LpS

induces the corresponding laminational equivalence relation ≈LpS , which in turn
defines its geodesic lamination L≈LpS .

Periodic Fatou gaps of LpS and L≈LpS may differ. Indeed, let U be a periodic

Fatou gap of LpS of degree greater than one. There may exist a finite chain of edges
of U . Since U is a gap of LpS , these edges must be non-isolated from the outside
of U . It follows that they all are (pre)periodic. On the other hand, by definition
the initial and the terminal points of this chain of edges are connected by a leaf of
L≈LpS that is not a leaf of LpS .

With respect to the Siegel parts, the geodesic lamination L≈LpS
contains convex

hulls of the skeletons of the periodic Siegel gaps and their pullbacks and convex
hulls of decorations attached to these gaps and their pullbacks while the geodesic
lamination LpS may contain finite chains of leaves inside the decorations and their
pullbacks, but contains no leaves inside convex hulls of the periodic Siegel gaps
and their pullbacks. These are the only two types of differences between LpS and
L≈LpS

. Observe that if the original two geodesic laminations are generated by

laminational equivalence relations, the latter phenomenon (concerning the Siegel
parts) is impossible because by definition there is no erasing of leaves related to it.

Definition 3.55. A laminational equivalence relation ∼ is said to be perfect-
Siegel if ∼=≈LpS

∼
.

Some conditions immediately imply that for an equivalence ∼ its perfect-Siegel
part generates the equivalence relation ≈LpS

∼
that coincides with ∼.

Lemma 3.56. If all critical sets of ∼ are finite, then ∼ is a perfect-Siegel equiv-
alence relation.

Proof. If ∼
=≈LpS
∼
, then there must exist a periodic Fatou gap U of ≈LpS

∼
of degree k > 1 such that all its edges are leaves of L∼ and there is a countable
non-empty set of leaves of L∼ inside U ; moreover, U contains no Siegel gaps of ∼.
However then we can consider L∼ restricted on U , and by the assumptions it would
follow that there are no infinite gaps of L∼ inside U at all. It is well-known that in
this case U/ ∼ is a dendrite and L∼ must have uncountably many leaves inside U ,
a contradiction. �
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Theorem 3.57 studies the perfect-Siegel parts of invariant geodesic laminations
with quadratically critical portraits. Recall that for brevity we call a gap G un-
countable (countable, finite) if G ∩ S1 is uncountable (countable, finite).

Theorem 3.57. If (L1,QCP1) and (L2,QCP2) are invariant geodesic lamina-
tions with quadratically critical portraits that are linked or essentially equal, then
we have the following equality:

(Lp
1,Z(QCP1)) = (Lp

2,Z(QCP2)).

Also, the Siegel parts LSie
1 of L1 and LSie

2 of L2 coincide, and so LpS
1 = LpS

2 .

Proof. By way of contradiction, assume that Lp
1 
⊂ Lp

2; then Lp
1 
⊂ L2, and

there exists a leaf �p1 ∈ Lp
1 \L2. Then, by Lemma 3.53, the leaf �p1 is inside a gap G

of L2. Since Lp
1 is perfect, from at least one side all one-sided neighborhoods of �p1

contain uncountably many leaves of Lp
1. Hence G is uncountable (if G is finite or

countable, then there must exist edges of G that cross leaves of Lp
1, a contradiction

as above). We claim that this is impossible. Indeed, by [Kiw02] G is (pre)periodic.
Hence we may assume that G is periodic and still contains uncountably many leaves
from Lp

1. Since our geodesic laminations have quadratically critical portraits, it
follows that G is a Siegel gap. This contradicts Corollary 2.35. Finally, the claim
of the lemma dealing with Siegel parts of geodesic laminations L1 and L2 follows
from Lemma 3.48. �

Jan Kiwi showed in [Kiw04] that if all critical sets of an invariant geodesic
lamination L are critical leaves with aperiodic kneading, then its perfect part Lp

is completely determined by these critical leaves (he also showed that this defines
the corresponding laminational equivalence relation ∼ such that Lp = L∼ and that
∼ is dendritic). Our results are related to Kiwi’s. Indeed, by Theorem 3.57, if L is
an invariant geodesic lamination with a quadratically critical portrait QCP, then
Lp ⊂ L is completely defined by QCP; in other words, if there is another invariant

geodesic lamination L̂ with the same quadratically critical portrait QCP, then still

L̂p = Lp.
Theorem 3.57 takes the issue of how critical data impacts the perfect part of an

invariant geodesic lamination further as it considers the dependence of the perfect
parts upon critical data while relaxing the conditions on critical sets and allowing
for “linked perturbation” of the critical data. Therefore, Theorem 3.57 could be
viewed as a rigidity result: “linked perturbation” of critical data does not change
the perfect invariant geodesic lamination.

3.6. Invariant geodesic laminations generated by laminational
equivalence relations

In the previous section, we investigated the relation between two given quadrat-
ically critical invariant geodesic laminations that are linked or essentially equal.
However in general geodesic laminations are not quadratically critical. Thus we
need to develop tools allowing us to adjust arbitrary geodesic laminations to pro-
duce quadratically critical ones. In this section we do so first without any re-
strictions upon the degree of the map and its Fatou gaps, and then adding some
restrictions to obtain more precise results.
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3.6.1. Linked invariant geodesic laminations of any degree. The above
analysis justifies the next definition.

Definition 3.58. Let L1 and L2 be invariant geodesic laminations. Suppose
that there are invariant geodesic laminations with quadratically critical portraits
(Lm

1 ,QCP1), (Lm
2 ,QCP2) such that L1 ⊂ Lm

1 , L2 ⊂ Lm
2 . Then we say that the

modifications Lm
1 of L1 and Lm

2 of L2 are induced by quadratically critical por-
traits QCP1 and QCP2, respectively. If this can be done so that (Lm

1 ,QCP1) and
(Lm

2 ,QCP2) are linked or essentially equal, then we say that L1 and L2 are intrin-
sically linked (essentially equal, respectively).

Two invariant geodesic laminations are intrinsically linked or essentially equal if
and only if we can “tune” them into two quadratically critical geodesic laminations
by inserting into their critical sets critical quadrilaterals in a dynamically consistent
way so that the thus constructed quadratically critical portraits of the two geodesic
laminations are linked/essentially equal.

However arbitrary quadratically critical modifications of invariant geodesic lam-
inations may yield a significant increase of the corresponding perfect-Siegel parts
of these invariant geodesic laminations. Thus, in order to implement our results
we need to agree upon the way arbitrary invariant geodesic laminations should
be modified (tuned) into geodesic laminations with quadratically critical portraits.
This can only be done by inserting critical quadrilaterals into critical sets of given
geodesic laminations. Moreover, ideally this quadratically critical tuning should
not increase the size of the original geometric lamination too much.

Recall that laminational equivalence relations ∼ appear in complex dynamics
in a very natural way (see Section 2.2). For many polynomials P with connected
Julia sets, they give rise to semiconjugacies between P |J(P ) and the topological
polynomial f∼P

: S/ ∼P→ S/ ∼P with a special choice of ∼P .
Therefore, from the point of view of complex dynamics, laminational equiva-

lence relations are of main interest. We want to use our tools to study them, in
particular to study the mutual location of their critical sets. Thus, we need to
develop methods of quadratically critical tuning for invariant geodesic laminations
generated by laminational equivalences.

Definition 3.59 (Invariant non-capture geodesic lamination). Consider an in-
variant geodesic lamination L∼ generated by an invariant laminational equivalence
relation ∼. Suppose that there are no preperiodic Fatou gaps that map onto their
image k-to-1 with k > 1. Then both ∼ and L∼ are said to be of non-capture type.
Otherwise ∼ and L∼ are said to be of capture type. Any periodic Fatou gap U
with a preperiodic pullback that maps forward k-to-1, where k > 1, is itself said to
be of capture type.

The reason for our interest in invariant non-capture geodesic laminations is
the following. An invariant geodesic lamination L∼ of capture type will have at
least one preperiodic Fatou gap U that maps onto its image in a k-to-1 fashion.
This allows for a variety of ways critical quadrilaterals can be inserted in U . It is
therefore impossible to associate with L∼ a unique (or finitely many) quadratically
critical portrait(s).

Similarly, there exists an ambiguity related to the issue of how critical quadri-
laterals can be inserted into periodic Fatou gaps of degree greater than one. We
will tackle this issue later on, however first we want to simplify the picture and
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consider the case with no periodic Fatou gaps of degree k > 1. An easier version
here is that of two dendritic geodesic laminations L∼1

and L∼2
generated by lami-

national equivalence relations ∼1 and ∼2. However, by Theorem 3.57, we can work
with a wider class of geodesic laminations.

Lemma 3.60 (Laminations with finite critical sets). Let L∼ be an invariant
geodesic lamination. Then all critical sets of L∼ are finite if and only if L∼ has no
Fatou gaps of degree greater than one. Moreover, then L∼ = LpS

∼ .

Proof. The first claim of the lemma is left to the reader. To prove the last
claim of the lemma, recall that by [BOPT14] the perfect part Lp

∼ of L∼ is itself
an invariant geodesic lamination with some (possibly empty) collection of periodic
Fatou gaps of degree greater than one (so-called super-gaps of L∼) and their pair-
wise disjoint preimages. By the assumption, L∼ can have neither periodic Fatou
gaps of degree greater than one nor Siegel gaps of capture type. Therefore, if U is
a periodic super-gap of L∼, then U lies entirely in the Siegel part of L∼. Clearly,
pullbacks of the intersection of U and the Siegel part of L∼ fill up pullbacks of
periodic super-gaps of L∼. We conclude that L∼ = LpS

∼ . �

Observe that if L∼ is an invariant geodesic lamination generated by a lamina-
tional equivalence relation ∼ such that all critical sets of L∼ are finite, then L∼ is
regular because finite critical sets correspond to ∼-classes of equivalence and hence
either coincide or are disjoint. Therefore, by Definitions 3.17 and 3.18 one can
talk about critical patterns of quadratically critical portrait in L∼ or of invariant
geodesic lamination L∼ with critical pattern.

Combining Lemma 3.60 with Theorem 3.57, we obtain Corollary 3.61 (the last
claim of Corollary 3.61 is left to the reader).

Corollary 3.61. If geodesic laminations L∼1
and L∼2

with no Fatou gaps of
degree greater than one are intrinsically linked or essentially equal, then ∼1=∼2=∼
and L∼1

= L∼2
= L∼ are equal. If QCP1 and QCP2 are two quadratically criti-

cal portraits of L∼1
and L∼2

that are linked or essentially equal, then the critical
patterns of QCP1 and QCP2 in L∼ coincide.

Observe that this generalizes results by Kiwi [Kiw04]. In our terms his re-
sults state that if two dendritic geodesic laminations are essentially equal then they
coincide. We weaken the assumptions here and allow for linked geodesic lamina-
tions generated by laminational equivalence relations from a wider class while the
conclusion remains the same.

The general case is more complicated. Consider two perfect non-empty geodesic
laminations L∼1

and L∼2
that are intrinsically linked or essentially equal. By

definition, there are modifications Lm
∼1

of L∼1
and Lm

∼2
of L∼2

that are quadratically
critical and linked. This means that critical quadrilaterals were inserted into critical
sets of both geodesic laminations forming two linked quadratically critical portraits.
However this may have resulted in a significant growth of the corresponding geodesic
lamination as together with the inserted quadrilaterals we have to add their images,
preimages and their limits. Therefore in general we cannot conclude that L∼1

and
L∼2

are equal if they are intrinsically linked or essentially equal.
Thus, when studying two invariant geodesic laminations L1 and L2 with infinite

gaps of degree greater than one, it may be useful to consider a restricted family
of their modified invariant geodesic laminations Lm

1 and Lm
2 , designed to increase
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the basic invariant geodesic laminations L1 and L2 as little as possible so that
the fact that Lm

1 and Lm
2 are linked implies more information about L1 and L2

themselves. Accordingly, we would like to specify quadratically critical tuning of
invariant geodesic laminations.

Definition 3.62 (Admissible quadratically critical modifications). Suppose
that L∼ is an invariant geodesic lamination generated by an invariant laminational
equivalence relation ∼ and Lm is its quadratically critical modification. We say
that Lm is an admissible quadratically critical modification of L if the set Lm \ L
consists of a countable family of leaves.

Then the following theorem easily follows.

Theorem 3.63. Suppose that invariant geodesic laminations L∼1
and L∼2

have
admissible quadratically critical modifications Lm

∼1
of L∼1

and Lm
∼2

of L∼2
that are

linked or essentially equal. Then Lp
∼1

= Lp
∼2

. If either lamination has no eventual
preimages U of periodic Siegel gaps with σd|U being k-to-1 with k > 1, then their
Siegel parts coincide too so that LpS

∼1
= LpS

∼2

Proof. By Theorem 3.57 the perfect parts and the Siegel parts of the admis-
sible modified invariant geodesic laminations Lm

∼1
and Lm

∼2
coincide. By definition,

these perfect parts coincide with perfect parts of original invariant geodesic lami-
nations L∼1

and L∼2
. Clearly, this implies the first claim of the theorem. Suppose

now that either lamination does not have eventual preimages U of periodic Siegel
gaps such that σd|U is k-to-1 with k > 1. Then Siegel parts of modified geodesic
laminations and of the original geodesic laminations coincide, which implies the last
claim of the theorem. �

Corollary 3.64 easily follows from definitions and Theorem 3.63.

Corollary 3.64. In the situation of Theorem 3.63, two linked or essentially
equal quadratically critical portraits QCP1 and QCP2 of L∼1

and L∼2
, respectively,

generate the same critical pattern in the common perfect part of both geodesic lami-
nations. If either lamination does not have eventual preimages U of periodic Siegel
gaps such that σd|U is k-to-1 with k > 1, then QCP1 and QCP2 generate the same
critical pattern in LpS

∼1
= LpS

∼2
.

The proof is left to the reader.
Observe that some assumption concerning eventual preimages of periodic Siegel

gaps is necessary for the conclusion of the theorem to hold. Indeed, consider an
invariant geodesic lamination L∼1

generated by an invariant laminational equiva-
lence relation ∼1. Assume that there exists an eventual preimage U of a periodic
Siegel gap that maps onto its image in the k-to-1 fashion with k > 1. Consider a
different laminational equivalence relation ∼2 that identifies k (possibly degener-
ate) edges of U with the same image, and, accordingly, identifies preimages of these
edges, which themselves are edges of the same pullbacks of U . In terms of invariant
geodesic laminations, this means that a critical set (gap or leaf) that coincides with
the convex hull A of k newly identified edges of U is inserted in U , and then this
set is pulled back according to Thurston’s pullback construction.

Clearly, ∼1 and ∼2 can be supplied with two quadratically critical portraits
that are admissible for both and, in fact, coincide themselves. Indeed, choose
an appropriate collection of critical quadrilaterals in A and use it as a part of a
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quadratically critical portrait; then define the remaining critical quadrilaterals so
that altogether we will get an admissible quadratically critical portrait Q for L∼1

;
it follows that Q serves as an admissible quadratically critical portrait for ∼2 as
well. Thus, we must make assumptions clarifying the way periodic Siegel gaps are
pulled back.

On the other hand, no assumption concerning periodic Fatou gaps of perfect
parts of L∼ is necessary. Indeed, suppose that U is a periodic Fatou gap of Lp

∼.
Then any eventual preimage-gaps of U cannot share edges or finite gaps separating
them, unlike in the Siegel case, because if they do, then this will give rise to isolated
leaves in Lp

∼, a contradiction. Hence the ambiguity described above for Siegel parts
is impossible in the case of perfect parts of invariant geodesic laminations.

3.6.2. Counterexamples of type B. There are examples showing that the
assumptions of Theorem 3.63 in its current form cannot be relaxed. That is, in gen-
eral, we cannot make conclusions concerning the coincidence of the given invariant
geodesic laminations as a whole if they have linked or essentially equal admissible
modifications. Indeed, let us consider a class of invariant geodesic laminations stud-
ied in [BOPT13]. Every geodesic lamination of this class has a unique invariant
finite gap G. By [Kiw02], there are at most two periodic orbits (of the same pe-
riod) forming the set of vertices of G, and if vertices of G form two periodic orbits,
points of these orbits alternate on S. For each edge � of G denote by HG(�) the
circle arc with the same endpoints as �, separated from G by �, and call it the hole
of G behind �.

Moreover, assume that at each edge � of G there exists a Fatou gap, say, U ,
attached to G (that is, sharing with G a common edge �) and having the max-
imal possible degree depending on its location (i.e., if the map σ3 is two-to-one,
respectively, three-to-one on HG(�), then the map σ3 is two-to-one, respectively,
three-to-one on U). It is not difficult to explicitly construct such Fatou gaps. In-
deed, let G have m edges �0, . . . , �m−1. For each i, let FGi be the convex hull of all

points x ∈ HG(�i) with σj
3(x) ∈ HG(σ

j
3(�i)) for every j � 0. It is straightforward

to see that FGi are infinite gaps such that FGi maps to FGj if �j = σ3(�i). These
gaps are called the canonical Fatou gaps attached to G.

It is shown in [BOPT13] that, given a gap G, the corresponding invariant
geodesic lamination with the listed properties exists and is unique. It is then
called the canonical invariant geodesic lamination of G and is denoted by LG.
By [BOPT13], the invariant geodesic lamination LG is generated by an invariant
laminational equivalence relation, which we will denote ∼G. Observe that G can

also be an invariant leaf 0 1
2 in which case the definitions are similar to the above.

Finite invariant gapsG are classified in [BOPT13] into several categories called
gaps of type A, B and D. This classification mimics Milnor’s classification of hy-
perbolic components in slices of cubic polynomials and quadratic rational functions
[Mil93,Mil09]. In the present paper we are interested in gaps of type B (from
“Bi-transitive”) and their canonical invariant geodesic laminations.

Definition 3.65 (Gaps of type B). Suppose that G is a σ3-invariant gap. As-
sume that its vertices form one periodic orbit (so that the edges of G form one
periodic orbit of edges too). Moreover, suppose that there is an edge of G, denoted
by M1, that separates G from 0, and another edge of G, denoted by M2, that
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separates G from 1
2 . The edges M1 and M2 are said to be major edges (leaves) or

simply majors of G. Then G is said to be an invariant finite gap of type B .

It is easy to see that major holes of an invariant gap G of type B are of length
greater than 1

3 but less than 2
3 . The next example illustrates the definitions just

given.

Example 3.66. Consider the finite gap G with vertices 7
26 ,

11
26 and 21

26 . This is

a gap of type B. The first major leaf M1 connects 21
26 with 7

26 and the second major

leaf M2 connects 11
26 with 21

26 . The edges of G form one periodic orbit to which
both M1 and M2 belong. The major hole HG(M1) contains 0 and the major hole
HG(M2) contains

1
2 .

7

26

11

26

21

26

7

26

M1

M2

0
1

2 0
1

2

Figure 12. The rotational gap described in Example 3.66 and its
canonical lamination.

Consider an invariant finite gap G of type B. Denote by T and N its majors
and by UT and UN the corresponding canonical Fatou gaps of its canonical invariant
geodesic lamination LG. Let G have m edges �0, . . . , �m−1 ordered in the positive
direction around the circle. For each 0 � i � m−1, let FGi be the canonical Fatou
gap attached to G at �i. Let T = �t and N = �n with 0 < t < n < m− 1 (we may
always achieve this by renumbering the edges of G). Then there are n− t− 1 edges
of G in the positive direction from T and N and m − n − 1 + t edges of G in the
positive direction from N to T .

Let T = ab with a < 0 < b. Let a′, b′ be the points on the boundary of UT

such that σ3(a
′) = σ3(a) and σ3(b

′) = σ3(b). It is easy to see [BOPT13] that we
have a < b′ < 0 < a′ < b. Choose two σm

3 -fixed points on the boundary of UT and
denote them x and y so that a < x < y < b. Clearly, x < 0 < y, and, moreover,
a < x < b′ < 0 < a′ < y < b′. Then the orbit of the point y has exactly one point
in every hole of G. If we connect them in the positive order, then we obtain a new
σ3-invariant finite gap H.

It is easy to see that H is of type B. Indeed, let ŷ ∈ HG(�t−1) be a unique
point from the orbit of y in HG(�t−1). Then ŷy is an edge of H, which separates 0
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from H because ŷ < 0 < y. A similar edge of H can be found on the opposite side
of it cutting 1

2 off H. By definition this implies that H is of type B. Clearly, the
canonical invariant geodesic laminations LG and LH are distinct. However it is not
difficult to show that they have admissible quadratically critical modifications that
are linked. Moreover those modifications are very natural, if not the only natural,
quadratically critical modifications of the respective invariant geodesic laminations.

More precisely, insert a critical quadrilateral RG = CH(a, b′, a′, b) in UT . Insert
a similarly defined critical quadrilateral LG in UN . Using Thurston’s pullback
construction we can complete the non-invariant geodesic lamination formed by LG

together with RG and LG to the invariant geodesic lamination Lm
G . In the same

fashion we can modify the canonical invariant geodesic lamination LH into an
invariant geodesic lamination Lm

H . We claim that Lm
G and Lm

H are linked.
Indeed, to observe that we need to figure out where on (ŷ, y) the other vertices

of RH are located. Now, since the point σ3(y) belongs to the arc (σ3(a), σ3(b
′)), it

follows that the vertex y′ of RH with the same σ3-image as y must belong to (a, b′).
Similarly the vertex ŷ′ of RH with the same image as ŷ must belong to (b′, a′).
Therefore the quadrilaterals RG and RH are strongly linked. In the same fashion
one can show that the quadrilaterals LG and LH are strongly linked. Therefore,
Lm
G and Lm

H are strongly linked whereas they are certainly not equal. This shows
that apparently there are no general claims analogous to Theorem 3.63 applicable
to all invariant geodesic laminations (with admissible linked or essentially equal
modifications) rather than only to their perfect or Siegel parts.

3.6.3. Quadratically almost perfect-Siegel non-capture case. As we ex-
plained above, an important issue is that of assigning admissible quadratically crit-
ical portraits to geodesic laminations with periodic Fatou gaps of degree greater
than one (as before we consider non-capture geodesic laminations). In what follows
we define legal quadrilaterals ; they give rise to quadratically critical portraits with
desired properties. A quadratically critical pattern formed by legal quadrilater-
als will be called a legal quadratically critical pattern. Let us emphasize that the
choice of legal quadratically critical patterns should be laminational in the follow-
ing sense: together with a legal quadratically critical pattern we should be able to
choose an invariant geodesic lamination that has this quadratically critical pattern
but also is in essence the same or very close to the original geodesic lamination.
Two laminational equivalence relations will be called linked if they have linked legal
quadratically critical patterns. We aim at defining the above notions so that two
laminational equivalence relations that are linked will have to coincide. We achieve
this goal in the current section in particular case of so-called quadratically almost
perfect-Siegel laminational equivalence relations.

Now we need to define the concepts listed above. In doing so we are motivated
by the case of σ2, which we will now consider. To begin with, choose a critical

leaf Di = 0 1
2 with fixed endpoint 0. Then apply classic Thurston’s step-by-step

pullback construction agreeing that, in case of ambiguity, we will choose all possible
consistent pullbacks of the existing leaves. Thus, at the first step we will add to Di

the leaves, 0 1
4 ,

1
4
1
2 ,

1
2
3
4 ,

3
40. This creates a quadrilateral (actually a square) with

vertices 0, 1
4 ,

1
2 and 3

4 and diagonal Di so that the quadrilateral is represented as a
union of two triangles.
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If we continue in the same fashion, we will add to these two triangles four
more triangles adjacent to the original two at their “outer” edges, i.e. at edges not
equal to Di. Continuing in this fashion we will in the end tile the closed disk D

into triangles, each of which eventually maps to one of the original “big” triangles,
then collapses to Di and then collapses further to the singleton {0}. The leaves
that we add form a null sequence and accumulate to points of the unit circle S.
The constructed invariant geodesic lamination has countably many leaves so that
its perfect part coincides with the empty geodesic lamination. We will call this
invariant geodesic lamination basic quadratic geodesic lamination and denote it by
Lbas
2 . One can consider other versions of Thurston’s pullback construction starting

with Di, but they will all be subsets of Lbas
2 and will all have the empty geodesic

lamination as the perfect part.
On the other hand, it is well-known that with any other choice of a critical

leaf � there exists a non-trivial invariant laminational equivalence ∼ such that the
corresponding invariant geodesic lamination L∼ is compatible with � in the following
sense: leaves of L∼ are not linked with �. In other words, Di is the unique critical
leaf of σ2 that is compatible only with the trivial invariant laminational equivalence
relation.

A similar construction can be implemented inside any σ2-periodic critical Fatou
gap U of period, say, n, however there will be an important distinction. Indeed,
it is well-known that U has a refixed edge M0 = M(0) and all other edges of U
are appropriate pullbacks of M(0). To clarify the picture, we will denote those
pullbacks of M(0) using the semiconjugacy between σn

2 |U and σ2 that collapses all
edges of U to points of the unit circle so that M( 12 ) is the pullback of M(0) since
1
2 is the σ2 pullback of 0. Insert in U a critical quadrilateral Q coinciding with the

convex hull of M(0) and its sibling edge M( 12 ) of U (clearly, M( 12 ) is the unique

edge of U distinct from M(0) and such that σn
2 (M( 12 )) = σn

2 (M(0)).

Then there are two edges of U , namely, M( 14 ) and M( 34 ), that map to M( 12 )

under σn
2 . We connect M( 14 ) with the closest edge of Q to it (evidently, this edge

connects endpoints of M(0) and M( 12 )) and thus construct a quadrilateral that

maps onto Q under σn
2 . In the same fashion we treat M( 34 ) and construct one

more quadrilateral that maps onto Q under σn
2 . Then we continue to implement

Thurston’s pullback construction and in the end construct a countable invariant
geodesic sublamination inside U . In fact, this sublamination is the preimage of
the invariant geodesic lamination constructed in the previous paragraph under the
semiconjugacy collapsing edges of U to points of the unit circle.

Suppose now that a σd-invariant geodesic lamination L∼ generated by a lamina-
tional equivalence relation ∼ is given. Recall that a periodic Fatou gap U of period
n of a laminational equivalence relation ∼ is said to be quadratic if σn

d |Bd(U)∩S is
two-to-one (except perhaps for points of Bd(U) ∩ S that are images of σn

d -critical
edges of Bd(U); the latter may have more than two σn

d -preimages). We need a con-
struction similar to the above in the case of critical quadratic periodic Fatou gaps
U of period n. The construction is inspired by the fact that σn

d : Bd(U) → Bd(U)
is monotonically semiconjugate to σ2 and in a lot of cases the semiconjugacy can
be extended onto finite gaps attached to U . First though we study the dynamics
of periodic Fatou gaps of degree greater than one.
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In the following lemma, we talk about topological polynomials and their
bounded Fatou domains instead of talking about laminations and their Fatou gaps.
However, a translation from one language into the other is straightforward.

Lemma 3.67 (Dynamics of periodic Fatou domains). Let Ω be a periodic
bounded Fatou domain of a topological polynomial f of degree greater than one.
Suppose that the period of Ω is n. Then one of the following holds.

(1) All the sets f i(Ω), where i = 0, . . . , n− 1, are pairwise disjoint.
(2) There exists m < n such that n = mk for some integer k > 1, the set

Y =
⋃k−1

l=0 f lm(Ω) is connected, and the sets Y , f(Y ), . . . , fm−1(Y ) are

pairwise disjoint. Moreover, the intersection
⋂k−1

l=0 fml(Ω) is a singleton.

Proof. Consider the orbit of Ω, that is the union X =
⋃n−1

i=0 f i(Ω). Clearly,

X =
⋃m−1

j=0 f j(Y ) where Y is the component of X containing Ω, and n = mk for

some integer k � 1; it follows, that fm(Y ) = Y . If k = 1, then Y = Ω, which simply
means that the sets Ω, f(Ω), . . . , fn−1(Ω) are pairwise disjoint. This corresponds
to case (1) of the lemma.

Suppose that k > 1. Then Y =
⋃k−1

l=0 f lm(Ω). Now, it is well-known that
fm|Y must have a fixed point, say, a; since by definition the sets Y , . . . , fm−1(Y )

are pairwise disjoint, the point a is of period m. Clearly, a ∈
⋂k−1

l=0 f lm(Ω). Ge-

ometrically this means that Ω “rotates” around a under iterations of fm so that
after k steps it maps back onto itself. Observe that sets f im(Ω) and f jm(Ω) with
0 � i < j < k cannot intersect other than at a because otherwise this will create
points of Bd(Ω) “shielded’ from infinity, which is impossible. �

Based upon Lemma 3.67, we can give the following definition.

Definition 3.68. In case (1) of Lemma 3.67 we say that the Fatou domain
U (and the corresponding Fatou gap of the corresponding invariant geodesic lam-
ination/laminational equivalence relation) is of non-rotational type. In case (2) of
Lemma 3.67 we say that the Fatou domain U (and the corresponding Fatou gap of
the corresponding invariant geodesic lamination/laminational equivalence relation)
is of rotational type.

Now let us discuss well-known facts concerning finite periodic gaps of invariant
geodesic laminations and stated here without proof. Let U be a Fatou gap of an
invariant geodesic lamination. Say that a finite gap G is attached to U at a leaf M
if U and G share an edge M . Recall also that a gap (leaf) G of L∼ is said to be
periodic (of period s) if s is the least number such that σs

d(G) = G. The nature of
σs
d|G may be different though.

Definition 3.69 (Types of finite periodic gaps and leaves). Let G be a finite
periodic gap of period s. Then σs

d : G → G may be the identity map. In this case
we say that G is a fixed return gap . Otherwise σs

d : G → G is “cyclic”, and we say
that G is a cyclic return gap. Similar analysis and terminology apply to periodic
leaves. If a periodic leaf � of period s is such that σs

d : � → � is the identity map,
then we say that � is a fixed return leaf. If σs

d : � → � flips �, then we say that � is
a flip return leaf . If σi

d(�) ∩ � 
= ∅ for some 0 < i < s, then � is an edge of a finite
cyclic return gap G and we say that � is a fixed return leaf of cyclic type.

The analysis above shows that if a finite periodic gap G is attached to a periodic
Fatou gap U then the following cases are possible.
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(1) The gap G is fixed return. In this case the edge of U , at which G is
attached to U , has period that is a multiple of the period of U .

(2) The gap G is cyclic return. Then such gap G is unique for U and U is
a Fatou gap of rotational type. Moreover, the edge of U at which G is
attached to U , must be a fixed return leaf of cyclic type of the same period
as U .

We are ready to define legal critical quadrilaterals associated with a critical
quadratic n-periodic Fatou gap U of a σd-invariant laminational equivalence relation
∼. Recall that we also want to define the geodesic lamination containing the critical
quadrilaterals in question in such a way that it is not very different from the original
geodesic lamination containing U . Let M be the refixed edge of U , and let M ′ be
edge of M such that σd(M) = σd(M

′) (M ′ is the sibling edge of M). Critical
quadrilaterals Q that we associate with U will be either the convex hull of M and
M ′ (the construction of Q is then analogous to the case of σ2, and Q is called
trivial) or convex hulls of certain edges of a finite gap G attached to U at M and
their sibling edges coming from the sibling gap of G attached to U at M ′ (then Q is
called non-trivial). In the latter case the construction of Q and the corresponding
new geodesic lamination containing Q must involve erasing the entire grand orbit
of M .

Let us now proceed with the construction. First assume that there is no finite
gap attached to U at M . In this case, we associate with U only the critical quadri-
lateral obtained as the convex hull of M and its sibling edge M ′. This is similar to
the case of σ2 considered above. Otherwise suppose that G is a finite periodic gap
attached to U at M . Then there is a sibling-gap G′ of G that is attached to U at
M ′. Clearly, σn

d maps G′ to G. Consider two cases.
(1) If G is a fixed return gap, we first erase the grand orbit of M from L.

Then any remaining edge of G can be connected to its sibling edge of G′ to create a
critical quadrilateral Q. Finally, Q must be pulled back to create the corresponding
geodesic lamination. Then such critical quadrilateral Q is said to be legal and
the corresponding invariant geodesic lamination is called a legal modification of
L∼. Observe that if we simply erase the grand orbit of M we get a new geodesic

lamination L̂ that has a periodic Fatou gap containing U and of the same period
and the same degree as U ; basically, in the new gap finite concatenations of leaves

replace appropriate leaves from the grand orbit of M . Clearly, L̂ is proper and
generates ∼ (and L∼) in the usual way: two points are ∼-equivalent if and only if

they can be connected with finite chain of leaves of L̂. And in the sense of L̂ we
do literally the same as was done in the σ2-case: construct a critical quadrilateral
based upon a refixed edge of a gap and its sibling.

(2) Assume that the period of G is m < n and n = mk for some k > 1. By
Lemma 3.67, the gap G is attached to U at the refixed edge M of U , the gap G is
of cyclic type, σm

d acts on G as “rotation”, and only after σm
d is k times applied to

G will we have the identity map on G. Thus, each edge of G “rotates” under σm
d ,

and there are k edges in its orbit under this “rotation”. Hence the number kl of
edges of G is a multiple of k. Consider now two separate cases: l = 1 and l > 1.

(a) Suppose that l = 1. Then, as usual, we insert a critical quadrilateral Q
based upon M and M ′, and pull Q back to construct the corresponding geodesic
lamination. In particular, in this case there is a unique critical quadrilateral Q
associated with M .
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(b) Suppose that l > 1. We can think of σm
d and its action on G as follows.

Choose l consecutive edges of G; they will all be in different orbits, and under the
action of σm

d this segment of Bd(G) maps so that its images are pairwise disjoint
(except for the endpoints) segments of Bd(G) until under σn

d = (σm
d )k is maps back

to itself as the identity map.
One can insert an l + 1-gon into G as follows. Choose a segment I of Bd(G)

concatenating l consecutive edges of G so that one of these edges is M . Take the
convex hull CH(I) of I. It follows that CH(I) is an (l + 1)-gon, which “rotates”
inside G under the action of σm

d until it comes back to itself under σn
d , the first

return map being the identity. Observe that the choice of I is by no means unique.
The orbit of CH(I) under σm

d consists of k gaps with pairwise disjoint interior; these
gaps are “concatenated” at their appropriate common vertices. The complement in
G to the union of σm

d -images of CH(I) is another finite gap T with k edges, which
form one cycle under σm

d .
This construction is not unique as one can choose a segment I in several ways.

In fact, it is easy to see that there are l distinct choices of a gap T inside G, and,
accordingly, l distinct cycles of sets like CH(I) “rotating” around T . In each case
there is exactly one segment I of the boundary of G that contains M . If we now
erase M and its entire grand orbit, then we obtain an invariant geodesic lamination
similar to the one described above in case (1). The gap U will again be enlarged,
and all leaves from the grand orbit of M will be replaced by finite concatenations of
leaves (for example, M itself will be replaced by the remaining edges of CH(I), etc).
As before, the period of U and the period of the newly constructed gap containing
U are equal, and the same can be said about their degrees.

Thus, we can erase the grand orbit of M but on the other hand add the gap

T as above and its grand orbit. This yields a new geodesic lamination L̂ similar

to the geodesic lamination L̂ from case (1). Observe that in L̂ U is enlarged at

the expense of G, and G is replaced by a smaller gap T . As before, L̂ is a proper
geodesic lamination, which generates ∼ in the usual way; we simply insert a critical
quadrilateral Q based upon an edge of CH(I) and its sibling edge, and pull Q back
to construct the corresponding geodesic lamination. This can be done in 2l − 1
ways.

Since in case (2)(b) we are replacing the gap G by a smaller gap T , then in all
pullbacks of G the corresponding pullbacks of T will have to appear. The original
gap U is enlarged by adding to it CH(I) and all its pullbacks. It follows that
the new geodesic lamination (which is evidently proper as any geodesic lamination
remains proper after one erases some of its leaves) generates the same laminational
equivalence relation.

However, in case (1), the picture is more sensitive. In this case, there is a
situation in which erasing M and its grand orbit leads to a significant change in
the geodesic lamination in question and contradicts our desire to not change it too
much. Indeed, suppose that G is a finite gap attached to U at M , and there exists a
critical gap H that eventually maps to G. Then there must exist several Fatou gaps
attached toH at its edges that are pullbacks ofM . Erasing M and its pullbacks will
result into these Fatou gaps merging into one Fatou gap of higher degree. Thus, the
structure of the new geodesic lamination with the critical quadrilateral Q described
above will be very different from the original. Hence the construction above is
not applicable if there exist critical gaps that are preimages of G. Therefore when
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defining legal modifications of periodic quadratic Fatou gaps we always assume that
no critical gap is mapped to a fixed return gap attached to U at its refixed edge M
or to M itself.

We are ready to define legal quadrilaterals and legal modification of geodesic
laminations. However first we need a useful general definition.

Definition 3.70 (Geolaminational collections). If Y = (Y1, . . . , Yk) is a collec-
tion of gaps or leaves and there exists a σd-invariant geodesic lamination L such
that Y1, . . ., Yk are gaps or leaves of L, then we will call Y (σd-)geolaminational .

Recall that by a full collection of critical quadrilaterals we mean a collection
such that on the boundaries of components of its complement the map σd is one-
to-one except perhaps for boundary critical chords (clearly, such a collection must
consist of d− 1 critical quadrilaterals).

Definition 3.71 (Legal objects). Critical quadrilaterals constructed in (1) and
(2) for ∼ and L∼ are said to be legal . A critical quadrilateral is also called legal
if it is contained in a finite critical set of a geodesic lamination. An full ordered
geolaminational collection of legal critical quadrilaterals of ∼ (and L∼) is called
a legal quadratically critical portrait of ∼ (and L∼). The corresponding geodesic
pullback laminations are called legal modification of L∼.

Recall that legally modifying a lamination is a two step process. At the first
step, we replaced all periodic quadratic Fatou gaps by possibly larger gaps. A
quadratic gap U gets larger if a refixed edge of it and all edges in its grand orbit

are erased. In this case the larger gap Ũ is said to be a legal modification of U .

Let us again emphasize that legal quadratically critical portraits of geodesic
laminations do not always exist. However they can definitely be constructed if no
critical gap is mapped to a fixed return gap attached to U at its refixed edge M or
to M itself.

If they do exist then, by definition, the corresponding geodesic lamination is a
quadratically critical geodesic lamination. It is easy to see that legal modifications
differ from the original geodesic lamination L∼ in that they tune critical gaps of L∼
and gaps from their grand orbit, but otherwise L∼ remains the same. Even though
legal quadrilaterals and legal modifications of geodesic laminations are not always
well-defined, we can define the class of laminational equivalence relations and their
geodesic laminations for which legal quadrilaterals and legal modifications are not
only well-defined but also have the following crucial property: for them the fact
that legal modifications are linked implies that the geodesic laminations coincide.

Definition 3.72. Let ∼ be an invariant non-capture laminational equivalence
relation such that all periodic Fatou gaps of LpS

∼ of degree greater than one are
quadratic. Then we say that L∼ and ∼ are quadratically almost perfect-Siegel
non-capture invariant geodesic lamination and quadratically almost perfect-Siegel
non-capture laminational equivalence relation.

It is easy to see that ∼ is quadratically almost perfect-Siegel non-capture if and
only if all critical sets of LpS

∼ are either finite sets or periodic quadratic Fatou gaps.
The terminology is a little awkward but explicit; indeed, in the above definition
L∼ is not itself perfect-Siegel as LpS

∼ does not have to coincide with L∼ but the
difference between the two is of “quadratic periodic nature”: LpS has no capture
Fatou domains and all periodic Fatou domains U of LpS are quadratic. Clearly, U
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may contain leaves of the original geodesic lamination L∼, but by definition there
are no Siegel gaps of L∼ in U , and no more than countably many leaves of L∼ in
U .

Observe that if an invariant laminational equivalence relation ∼ is quadrati-
cally almost perfect-Siegel non-capture then all its periodic Fatou gaps are either
Siegel or quadratic, and there are no critical preperiodic Fatou gaps. However the
opposite statement is not true. Indeed, consider a cubic invariant geodesic lamina-

tion obtained as follows. Let 0 1
2 = Di be the unique chord in D with σ3-invariant

endpoints. Let FGa be the convex hull of all points with orbits above Di and FGb

be the convex hull of all points with orbits below Di. Then Di is a common edge of
both gaps. Using Thurston’s pullback scheme one can construct a unique cubic in-
variant geodesic lamination Lab that has both gaps. Clearly, Lab has two invariant
critical quadratic Fatou gaps and no other critical sets. In particular, all its peri-
odic Fatou gaps are either Siegel or quadratic, and there are no critical preperiodic
Fatou gaps. However, the perfect part of Lab is the empty geodesic lamination,
which, evidently, has an invariant cubic gap (the entire closed disk). Hence Lab is
not quadratically almost perfect-Siegel non-capture.

Let us fix a quadratically almost perfect-Siegel non-capture geodesic lamination
L∼. Say that a gap G is almost attached to U if either G is attached to U , or G is
attached to a gap H and H is attached to U .

Lemma 3.73. Suppose that U is a quadratic periodic Fatou gap of L∼. Then
there are no critical sets of L∼ mapped to edges of U or to gaps attached to U ;
in particular, there are no critical gaps attached to U and U has no critical edges.
Moreover, if W is a Fatou gap of ≈LpS

∼
then no Fatou gap of L∼ is almost attached

to W . In particular, only finite gaps G of fixed return type can be attached to a
Fatou gap W of ≈LpS

∼
at edges of W , and all their other edges are non-isolated in

L∼ from outside of G.

Observe that W above must be a quadratic gap as follows from the definitions
and assumptions.

Proof. Let a critical set (gap or leaf) H map to a leaf or to a gap G attached
to U . We may assume that U is critical. If H is attached to U , then there must
exist a Fatou gap V attached to H and such that σd(V ) = σd(U). Thus, the Fatou
gap W of LpS

∼ containing U ∪H ∪V maps forward under σd in at least three-to-one
fashion, a contradiction. Hence H is not attached to U . Then there are at least
two Fatou gaps attached to H and mapped to U under the appropriate power of
σd. Similar to the above, consider the Fatou gap W of LpS

∼ containing H and these
two gaps. Clearly, W is critical. If it contains U , then the degree of σd|Bd(W ) is
at least three, a contradiction. If W does not contain U , then either W is not
periodic, or W is a critical periodic Fatou gap of LpS

∼ such that in its orbit there is
another critical gap, namely the one that contains U . In all these cases we arrive
at a contradiction.

Now, suppose that W is a Fatou gap of ≈LpS
∼
. Thus there are at most countably

many leaves of L∼ inside W . If there exists a Fatou gap V of L∼ attached to W
at an edge G, or a Fatou gap V attached to a gap G that is attached to W , then
we can unite W , G and V to create a “non-dynamic” gap containing W , G and V
and therefore containing at most countably many leaves of L∼. This would show
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that W cannot be a gap of ≈LpS
∼

a contradiction. The last claim of the lemma now
easily follows. �

Let U be a critical Fatou gap of ≈LpS
∼

of degree greater than one. By the
assumptions, U is periodic, say, of period n. By Lemma 3.73 all periodic gaps
attached to U are finite fixed return gaps. Such periodic gaps G give rise to the
difference between the geodesic lamination generated by ≈LpS

∼
and the geodesic

lamination LpS . Indeed, a gap G attached to U has an edge � separating U and
G that is not a part of LpS ; the same holds for similar leaves and their pullbacks.
Otherwise the geodesic lamination generated by ≈LpS

∼
and LpS coincide.

Corollary 3.74. Legal modifications of L∼ are well-defined.

This justifies the next definition.

Definition 3.75. Suppose that ∼1 and ∼2 are quadratically almost perfect-
Siegel non-capture laminational equivalence relations such that some legal modifi-
cations Lleg

∼1
and Lleg

∼2
are linked or essentially equal. Then we say that ∼1 and ∼2

are linked or essentially equal.

Now we can state the main theorem of this section.

Theorem 3.76. Suppose that ∼1 and ∼2 are quadratically almost perfect-Siegel
non-capture laminational equivalence relations that are linked or essentially equal.
Then ∼1=∼2. Moreover, if QCP1 and QCP2 are linked or essentially equal legal
quadratically critical portraits of L∼1

and L∼2
then critical patterns of QCP1 and

QCP2 in L∼1
= L∼2

coincide.

Proof. By Theorem 3.63, we have LpS
∼1

= LpS
∼2

. Therefore, ≈LpS
∼1

=≈LpS
∼2

=≈.

Consider a periodic gap U of period n of ≈. Collapse all edges of U by a map ψ that
semiconjugates σn

d |Bd(U) and σ2. Consider the two induced under the action of ψ by
the restrictions of ∼1 and ∼2 onto U quadratic laminational equivalence relations
≈1 and ≈2 and the corresponding quadratic invariant geodesic laminations L≈1

and L≈2
. Since Lleg

1 and Lleg
2 are linked or essentially equal, it follows that L≈1

and L≈2
are linked or essentially equal. By [Thu85], we have L≈1

= L≈2
and

hence the restrictions of ∼1 and ∼2 on U coincide. Applying this argument to all
periodic gaps of LpS

∼1
= LpS

∼2
, we conclude that ∼1=∼2 as desired. The last claim

of the lemma follows from definitions, so we leave it to the reader. �

We can also establish a simple but useful version of Theorem 3.76. To this
end we need Definition 3.77. Recall that invariant geodesic laminations are called
regular if their critical sets are pairwise disjoint except for the case when a critical
leaf is a boundary edge of an all-critical set.

Definition 3.77. Suppose that (L∼1
,Z1) and (L∼2

,Z2) are regular invari-
ant geodesic laminations with critical patterns. Then we say that (L∼1

,Z1) and
(L∼2

,Z2) are linked or essentially equal if there are two linked or essentially equal
quadratically critical portraits QCP1 and QCP2 inserted, respectively, in sets from
Z1 and Z2 (by definition then it follows that L∼1

and L∼2
are intrinsically linked

or essentially equal).

Corollary 3.78 now easily follows.
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Corollary 3.78. If (L∼1
,Z1) and (L∼2

,Z2) are quadratically almost perfect-
Siegel non-capture invariant geodesic laminations with critical patterns that are
linked or essentially equal, then (L∼1

,Z1) = (L∼2
,Z2).





CHAPTER 4

Applications: Spaces of topological polynomials

In this chapter we apply the tools developed above.

4.1. The local structure of the space of all simple dendritic polynomials

The results obtained in this section were described in the Introduction in Sec-
tion 1.5. Recall that a (critically) marked polynomial P is a polynomial of degree
d equipped with an ordered (d − 1)-tuple C(P ) of critical points of P such that
the number of entries of every critical point in C(P ) reflects its multiplicity, i.e.,
equals the multiplicity minus one. In what follows when talking about a marked
polynomial we use the notation (P,C(P )) with C(P ) = (c1, . . . , cd−1) being critical
points of P . The space of all marked polynomials (P,C(P )) is endowed with the
natural product topology.

If P is dendritic, then by Theorem 2.18 (due to Kiwi [Kiw04]) there exists
an invariant laminational equivalence relation ∼P such that the filled Julia set
J(P ) of the polynomial P |J(P ) is monotonically semiconjugate by a map ψP to
the associated topological polynomial f∼P

: J∼P
→ J∼P

induced by σd on the
topological Julia set J∼P

= S/ ∼P ; let ϕP : S → S/ ∼P be the corresponding
quotient map . For every point z ∈ J(P ) we set Gz = ϕ−1

P (ψP (z)); the set Gz is a
laminational counterpart of the point z.

A simple dendritic polynomial is defined as a dendritic polynomial P with only
simple critical points and the following property: every pair of distinct critical
points of P can be separated by a pair of (pre)periodic external rays together with
their common landing point. In more combinatorial terms, a dendritic polynomial P
is simple dendritic if there are d−1 distinct (and hence disjoint) critical setsGc1 , . . . ,
Gcd−1

of LP . The equivalence of the two definitions follows from Lemma 3.25 and
Theorem 2.18. It follows that if (P,C(P )) is a simple marked dendritic polynomial,
then all points c1, . . . , cd−1 in C(P ) must be distinct. Denote by CMDsim

d the
family of all simple (critically) marked dendritic polynomials of degree d.

Lemma 4.1. The family CMDsim
d of all simple marked dendritic polynomials

is an open subset of the space of all marked dendritic polynomials.

Proof. Suppose that (P,C(P )) is a simple marked dendritic polynomial. We
need to show that all marked dendritic polynomials in a sufficiently small neigh-
borhood U of (P,C(P )) are simple. Consider a dendritic topological Julia set J∼P

.
By definition all d−1 critical points of the topological polynomial f∼P

are distinct.
By definition, there is a collection of (pre)periodic external rays of P such that
the union ΓP of these rays and their landing points divides the plane into finitely
many pieces, and each piece contains no more than one critical point of P . We may
assume that the landing points are all (pre)periodic but not (pre)critical.

79
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By Lemma 3.22, if an open neighborhood U of (P,C(P )) is sufficiently small,
then, for any marked polynomial (Q,C(Q)) ∈ U , there is a union ΓQ of (pre)periodic
external rays and their landing points that is close to ΓP and has the following
property: the external rays in ΓQ have the same arguments as the external rays in
ΓP , and pairs of rays in ΓQ land together if and only if the corresponding pairs of
rays in ΓP land together. Since C(Q) is also close to C(P ), it follows that any two
elements of C(Q) are separated by ΓQ, hence Q is simple dendritic. �

Definition 4.2 (Local parameterization of dendritic polynomials). Define

the following map Ψd from CMDsim
d to the space 2D

d−1

of compact subsets of D
d−1

:

Ψd(P ) = GP (c1) ×GP (c2) × · · · ×GP (cd−1)

and call the sets Ψd(P ) postcritical tags of critically marked dendritic polynomials .

We show that if we fix a simple critically marked dendritic polynomial P and
a sufficiently small neighborhood U of P in CMDsim

d , then the space of all corre-
sponding tags has nice properties. However first we need to introduce a few new
notions and quote a useful topological result.

Definition 4.3. A collection D = {Dα} of compact and disjoint subsets of
a metric space X is upper semicontinuous (USC) if, for every Dα and every open
set U ⊃ Dα, there exists an open set V containing Dα so that for each Dβ ∈ D,
if Dβ ∩ V 
= ∅, then Dβ ⊂ U . A decomposition of a metric space is said to
be upper semicontinuous (USC) if the corresponding collection of sets is upper
semicontinuous.

Upper semicontinuous decompositions of separable metric spaces are studied
in [Dav86, p. 13].

Theorem 4.4 ([Dav86]). If D is an upper semicontinuous decomposition of a
separable metric space X, then the quotient space X/D is also a separable metric
space.

In the above situation we call X/D the space generated by D and denote by
πD : X → X/D the corresponding quotient map. In what follows we will use a
well-known fact given below without a proof. Recall that by Definition 3.29 a map
F : A → 2B from a topological space A to the space of all compact subsets of a
compactum B is upper semicontinuous if for every x ∈ A and every neighborhood
U of F (x) there exists open neighborhood V of x such that y ∈ V implies F (y) ⊂ U .

Lemma 4.5. Let F : A → 2B be an upper semicontinuous map from a topologi-
cal space A to the space 2B of all compact subsets of a compactum B. Suppose that
for any two points x, y ∈ A either F (x) = F (y), or F (x) ∩ F (y) = ∅. Then the
partition D of the set

⋃
x∈A F (x) into sets F (x) is upper semicontinuous and the

map πD ◦ F : A → X/D is continuous.

The next theorem is the main theorem of this subsection. It combines the
Theorems on Local Charts for Dendritic Polynomials and Local Pinched Polydisk
Model for Dendritic Polynomials.

Theorem 4.6. For a simple critically marked dendritic polynomial (P, C(P )) ∈
CMDsim

d of degree d there exists a neighborhood U of (P,C(P )) such that for any
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two critically marked dendritic polynomials (Q,C(Q)), (R, C(R)) ∈ U either Ψd(Q)
and Ψd(R) are disjoint or Ψd(Q) = Ψd(R).

Moreover, the map Ψd from U to the space 2D
d−1

of all compact and connected

subsets of the polydisk D
d−1

is upper semicontinuous, the partition D of the set⋃
T∈U Ψd(T ) into subsets Ψd(T ), T ∈ U , is upper semicontinuous, and the map

πD ◦Ψd : U →
⋃

T∈U Ψd(T )/D is continuous.

Proof. Recall that the map Ψ̂d was introduced in Section 3.2.2; this map asso-
ciates to (P,C(P )) the dendritic invariant geodesic lamination with critical pattern
(L∼P

,Z(P,C(P ))) where Z(P,C(P )) = (Gc1 , Gc2 , . . . , Gcd−1
). By Corollary 3.30

and by definition the map Ψ̂d is upper semicontinuous. Since by definition

Ψd(P,C(P )) = σd(Gc1)× . . . σd(Gcd−1
)

it follows that Ψd is upper semicontinuous too. By Lemma 4.5 to prove the theorem
it remains to prove the first claim of the theorem, that is to prove that there exists
a neighborhood U of (P,C(P )) such that for any two critically marked dendritic
polynomials (Q,C(Q)), (R,C(R)) ∈ U either Ψd(Q) and Ψd(R) are disjoint or
Ψd(Q) = Ψd(R). By Lemma 4.1 we may assume that U is chosen sufficiently small
so that any marked dendritic polynomial in U is simple. Moreover, since Ψ is
upper semi-continuous, we may assume that for each critical set Ci ∈ C(P ) and each
Q ∈ U there exists an open set Wi so that σd|Wi

is two-to-one and the corresponding
critical set Di ∈ C(Q) is contained in Wi.

By way of contradiction assume that two simple critically marked dendritic
polynomials (Q,C(Q)), (R,C(R)) ∈ U have non-disjoint sets
Ψd(Q,C(Q)) and Ψd(R,C(R)). Let us show that if Q and R are sufficiently
close to P then this actually implies that Ψd(Q) = Ψd(R). Choose a critical
set C of ∼Q. Then σd maps C forward in a two-to-one fashion. The vertices
of C can be divided between two segments, each of which contains, say, m ver-
tices of C. We can order vertices of C on the circle so that their collection is
the set x1 < · · · < xm < y1 < · · · < ym where the segments mentioned above
are [x1, xm] and [y1, ym]. Thus, for any given j with 1 � j � m, we have that
σd(xj) = σd(yj) = zj . Then the σd-image σd(C) of C coincides with the convex
hull of the points z1 < z2 < · · · < zm.

Now, by the assumption Ψd(Q,C(Q)) and Ψd(R,C(R)) are non-disjoint.
Choose a critical set D of L∼Q

and a critical set E of L∼R
that have the same

position in Z(Q,C(Q)), respectively, in Z(R,C(R)), as C does in Z(P,C(P )).
Since Ψd(Q,C(Q)) and Ψd(R,C(R)) are non-disjoint, we have σd(D)∩σd(E) 
= ∅.
By the assumptions on U there exists a tight neighborhood W of C such that
D ∪E ⊂ W and W maps onto its image exactly two-to-one.

The fact that σd(D) ∩ σd(E) 
= ∅ implies that there is an edge �D of σd(D)
and an edge �E of σd(E) such that �D ∩ �E 
= ∅. Thus, either �D and �E share
an endpoint, or they are linked. Since D ∪ E ⊂ W , it follows that there exists
a unique critical quadrilateral QD ⊂ W that maps two-to-one onto �D. Clearly,
QD ⊂ D. Similarly, there exists a unique critical quadrilateral QE ⊂ W that maps
two-to-one onto �E . Moreover, QE ⊂ E. If �D and �E share an endpoint, then the
full preimage of this endpoint inside W is a critical diagonal shared by QD and QE .
If �D and �E are linked, then it easily follows that QD and QE are strongly linked.
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This argument can be repeated for all critical sets of L∼P
. Therefore, we see

that if Ψd(Q,C(Q)) and Ψd(R,C(R)) are non-disjoint, then the critical sets from
Z(Q,C(Q)) and Z(R,C(R)) that occupy the same position in the respective critical
patterns contain critical quadrilaterals that are strongly linked or share a critical
chord. By definition this implies that (L∼Q

,Z(Q,C(Q))) and (L∼R
,Z(R,C(R)))

are linked or essentially equal. By Corollary 3.78

(L∼Q
,Z(Q,C(Q))) = (L∼R

,Z(R,C(R))). �

4.2. Two-dimensional spaces of σd-invariant geodesic laminations

The second application of our tools extends the results of [BOPT15a] where
we studied the space LP

np
3 (ab) of all cubic invariant geodesic laminations gener-

ated by cubic invariant laminational equivalence relations ∼ compatible with fixed
critical leaf D = ab with non-periodic endpoints; in other words, we consider all
laminational equivalence relations ∼ with a ∼ b. The main result of [BOPT15a] is
that this family of cubic invariant geodesic laminations is itself a lamination. This
result resembles a laminational description of the combinatorial Mandelbrot set.
First we study Thurston’s invariant geodesic pullback laminations.

4.2.1. Invariant geodesic pullback laminations. We use [BMOV13]
where proper invariant geodesic laminations were introduced (see the necessary
definitions and claims in Section 2.2.2 of the present paper).

Lemma 4.7. Suppose that L is an invariant geodesic lamination. Then the
following claims hold.

(1) There is no critical leaf � = ab ∈ L with a periodic endpoint a that is
approximated by leaves of L disjoint from a.

(2) There is no critical wedge W of L with a periodic vertex v such that both
sides of W are approximated by leaves of L disjoint from v.

Proof. (1) If a critical leaf � = ab ∈ L with a n-periodic is approximated
by leaves of L disjoint from a, then the fact that a repels close by points under
σn
d implies that leaves approximating � and disjoint from a will have σn

d -images
crossing these leaves, a contradiction.

(2) Let a critical wedge W consist of leaves vu and vt where v is n-periodic.
We may assume that v < u < t < v and that σn

d (v) = v < t � σn
d (u) = σn

d (t) � v.
Then leaves approximating vt and disjoint from v will have σn

d -images crossing these
leaves, a contradiction. �

We will need the following definition and notation.

Definition 4.8 (Admissible critical collection). Let C = {c1 = a1b1, . . . ,
cd−1 = ad−1bd−1} be a full collection of d−1 critical chords. If each chord c1, . . . , cr
has a periodic endpoint while cr+1, . . . , cd−1 have non-periodic endpoints then we
call C an (r-)admissible critical collection. Also, the closure of a component of

D \
⋃d−1

i=1 ci is called a C-domain.

Let us fix an r-admissible critical collection C and use the notation from Defi-
nition 4.8. We want to associate to C a laminational equivalence relation. To this
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end we mimic Thurston’s pullback construction 1 (Proposition II.4.5 [Thu85]) and
define pullback (geodesic) laminations generated by C.

By [BMOV13] geodesic laminations can be easily associated to laminational
equivalence relations if they are proper (see Section 2.2.2). Therefore, taking into
account the definition and properties of proper laminations, it is natural to pullback
only leaves cr+1, . . . , cd−1 that have non-periodic endpoints. It is natural to expect
that this will result in a proper lamination and thus will lead to a laminational
equivalence relation.

However this construction may involve ambiguities. Consider one such possibil-
ity. Assume that on the n-th step a finite forward invariant (under σd) lamination
Ln is obtained. Let a critical chain of leaves �1 = a1a2, �2 = a2a3, . . . , �k = akak+1

be a part of the boundary of a C-component U , and that σd(a1) = x is an endpoint
of several leaves xy1, . . . , xys of Ln. For simplicity assume that points y1, . . . , ys
have unique σd-preimages z1, . . . , zs ∈ ∂U . Then when on the next step we pull
back the leaves xy1, . . . , xys into U the point x can be pulled to any of the points
a1, . . . , ak+1 which creates an ambiguous situation (despite the fact that points
y1, . . . , ys can be pulled in U uniquely only to points z1, . . . , zs ∈ ∂U). In other
words, a number of points (namely, k + 1 points a1, . . . , ak+1) can be connected
with z1, . . . , zs, and this creates ambiguity. This ambiguity surfaces even if k = 1
(the boundary critical chain of U consists of one leaf) as even in that case the two
endpoints of this critical leaf can be connected to z1, . . . , zs in various ways. We
will have to take care of this ambiguity as we define pullback laminations generated
by C.

Let us now give precise definitions. Suppose that on some step n a collection
Ln of pullback leaves is constructed. On step n + 1 each leaf � = xy ∈ Ln can
be pulled back into C-domains B. The boundary of B maps forward covering S in
the one-to-one fashion except for critical edges of B, which map to one point each.
Then the pullback of � in B is well-defined and unique in all cases except for the
following.

Let us call maximal concatenations of (critical) edges of B critical chains .
Endpoints of critical leaves in a critical chain Z are called vertices of Z. If � = xy
has exactly one endpoint (say, x) that is the immediate image of a critical chain T
while y pulls back to just one point w ∈ B, then the leaf � can pull back to various
leaves connecting w to vertices of T . On the other hand, if both endpoints x and y
pull back to critical chains of B, then xy can pull back to various leaves connecting
vertices of the first chain to vertices of the second chain. In what follows we call
the convex hull of the union of all pullbacks of a leaf � = xy into a C-domain U a
C-maximal pullback of �; clearly, this is the convex hull of the full pullbacks of x
and y to the boundary of U .

Thus, the ambiguity stems from the fact that critical chains can map to the
endpoints of leaves of Ln. We could resolve it by postulating our choices. However
we prefer a different approach. Namely, we show that there exists a well-defined way
of constructing the pullback Ln+1 of Ln so that Ln+1 is sibling forward invariant.
In other words, we prove the existence of pullback laminations. Then we consider
any sequence L0 ⊂ L1 ⊂ . . . of finite invariant pullback laminations with L0 =
{cr+1, . . . , cd−1} and show that their limits generate the same equivalence relation.

1We are indebted to Gao Yan for drawing our attention to an inaccuracy in the original
construction of a pullback lamination.
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Recall that by a forward invariant lamination we mean a collection of leaves
satisfying Definition 2.5 (see remark right after this definition), in particular it has
to satisfy our sibling condition: for each non-critical leaf � of the collection there
must exist d − 1 other leaves of this collection so that all d leaves in question are
pairwise disjoint and have the same image as �.

Definition 4.9. Suppose that there exists a sequence of finite forward invariant
laminations L0 = {cr+1, . . . , cd−1},L1, . . . such that σd(Ln+1) = Ln for every n >
0. Then we say that L0,L1, . . . is a sequence of finite pullback laminations generated
by C.

Lemma 4.10 follows from definitions.

Lemma 4.10. Suppose that �1, . . . , �d are arbitrary pairwise disjoint leaves that
do not cross leaves from C and have the same image. Then each C-domain contains
exactly one leaf �i.

Observe that the leaves �1, . . . , �d are not assumed to be members of a forward
invariant pullback lamination generated by C.

Proof. Set T = {�i, i = 1, . . . , d}. Let σd(�1) = xy; for each i let �i =
xiyi with σd(xi) = x, σd(yi) = y. Call xi’s x-points and yi’s y-points. By the
assumptions all preimages of x and all preimages of y form the set of all endpoints
of leaves from T .

Let U be a C-domain and show that it contains a leaf from T . Since all preim-
ages of x and y are endpoints of leaves from T , the claim is immediate if an x-point
or a y-point belongs to ∂U but is not an endpoint of a critical leaf from C. Hence
we may assume that there are two critical chains in ∂U mapping to x and y re-

spectively. Let X = �̂1 ∪ . . . �̂r be the critical chain in ∂U that maps to x. Let

�̂j = ajaj+1, j = 1, . . . , r. Assume that a1 < a2 < · · · < ar+1 and (a1, ar+1) is the
circle arc which intersects ∂U in exactly {a2, . . . , ar}.

Clearly, aj ’s are x-points. Since the number of x-points in the closed circle
arc [a1, a2] is by one greater than the number of y-points in that arc, then at least
one leaf from T has an x-endpoint inside [a1, a2] and the other endpoint outside
[a1, a2]. If this leaf is inside U , we are done. Otherwise the only possibility is that
its endpoints are a2 and some y-point inside [a2, a3]. In that case we can repeat
the argument and continue it until we find the desired leaf. �

Next we show that Definition 4.9 is not vacuous.

Lemma 4.11. Sequences of finite pullback laminations generated by C exist.

Proof. As in Thurston’s pullback construction, we define finite forward in-
variant laminations Ln, n = 0, 1, . . . step-by-step. We always include all points of
the unit circle in them, so below we will only describe their non-degenerate leaves.
Set L0 = {cr+1, . . . , cd−1}. Clearly, L0 is a finite forward invariant lamination. As-
sume now that Ln is constructed and describe how Ln+1 is constructed. Observe
that there are d C-domains U , and on the boundary ∂U of each such U the map σd

is one-to-one except for critical chains in ∂U that collapse to points.
Following Thurston, we pullback into U every leaf � = xy of Ln. If neither

endpoint of � is the image of a critical chain from ∂U then such a pullback is
unique. However one or both endpoints of � may be images of critical chains in ∂U .
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Thus, to have a well-defined pullback of � to U we need a more elaborate algorithm.
Here is how we want to do it.

Choose the positive (counterclockwise) direction on ∂U ; given an arc T ⊂ ∂U ,
we call this direction on T (on the entire ∂U) the U-direction. This induces specific
direction on each critical chain T from ∂U and on each critical leaf from ∂U .
Observe that positive direction on a critical leaf depends on the choice of U . Indeed,
each critical leaf c = ab ∈ C is an edge of two C-components, say, U and V ; then if
viewed as an edge of U it will have, say, initial endpoint a and terminal endpoint
b while if viewed as an edge of V it will then have initial endpoint b and terminal
endpoint a.

Clearly, ∂U maps onto S in a monotone fashion, with critical chains in ∂U
being exactly the non-degenerate fibers of σd|∂U . Given a point x ∈ S, denote by
Ix(U) the arc-preimage of x in ∂U , denote by ix(U) the initial point of Ix(U) and
by tx(U) the terminal point of Ix(U) understood in terms of the U -direction on
∂U . Observe that the arcs Ix(U) are in fact either points or critical chains on the
boundary of U .

Claim. Let U and V be two distinct C-domains. Then for every point x ∈ S we
have tx(U) 
= tx(V ), ix(U) 
= ix(V ).

Proof of the Claim. We may assume that Z = U ∩ V 
= ∅. Then either
Z is a critical leaf shared by the boundaries of U and V , or Z = {z} is a point of
the circle which is a common point of two critical leaves �U ⊂ ∂U and �V ⊂ ∂V .
In the former case the U -direction on Z is opposite to the V -direction on Z, hence
tx(U) 
= tx(V ) as desired.

Now, suppose that Z = {z} is just a point. Then z is a common vertex of a
critical chain Ix(U) and of a critical chain Ix(V ). Suppose that z = tx(U) = tx(V ).
Then there are distinct critical leaves az ⊂ Ix(U), bz ⊂ Ix(V ), and we may assume,
without losing generality, that a < b < z. However, since the V -direction on bz
must be from b to z it follows from the definitions that V must be located between
az and bz which, because of the existence of the leaf az, means that the critical
chain Ix(V ) cannot terminate at z and must include at least one more critical edge
zc of V growing out of z with a � c < b. This shows that z is not the terminal
point of Ix(V ), a contradiction. Similar arguments show that ix(U) 
= ix(V ). �

Now, for a leaf � = xy ∈ D, we postulate that as the endpoints of the pullback
leaf of � we choose the points tx(U) and ty(U). We claim that this yields a sequence
of finite forward invariant laminations Ln. Moreover, we will show inductively (it
follows immediately from the construction) that for each point x ∈ S and each leaf
� of one of our laminations with endpoint x all leaves of our laminations contained
in U and mapped to leaves with endpoint x have as the corresponding endpoint
tx(U) ∈ ∂U ∩ S.

Evidently, the base of induction holds. Suppose that Ln satisfies all the declared
conditions and consider Ln+1 \ Ln. Let us show that Ln+1 is sibling invariant.
To this end we need to verify that a non-critical leaf � ∈ Ln+1 \ Ln has d − 1
sibling leaves, and all these d leaves are pairwise disjoint. We may assume that � ∈
Ln+1 \Ln. Hence � was added on the last step in the construction. By construction
this implies that each C-domain contains exactly one preimage of σd(�) = xy.
Moreover, there are no other preimages of xy in Ln+1 and by the Claim all these
preimages of xy are pairwise disjoint. This implies the desired. �
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The next definition is a step towards constructing a fully invariant (not just
forward invariant) lamination generated by C.

Definition 4.12. Consider a sequence L0 = {cr+1, . . . , cd−1},L1,L2, . . . of
finite pullback laminations generated by C. Call the union of all leaves from all
laminations Ln, n = 0, 1, . . . a pullback prelamination generated by C.

By Lemma 4.11, the family of such pullback prelaminations is non-empty. Since
in Definition 4.12 we mean any sequence of pullback laminations, not just a partic-
ular sequence constructed in Lemma 4.11, there may exist several pullback prelam-
inations generated by C.

Definition 4.13. The closure of a pullback prelamination generated by C is
called a pullback lamination generated by C

Observe that by Definition 4.13, the pullbacks of leaves from C are dense in any
pullback lamination L generated by C while no leaf of L crosses a leaf from C.

Theorem 4.14. Any pullback lamination generated by C is invariant.

Proof. The claim follows from Corollary 3.20 [BMOV13]. �
By [BMOV13] a proper invariant geodesic lamination L defines a laminational

equivalence relation ≈L such that a ≈L b if and only if there exists a finite chain
of leaves of L connecting a and b. We will show that all pullback laminations are
proper and that they all generate the same laminational equivalence.

Recall that in the pullback construction we only pullback the leaves cr+1, . . . ,
cd−1 (by definition these are exactly the leaves from our critical collection which
do not have periodic endpoints).

Lemma 4.15. Let C = (c1, . . . , cd−1) be an r-admissible critical collection. Let
L(C) be a geodesic lamination generated by C. Then:

(1) L(C) is proper and generates a laminational equivalence relation ≈L(C) (in
particular, aj ≈L(C) bj for each j, r + 1 � j � d− 1);

(2) if � is a critical leaf of L(C), then its endpoints must be non-periodic
vertices of one of the critical chains from C (in particular, if all critical
chains are just leaves - e.g., if all leaves in C are pairwise disjoint - then
� must be cj for some j, r + 1 � j � d− 1);

(3) if L̂ is another pullback lamination generated by C then it is proper and
≈

̂L=≈L(C) (and so the laminational equivalence relation ≈L(C) depends
only on C and is from now on denoted by ≈C);

(4) if L̂ is an invariant geodesic lamination with leaves cr+1, . . . , cd−1 whose

pullbacks do not cross leaves from C, then L̂ contains all limit leaves of
L(C) and at least one pullback of each ci, r + 1 � i � d − 1 inside each
C-maximal pullback of ci;

(5) if ∼ is a laminational equivalence relation such that aj ∼ bj , r + 1 � j �
d− 1 and no leaf of L∼ crosses ci, 1 � i � r, then for any two points a, b
such that a ≈C b we have a ∼ b.

Proof. (1) The fact that L(C) is proper follows from the way we define it and
Lemma 4.7.

(2) Since a critical leaf � of L(C) must not cross leaves from C, it must be
contained in a C-domain. This implies that its endpoints must be vertices of one of
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the critical chains from C because distinct critical chains from the boundary of the
same C-domain have distinct images. Using Lemma 4.7, the particular cases listed
in the rest of the claim now easily follow.

(3) By definition, L(C) is the closure of an invariant prelamination that is the
union of leaves from a sequence of finite pullback laminations L0 ⊂ L1 ⊂ . . .
generated by C. For each n define the equivalence relation ≈n on S as follows:
two points x, y ∈ S are ≈n-equivalent if there exists a finite chain of concatenated
leaves of Ln such that x and y are the endpoints of the first and the last leaf in the
chain respectively. In cases like that we will simply say that the chain of leaves in
question connects x and y.

Suppose that �1∪�2∪ . . . �k is a chain of concatenated leaves of Ln. Let x be the
initial endpoint of �1; let y be the terminal point of �k. Choose a C-domain U and
points x′′, y′′ ∈ ∂U such that σd(x

′′) = x, σd(y
′′) = y. Then, by Lemma 4.10, there

exists a chain of leaves �′1 ∪ �′2 ∪ · · · ∪ �′k of Ln+1 such that �′i ⊂ U, σd(�
′
i) = �i and

for each i, 1 � i � k− 1 the terminal point of �′i and the initial endpoint of �′i+1 are
connected with a chain of critical edges of U ; moreover, if x′ is the initial endpoint
of �′ and y′ is the terminal point of �′k then there exists also a chain of critical edges
of U connecting x′′ and x′ and a chain of critical ledges of U connecting y′ and
y′′. This amounts to the following claim: if x and y are connected with a chain of
leaves of Ln and x′′, y′′ ∈ ∂U are such that σd(x

′′) = x, σd(y
′′) = y then there exists

a chain of leaves of Ln+1 contained in U and connecting x′′ and y′′.

Now, let L̂ be another pullback lamination generated by C; denote by L̂n the

finite laminations whose sequence gives rise to L̂. For each n the finite pullback

lamination L̂n generates the equivalence relation ≈̂n in the same fashion as above
for ≈n. We claim that ≈n= ≈̂n. Indeed, it is clear that ≈0= ≈̂0 (after all,

L0 = L̂0 = {cr+1, . . . , cd−1}). Assume that ≈n= ≈̂n and prove that ≈n+1= ≈̂n+1.
It suffices to show that if x ≈n+1 y, then x≈̂n+1 y. By definition, to this end it is
enough to show that if � = xy is a leaf of Ln+1 then there exists a chain of leaves

of L̂n+1 connecting x and y.

First, suppose that � is critical. Then by definition � ∈ L0 = L̂0 and we are
done. Second, suppose that � is not critical. Then � ⊂ U for some C-domain

U , and σd(�) is a leaf of Ln. By induction there exists a chain of leaves of L̂n

connecting σd(x) and σd(y). By the above claim there exists a chain of leaves of

L̂n+1 connecting x and y (and contained in U). Hence x≈̂n+1y as desired. By
induction this implies that ≈n= ≈̂n for every n. By definition of the laminational
equivalence relation determined by a proper invariant lamination it then follows
that ≈

̂L=≈L(C) as desired.

(4) By definition of invariant lamination both L̂ and L(C) have leaves contained
in each ≈C-class. Therefore any limit leaf of L(C) is a limit leaf of L̂ and vice versa;
moreover, any such limit leaf is the limit of a sequence of convex hulls of ≈C-classes.

The fact that L̂ contains at least one pullback of each ci, r + 1 � i � d − 1 inside
each C-maximal pullback of ci is immediate.

(5) The leaves cj with r+1 � j � d−1 either are leaves of L∼ or are contained
in finite gaps of L∼. Add them to L∼ and then pull them back as leaves of L∼ or
inside pullbacks of gaps of L∼; do it according to Definition 4.9. In this way, we
can get an invariant pullback prelamination generated by C. When we close it, by
(4) the new leaves added all belong to L∼. Thus, L(C) consists of either leaves of
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L∼ or leaves contained inside finite gaps of L∼. By definition of ≈C , this implies
the desired. �

The following definition is central for this section.

Definition 4.16 (Pullback laminational equivalence relations). The lamina-
tional equivalence relation ≈C is called the laminational equivalence relation gener-
ated by C.

In the next lemma, we study possible differences between certain invariant
geodesic pullback laminations.

Lemma 4.17. In the notation of Lemma 4.15 the following holds.

(1) There may exist leaves of L(C) which intersect the interiors of finite gaps
of L≈C ; all such leaves are pullbacks of the leaves cr+1, . . . , cd−1. This is
the only situation when a leaf of L(C) does not belong to L≈C .

(2) Suppose that a leaf � of L≈C is a common edge of an infinite Fatou gap and
a finite gap. Then either � is a pullback of a leaf cj with r+1 � j � d−1,
or � does not belong to L(C). The latter is the only situation when a leaf
from L≈C does not belong to L(C).

(3) A leaf � of L(C) that is not a pullback of one of the leaves ci with r+ 1 �
i � d−1 (in particular, this holds if � is periodic) is non-isolated in L(C),
non-isolated in L≈C , and belongs to L≈C .

Proof. (1) If a leaf � of L(C) is not a leaf of L≈C , then there must exist a
finite gap of L≈C containing �. Moreover, since in that case � is isolated in L(C), it
itself must be a pullback of a leaf cj with r + 1 � j � d− 1.

(2) Suppose that a leaf � = ab of L≈C is not a leaf of L(C). By definition there
exists a finite chain of leaves of L(C) connecting a and b. Hence � is an edge of a
finite gap G of L≈C . If � is not isolated in L(C) from the outside of G, then it itself
must belong to L(C), a contradiction. If there is a finite gap of L(C) outside of G
that shares � with G, then this gap and G must be united into one bigger gap of
L≈C , a contradiction to the definition of ≈C . Hence there is a Fatou gap U of ≈C
such that � is an edge of U . Since � is not a leaf of L(C), it cannot be a pullback of
a leaf cj , r + 1 � d− 1. On the other hand, if a leaf � of L≈C is a common edge of
an infinite Fatou gap and a finite gap, then, in case this leaf is not a pullback of a
leaf cj , r + 1 � d− 1, it follows from definitions that it cannot be a leaf of L(C) as
desired.

(3) If a leaf �̂ does not belong to the union of the grand orbits of leaves ci with
r+1 � i � d− 1, then by definition it is approximated by pullbacks of these leaves

disjoint from �̂ (as the endpoints of leaves ci with r+1 � i � d−1 are non-periodic,
only finitely many their pullbacks share an endpoint). By Lemma 4.15, each leaf
ci, r + 1 � i � d − 1 is contained in the convex hull G of a ≈C-class where G is a

leaf or a finite gap. Hence �̂ is a limit leaf of leaves of L≈C . This implies that �̂ is a
leaf of L≈C . �

Let us study periodic Fatou gaps of L≈C and L(C).
Lemma 4.18. Let U be a periodic Fatou gap of ≈C of degree s > 1. Then all

finite periodic gaps G attached to U at edges � of U are fixed return so that U is
of non-rotational type; moreover, all other edges of gaps G which are attached to
U are non-isolated in L(C). Each critical chord ci with i � r is contained in a
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periodic critical Fatou gap W of L(C) of degree greater than one. Finally, there are
no preperiodic critical Fatou gaps of ≈C (or of L(C)).

Proof. Let G be a finite periodic gap attached to U at an edge M . Then M
is isolated in L≈C and periodic. This implies that M is not a leaf of L(C). All other
edges of G must be non-isolated in L≈C because otherwise these edges are not leaves
of L(C). This shows that vertices of G are not connected with finite chains of leaves
of L(C), and G is not a gap of L≈C , a contradiction. Since all other edges � 
= M
of G are non-isolated in L≈C , then, clearly, G must be fixed return. Similarly, U
cannot have periodic edges of flip type. This implies that U is of non-rotational
type.

By Lemma 4.15, the chord ci (with i � r) is not a leaf of L(C). Hence ci is
contained in a critical gap of L≈C . Since critical gaps of laminational equivalence
relations can only have periodic vertices if they are infinite, it follows that ci is
contained is a critical periodic Fatou gap W . Suppose that W is not periodic.
Let ci have a periodic endpoint a of period m. Since W is not periodic then a
cannot be non-isolated on Bd(W ) from either side. Hence a is an edge of a periodic
leaf which implies that W is actually periodic. Thus, ci is contained in a periodic
critical Fatou gap W of L(C) of degree greater than one. The last claim is left to
the reader. �

The following is a corollary of our results.

Corollary 4.19. Let C be a 0-admissible critical collection of chords. Then
L≈C ⊂ L(C), all critical sets of L≈C are finite, all its infinite gaps (if any) are
periodic Siegel gaps and their degree one preimages. If � = ab is a chord such that
all its forward images do not cross leaves from C and one another then a ≈C b.

Proof. The proof of all the claims but the last one is left to the reader. Now,
let � = ab be a chord such that all its forward images do not cross leaves from C.
Let us show that then a ≈C b. Observe that if � is non-disjoint from a leaf �̂ of

L(C) then the corresponding images σm
d (�) and σm

d (�̂) are also non-disjoint (this
is because both leaves do not have images crossing critical leaves from C). Now,
suppose that � crosses infinitely many pullbacks of critical leaves from C. Since by
the assumption images of � do not cross leaves from C this would imply that for
each σN

d -pullback of a leaf of C crossing � the leaf σN
d (�) has a common endpoint

with a leaf from C. Since we assume the existence of infinitely many pullbacks
of critical leaves from C crossing �, then there are some leaves from C that have
periodic endpoints, a contradiction.

Thus, there are only finitely many pullbacks of critical leaves from C that cross
�. This implies that in fact there is a finite string of gaps of ≈C , say, G1, G2, . . . , Gk

such that a is a vertex of G1, b is a vertex of Gk, and each two gaps Gi and Gi+1

share a common edge that crosses �. This implies that at least one of these gaps is
infinite and hence is a preimage of a periodic Siegel gap of ≈C in which � connects
two edges. Hence a forward image �′ of � connects edges of a periodic Siegel gap
U . Since the canonical map that collapses edges of gaps semiconjugates the first
return map and an irrational rotation, it follows that the image of �′ under this
semiconjugacy will cross one of its eventual images, a contradiction. Hence the
situation described above is impossible and a ≈C b as desired. �
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Definition 4.20 (Tuning of laminations). Suppose that L is an invariant geo-
desic lamination. Suppose that there exists a periodic Fatou gap U of L of degree
greater than one. Finally, suppose that there exists an invariant geodesic lamina-

tion L̂ ⊃ L such that L̂ \ L consists of leaves contained in the grand orbit of U .

Then we say that L̂ tunes L (in the grand orbit of U). If L generates a laminational

equivalence relation ≈L while L̂ generates a laminational equivalence relation ≈
̂L,

then we say that ≈
̂L tunes ≈L.

Corollary 4.21 deals with more specific pullback geodesic laminations.

Corollary 4.21. Let C be an admissible critical collection with r = 1; let
c1 = a1b1 where a1 is of period n. Then the following holds.

(1) The chord c1 is a subset of a periodic quadratic critical Fatou gap V of
L(C) of period m such that n = mk is a multiple of m; the gap V contains
a periodic quadratic critical Fatou gap U of ≈C of period m.

(2) Except for U , all critical sets of ≈C are finite. All infinite gaps of ≈C are
either in the grand orbit of U or in the grand orbits of (possibly existing)
periodic Siegel gaps.

Moreover, there exists a laminational equivalence relation ∼ that tunes ≈C inside
the grand orbit of U , has a critical quadratic periodic Fatou gap T ⊂ U , and is
such that a1 is a refixed vertex of T or of a finite periodic gap G attached to T at
the refixed edge of T .

Observe that the gap V may contain finite concatenations of edges. The gap
U ⊂ V is obtained from V by replacing every such maximal concatenation of edges
with a single leaf (an edge of the convex hull of the concatenation).

Proof. (1) This claim follows immediately from Lemma 4.18.
(2) This claim follows from Lemma 4.15.
To prove the last claim, consider σm

d |V . Since the point a1 is an n-periodic
vertex of V , then a1 is of period k under the action of σm

d . Apply the standard
monotone semiconjugacy ψ between σm

d |V and σ2 (the map ψ simply collapses edges
of V to points of S). It follows that ψ(a1) = x is a k-periodic point of σ2. Now, it
is well-known that there exists a σ2-invariant laminational equivalence relation �
such that there exists a critical periodic Fatou gap W2 of � and x is an endpoint
of the major edge of W2 (in particular, x is a refixed vertex of W2).

Using ψ, we can lift the equivalence relation � to the entire V . This gives rise to
a σm

d -equivalence relation ∼V on V and to the corresponding σm
d -invariant geodesic

sublamination LV
∼ of V . Note that we write LV

∼ instead of L∼V . We can then pull
this back under the action of σd to obtain a laminational equivalence relation ∼
on the entire circle. Points that are ≈C-equivalent will be declared ∼-equivalent
while otherwise two points are declared ∼-equivalent if the chord connecting them
lies in a pullback of a finite gap of LV

∼. This defines a σd-invariant laminational
equivalence relation ∼ on the entire circle. Basically, we tune V and then pull back
this tuning. The equivalence relation ∼ is closed because pullbacks of leaves of LV

∼
can only accumulate on leaves of LV

∼ or in the boundary of the grand orbit of V .
Let us show that ∼ satisfies all the necessary conditions. Clearly, all of them are

automatically satisfied except for the claims concerning a1. Now, the construction
implies that the ψ-preimage of the gap W2 is a stand-alone Fatou gap H ⊂ V of
period n. Observe that H is not necessarily a gap of ∼ because some vertices of W2
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may have non-degenerate ψ-preimages. However H contains a gap T of ∼, and one
can obtain T by completing convex hulls of finite chains of edges on the boundary
of H with extra edges. The relation of H and T ⊂ H is like the relation of V and
U ⊂ V . Now, if the major M2 of W2 has endpoints with degenerate ψ-preimages
then ψ−1(M2) = M is just a leaf of ∼ and a1 is an endpoint of M as desired. If,
however, one or both endpoints of M2 have non-degenerate ψ-preimages, then the
ψ-preimage of M2 is the desired finite gap G. �

Theorem 4.22. Let QCP = {C1, c2 = a2b2, . . ., cd−1 = ad−1bd−1} be a ge-
olaminational quadratically critical portrait such that C1 is a critical quadrilateral
and c2, . . ., cd−1 are critical leaves with non-periodic endpoints. Then there exists a
non-empty laminational equivalence relation ∼ such that a2 ∼ b2, . . . , ad−1 ∼ bd−1

while C1 is such that either (1) all its vertices are ∼-equivalent and non-periodic,
or (2) C1 has a periodic edge, and if �′, �′′ are diagonals of C1 and T ′ = (�′, c2,
. . . , cd−1), T ′′ = (�′′, c2, . . . , cd−1), then L(T ′) = L(T ′′) = L, ≈T ′=≈T ′′ , and C1

is contained in a critical quadratic periodic Fatou gap of L.

Proof. If C1 has a diagonal � with non-periodic endpoints, then we add � to
c2, . . . , cd−1 to form a collection C. By Corollary 4.19, there exists a laminational
equivalence relation ≈C such that �, c2, . . . , cd−1 connect pairs of ≈C-equivalent
points. Moreover, by the assumptions and by Corollary 4.19, all vertices of C1 are
≈C-equivalent and non-periodic, as desired. Otherwise we may assume that there is
an edge ab of C1 such that a and b are periodic. Choose a diagonal �′ of C1, say, the
one that contains a. Suppose that a is of period n′. Set T ′ = {�′, c2, . . . , cd−1}. By
Lemma 4.15 there exist an invariant geodesic pullback lamination L(T ′) and the
associated laminational equivalence relation ≈LT ′ . Moreover, by Corollary 4.21,
the leaf �′ is contained in a periodic critical Fatou gap V ′ of L(T ′). On the other
hand, V ′ contains a Fatou gap U ′ of ≈T ′ . We may assume that the period of U ′

and V ′ is m′ while n′ = m′k′.
Let us discuss the location of b with respect to this picture; we may assume

that b 
= a and that C1 is non-degenerate. We claim that b is a vertex of V ′.
Indeed, suppose otherwise. Then either ab intersects V ′ at only one point a, or ab
crosses an edge of V ′. Since all edges of V ′ are either pullbacks of leaves ci with
2 � i � d− 1, or limits of such pullbacks, it follows that in either case there exists
a pullback N of one of the leaves c2 = a2b2, . . . , cd−1 = ad−1bd−1 that crosses ab.
Let us show that this leads to a contradiction.

Observe that Thurston’s pullback construction implies the existence of a pull-
back geodesic lamination L′ that contains all leaves from T ′. This geodesic lami-
nation strictly contains L(T ′) because (1) it must contain all pullbacks of leaves c2,
. . ., cd−1 that generate L(T ′), and (2) by Lemma 4.7, the leaf �′ is not a limit leaf
of L′. By definition, LQCP with quadratically critical portrait QCP and L′ with
quadratically critical portrait T ′ are essentially equal. Since the leaves ab and N
are linked, they will either (1) stay linked under any iteration of σd, or (2) there
will exist the minimal i + 1 such that σi+1

d (ab) and σi+1
d (N) are not linked while

σi
d(ab) and σi

d(N) are linked.
Now, in case (1), we will eventually obtain that the image of N that coincides

with cj for some 2 � j � d − 1 is linked with an image of ab. This contradicts
the fact that QCP is geolaminational. Consider case (2). Then σi

d(N) cannot be
critical again because QCP is geolaminational. Hence σi

d(N) is precritical. This
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implies that σi+1
d (N) is non-degenerate, (pre)critical, and has a periodic endpoint.

Applying a suitable iteration of σd, we will observe that a certain image of N is a
leaf cj with 2 � j � d − 1 with a periodic endpoint, a contradiction. Thus, b is a
vertex of V ′, which implies that C1 ⊂ V ′.

Clearly, the same construction can be implemented for T ′′ based upon the other
diagonal of C1 passing through b. We may assume that the period of b is n′′. It leads
to a invariant geodesic pullback lamination L(T ′′) and the associated laminational
equivalence relation ≈LT ′′ . Moreover, �′′ is contained in a periodic critical Fatou
gap U ′′ of ≈T ′′ , which is contained in the corresponding Fatou gap V ′′ of L(T ′′).
We may assume that the period of U ′′ and V ′′ is m′′ while n′′ = m′′k′′. As before
for T ′ we will also have that C1 ⊂ V ′′.

We need to show that ≈T ′=≈T ′′ . To this end, observe that, since C1 ⊂ V ′,
all pullbacks of leaves c2, . . . , cd−1 chosen for ≈T ′ can be described as pullbacks
outside of C1, and the same can be said about pullbacks of c2, . . . , cd−1 chosen for
≈T ′′ . Therefore, these pullbacks coincide. Since they are dense in L(T ′) and in
L(T ′′), we have L(T ′) = L(T ′′), which implies the other claims in the end of the
lemma. �

4.2.2. The space of σd-invariant geodesic laminations compatible with
a given generic collection of d− 2 critical chords. We will now describe the
results of [BOPT15] omitting technical details. Consider cubic geodesic lamina-
tions L with a critical leaf D = ab whose endpoints are non-periodic. Without loss
of generality, we may assume that (a, b) is a positively oriented circle arc of length
1
3 . Then there are several possibilities concerning critical sets of L. First, L can
have a finite critical set C 
= D contained in the convex hull of the circle arc [b, a].
By properties of invariant geodesic laminations, C is a gap or a leaf, on which σ3

acts two-to-one (unless D is an edge of C and so the point σ3(D) has all three of
its preimages in C). Thus, if C is finite, then there are two cases. First, C can be
a 2n + 1-gon with D being one of its edges such that one can break down all its
remaining edges into pairs of “sibling edges” (one can say that the “sibling edge” of
D is the vertex of C not belonging to D and with the same image as D). Second,
C can be a 2m-gon such that D is not an edge of C; in this case σ3|C is two-to-one.

Now, C could also be an infinite gap. Then it may be a periodic Fatou gap of
period k and degree 2 (in this case D may well be an edge of C). Otherwise C may
be preperiodic; then it cannot be eventually mapped onto a periodic gap of degree
greater than one because we deal with the cubic case. Hence there must exist a
periodic Siegel gap U with D being one of its edges and an infinite gap C such that
σ3|Bd(C) is two-to-one and C eventually maps onto U . In other words, an invariant
geodesic lamination with leaf D and of capture type must have a periodic Siegel
gap U and a critical gap C that eventually maps onto U .

Now, let LPnp
3 (D) be the family of all cubic geodesic laminations with a critical

leaf D with non-periodic endpoints except for geodesic laminations of capture type.
If L ∈ LP

np
3 (D), then a quadratically critical portrait QCP = (Q,D) is said to

be privileged for L if Q ⊂ C, where C 
= D is defined above, and the additional
requirement mentioned below is fulfilled. By the above analysis, either C is finite,
or C is a periodic Fatou gap of degree two and period k. In the former case, the
critical quadrilateral Q ⊂ C can be arbitrary. In the latter case, we require that Q
be a collapsing quadrilateral that is the convex hull of a (possibly degenerate) edge
� of C of period k and its sibling edge �∗ of C.
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In [BOPT15] we show that for each L ∈ LP
np
3 (D) there are only finitely

many privileged quadratically critical portraits. Let SD denote the collection of
all privileged for L quadratically critical portraits (Q,D) with D as the second
element. To each such quadratically critical portrait (Q,D) we associate its minor
(a chord or a point) σ3(Q) ⊂ D. For each such chord we identify its endpoints,
extend this identification by transitivity and define the corresponding equivalence
relation �D on S. The main result of [BOPT15] is that �D is itself a laminational
equivalence (non-invariant!) whose quotient is a parameterization of LPnp

3 (D).
The tools used in [BOPT15] are based upon accordions and smart critical-

ity rather than upon Thurston’s tools [Thu85]. Indeed, the main technical lemma
used in [Thu85] is the Central Strip Lemma showing how “long” (based upon circle
arcs longer than 1

3 ) leaves of invariant geodesic laminations may enter the central
strips between themselves and their siblings. The lemma has a multitude of conse-
quences, including the fact that there are no wandering (i.e. non-preperiodic and
non-precritical) triangles of quadratic invariant geodesic laminations, and the con-
struction of QML. However, the Central Strip Lemma fails already in the cubic case
(in particular, there are wandering triangles of cubic invariant geodesic laminations
[BO08]). This shows the necessity of using new techniques in [BOPT15].

In order to generalize the results of [BOPT15] to the degree d case, we intro-
duce appropriate spaces of laminations analogous to LP

np
3 (D); these spaces depend

not on one critical leaf but on a suitable collection of critical leaves.

Definition 4.23. Fix a collection Y of d − 2 pairwise disjoint critical chords
with non-(pre)periodic endpoints and pairwise disjoint forward orbits. Define a
space L(Y) of invariant geodesic laminations as follows: L ∈ L(Y) if L is generated
by a laminational equivalence relation ∼ such that the endpoints of each critical
chord from Y are ∼-equivalent, and L has no gaps of Siegel capture type.

Let Y+ be the union of all critical chords from Y . It is easy to see that there
is a unique component A(Y) = A of D \Y+ such that σd|Bd(A) is two-to-one except
for its critical boundary edges (this map is one-to-one in the same sense on all other
components of D \ Y+). Indeed, d− 2 critical chords of Y split the disc into d− 2
connected sets each of which has the boundary whose intersection with the circle
maps onto the entire circle in almost one-to-one fashion (except for the endpoints of
boundary edges that are critical chords). Hence the length of each such intersection
is a

d for some a > 0. Clearly, this implies that d−3 of them has the boundary whose

intersection with the circle is of length 1
d while one of them has the boundary whose

intersection with the circle is of length 2
d . This is exactly the desired component A.

Denote by y1, . . ., yk all critical chords from Y contained in the boundary of A
(clearly, 1 � k � d− 2). Consider y1; there exists exactly one point a ∈ Bd(A) \ y1
with σd(a) = σd(y1) (a chord yt ⊂ Bd(A) with σd(y1) = σd(yt) would contradict
the assumption of pairwise disjointness of forward orbits of critical chords from Y)
while other points of Bd(A) have images disjoint from σd(y1). The same holds for
other boundary critical chords of A. For any other component T of D\Y+ it is easy
to see that except for the collapsing of the boundary chords of T all other points
of Bd(T ) map forward in the one-to-one fashion.

Corollary 4.24. The family L(Y) is non-empty.

Proof. Insert a critical chord c in A so that both endpoints of c are non-
periodic, and c is disjoint from all chords from Y . Then Corollary 4.19 implies
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the existence of the desired invariant laminational equivalence ∼ and the geodesic
lamination generated by ∼ . �

Let us study the critical sets of geodesic laminations from L(Y).

Lemma 4.25. Let X be a critical set of L∼ ∈ L(Y). If X is infinite, then
X ⊂ A is a periodic quadratic Fatou gap and all other critical sets of L are finite
and non-preperiodic. If X is finite and preperiodic, then X ⊂ A and all critical
sets of L are finite.

Proof. By definition, the only possibly existing infinite critical set X of a
geodesic lamination L ∈ L(Y) is a critical Fatou gap contained in A. Clearly, X
cannot be a preperiodic gap that maps onto a periodic Fatou gap of degree greater
than one because then there will be at least two infinite critical sets of L (indeed,
the orbit of a periodic Fatou gap must contain a critical Fatou gap [BL02]). On
the other hand, by definition of the family of laminations L(Y), the set X cannot
be a pullback of a periodic Siegel gap. Hence, the only possibility is that X is a
periodic quadratic Fatou gap contained in A as desired. The rest of the lemma is
immediate. �

Let us define tags for geodesic laminations from L(Y). Our approach is differ-
ent from Thurston’s: instead of considering minor leaves, or minors, of geodesic
laminations we work with their minor sets basically defined as the images of critical
sets.

Lemma 4.26. If L∼ ∈ L(Y), then there is a unique critical set C∼ of L∼
containing a critical chord c, where c ⊂ A(Y) except for the endpoints. Any infinite
gap non-disjoint from A is contained in A. Finally, if x ∈ σd(C∼) ∩ S then the
entire set σ−1

d (x) ∩A is contained in C∼.

Proof. Clearly, at least one critical set C of L∼ contains a critical chord c
contained in A(Y) except for the endpoints. Let us show that this set C is unique.
Indeed, it is easy to see that any two critical chords contained in A and non-disjoint
from A are linked. Therefore, two distinct critical sets C1 and C2 of L∼ with the
properties from the lemma cannot exist. By Lemma 4.25, if C∼ is infinite then C∼
is a periodic quadratic Fatou gap.

Let U be an infinite gap non-disjoint from A. Since all boundary chords of A
are contained in finite gaps of L∼ or are themselves leaves of L∼, it follows that
U ⊂ A. In particular, this holds for C∼ if it is an infinite gap.

Recall that y1, . . ., yk are all critical chords from Y contained in the boundary
of A. We claim that for each yj , 1 � j � k either C∼ is disjoint from yj or yj ⊂ C∼.
This is clear if C∼ is a finite gap or leaf. Let C∼ be a periodic quadratic gap. If
y1 ∩ C∼ = {z} is a singleton, then the convex hull H of the ∼-class of z contains
y1 and the edge � of C∼ with endpoint z. Since z is not (pre)periodic by the
assumptions, then H cannot be (pre)periodic. By Lemma 2.28 this implies that
� must be (pre)critical. Thus, z is an endpoint of y1 that eventually maps to an
endpoint of a critical leaf of L∼, i.e. an endpoint of a leaf ys, a contradiction with
our assumptions. Hence for each yj either C∼ is disjoint from yj or yj ⊂ C∼.

The fact that C∼ is critical implies that σd|C∼∩A is in fact the composition of

the map that collapses all boundary chords of C∼∩A to points and then an exactly
two-to-one map. Let x ∈ σd(C∼) ∩ S. If x is not the image of one of the boundary
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chords of A, then it has exactly two preimages in A, and both must belong to C∼.
Otherwise, set x = σd(yi), where 1 � i � k. Then, by the above, there must still
exist one more point in C∼ ∩ A that maps to x. This proves that σ−1

d (x) ∩ A is
contained in C∼, as desired. �

Observe that, while the set C∼ is typically contained in A, some parts of it may
“stick out” of A. For example, it may happen that y1 is a diagonal of an all critical
quadrilateral that has one vertex in A and the other one in a component of D \Y+

adjacent to A at y1; clearly, the same can be said about y2, . . . , yk. In fact, any
critical set C∼ not contained in A is finite and must contain yi as a chord for some
i. The set C∼ is important in defining minor sets of geodesic laminations from
L(Y). Observe that any geodesic lamination from L(Y) admits legal modifications.
Indeed, recall that legal modifications are well-defined if no critical gap is mapped
to a fixed return gap attached to a periodic critical Fatou U at its refixed edge M or
to M itself. However, by Lemma 4.25 in case U exists there are no (pre)periodic
critical sets, and the desired follows.

Definition 4.27 (Minor sets of laminations from L(Y)). For L∼ ∈ L(Y) we
define the minor set m∼ of L∼ as follows.

(1) If C∼ is finite, set m∼ = σd(C∼).
(2) Suppose that C∼ is a quadratic periodic Fatou gap of period n. Then there

is either one or several legal modifications U of C∼ associated with the
corresponding legal modifications of L∼ and corresponding legal quadri-
laterals Q. In this case m∼ is defined as the convex hull of the union of
σd-images of all these legal critical quadrilaterals.

Let us discuss the minor sets from Definition 4.27(2). Suppose that C∼ is a
periodic critical quadratic Fatou gap. The easiest case is when there are no finite
gaps attached to C∼ at the refixed edge M of C∼. In that case the corresponding
legal critical quadrilateral is the convex hull of M and its sibling edge M ′ of C∼ so
that m∼ = σd(M). Another simple case is when a fixed return gap G is attached to
C∼ at its refixed edge M . In that case a unique legally modified gap is obtained by
erasing M and its grand orbit from C∼ (thus, M and its pullbacks on the boundary
of C∼ are replaced by concatenations of the remaining edges of G or appropriate
preimages of G). The minor set in this case is the σd-image of G.

A more involved is the case when there exists a finite gap G of rotational type
attached to C∼ at M . Then there are several images of M that are edges of G.
Denote the two of them closest to M in Bd(G) by L and R. Then the minor set
m∼ coincides with the convex hull of the image of the segment of the boundary
of G containing M and stretching from L to R (not including either L or R).
Observe that, unlike in the original paper by Thurston [Thu85] or in [BOPT15a],
the minor set m∼ is not a gap or a leaf of the corresponding invariant geodesic
lamination L∼.

Our aim is to show that, as in the quadratic case with Thurston’s quadratic
minor lamination QML, the family of minor sets of invariant geodesic laminations
from L(Y) can be viewed as the family of classes of equivalence of a laminational
(non-invariant!) equivalence relation ∼Y such that the quotient space S/ ∼Y of
S can be viewed as a parameter model of L(Y). Since we deal here with minor
sets and the critical Fatou gaps involved are all quadratic, we will denote the
geodesic (non-invariant!) lamination associated with ∼Y by QMLY . If we create
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the corresponding model in the plane, then we will have to “pinch” the unit disk,
which would yield the associated quotient space of not only the unit circle but of
the whole unit disk. This gives the “pinched disk” model, which will be denoted
by M(Y). The boundary of M(Y) coincides with S/ ∼Y .

We will also interpret bounded interior components of M(Y) from the stand-
point of dynamics. The description below is given without proofs.

A bounded connected component of the interior of M(Y) can be of two types:
quadratic type and Siegel capture type. Components of quadratic type are similar to
hyperbolic domains of the combinatorial Mandelbrot setM2. Let U be a component
of quadratic type. It can be associated with an invariant geodesic lamination L∼
with a periodic critical Fatou gap C∼ ⊂ A(Y) of period n such that σn

d |C∼ is two-
to-one. The association between U and L∼ is uniquely defined by the properties
described below. Consider the legal modification U of C∼. There is a continuous
monotone map ψ : Bd(U) → S that collapses all edges of U and semi-conjugates
the restriction of σn

d to Bd(U) with σ2. Let Q be a critical quadrilateral in U such
that ψ(U) is a critical quadrilateral (possibly degenerate), whose σ2-image lies in a
minor set representing a boundary point of the combinatorial main cardioid. Then
σd(Q) lies in a minor set corresponding to a boundary point of U . Conversely, any
minor set corresponding to a boundary point of U includes σd(Q) for some critical
quadrilateral Q ⊂ U such that σ2(ψ(U)) lies in a minor set representing a boundary
point of the combinatorial main cardioid. The lamination L∼ itself can be viewed
as representing a topological polynomial with an attracting periodic point inside
the Fatou component corresponding to C∼. Alternatively, we can think of the
corresponding topological polynomial as a topological polynomial with a parabolic
periodic point.

Components of Siegel capture type are very different from those that appear in
M2. Each such component is associated with an invariant geodesic lamination of
Siegel capture type (such invariant geodesic laminations are excluded from L(Y)).
Let U be a component of Siegel capture type and L∼ the associated lamination.
The association between U and L∼ is uniquely defined by the properties described
below. There is an infinite critical set C∼ of L∼ of Siegel capture type. Insert a
finite critical set (a leaf or a quadrilateral) into C∼. In the new geodesic lamination
instead of one gap C∼ we will have two adjacent gaps separated by a common finite
critical set (e.g., a common edge). All such invariant geodesic laminations obtained
by inserting various critical sets in C∼ give rise to finite minor sets, which form the
boundary of σd(C∼). These are precisely minor sets corresponding to points in the
boundary of U . Thus, the boundary of U can be naturally identified with σd(C∼).

Recall that, given an invariant geodesic lamination L with finite critical sets C1,
. . ., Cr, we call a full quadratically critical portrait legal for L if it is geolaminational
and its critical quadrilaterals are contained in the critical sets of L. This holds
automatically if the critical quadrilaterals have pairwise disjoint interiors and share
opposite sibling edges with critical sets of L.

Lemma 4.28. Let L∼1
and L∼2

be two invariant geodesic laminations from
L(Y). Suppose that their legal modifications Lleg

∼1
and Lleg

∼2
have legal quadratically

critical portraits T1 = (Q1,Y) and T2 = (Q2,Y) respectively such that Q1 and Q2

are strongly linked. Then ∼1=∼2.
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Observe that if Q1 and Q2 share a diagonal then we can consider the common
diagonal as a (degenerate) critical quadrilateral that is strongly linked with itself
so that the conclusions of the lemma hold in this case too.

Proof. Suppose first that at least one diagonal of a quadrilateral Q1 or Q2

(say, a diagonal of Q1) has non-periodic endpoints. Then by construction ∼1 has
only finite critical sets. By Lemma 3.56 then ≈pS

∼1
=∼1. On the other hand, by

Theorem 3.63 the perfect-Siegel parts of L∼1
and L∼2

are equal. This implies that
L∼2

has only finite critical sets, and ∼1=∼2.
We may now assume that both Q1 and Q2 have periodic edges. By The-

orem 4.22, quadratically critical portraits T1 and T2 give rise to invariant geo-
desic pullback laminations L(T1) and L(T2). Let us show that they coincide and
≈T1

=≈T2
. Indeed, by definition, they are quadratically critical and linked (because

Q1 and Q2 are linked). Consider a pullback y of a leaf yi with 2 � i � d−1 that be-
longs to L(T1) and prove that it is not linked with any edge of Q2. Indeed, suppose
otherwise. Then σd(y) and σd(Q2) are linked as well; observe that σd(Q2) is a pe-
riodic leaf of L(T2). Recall that spikes of sets from T2 are sets yi with 2 � i � d−1
and two diagonals of Q2. By the assumptions, there are no chains of spikes such
that one endpoint of a chain is periodic and the other one is not. Hence no two
images σq

d(y) and σq
d(Q2) can have endpoint that coincide with distinct endpoints

of a chain of spikes. By Lemma 3.45 then σq
d(y) and σq

d(Q2) are linked for every
q, a contradiction because for some q we have σq

d(y) = yi, and σq
d(Q2) cannot be

linked with yi.
Thus, pullbacks of the leaves yi with 2 � i � d−1 that belong to L(T1) are not

linked with an edge of Q2. By definition this implies that they actually belong to
L(T2). Similarly, the pullbacks of leaves yi with 2 � i � d− 1 that belong to L(T2)
also belong to L(T1). Therefore, by definition, it follows that L(T2) = L(T1). This
implies that there exists a periodic critical quadratic Fatou gap U of period, say, m,
that is common for both laminations and contains both Q1 and Q2. This allows us
to use the standard semiconjugacy ψ of σm

d : U → U and σ2 : S → S. Then ψ(Q1)

is either a diameter in D, or a σ2-critical quadrilateral with one edge being a major
of a periodic critical Fatou gap of σ2. A similar observation applies to ψ(Q2). The
fact that Q1 and Q2 are strongly linked implies then that the corresponding two
σ2-invariant geodesic laminations coincide, and therefore ∼1=∼2 as desired. �

We are ready to prove Theorem 4.29.

Theorem 4.29 (Parameter laminational equivalence∼Y). Minor sets of invari-
ant geodesic laminations from L(Y) are classes of equivalence of a non-invariant
laminational equivalence relation ∼Y . The corresponding “pinched” disk model
M(Y) contains infinitely many pairwise disjoint copies of the combinatorial qua-
dratic Mandelbrot set D/QML. Components of the interior of M(Y) are either
hyperbolic domains inside copies of D/QML or parameter components of Siegel
capture type.

Proof. Suppose that two geodesic laminations L∼,L≈ belong to L(Y) and
have non-disjoint minor sets m∼ and m≈. Consider cases. Recall that by A(Y) = A
we denote the unique component of D \Y+ such that σd|Bd(A) is two-to-one except
for its critical boundary edges.

First, it may happen that there exists a common vertex x of m∼ and m≈. Then
by Lemma 4.26 the entire set σ−1

d (x) ∩A is contained in C∼ ∩C≈. We can choose
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one critical chord c ⊂ σ−1
d (x) ∩ A that intersects A and add c to Y to form a new

augmented quadratically critical portrait Y ′. It follows that the invariant geodesic
laminations L∼ and L≈ are essentially equal. By Lemma 4.28 this implies that
∼=≈ (the remark made right after the statement of Lemma 4.28 and before its
proof shows that Lemma 4.28 applies in the case when L∼ and L≈ are essentially
equal).

Second, it may happen that m∼ and m≈ do not have a common vertex. Then
there must exist an edge �∼ of m∼ and an edge �≈ of m≈ that cross. Moreover,
those edges can be chosen from legal modifications of L∼ and L≈ as images of their
critical quadrilaterals. In other words, either edge pulls back to the corresponding
collapsing quadrilateral (Q∼ ⊂ C∼ and, respectively, Q≈ ⊂ C≈) so that Q∼ and
Q≈ are strongly linked. Then, by Lemma 4.28, we have ∼=≈. We conclude that
in any case minor sets of distinct invariant geodesic laminations from L(Y) are
pairwise disjoint.

Let us show that the family of minor sets of invariant geodesic laminations
from L(Y) is upper semicontinuous. Consider a sequence of minor sets m1, m2, . . .
of invariant geodesic laminations L1, L2, . . . generated by invariant laminational
equivalence relations ∼1, ∼2, . . .. We may assume that the minor sets mi converge
in the Hausdorff sense, all these equivalence relations and invariant geodesic lami-
nations are distinct, and, by the above, all the minor sets m1, m2, . . . are pairwise
disjoint.

Then the limit of the sets mi is either a point or a leaf X. We need to show
that in fact X is a subset of the minor set of an invariant geodesic lamination from
L(Y) generated by the appropriate laminational equivalence relation, say, �. To
this end, we refine (if necessary) the sequence of geodesic laminations L1, L2, . . .
so that (by [BMOV13]) invariant geodesic laminations Li will converge to some
invariant geodesic lamination L in the Hausdorff sense. We have to find the desired
laminational equivalence relation � using the existence of L and its properties as
a tool.

Indeed, pull back X to the component A(Y) of D \ Y+ on which the map σd is
two-to-one. This will yield a (generalized) critical quadrilateral, say, Q, such that
the quadratically critical portrait T = (Q,Y) is geolaminational (because T can
be viewed as a quadratically critical portrait of L). Hence, by Theorem 4.22, there
exists an invariant geodesic lamination L	 from L(Y) such that Q is a subset of the
corresponding critical set of a legal modification of L	. By definition, this implies
that X is contained in the corresponding minor set m	 as desired.

The remaining claims concerning copies of the quadratic Mandelbrot set are
rather standard and easily follow from the existence of invariant geodesic lamina-
tions L∼ in L(Y) such that L∼ has a periodic critical Fatou gap of degree greater
than one (the latter in turn follows from Theorem 4.22). Finally, the existence
of component of M(Y) associated with invariant geodesic laminations of Siegel
capture follows from the analysis given right before Lemma 4.28. �
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almost attached gaps, 75

arc

positively oriented, 21

attached gaps, 71

axis of an accordion, 46

barycentric extension of the map σd, 15

canonical Fatou gap attached to an
invariant finite gap, 67

canonical lamination of an invariant gap, 67

cellular set, 1

chain of spikes, 59

chord, 15

critical, 7, 17

degenerate, 15

inside a gap, 27

inside a special critical cluster, 59

of a geodesic lamination L, 17
chords

crossing, 16

linked, 16

negatively circularly ordered, 51

negatively ordered, 51

positively circularly ordered, 51

positively ordered, 51

unlinked, 16

cluster

critical, 35

clusters, special critical, 36

collection

geolaminational, 74

ordered critical, 11

ordered postcritical, 11

complete sample of spikes, 32

connectedness locus, 1

critical chain, 83

vertices of, 83
critical pattern, 38
critical quadrilateral

legal, 9

critical set, 36
critical strip, 4

degree of a gap, 17
dendrite, 10

edge of a periodic gap
refixed, 21

equivalence relation, laminational
degenerate, 18

essentially equal, 36

Fatou domain/gap of non-rotational type,
71

Fatou domain/gap of rotational type, 71

Fatou gap
quadratic, 9, 70

fiber of a map, 5, 19

full collection of critical chords, 7, 32
full collection of critical quadrilaterals, 7,

74

gap, 2, 7, 15
all-critical, 17
critical, 17
cyclic return, 71

Fatou, 2
finite, 17
fixed return, 71

infinite, 17
periodic, 21
stand alone, 21

uncountable, 17
geodesic lamination, 1, 15

forward invariant in the sense of
Thurston, 16

gap invariant, 16

generated by a laminational equivalence
relation, 19

generated by a polynomial, 19
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invariant in the sense of Thurston, 16

sibling σd-invariant, 16

hole of a closed set or its convex hull, 21
hole of a gap behind an edge, 67

invariant finite gap of type B, 68

invariant geodesic lamination

dendritic, 20

generated by a laminational equivalence,
2

marked quadratically almost
perfect-Siegel non-capture, 9

perfect, 36

proper, 22

quadratic, 3

quadratically almost perfect-Siegel
non-capture, 9, 74

regular, 38, 76
with critical pattern, 38

with quadratically critical portrait, 33

invariant geodesic laminations

quadratically critical, 7

intrinsically linked or essentially equal,
64

linked or essentially equal, 8, 35

marked, 7

Julia set

filled topological, 19
topological, 19

laminational equivalence relation, 1, 18

generated by a full critical collection, 88

generated by a polynomial, 19

quadratically perfect-Siegel non-capture,
74

leaf, 2, 15

critical, 17

fixed return, 71

fixed return, of cyclic type, 71

flip return, 71
periodic, 21

special critical, 36

leaves

collapsing around chains of spikes, 59

linked, 4

sibling, 16

legal modification, 74

legal quadrilateral, 74

linked, 36

loop of chords, 32

major, 4, 29, 44

Mandelbrot set, 1

minor, 4, 29

modifications of geodesic laminations

induced, 64

monotone map, 2, 5

no loop collection of chords, 32

object

(pre)critical, 22

(pre)periodic, 20

preperiodic, 20

order preservation on a set under the map
σd, 22

perfect part, 8, 36

perfect-Siegel part, 62

periodic point

Cremer, 20

irrationally indifferent, 19

Siegel, 20

polygon

collapsing, 36

polynomial

critically marked, 11, 79

dendritic, 10

simple dendritic, 11, 79
topological, 19

topological associated to a polynomial,
19

unicritical, 6

positive direction on a Jordan curve, 21

pullback geodesic lamination generated by
a full critical collection, 86

pullback of a leaf, 16

quadratic geodesic limit lamination, 3

quadratic minor lamination, 4

quadratically critical portrait, 7, 33

legal, 9

quadratically critical portraits

linked or essentially equal, 8

quadrilateral

(non)-degenerate, 30

collapsing, 12, 30, 33

critical, 4, 7

critical (generalized), 29

refixed edge, 9

relative interior

of a gap, 21

of a segment, 21

remap, 21

sequence of points

negatively circularly ordered, 50

negatively ordered, 50

positively circularly ordered, 50

positively ordered, 50
set

(pre)periodic, 21

all-critical, 17

critical, 17

laminational, 21

periodic, 21
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preperiodic, 21
Siegel part, 8, 61
skeleton of an infinite gap, 25
spike, 30
stretching ray, 6
strongly linked quadrilaterals, 31

tags of critically marked dendritic
polynomials

postcritical, 12, 80
topological Julia set, 2
topological polynomial, 2
triangle

(σ2-)wandering, 44

upper semicontinuous, 43
collection, 80
decomposition, 80
map, 43, 80

vertex of a gap or leaf, 25
vertex of a periodic gap

refixed, 21
vertices

opposite, 30

wandering closed set, 21
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1272 Jaroslav Nešetřil and Patrice Ossona de Mendez, A Unified Approach to
Structural Limits and Limits of Graphs with Bounded Tree-Depth, 2020

1271 Jean-François Coulombel and Mark Williams, Geometric Optics for Surface Waves
in Nonlinear Elasticity, 2020

1270 Luigi Ambrosio, Andrea Mondino, and Giuseppe Savaré, Nonlinear Diffusion
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