


Figure 1 shows an example of a FANET setup in a live

video streaming scenario. In this setup, multiple drones capture

videos of the same location at the same time, but from different

angles. The drones are connected to each other, as well as

to a ground control station (GCS) with an edge server via

wireless connectivity (e.g., Wifi, Radio-over-IP). This wireless

connectivity also provides the drones with the capability to

communicate with peer drones. In addition, multiple GCSs on

the ground are connected to each other and a core cloud via

high-speed wired networks. When capturing live video, the

drones will either locally execute the video processing tasks

on their own hardware (on-board), or partially offload the tasks

to the GCSs with edge servers.

In this paper, we present a novel energy-aware computation

offloading scheme that minimizes the total energy consumption

in the edge devices while achieving video processing time

that fulfills the requirements of an application that uses the

FANET setup shown in Figure 1. This scheme features the

FCC computing paradigm [5] by decomposing a video ana-

lytics application into functions/tasks that can be individually

deployed onto either drones or edge servers on GCS to

maximize performance while reducing energy consumption on

the drones. The contributions of this paper can be summarized

as follows:

• We detail a novel energy-aware computation offloading

scheme, which features the FCC paradigm, to optimize

the trade-offs in energy, processing latency, and task

scheduling time among different computing architectures

used in different video processing applications.

• We describe a drone video analytics application pipeline

that supports FCC and can be decomposed into into

a chain of microservice functions. The functions can

be deployed by knowledge of the computing capacity

thresholds on the drone or edge servers, communicating

via RESTful APIs.

• We simulate a multi-UAV/GCS environment that spans

multiple network environments and utilizes the state-of-

the-art edge resources on the system to evaluate different

offloading strategies and show FCC benefits with realistic

application settings.

The remainder of the paper is organized as follows: Sec-

tion II presents related work. In Section III, we discuss

our multi-UAV system model in general, and describe our

drone/Edge system control modules. In Section IV, we de-

tail our novel intelligent energy-aware computation offload-

ing scheme for real-time drone video analytics. Section V

describes our testbed-based evaluation methodology, perfor-

mance metrics and results. Section VI concludes the paper.

II. RELATED WORK

Flying Ad-Hoc Networks (FANETs). FANETs are used to

overcome the challenges of communication in a multi-UAV

environment. Authors in [6] propose a system where UAVs

can connect with each other rather than having all the UAVs

connect to a single GCS or a satellite. Based on advanced

routing protocols, even if connection among one of the drones

to the GCS is interrupted or disconnected, communication may

still be possible [7]. Thus, in our FANET model, we assume

the setup to be a complete graph where all the drones are

connected to each other as well as connected to an edge server

that hosts situational-awareness dashboards with geolocation

services [8], [9] at the GCS. We use a FANET setup because

we want the ability of a drone to offload functions either to

nearby drones or to a distant GCS.

Computation Offloading on Multi-UAV Systems. Compu-

tation Offloading is the act of transferring computationally

intensive tasks or functions to other platforms. In our case,

the drones have the option of transferring to another drone or

the GCS. Low power devices trying to execute computation-

intensive tasks will often consume more energy than what is

preferred by the user. Energy-awareness is especially important

for drones since the development of battery capacity has

stagnated, and we want to have the drones flying in the air

for as long as possible for data collection [10]. Computation

offloading overcomes such limitations of low-power devices

such as drones [11]. With computation offloading, energy

consumption of the drones can be minimized as shown in [5],

without compromising the user quality of experience at the

application level [12]–[14]. In our proposed scheme, functions

will be offloaded from the drones to the edge as a way

to minimize energy consumption of the drones as long as

the delay constraint is met. In addition, drones will offload

functions to other drones to evenly distribute the energy

consumption of the drones.

Function-Centric Computing (FCC). A FCC paradigm in-

volves decomposing applications into microservice functions

that can be individually deployed onto edge resources [5].

Advantages to this architecture are that specific functions in a

larger application that are computation-intensive and would

cause large energy consumption can be offloaded. In the

prior work [15], the authors used FCC for data collection

from IoT devices at the edge of a network and for data

processing at the edge and cloud infrastructure. For our work,

we use FCC to decompose a frame-processing application for

object detection. Our decoupled application will contain four

functions: F1 – pre-processing, F2 – object detection, F3 –

feature extraction, and F4 – object registration. All four of

these functions can be offloaded to either other drones or a

GCS-connected edge server.

III. SYSTEM MODEL

In this section, we introduce our energy-aware dynamic

computation offloading system model featuring multiple UAVs

as shown in Figure 2. Our system model consists of multiple

UAVs with embedded computation resources, an Execution

Control Module middleware, and a GCSs group with edge

server computation capabilities.

A. Drone Fleet with Camera and Computation Resources

Embedded and GCS group with Edge Server Computation

The first part of our system model’s application involves

the communication and co-ordination of multiple UAVs. Each







Fig. 4: An example Job Shop Scheduling algorithm schedule with
one GCS and three drones. Each function chain must be executed se-
quentially from F1 to F4, and functions F1 and F4 must be exe-
cuted on the drones themselves. Blue represents a function chain be-
longing to drone 1, green represents a function chain belonging to
drone 2, and red represents a function chain belonging to drone 3.
τ represents the optimal scheduling time or the scheduling makespan.

which each job has multiple tasks that must be done sequen-

tially [18]. The heuristics established from the decision making

(listed in previous sub-section) serve as constraints for the

job shop scheduling algorithm. Since we are dealing with

video streams, it is important that the frames are processed

sequentially. We adopted and extended the job shop algorithm

that is openly available from the Google Optimization toolkit

(i.e, OR-Tools). Using this algorithm, we distribute the jobs

among the machines and allow for calculation of the optimal

scheduling time as well as the energy consumption rate of

the drones to execute all tasks of all jobs on all machines.

An example schedule generated by our algorithm is shown in

Figure 4, where certain functions of a drone’s function chain

are offloaded to the GCS while others are processed locally

on the drones. Following the constraints set in the decision

making based on heuristics, F1 and F4 are always processed

on the respective drones; F2 is determined from the machine

learning predictions, and F3 is reliant on the results of F2.

V. PERFORMANCE EVALUATION

In this section, we first describe the experiment setup and

the data collection experiments. Following this, we present the

results discussion along with the salient findings.

A. Experiment Setup and Data Collection

In our experiment setup, we first focus on the mobility

model that represents the movement of the nodes. The main

role of the mobility model is to implement a realistic en-

vironment and to evaluate network parameters in different

geo-spatial locations. We specifically use the Gauss Markov

Mobility Model to simulate the UAV behavior in a swarm

as detailed in [19]. We assume that each UAV travels to

the involved area and then returns to the GCS. Initially, by

applying the Gauss Markov Mobility Model, each UAV is

assigned a current speed and direction. During fixed intervals

of time, movement occurs by updating the speed and direction

of each of the UAVs. Specifically, values of speed and direction

at a moment n is calculated on the basis of the values

of speed and direction at moment n-1. The Gauss-Markov

Mobility model inherently can easily eliminate sudden stops

and sharp turns by allowing past velocities (and directions)

to influence future velocities (as well as directions) [20].

Based on literature survey [16], we set up our memory level

parameter α to be 0.85 which indicates the Gauss-Markov

Model has some memory. The velocity at current time slot

depends upon both its velocity at time n-1 and a new Gaussian

random variable. Since the α value is nearer to 1, the current

velocity is more likely to be influenced by its previous velocity,

which is also reasonable for the settings of a FANET.

As part of the experiments to measure the transmission

and processing energy consumption with regards to image

resolution and the number of objects detected, we used the

VisDrone2019 dataset [21]. This dataset is made up of multiple

live streams that were recorded by the Lab of Machine

Learning and Data Mining in Tianjin University, China. In the

dataset, several live streams were recorded at the same time

and same location by different drones at different angles of

view of the same location. For each live stream, we determine

whether the live stream was densely or sparsely populated with

objects. Note that we defined objects as pedestrians for our

study purposes. Thus, a live stream with many people is dense,

while a live stream with few people is sparse. The dataset

we considered has three different resolutions (1344x756,

1902x1071, 2688x1322) with 50 images per resolution in

20 datasets of livestream recordings. We process each live

stream through an impage processing pipeline implemented

as a Python script. The pipeline includes a pre-trained model

designed for pedestrian detection running on the Tensorflow

framework. The object detection function is able to detect how

many pedestrians there are for each frame of the live stream.

The function provides information about the resolution of the

live stream along with the total energy it takes to process a

given live stream.

For transmission energy data collection, a computation

environment was created with a desktop serving as the GCS

connected to an edge server. A Nvidia Jetson Nano was used

as a drone device connected to the GCS-edge. The Nvidia

Jetson Nano that we used has a CPU with clock speed of

1428 MHz, GPU with clock speed of 33 MHz, and 547

MB of free memory. The CPUs we used have the following

configurations: Intel(R) Core(TM) i5-6200U CPU that has a

clock speed of 2401 MHz and 1633 MB of free space, and

the Intel(R) Core(TM) i5-3470 CPU which has a CPU clock

speed of 3370 MHz, with GPU Xeon E3-1200 v2 with GPU

clock speed of 33 MHz, and 5049 MB of free memory. The

wireless network chips we used include the Intel 8265NGW,

Edimax EW-7811Un, and Cypress CYW43455.

B. Results Discussion

Table II shows the features that were collected during

our experiments, including networking hardware, processing

capabilities of the experiment machines, and attributes of the

data to be offloaded. We obtained the transmission energy

results based on the calculations given in [10]. In addition, we

calculated the energy consumption for processing the dataset

using the various hardware settings mentioned above in the

previous sub-section.



0 5 10 15 20

Air to Ground Sever Ratio

0

200

400

600

800

1000

1200

1400

O
p

ti
m

al
 S

ch
ed

u
le

 T
im

e 
(s

)

Offload Only

Local Only

Random

Our Approach

(a)

0 5 10 15 20

Air to Ground Server Ratio

0

10

20

30

40

50

60

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 R
at

e 
(J

/s
)

Offload Only

Local Only

Random

Our Approach

(b) (c)

Fig. 5: Offload only, local execution (drone) only, random approach and our approach results of: (a) increasing drone to ground ratio (Drone:GCS) and
optimal schedule time (s), (b) Drone:GCS and average energy per drone (Joules), and (c) number of objects detected and Energy Consumption Rate (Joule/s)
box plots (experiments assume a Drone:GCS of 5).

TABLE II: Collected features from our experiment dataset.

Transmission Dataset Processing Dataset

Data Attributes:

Video Resolution (width ×

height)
Video Resolution (width ×

height)

Hardware Parameters:

Wireless Data Rate (Mb/s) CPU Cloud Speed (MHz)
Number of Spatial Streams RAM (GB)

Code rate (Mb/s) Free Memory (MB)
Number of bits per symbol Hard Drive Capacity (MB)

Mobility Models:

Gauss-Markov, Random Way Point, Mission Plan based

Result Parameters:

Transmission Energy (J) Processing Energy (J)

1) Our knowledge-based offloading scheme outperformed

local-execution in terms of scheduling time for low drone-to-

ground-server ratios: As shown in Figure 5(a), our approach

follows a similar trajectory to offload all of the functions

to the ground (i.e., the GCS connected to the edge server).

The difference is that our approach always outperforms the

offload-only scheme. We found that our offloading scheme

resulted in up to 15% better scheduling makespan than using

the offload-only scheme. Random offloading is sporadic with

no definable correlation and contains a far greater degree

of variance compared to the other offloading schemes. The

optimal scheduling time when processing is performed only

on the done locally is very consistent, even when the drone

to ground server ratio changes. This is because of the parallel

execution of the tasks done on the drones, with each drone

processing its own video stream without ever offloading to

the ground. Therefore, there is no build up of the queue on

the ground. Our approach consistently outperformed simply

processing the tasks locally on the drones until the drone to

ground ratio reached about 17 : 1. This phenomenon happens

because as more drones are added to the server with each drone

recording a live stream, more tasks will naturally be offloaded

to the ground. Incidentally for large ratios, the queue on the

ground will grow very large, meaning that it will take a long

time for all tasks on the queue to be completed.

2) Our approach outperformed random offloading and only

local execution in energy consumption: From Figure 5(b), we

can see that the energy consumption rate grows at a very

fast rate as the air to ground server ratio increases. Random

offloading also increases at a fast rate. However, the results are

still somewhat sporadic since the energy consumption rate at

a higher air to ground ratio will sometimes be lower than the

energy consumption rate for a lower air to ground ratio. Our

approach consistently produced a lower energy consumption

rate than only local execution and random offloading, but

it was still slightly more than the energy consumption rate

of the offload only scheme. This is reasonable because the

only energy consumption counted for the offload only scheme

is the transmission energy. That being said, the difference

in energy consumption rate between our approach and the

offloading scheme is fairly marginal. Considering that our

approach performs up to 15% better than the offload only

scheme in terms of scheduling time, we conclude that our

approach creates a good trade-off between both time and

energy considerations in completing the tasks execution.

3) Our approach works for various application scenarios

involving multi-UAV systems: The results in Figure 5(c) show

that the number of objects detected in a video stream does

not have a major impact on the energy consumption rate,

regardless of the schedule offloading scheme. This finding

suggests that our heuristics-based offloading scheme will work

in various application scenarios regardless of the number of

target objects in an area being explored for environmental

situational awareness. For various application scenarios, such

as smart farming where the number of target objects such as

e.g., ripe fruits may be small in quantity, or for traffic flow

monitoring applications where there may be a medium number

of automobiles on the freeway, or for a disaster responses in

an area with debris everywhere after a man-made or natural

disaster incident, our approach would meet the corresponding

application demands for drone video analytics.

VI. CONCLUSION

In this paper, we presented a novel energy-aware Function-

Centric Computing offloading scheme that would allow for

parallel execution to evenly distribute and minimize compu-

tation energy of the drones while maintaining a reasonable

delay. As part of our scheme development, we considered



mobility of drones and dynamically changing network environ-

ments, and used machine learning to predict processing times.

Furthermore, our proposed dynamic computation offloading

approach successfully used a job shop scheduling to minimize

the optimal scheduling times (i.e., makespan) and energy con-

sumption. As part of our performance evaluation, we simulated

a multi-UAV system featuring a FANET and a VisDrone2019

dataset to show benefits of Function-Centric Computing by

considering a trade-off between energy consumption rate and

optimal scheduling time. Finally, we demonstrated the benefits

of our approach for different application scenarios of multi-

UAV systems and the FANET setups such as: smart farming,

traffic flow monitoring in transportation systems and disaster

response after a man-made or natural disaster incident.

Future work could involve measuring the performance of

our scheme under different mobility conditions (e.g., assuming

drones being stationary or moving on a pre-determined path or

random path) and using real-time network feedback and GCS

load conditions as additional parameters to further optimize the

video processing task scheduling for an application scenario.

REFERENCES

[1] B. Dickson, “When the cloud is swamped, it’s edge
computing, ai to the rescue,” Accessed August 2019.
[Online]. Available: https://www.pcmag.com/article/360311/when-the-
cloud-is-swamped-its-edge-computing-ai-to-the-re

[2] I. Bekmezci, O. K. Sahingoz, and Ş. Temel, “Flying ad-hoc networks
(fanets): A survey,” Elsevier Ad Hoc Networks, vol. 11, no. 3, pp. 1254–
1270, 2013.

[3] I. Bekmezci, I. Sen, and E. Erkalkan, “Flying ad hoc networks (fanet)
test bed implementation,” in 2015 7th International Conference on

Recent Advances in Space Technologies (RAST). IEEE, 2015, pp. 665–
668.

[4] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899–922, 2016.

[5] D. Chemodanov, C. Qu, O. Opeoluwa, S. Wang, and P. Calyam, “Policy-
based function-centric computation offloading for real-time drone video
analytics,” in 2019 IEEE LANMAN.

[6] A. Guillen-Perez and M.-D. Cano, “Flying ad hoc networks: A new
domain for network communications,” Sensors, vol. 18, no. 10, p. 3571,
2018.

[7] H. Yang and Z. Liu, “An optimization routing protocol for fanets,”
EURASIP Journal on Wireless Communications and Networking, vol.
2019, no. 1, p. 120, Accessed August 2019. [Online]. Available:
https://doi.org/10.1186/s13638-019-1442-0

[8] J. Gillis, P. Calyam, A. Bartels, M. Popescu, S. Barnes, J. Doty,
D. Higbee, and S. Ahmad, “Panacea’s glass: Mobile cloud framework
for communication in mass casualty disaster triage,” in MobileCloud.
IEEE, 2015.

[9] M. Vassell, O. Apperson, P. Calyam, J. Gillis, and S. Ahmad, “Intelligent
dashboard for augmented reality based incident command response
co-ordination,” in Consumer Communications Networking Conference

(CCNC). IEEE, 2016.

[10] B. Dab, N. Aitsaadi, and R. Langar, “Q-learning algorithm for joint
computation offloading and resource allocation in edge cloud,” in 2019

IFIP/IEEE Symposium on Integrated Network and Service Management

(IM). IEEE, 2019, pp. 45–52.

[11] N. H. Motlagh, M. Bagaa, and T. Taleb, “Uav-based iot platform: A
crowd surveillance use case,” IEEE Communications Magazine, vol. 55,
no. 2, pp. 128–134, February 2017.

[12] P. Calyam, M. Haffner, E. Ekici, and C.-G. Lee, “Measuring interac-
tion qoe in internet videoconferencing,” in IEEE/IFIP Management of

Multimedia and Mobile Networks and Services (MMNS). IEEE, 2007.

[13] A. Sukhov, P. Calyam, W. Daly, and A. Ilin, “Towards an analytical
model for characterizing behavior of high-speed vvoip applications,”
Computational Methods in Science and Technology Journal, vol. 11,
no. 2, 2005.

[14] P. Calyam, P. Chandrasekaran, G. Trueb, N. Howes, R. Ramnath,
D. Yu, Y. Liu, L. Xiong, and D. Yang, “Multi-resolution multimedia
qoe models for iptv applications,” International Journal of Digital

Multimedia Broadcasting (IJDMB), 2011.
[15] D. Chemodanov, R. Gargees, B. Morago, P. Rengarajan, P. Calyam,

Z. Oraibi, Y. Duan, G. Seetharam, and K. Ş. Palaniappan, “Flying ad-
hoc networks (fanets): A survey,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 27, no. 1, pp. 182–197, 2016.
[16] F. Bai and A. Helmy, “Chapter 1 a survey of mo-

bility models in wireless adhoc networks,” Available:
https://www.cise.ufl.edu/ helmy/papers/Survey-Mobility-Chapter-1.pdf,
Accessed August 2019 [Online].

[17] “scikit-learn 0.21.2 documentation.” [Online]. Available: https://scikit-
learn.org/stable, Accessed August 2019.

[18] “The job shop problem — or-tools — google developers.” [On-
line]. Available: https://developers.google.com/optimization/scheduling,
Accessed August 2019.

[19] K. Kumari, B. Sah, and S. Maakar, “A survey: different mobility model
for fanet,” International Journal of Advanced Research in Computer

Science and Software Engineering, vol. 5, no. 6, 2015.
[20] D. A. Korneev, A. V. Leonov, and G. A. Litvinov, “Estimation of

mini-uavs network parameters for search and rescue operation scenario
with gauss-markov mobility model,” in 2018 IEEE Systems of Signal

Synchronization, Generating and Processing in Telecommunications

(SYNCHROINFO), July 2018, pp. 1–7.
[21] P. Zhu, L. Wen, X. Bian, L. Haibin, and Q. Hu, “Vision meets drones:

A challenge,” arXiv preprint arXiv:1804.07437, 2018.


