Energy-aware Dynamic Computation Offloading for
Video Analytics in Multi-UAV Systems

Jeromy Yu*, Aditya Vandanapu®, Chengyi Qut, Songjie Wang® and Prasad Calyam®
*Department of ECE, Purdue University
TDepartment of CS, University of Illinois at Chicago
1§ Departmant of ECE, University of Missouri - Columbia
Email: *yu816@purdue.edu, tavanda7 @uic.edu, i(:qy78 @mail.missouri.edu, §wangso, calyamp @missouri.edu

Abstract—Multi-Unmanned Aerial Vehicle (UAV) systems with
high-resolution cameras have been found to be useful for oper-
ations such as disaster management and smart farming. These
systems feature Flying Ad-Hoc Networks (FANETS) that connect
the computation edge with UAVs and a Ground Control Station
(GCS) through air-to-ground network links. Leveraging the edge
computation resources effectively with energy-awareness, and
dealing with intermittent failures of FANET links are the major
challenges in supporting video processing applications. In this
paper, we propose a novel energy-aware dynamic computation
offloading scheme for UAV systems, which provides the ability
to intelligently share tasks among individual UAVs and allows
for parallel execution of tasks while evenly distributing energy
consumption. Intelligence gathering is performed using machine
learning to create resource consumption profiles for a given
set of video processing tasks prior to scheduling. Our scheme
handles the problem of computation offloading tasks as a job-
shop scheduling problem where we aim to minimize the total
energy consumption in the edge resources while minimizing
video processing times to meet application requirements. Qur
experimental results show our energy-aware dynamic offloading
scheme enables lower processing time for low drone-to-ground
server ratios and consumes less energy when compared to other
offloading schemes. Notably, these results also hold in various
other multi-UAV scenarios involving largely different number of
detected objects.

Index Terms—Multi-access Edge Computing, Flying Ad-Hoc
Networks, Function-Centric Computing, UAV-based edge com-
puting, Job Shop Scheduling

I. INTRODUCTION

Autonomous Unmanned Aerial Vehicles (UAVs), also as
known as drones, have been widely used in a large number of
scenarios over the past decade. Their ability to carry different
type of payloads such as sensors, high-resolution cameras and
even high performance micro-processors provide unique capa-
bilities for scientists and engineers [1]. In large scale applica-
tions, e.g., wide-area farms, highway traffic controls and mass-
rallies management, a cluster or a network of UAVs can co-
operate on intensive sensor/video data collection, streaming,
processing, analytics, and object recognition/tracking. This has
led to a new field of study called “Flying Ad hoc Networks”

This material is based upon work supported by the National Science
Foundation under Award Number: CNS-1647182 and the Army Research
Lab under Award Numbers: W911NF1820285 and W911NF1910181. Any
opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation or the Army Research Lab.

Air to Air Link

b 4

+ GrouR Ot Link, ﬁ\
as S

Fig. 1: FANET setup including multiple drones, ground control stations
(GCSs) with edge server hosting; connected via wireless (dashes) and wired
network (solid lines). The drones work together while recording the same
geo-location at different angles and process the video locally onboard or they
offload computation tasks to the GCSs.

(FANETS) that integrate UAVs and Internet of Things (IoT)
as communicating entities in high-demanding and large-scale
applications [2]. FANETs support distributed wireless net-
works that solve the communication range restriction problem
by allowing communication among the UAVs without the
need for infrastructure [3]. There is no doubt that with the
proper collaboration and coordination of multiple UAVS in
the FANET, the system would far exceed the capacity and
capabilities of single UAV systems.

Although there are several advantages of using FANETSs
over the single UAV-to-Ground Control Station (GCS) system
architectures, several challenges emerge when implementing
FANETS. Notable challenges particularly arise in systems with
different requirements, such as total processing time, energy
consumption, efficient communication and coordination be-
tween UAVs-UAVs and UAVs-GCSs based on mobility [4]. In
addition, in recent drone-based computer vision applications,
some visual data processing functions involve computation-
intensive analysis of video streams. It is not practical for
drones to handle these computations if visual data processing
needs to be performed on-board. In this case, partial com-
putation offloading or Function-Centric Computing [5] (FCC)
strategies can applied on the edge servers and FANET setup.

Figure 1 shows an example of a FANET setup in a live
video streaming scenario. In this setup, multiple drones capture
videos of the same location at the same time, but from different
angles. The drones are connected to each other, as well as
to a ground control station (GCS) with an edge server via
wireless connectivity (e.g., Wifi, Radio-over-IP). This wireless
connectivity also provides the drones with the capability to
communicate with peer drones. In addition, multiple GCSs on
the ground are connected to each other and a core cloud via
high-speed wired networks. When capturing live video, the
drones will either locally execute the video processing tasks
on their own hardware (on-board), or partially offload the tasks
to the GCSs with edge servers.

In this paper, we present a novel energy-aware computation
offloading scheme that minimizes the total energy consumption
in the edge devices while achieving video processing time
that fulfills the requirements of an application that uses the
FANET setup shown in Figure 1. This scheme features the
FCC computing paradigm [5] by decomposing a video ana-
Iytics application into functions/tasks that can be individually
deployed onto either drones or edge servers on GCS to
maximize performance while reducing energy consumption on
the drones. The contributions of this paper can be summarized
as follows:

o We detail a novel energy-aware computation offloading
scheme, which features the FCC paradigm, to optimize
the trade-offs in energy, processing latency, and task
scheduling time among different computing architectures
used in different video processing applications.

o We describe a drone video analytics application pipeline
that supports FCC and can be decomposed into into
a chain of microservice functions. The functions can
be deployed by knowledge of the computing capacity
thresholds on the drone or edge servers, communicating
via RESTful APIs.

e We simulate a multi-UAV/GCS environment that spans
multiple network environments and utilizes the state-of-
the-art edge resources on the system to evaluate different
offloading strategies and show FCC benefits with realistic
application settings.

The remainder of the paper is organized as follows: Sec-
tion II presents related work. In Section III, we discuss
our multi-UAV system model in general, and describe our
drone/Edge system control modules. In Section IV, we de-
tail our novel intelligent energy-aware computation offload-
ing scheme for real-time drone video analytics. Section V
describes our testbed-based evaluation methodology, perfor-
mance metrics and results. Section VI concludes the paper.

II. RELATED WORK

Flying Ad-Hoc Networks (FANETSs). FANETSs are used to
overcome the challenges of communication in a multi-UAV
environment. Authors in [6] propose a system where UAVs
can connect with each other rather than having all the UAVs
connect to a single GCS or a satellite. Based on advanced
routing protocols, even if connection among one of the drones

to the GCS is interrupted or disconnected, communication may
still be possible [7]. Thus, in our FANET model, we assume
the setup to be a complete graph where all the drones are
connected to each other as well as connected to an edge server
that hosts situational-awareness dashboards with geolocation
services [8], [9] at the GCS. We use a FANET setup because
we want the ability of a drone to offload functions either to
nearby drones or to a distant GCS.

Computation Offloading on Multi-UAV Systems. Compu-
tation Offloading is the act of transferring computationally
intensive tasks or functions to other platforms. In our case,
the drones have the option of transferring to another drone or
the GCS. Low power devices trying to execute computation-
intensive tasks will often consume more energy than what is
preferred by the user. Energy-awareness is especially important
for drones since the development of battery capacity has
stagnated, and we want to have the drones flying in the air
for as long as possible for data collection [10]. Computation
offloading overcomes such limitations of low-power devices
such as drones [11]. With computation offloading, energy
consumption of the drones can be minimized as shown in [5],
without compromising the user quality of experience at the
application level [12]-[14]. In our proposed scheme, functions
will be offloaded from the drones to the edge as a way
to minimize energy consumption of the drones as long as
the delay constraint is met. In addition, drones will offload
functions to other drones to evenly distribute the energy
consumption of the drones.

Function-Centric Computing (FCC). A FCC paradigm in-
volves decomposing applications into microservice functions
that can be individually deployed onto edge resources [5].
Advantages to this architecture are that specific functions in a
larger application that are computation-intensive and would
cause large energy consumption can be offloaded. In the
prior work [15], the authors used FCC for data collection
from IoT devices at the edge of a network and for data
processing at the edge and cloud infrastructure. For our work,
we use FCC to decompose a frame-processing application for
object detection. Our decoupled application will contain four
functions: F1 — pre-processing, F2 — object detection, F3 —
feature extraction, and F4 — object registration. All four of
these functions can be offloaded to either other drones or a
GCS-connected edge server.

III. SYSTEM MODEL

In this section, we introduce our energy-aware dynamic
computation offloading system model featuring multiple UAV's
as shown in Figure 2. Our system model consists of multiple
UAVs with embedded computation resources, an Execution
Control Module middleware, and a GCSs group with edge
server computation capabilities.

A. Drone Fleet with Camera and Computation Resources
Embedded and GCS group with Edge Server Computation

The first part of our system model’s application involves
the communication and co-ordination of multiple UAVs. Each

Drone Fleet with Camera
and Computation

Prediction, Scheduling and Execution Control Middleware

Ground Control Stations
group with Edge Server

Resources Embedded [Prediction Method

Scheduling Algorithm] Computation

~

Transmission Time/Energy

& Function Chain 1 Prediction
X

y
v

[Mobility Analysis]

L

[Network Prediction]

JL

. L =
(—
"
',

Function Chain 2

j <>
.

High-speed

» 3 Wired
Connection
GCS + Edge Server

-
Function location decision
Lmaking based on prediction

L

(Job Shop Scheduling (\
| using Google OR) g

-

Machine learning based
prediction on processing time
-

o

¢

Distributing jobs, collecting]
GCS + Edge Server
4

\ results, and analysis

N

Function Chain 3

locations, camera resolutions, image
processing functions and mobility
model assumptions

v
v

L

'

'

'

'

'

'

'

'

'

'

'

'

'

'

TN '
Unstable °, .
Wireless)W '
Connegtion,’ .
'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

L)

"

tNote: Setup can vary based on field {
I
.
.

o Application requirements gathering
o Energy consumption aware offloading control

Execution Control Module

) /

Fig. 2: Energy-aware Dynamic Computation Offloading System Model - our prediction method and scheduling algorithm can be part of the middleware to
orchestrate data processing between the UAVs and the Ground Control Stations.

of the UAVs are assumed to have a camera (with varying
quality and resolution) to record scene video, and the drones
have the computation ability to execute the functions in the
corresponding image processing pipeline. In addition, we not
only assume that the camera resolutions may be different, but
that the setup will vary on the field in which it is used as
per the application demands. This is an important assumption
because the drone(s) needs to decide whether or not to offload
the image processing functions, depending on its network con-
nection quality (stable vs. unstable wireless connection with
available network bandwidth bottelenecks). Another dominant
factor is the mobility model determined by the probability
parameter that indicates whether the drone is near or far
away from a given edge server. The next part of our system
application model assumes the Ground Control Stations are
connected with a wired high-speed network connection. This
assumption is essential for executing the highly computation-
intensive tasks, that cannot be executed on the drone due to
the issue that it would consume the most amount of energy
from the drone. In our system model, we consider a setup
of the multiple UAVs with one GCS connected to an edge
computation server for the execution and offloading of the
object detection application functions.

B. Execution Control Middleware with Prediction method and
Scheduling Algorithm

The second part of our system model’s application involves
the Execution Control Middleware that is responsible for
making sure that the application requirements are all met
through data collection with the necessary (minimal) energy
consumption that is achieved by controlling how/where the
functions will be offloaded. The middleware essentially con-
sists of two parts: our proposed novel Prediction Method
(1) and a Scheduling Algorithm (ii). The prediction method
consists of the Transmission Time/Energy Prediction, and the

Machine Learning Prediction - based on the processing and
transmission times from the previous frames. For Transmission
Time and Energy Prediction, we analyze what is the best
mobility model that we could utilize based on the available
network environment. After collecting the transmission times
and processing times in conjunction with the corresponding
energy predictions, we use several machine learning models
to make a time prediction based on the processing completion,
and the transmission time needed per frame. In the Scheduling
Algorithm, we utilize the prediction method results and deter-
mine where the function should be processed on the drone
or the GCS-edge server. Our scheduling algorithm uses the
popular Job Shop Scheduling to schedule the tasks on multiple
machines. Finally, we collect the time it took to execute all the
tasks and compute the consumed energy for later comparison
and evaluation.

IV. PREDICTION METHOD AND SCHEDULING ALGORITHM

In this section, we detail the two major parts of our novel
energy-aware dynamic computation offloading scheme i.e.,
the prediction method and the scheduling algorithm. These
two parts allow for creation of a decision making scheme to
not only facilitate trade-offs in energy vs. optimal scheduling
time factors of dynamic decision making on multi-drone to
GCS, but also aid in decisions pertaining to the pertinent data
computation architecture, i.e., selection of either drone, edge
server or FCC for data processing.

A. Prediction Method

1) Mobility Analysis: We use three mobility models in this
work shown in Figure 3, based on a literature survey [16]:
(i) Gauss-Markov Mobility Model, (ii) Random Way Point
Mobility Model, and (iii) Mission Plan Based Mobility Model.
By using these mobility models, we can analyze the network
environment in terms of how well the connection quality varies

in a FANET setup. The Gauss Markov Model simulates the
swarm behavior and it shows a probability parameter for the
mobility. The probability parameter is defined as p and if p
= 0, it will be using the Random Way Point model, in which
the drones move at different directions and speeds randomly
in the projected area. Equation 1 represents the speed as well
as the direction calculations of a drone:

(1 - 042)1)1””71 (])

These UAVs are independent from the other UAVs as they
have different speeds and directions. However, if p = 1, then
these drones will use the Mission Plan based model. These
drones have a projected plan on where the UAVs destination
will be at, and these drones will be programmed to have a
pre-determined path without manually having a user operating
the UAVs paths. The pre-programming not only helps a UAV
to move towards a destination, but it can also direct it to
move away from the projected area as well as desired by the
application demands. Also, the starting and ending point are
randomly selected because the UAV needs to know its plan in
the given projected area for the flight. Furthermore, the flight
time and velocity are fixed numbers to determine how long
the UAV will stay in the sky, and how fast it covers a given
area for a planned mission puropose.

Up = PUn—1 + (1 - p)@ +

N\
Projected Area \

\

(b) (©

Fig. 3: Three major Drone Mobility Models we consider: (a) Gauss-Markov
Mobility Model, b) Random Way Point Mobility Model, and (c) Mission Plan
based Mobility Model.

2) Machine Learning Prediction: Once we gather our trans-
mission and processing master dataset files (with a .csv
extension) considering the mobility models, we use machine
learning models to predict the time on how well the dataset
performs on various models. In addition to that, we use
machine learning to also predict the time for completion of
the four functions (F1 — pre-processing, F2 — object detection,
F3 — feature extraction, and F4 — object registration) in each
of the frames in the dataset. The four machine learning
models that we use for data processing are from the Sci-Kit
Learn Tool [17] are as follows: (i) Kernel-Ridge Regression,
(i) SVR-RBF, (iii) Gaussian-Process Regression, and (iv)
Random Forest Regression. Training Time, Prediction Latency,
RMSE (Root Mean Square Error), and MAE (Mean Absolute
Error) are generated using the Sci-Kit Learn Tool for each
model as shown in Table 1.

In our machine learning use for the data processing, we
are primarily concerned about the training time and RMSE

metrics. The reason for the training time consideration is that -
we want to see how the dataset competes among other machine
learning models for how long it takes to process the dataset
files i.e., the processing and transmission times. The other
reason for the RMSE consideration is that - we want to explore
how concentrated our data is, and how flawed the standard
deviation predictions are when using the various machine
learning models. For transmission time results, we find that
the best machine learning model that had best performance
in the training time is the Kernel-Ridge Regression model.
Additionally, for the processing time results, the best machine
learning model performance was seen in the SVR-RBF.

TABLE I: Machine Learning model results on our datasets.

Model Type | Transmission Time | Processing Time
Kernel-Ridge Regression 0.120+0.00362 0.0044-0.00272
SVR-RBF 0.099+0.01620 0.068+0.00252

2.170+£0.00100
0.205+0.05400

1.9624-0.00000
0.156+0.05400

Gaussian-Process Regression
Random Forest Regression

B. Scheduling Algorithm

1) Decision Making: To design the decision making poli-
cies of our computation offloading scheduler, we created a
set of heuristics based on best practices and a set of field
experiments. For functions F1 and F4, it was found that the
transmission energy to offload to the GCS was always greater
than the processing energy to execute F1 locally (i.e., 1.173 J
vs. 3.762 J).

To determine whether to offload F2 or not, is best deter-
mined by the network condition (i.e., upload speed) and the
number of F2 tasks on the queue. F2 would be offloaded to the
GCS until the case where the queue on the GCS is filled up.
The number of tasks allowed on the queue of the GCS is best
determined by the condition of the air-to-ground network. The
higher the upload speed, the more tasks that will be allowed
on the queue of the ground, and the reverse is true. A slower
network speed implies that fewer number of tasks will be
allowed on the queue. The reason for this is because - for slow
network speeds, the transmission energy increases because it
is tied to the transmission time. If a transmission takes long
enough, eventually the transmission energy will surpass the
local processing energy consumption. The network condition
in our heuristics is based on the predictions obtained by the
mobility models chosen, and how many tasks are allowed
on the queue of the GCS at a given network condition is
determined by the machine learning predictions of processing
time and energy consumption.

Moreover, processing energy for F3 is tied to the number of
objects detected in F2. When the number of objects detected
is greater than 10, we found that the processing energy to
perform F3 is greater than the energy to transmit the task to
the GCS. In cases such as these, we offload F3 to the GCS.

2) Job Shop Scheduling: We treat the problem of offloading
functions to the drones as a job shop scheduling problem.
The job shop scheduling problem is a problem that occurs
when multiple jobs are processed on multiple machines in

A ;
Droned | Fi F2 ‘ F4 I
Drone2 | Fi F3 F4 !
Drone1 | Fi F4 :
Ges F2 F2 ‘ F3a | F3 !
i

: »time (s)
3 Makespan * T

Fig. 4: An example Job Shop Scheduling algorithm schedule with
one GCS and three drones. Each function chain must be executed se-
quentially from F1 to F4, and functions F1 and F4 must be exe-
cuted on the drones themselves. Blue represents a function chain be-
longing to drone 1, green represents a function chain belonging to
drone 2, and red represents a function chain belonging to drone 3.
T represents the optimal scheduling time or the scheduling makespan.

which each job has multiple tasks that must be done sequen-
tially [18]. The heuristics established from the decision making
(listed in previous sub-section) serve as constraints for the
job shop scheduling algorithm. Since we are dealing with
video streams, it is important that the frames are processed
sequentially. We adopted and extended the job shop algorithm
that is openly available from the Google Optimization toolkit
(i.e, OR-Tools). Using this algorithm, we distribute the jobs
among the machines and allow for calculation of the optimal
scheduling time as well as the energy consumption rate of
the drones to execute all tasks of all jobs on all machines.
An example schedule generated by our algorithm is shown in
Figure 4, where certain functions of a drone’s function chain
are offloaded to the GCS while others are processed locally
on the drones. Following the constraints set in the decision
making based on heuristics, F1 and F4 are always processed
on the respective drones; F2 is determined from the machine
learning predictions, and F3 is reliant on the results of F2.

V. PERFORMANCE EVALUATION

In this section, we first describe the experiment setup and
the data collection experiments. Following this, we present the
results discussion along with the salient findings.

A. Experiment Setup and Data Collection

In our experiment setup, we first focus on the mobility
model that represents the movement of the nodes. The main
role of the mobility model is to implement a realistic en-
vironment and to evaluate network parameters in different
geo-spatial locations. We specifically use the Gauss Markov
Mobility Model to simulate the UAV behavior in a swarm
as detailed in [19]. We assume that each UAV travels to
the involved area and then returns to the GCS. Initially, by
applying the Gauss Markov Mobility Model, each UAV is
assigned a current speed and direction. During fixed intervals
of time, movement occurs by updating the speed and direction
of each of the UAVs. Specifically, values of speed and direction
at a moment n is calculated on the basis of the values
of speed and direction at moment n-1. The Gauss-Markov
Mobility model inherently can easily eliminate sudden stops
and sharp turns by allowing past velocities (and directions)

to influence future velocities (as well as directions) [20].
Based on literature survey [16], we set up our memory level
parameter « to be 0.85 which indicates the Gauss-Markov
Model has some memory. The velocity at current time slot
depends upon both its velocity at time n-1 and a new Gaussian
random variable. Since the « value is nearer to 1, the current
velocity is more likely to be influenced by its previous velocity,
which is also reasonable for the settings of a FANET.

As part of the experiments to measure the transmission
and processing energy consumption with regards to image
resolution and the number of objects detected, we used the
VisDrone2019 dataset [21]. This dataset is made up of multiple
live streams that were recorded by the Lab of Machine
Learning and Data Mining in Tianjin University, China. In the
dataset, several live streams were recorded at the same time
and same location by different drones at different angles of
view of the same location. For each live stream, we determine
whether the live stream was densely or sparsely populated with
objects. Note that we defined objects as pedestrians for our
study purposes. Thus, a live stream with many people is dense,
while a live stream with few people is sparse. The dataset
we considered has three different resolutions (1344x756,
1902x1071, 2688x1322) with 50 images per resolution in
20 datasets of livestream recordings. We process each live
stream through an impage processing pipeline implemented
as a Python script. The pipeline includes a pre-trained model
designed for pedestrian detection running on the Tensorflow
framework. The object detection function is able to detect how
many pedestrians there are for each frame of the live stream.
The function provides information about the resolution of the
live stream along with the total energy it takes to process a
given live stream.

For transmission energy data collection, a computation
environment was created with a desktop serving as the GCS
connected to an edge server. A Nvidia Jetson Nano was used
as a drone device connected to the GCS-edge. The Nvidia
Jetson Nano that we used has a CPU with clock speed of
1428 MHz, GPU with clock speed of 33 MHz, and 547
MB of free memory. The CPUs we used have the following
configurations: Intel(R) Core(TM) i5-6200U CPU that has a
clock speed of 2401 MHz and 1633 MB of free space, and
the Intel(R) Core(TM) i5-3470 CPU which has a CPU clock
speed of 3370 MHz, with GPU Xeon E3-1200 v2 with GPU
clock speed of 33 MHz, and 5049 MB of free memory. The
wireless network chips we used include the Intel 8265NGW,
Edimax EW-7811Un, and Cypress CYW43455.

B. Results Discussion

Table II shows the features that were collected during
our experiments, including networking hardware, processing
capabilities of the experiment machines, and attributes of the
data to be offloaded. We obtained the transmission energy
results based on the calculations given in [10]. In addition, we
calculated the energy consumption for processing the dataset
using the various hardware settings mentioned above in the
previous sub-section.

1400 60
—o&—Offload Only
—&— Local Only
—#— Random
——Our Approach

1200

3,

= 1000

)

800

600

400

Optimal Schedule Time

200

Energy Consumption Rate (J/s)

0 5 10 15 20 0 5
Air to Ground Sever Ratio

(a)

T i
250 - = E F
z ﬁ $ @ |2
=
Eal, H
= &
& *
£
2 E 15
4 =
il a &
g w Local Only
X —&—Offload Only J ® Offload Only
—&— Local Only Z10 Random
B A —&— Random 5 = Our Approach
2 —x%—Our Approach 5 4
5 +
i 5 — - = - == —
E o6 6660000066 66066666"0
0730 30760 60 790
15 20 T .
. . Numher of Objects Detected
Air to Ground Server Ratio
©

Fig. 5: Offload only, local execution (drone) only, random approach and our approach results of: (a) increasing drone to ground ratio (Drone:GCS) and
optimal schedule time (s), (b) Drone:GCS and average energy per drone (Joules), and (c) number of objects detected and Energy Consumption Rate (Joule/s)

box plots (experiments assume a Drone:GCS of 5).
TABLE II: Collected features from our experiment dataset.

Transmission Dataset Processing Dataset

Data Attributes:

Video Resolution (width x Video Resolution (width x
height) height)
Hardware Parameters:

Wireless Data Rate (Mb/s) CPU Cloud Speed (MHz)

Number of Spatial Streams RAM (GB)
Code rate (Mb/s) Free Memory (MB)
Number of bits per symbol Hard Drive Capacity (MB)

Mobility Models:
Gauss-Markov, Random Way Point, Mission Plan based

Result Parameters:
Transmission Energy (J) Processing Energy (J)

1) Our knowledge-based offloading scheme outperformed
local-execution in terms of scheduling time for low drone-to-
ground-server ratios: As shown in Figure 5(a), our approach
follows a similar trajectory to offload all of the functions
to the ground (i.e., the GCS connected to the edge server).
The difference is that our approach always outperforms the
offload-only scheme. We found that our offloading scheme
resulted in up to 15% better scheduling makespan than using
the offload-only scheme. Random offloading is sporadic with
no definable correlation and contains a far greater degree
of variance compared to the other offloading schemes. The
optimal scheduling time when processing is performed only
on the done locally is very consistent, even when the drone
to ground server ratio changes. This is because of the parallel
execution of the tasks done on the drones, with each drone
processing its own video stream without ever offloading to
the ground. Therefore, there is no build up of the queue on
the ground. Our approach consistently outperformed simply
processing the tasks locally on the drones until the drone to
ground ratio reached about 17 : 1. This phenomenon happens
because as more drones are added to the server with each drone
recording a live stream, more tasks will naturally be offloaded
to the ground. Incidentally for large ratios, the queue on the
ground will grow very large, meaning that it will take a long
time for all tasks on the queue to be completed.

2) Our approach outperformed random offloading and only
local execution in energy consumption: From Figure 5(b), we
can see that the energy consumption rate grows at a very

fast rate as the air to ground server ratio increases. Random
offloading also increases at a fast rate. However, the results are
still somewhat sporadic since the energy consumption rate at
a higher air to ground ratio will sometimes be lower than the
energy consumption rate for a lower air to ground ratio. Our
approach consistently produced a lower energy consumption
rate than only local execution and random offloading, but
it was still slightly more than the energy consumption rate
of the offload only scheme. This is reasonable because the
only energy consumption counted for the offload only scheme
is the transmission energy. That being said, the difference
in energy consumption rate between our approach and the
offloading scheme is fairly marginal. Considering that our
approach performs up to 15% better than the offload only
scheme in terms of scheduling time, we conclude that our
approach creates a good trade-off between both time and
energy considerations in completing the tasks execution.

3) Our approach works for various application scenarios
involving multi-UAV systems: The results in Figure 5(c) show
that the number of objects detected in a video stream does
not have a major impact on the energy consumption rate,
regardless of the schedule offloading scheme. This finding
suggests that our heuristics-based offloading scheme will work
in various application scenarios regardless of the number of
target objects in an area being explored for environmental
situational awareness. For various application scenarios, such
as smart farming where the number of target objects such as
e.g., ripe fruits may be small in quantity, or for traffic flow
monitoring applications where there may be a medium number
of automobiles on the freeway, or for a disaster responses in
an area with debris everywhere after a man-made or natural
disaster incident, our approach would meet the corresponding
application demands for drone video analytics.

VI. CONCLUSION

In this paper, we presented a novel energy-aware Function-
Centric Computing offloading scheme that would allow for
parallel execution to evenly distribute and minimize compu-
tation energy of the drones while maintaining a reasonable
delay. As part of our scheme development, we considered

mobility of drones and dynamically changing network environ-
ments, and used machine learning to predict processing times.
Furthermore, our proposed dynamic computation offloading
approach successfully used a job shop scheduling to minimize
the optimal scheduling times (i.e., makespan) and energy con-
sumption. As part of our performance evaluation, we simulated
a multi-UAV system featuring a FANET and a VisDrone2019
dataset to show benefits of Function-Centric Computing by
considering a trade-off between energy consumption rate and
optimal scheduling time. Finally, we demonstrated the benefits
of our approach for different application scenarios of multi-
UAV systems and the FANET setups such as: smart farming,
traffic flow monitoring in transportation systems and disaster
response after a man-made or natural disaster incident.
Future work could involve measuring the performance of
our scheme under different mobility conditions (e.g., assuming
drones being stationary or moving on a pre-determined path or
random path) and using real-time network feedback and GCS
load conditions as additional parameters to further optimize the
video processing task scheduling for an application scenario.

REFERENCES
[11 B. Dickson, “When the cloud 1is swamped, it’'s edge
computing, ai to the rescue,” Accessed August 2019.

[Online]. Available: https://www.pcmag.com/article/360311/when-the-
cloud-is-swamped-its-edge-computing-ai-to-the-re

[2] 1. Bekmezci, O. K. Sahingoz, and $. Temel, “Flying ad-hoc networks
(fanets): A survey,” Elsevier Ad Hoc Networks, vol. 11, no. 3, pp. 1254—
1270, 2013.

[3] 1. Bekmezci, I. Sen, and E. Erkalkan, “Flying ad hoc networks (fanet)
test bed implementation,” in 2015 7th International Conference on
Recent Advances in Space Technologies (RAST). 1EEE, 2015, pp. 665—
668.

[4] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899-922, 2016.

[5] D. Chemodanov, C. Qu, O. Opeoluwa, S. Wang, and P. Calyam, “Policy-
based function-centric computation offloading for real-time drone video
analytics,” in 2019 IEEE LANMAN.

[6] A. Guillen-Perez and M.-D. Cano, “Flying ad hoc networks: A new
domain for network communications,” Sensors, vol. 18, no. 10, p. 3571,
2018.

[71 H. Yang and Z. Liu, “An optimization routing protocol for fanets,”
EURASIP Journal on Wireless Communications and Networking, vol.
2019, no. 1, p. 120, Accessed August 2019. [Online]. Available:
https://doi.org/10.1186/s13638-019-1442-0

[8] J. Gillis, P. Calyam, A. Bartels, M. Popescu, S. Barnes, J. Doty,
D. Higbee, and S. Ahmad, “Panacea’s glass: Mobile cloud framework
for communication in mass casualty disaster triage,” in MobileCloud.
IEEE, 2015.

[91 M. Vassell, O. Apperson, P. Calyam, J. Gillis, and S. Ahmad, “Intelligent

dashboard for augmented reality based incident command response

co-ordination,” in Consumer Communications Networking Conference

(CCNC). IEEE, 2016.

B. Dab, N. Aitsaadi, and R. Langar, “Q-learning algorithm for joint

computation offloading and resource allocation in edge cloud,” in 2079

IFIP/IEEE Symposium on Integrated Network and Service Management

(IM). 1EEE, 2019, pp. 45-52.

N. H. Motlagh, M. Bagaa, and T. Taleb, “Uav-based iot platform: A

crowd surveillance use case,” IEEE Communications Magazine, vol. 55,

no. 2, pp. 128-134, February 2017.

P. Calyam, M. Haffner, E. Ekici, and C.-G. Lee, “Measuring interac-

tion qoe in internet videoconferencing,” in IEEE/IFIP Management of

Multimedia and Mobile Networks and Services (MMNS). 1EEE, 2007.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

A. Sukhov, P. Calyam, W. Daly, and A. Ilin, “Towards an analytical
model for characterizing behavior of high-speed vvoip applications,”
Computational Methods in Science and Technology Journal, vol. 11,
no. 2, 2005.

P. Calyam, P. Chandrasekaran, G. Trueb, N. Howes, R. Ramnath,
D. Yu, Y. Liu, L. Xiong, and D. Yang, “Multi-resolution multimedia
qoe models for iptv applications,” International Journal of Digital
Multimedia Broadcasting (IJDMB), 2011.

D. Chemodanov, R. Gargees, B. Morago, P. Rengarajan, P. Calyam,
Z. Oraibi, Y. Duan, G. Seetharam, and K. S. Palaniappan, “Flying ad-
hoc networks (fanets): A survey,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 27, no. 1, pp. 182-197, 2016.

F. Bai and A. Helmy, “Chapter 1 a survey of mo-
bility models in wireless adhoc networks,” Available:
https://www.cise.ufl.edu/ helmy/papers/Survey-Mobility-Chapter-1.pdf,
Accessed August 2019 [Online].

“scikit-learn 0.21.2 documentation.” [Online]. Available: https://scikit-
learn.org/stable, Accessed August 2019.

“The job shop problem — or-tools — google developers.” [On-
line]. Available: https://developers.google.com/optimization/scheduling,
Accessed August 2019.

K. Kumari, B. Sah, and S. Maakar, “A survey: different mobility model
for fanet,” International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 5, no. 6, 2015.

D. A. Korneev, A. V. Leonov, and G. A. Litvinov, “Estimation of
mini-uavs network parameters for search and rescue operation scenario
with gauss-markov mobility model,” in 2018 IEEE Systems of Signal
Synchronization, Generating and Processing in Telecommunications
(SYNCHROINFO), July 2018, pp. 1-7.

P. Zhu, L. Wen, X. Bian, L. Haibin, and Q. Hu, “Vision meets drones:
A challenge,” arXiv preprint arXiv:1804.07437, 2018.

