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ABSTRACT. Local similarity between the Mandelbrot set and quadratic Julia
sets manifests itself in a variety of ways. We discuss a combinatorial one, in the
language of geodesic laminations. More precisely, we compare quadratic in-
variant laminations representing Julia sets with the so-called Quadratic Minor
Lamination (QML) representing a locally connected model of the Mandelbrot
set. Similarly to the construction of an invariant lamination by pullbacks of
certain leaves, we describe how QML can be generated by properly under-
stood pullbacks of certain minors. In particular, we show that the minors of
all non-renormalizable quadratic laminations can be obtained by taking limits
of “pullbacks” of minors from the main cardioid.

Introduction

Quadratic polynomials P.(z) = 22 + ¢, where ¢ € C, play an important role
in complex dynamics. They provide a simple but highly non-trivial example of
polynomial dynamical systems (note that every quadratic polynomial is affinely
conjugate to one of the form P;), and this family is universal in the sense that many
properties of the c-parameter plane reappear locally in almost any analytic family
of holomorphic maps [MecMOO]. The central object in the c-plane is the Mandelbrot
set M. By definition, ¢ € My if the Julia set J(P,) of P. is connected, equivalently,
if the sequence of iterates P (c) does not escape to infinity (see [DH85]).

The Mandelbrot set is compact and connected. It is not known if it is locally
connected, but there is a nice model M§, due to Douady, Hubbard and Thurston, of
M (i.e., there exists a continuous map 7 : My — M$ such that point inverses are
connected); moreover, if My is locally connected, 7 is a homeomorphism. Namely,
set D={z€C:|z] <1} and S = {z € C||z| = 1}; call D the unit disk and S
the unit circle. There are pairwise disjoint chords (including degenerate chords, i.e.
singletons in S) or polygons inscribed in D = {z € C : |2| < 1} such that, after
collapsing all these chords and polygons to points, we get a quotient space MS§.
We will write QML for the set consisting of all these chords and edges of all these
polygons. This set is called the quadratic minor lamination.
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More generally, a (geodesic) lamination is a set of chords (called leaves) in
D that contains all points of S such that the limit of any converging sequence of
leaves is a leaf. The lamination QML can be described explicitly. For example, one
can algorithmically generate countably many leaves dense in QML, and there are
several known constructions, e.g. [Lav86,Lav89] (other combinatorial viewpoints
on M§ and QML can be found in [BOPT16,Kel00, PR08,Sch09]). In this paper,
a new construction is provided that is based on taking preimages under the angle
doubling map. Each of the sets My and M$ contains countable and dense family of
homeomorphic copies of itself. Thus, My and M§ are examples of so-called fractal
sets.

FIGURE 1. The geolamination QML

A description of QML by Thurston [Thu85] refers to laminational models of
Julia sets. By the filled Julia set K(P.) of a polynomial P, we mean the set of
points z € C with P’(z) 4 oo. The Julia set J(P,.) is the boundary of K(P,). If
K(P,) is locally connected; then it can be also obtained from D by collapsing leaves
and finite polygons of some lamination £(P,).

Indeed, if K(P,.) is locally connected, the Riemann map defined for the com-
plement of K(P.) can be extended onto S which gives rise to a continuous map
¥ S — J(P.) that semiconjugates the angle doubling map o9 : S — S (taking
z € S to %) and Pels(p.). Considering convex hulls of fibers (point-inverses) of
1 and collecting boundary edges of these convex hulls, we obtain the lamination
L(P.). Declaring points z,y of S equivalent if and only if ¢ (x) = ¥ (y) we arrive
at the invariant laminational equivalence ~. and the associated quotient space J.,
of S (the topological Julia set), homeomorphic to J(P.). Equivalence classes of ~,
have pairwise disjoint convex hulls. The topological polynomial fo_ : Jo, = Jo_,
induced by o9, is topologically conjugate to Pe|;p,). Laminational equivalence
relations ~ similar to ~, can be introduced with no references to polynomials by
listing their properties similar to those of ~. (this can be done for degrees higher
than 2 as well). In that case one also considers the collection £, of the edges of con-
vex hulls of all ~-classes and all singletons in S called the g-lamination (generated
by ~).

A lamination £._ thus obtained satisfies certain dynamical properties (in our
presentation we rely upon [BMOV13]). Below we think of o9 applied to a chord
¢ with endpoints a and b so that it maps to the chord whose endpoints are oa(a)
and o9(b); we can think of this as an extension of o9 over £ and make it linear on
£. The properties are as follows:

(1) forward invariance: for every ¢ € L, we have o2(¢) € L;
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(2) backward invariance: for every ¢ € £ we have ¢ = o2(¢1) for some
l € ﬁ;
(3) sibling property: for every ¢ € £, we have —( € L.

Here —{ is the image of £ under the map z — —z of S. (Under this map all angles are
incremented by 3 modulo 1). The leaf —¢ is called the sibling of £. A chord which is
a diameter of D is said to be critical. Laminations with properties (1)—(3) are called
quadratic invariant laminations. By [BMOV13] all quadratic g-laminations L.
are invariant, however the converse is not true and there are quadratic invariant
laminations that are not g-laminations. Below we often call quadratic invariant
laminations simply quadratic laminations.

Properties (1) — (3) from above deal exclusively with leaves. To understand the
dynamics one also considers components of the complement in D to the union of all
leaves of L. More precisely, a gap of L is the closure of a component of D\ |, /.
Gaps G are said to be finite or infinite according to whether G NS is a finite or
infinite set. By [BMOV13] if G is a gap of a quadratic lamination £, then either
all its edges map to one leaf of £, or all its edges map to a single point in S, or the
convex hull of the set o2(GNS) is a gap of £ which one can view as the image of G.
Moreover, the map on the boundary of G satisfies gap invariance: either there
exists a critical edge of G, or the map 7 = g3|gns extends to S as an orientation
preserving covering map 7 such that GNS is the full preimage of 7(GNS) under 7.
Gap invariance was part of the original definition of a (geodesic) lamination given
by Thurston in [Thu85]. It allows us to extend the map o onto the entire D if a
quadratic lamination £ is given. Indeed, we have already described how o5 acts on
leaves; it can then be extended over gaps using the barycentric construction (see
[Thu85] for details).

Due to the backward invariance property, quadratic laminations can often be
generated by taking pullbacks of leaves: By a pullback of a leaf ¢ € L, we mean a
leaf ¢1 € £ such that a3(¢1) = €. An iterated pullback of £ of level n is defined as
a leaf £, € £ with 0% (¢,) = £. The concept of (iterated) pullback is widely used
in the study of (quadratic) invariant laminations. In this paper we show that it
can also be used as one studies parameter laminations, i.e., laminations which do
not satisfy conditions (1) — (3), such as QML. Let us now discuss QML in more
detail.

To measure arc lengths on S, we use the normalized Lebesgue measure (the
total length of S is 1). The length of a chord is by definition the length of the
shorter circle arc connecting its endpoints. Following Thurston, define a major
leaf (a major) of a quadratic lamination as a longest leaf of it. (There may be
one longest leaf that is critical or two longest leaves that are siblings.) The minor
leaf (the minor) of a lamination is the oy-image of a major. If a minor m is non-
periodic, then there exists a unique maximal lamination with minor m denoted by
L(m). If a minor m is periodic and non-degenerate, then we define £(m) as the
unique g¢-lamination with minor m. Finally, if m is a periodic singleton, then we
explicitly define £(m) later in the paper so that m is the minor of £(m) (note,
that in this case the choice of £(m) is irrelevant for our purposes). Call £(m) the
minor leaf lamination associated with m. Observe that there are no minors that
are non-degenerate and have exactly one periodic endpoint.

A chord in D with endpoints @ and b is denoted by ab. If two distinct chords
intersect in D, we say that they cross or that they are linked. Given a chord ab,
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without a lamination, we have ambiguity in defining pullbacks of ab. Namely, there
are two preimages of ¢ and two preimages of b, and, in general, there are several
ways of connecting the preimages of a with the preimages of b. Even if we prohibit
crossings and impose the sibling property, then there are three ways (two ways of
connecting the preimages by two chords and one way of connecting them by four
chords). However, if we know that the pullbacks must belong to £(m), then they
are well defined. We can describe the process of taking pullbacks explicitly, without
referring to £(m). One of the main objectives of this paper is to apply a similar
pullback construction to QML.

Thurston’s definition of QML is simply the following: QML consists precisely
of the minors of all quadratic laminations. In particular, it is true (although not at
all obvious) that different minors do not cross.

Offsprings of a minor. In order to state the first main result, we introduce
some terminology and notation. The convex hull of a subset A C R? = C will be
denoted by CH(A). Let ¢ and ¢; be chords of S, possibly degenerate, not passing
through the center of the disk. We will write H(¢) for the smaller open circle arc
bounded by the endpoints of ¢. Set D(¢) = CH(H (¢)); since H(¢) is an open arc,
D(¢) does not include ¢. If ¢; € D({), then we write £; < £. The notation ¢; < £
will mean #; € lT) Note that, if #; shares just one endpoint with ¢ and ¢; < ¢,
then it is not true that ¢; < £. It follows that if ¢1 < ¢, ¢; # £ then |[¢1] < |¢], where
|¢| denotes the length of ¢; in particular ¢; < £ implies |¢1| < |¢|. If {1 < £ (resp.,
£ < ), then we say that ¢; lies strictly behind (resp., behind) £. Observe that our
terminology applies to degenerate chords (i.e., singletons in the unit circle) too; a
degenerate chord ¢; = {b} is strictly behind £ if and only if b € H(¢), and ¢; < £
simply means that b € W

Let us now describe an inductive process that shows how dynamical pullbacks
of minors of quadratic laminations lead to the construction of the parametric lam-
ination QML. Namely, consider any non-degenerate minor m € QML. Suppose
that a point a € S lies behind m and ¢¥(a) is an endpoint of m for some minimal
n > 0. Observe that then a is not periodic as no image of a minor is located
behind this minor. Consider all numbers k such that o%(a) is an endpoint of a
minor mj, with ¢ < mj, < m (thus, a is separated from m by m} or m}, = m), and
the least such number I. Denote by m, the pullback of m; in £(m]) containing a
such that o' (1m,) is a major of £(m}) and call it an offspring of m. We also say
that m, is a child of mj. Observe that periodic minors are nobody’s offsprings.
Indeed, if m’ < m”,m’ # m/ are minors, oi(m’) = m”, and m’ is periodic, then
od(m”) = m’ < m” for some j, and it is well-known that this is impossible for
minors.

THEOREM A. Let m € QML be a non-degenerate minor. Then offsprings of a
minor m € QML are minors too (i.e., they are leaves of QML). Thus, if a point a
lies behind m and is eventually mapped to an endpoint of m under o5 then there
is a minor m, 3 a that is eventually mapped to m under os.

The first claim of Theorem A easily implies the second one.

Renormalization and baby QMLs. The empty lamination is the lamination
all of whose leaves are degenerate (i.e., are singletons in S).
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Consider two quadratic laminations £, and Ls. If Lo C L1, then we say that
L1 tunes Lo; in particular this means that any lamination trivially tunes itself. If
Lo ; Ly, then £ is obtained out of Lo by inserting some chords (which become
leaves of L£1) in gaps of L. If in this setting £o = L(ms2) for a non-degenerate
periodic minor my (we do not exclude the possibility Lo = £4), then £; is called
renormalizable. A lamination £ is almost non-renormalizable if there exists no non-
empty lamination £(ms) ; L1. We call £, almost non-renormalizable because if
it is as above while also £1 = £(m1) with non-degenerate periodic minor m; then,
as we saw above, £ is renormalizable, but only in a trivial way. Observe that in
[BOT17] almost non-renormalizable laminations are called oldest ancestors.

Let m be a non-degenerate periodic minor. We will write C(m) for the central
set of L£(m), i.e., the gap/leaf of £(m) containing the center of D and, therefore,
located between the two majors of £(m). Equivalently, C'(m) can be called the
critical set of £(m). Then o5(C(m)) is the convex hull of oo(S N C(m)). This is
also a gap or a leaf of £(m) having m as a boundary leaf (edge). We will see that,
if £(my) is renormalizable, then m; is contained in o9(C(m)) for some m as above.
Moreover, we can choose m so that £(m) is almost non-renormalizable.

All edges (i.e., boundary chords) of o3(C(m)) are leaves of QML. However,
there are also leaves of QML in o5(C(m)) that enter the interior of oo(C(m)). All
these leaves are precisely the minors of all laminations strictly containing £(m).
It follows that all renormalizable laminations are represented by minors in gaps
of the form o9(C(m)), where m is periodic and such that £(m) is almost non-
renormalizable. In other words, all minors of almost non-renormalizable laminations
and all points in S form a lamination QML"™" (“nr” from non-renormalizable) whose
infinite gaps are a special gap CA® and gaps of the form o2(C(m)), where m is a
minor such that £(m) is almost non-renormalizable. (There are also finite gaps of
QML""; each such gap is a gap of QML too, associated to a non-renormalizable
lamination.) Observe that for any periodic minor m the edges of the set o3(C(m))
are leaves of QML (they are minors of laminations that tune £(m)). The gap
CA°, the combinatorial main cardioid, is the central gap of QML"" (and of QML
itself). By definition, it is bounded by all periodic minors m, for which £(m) has
an invariant finite gap adjacent to m, or m is an invariant leaf of £(m). There
are no leaves of QML in CA€, except for the edges of CA®. The lamination QML™"
was introduced in [BOT17].

Consider a gap o2(C(m)) of QML"", where m is a non-degenerate periodic mi-
nor (then £(m) is almost non-renormalizable). Observe that o2(C(m)) is invariant
under o}, where p is the (minimal) period of m. There is a monotone map &,
from the boundary of o2(C(m)) to S that collapses all edges of o2(C(m)). We may
also arrange that &,, semi-conjugates ob restricted to the boundary of a2(C(m))
with o9. Under &,,, any leaf ab € QML lying in o9(C(m)) is mapped to a leaf
Em(ab) = &n(a)ém(b) of QML. In this sense, we say that leaves of QML lying in
o2(C(m)) form a baby QML. Thus, QML admits the following self-similar descrip-
tion: the lamination QML is the union of QML"™" and all baby QMLs inserted in
infinite gaps of the form o3(C(m)).

To complete this self-similar description we suggest an explicit construction for
QML" in terms of offsprings.

THEOREM B. The lamination QML"" is obtained as the set of all offsprings of
the edges m C CA° and the limits of such offsprings.
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Theorem B parallels the encoding of the Mandelbrot set in terms of “the Yoccoz
combinatorial analytic invariants” introduced by C. Petersen and P. Roesch in
[PRO8], more specifically see Corollary 3.23 from [PRO8] (we are indebted to one

“ie referees for this remark).

Dynamical generation of the QML. Theorem B is the basis for a dynamical
generation of the QML. The construction consists of three steps repeated countably
many times, and then one final step.

Step 1. First, we construct all edges of the combinatorial main cardioid. The
endpoints of these edges can be computed explicitly.

Step 2. For every edge m of the CA®, we construct all offsprings of m. As
follows from Theorem B, taking offsprings is as easy as taking pullbacks of a leaf
in an invariant lamination.

Step 3. Take the limits of all offsprings from step 2. We obtain a lamination
behind m with gaps of the form o2(C(m;)), where m; is a periodic minor behind
m such that £(m;) is almost non-renormalizable. Drawing these laminations for
all edges of CA€ gives the lamination QML"™".

Step 4. In each gap of the form o2(C(m;1)) as above, construct chords whose
&m, -images are leaves constructed at steps 1-3. In other words, we repeat our con-
struction for each baby QML, and then keep repeating it countably many times.
Let us denote the thus obtained family of leaves of QML by QML/". By [BOT17],
QML'" includes all minors of so-called finitely renormalizable quadratic lamina-
tions (“fr” comes from “finitely renormalizable”) so that the only minors that are
missing are the ones that correspond to infinitely renormalizable laminations, i.e.
laminations £ for which there exists a nested infinite sequence of pairwise distinct
laminations £, C Ly C ... such that £,, C £ for any n.

Step 5. To get the missing minors we now take the limits of leaves of QML/™.
Notice that, by [BOT17], these limit minors are, for the most part, degenerate
(i.e., they are singletons in S). The limit minors that are non-degenerate are ex-
actly those that correspond to the quadratic laminations £(m) that are infinitely
renormalizable with the following additional property: L£(m) coincides with a g-
lamination L., associated to a laminational equivalence ~,, such that the cor-
responding topological polynomial contains a periodic arc in its topological Julia
set.

Possible applications to other parameter slices. The problem of con-
structing models of the entire connectedness locus in degrees greater than 2 seems
to be rather complicated. Even in degree three there are no known “global” mod-
els of this space. In this brief discussion we will, therefore, talk about complex
one dimensional slices of parameter spaces of higher degree polynomials; moreover,
for the sake of simplicity we will only deal with the cubic case. Finally, for the
sake of brevity we assume familiarity with basic concepts of combinatorial complex
dynamics.

One of the main goals of this paper is to develop tools and techniques that can
be used to construct combinatorial models for complex one dimensional slices of
parameter spaces of cubic polynomials. Indeed, by C. McMullen [McMO0O], slices
of the cubic connectedness locus contain lots of copies of My to which our results
apply directly (in fact, the article [McMO0O] contains much more general results).
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However otherwise the situation is not as simple. A lot of results show that in
the cubic case various parameter slices are not locally connected. Lavaurs [Lav89]
proved that the cubic connectedness locus itself is not locally connected. Epstein
and Yampolsky [EY99] showed that the bifurcation locus in the space of real cubic
polynomials is not locally connected either. Buff and Henriksen [BHO1] presented
copies of quadratic Julia sets, including not locally connected Julia sets, in slices of
M. These are complications of analytic and topological nature.

There are also combinatorial hurdles that need to be overcome. To begin with,
Thurston’s Central Strip Lemma 1.4 fails already in the cubic case; e.g., if a cubic
lamination admits a critical quadrilateral @ associated with the critical strip S, and
a critical leaf £, then the forward orbit of () may come close to ¢ and then enter .5,
a dynamical phenomenon impossible in the quadratic case because of the Central
Strip Lemma. In addition, Thurston’s No Wandering Triangle Theorem (Theorem
1.11) also fails in the cubic case [BO04,BOO08]. This complicates both the task
of constructing a combinatorial model of slices of cubic polynomial spaces and the
task of applying the idea of the present paper to such slices even assuming that the
laminational model for (some) slices have been constructed.

In fact, we are not aware of many combinatorial models of such spaces (even
though we believe that a lot of them admit combinatorial models in terms of lami-
nations). An example one might consider is given in the paper [BOPT16c] which
we now discuss. Consider the tripling map o3 : S — S and fix a critical leaf D of o3.
Moreover, choose D so that it cannot be a boundary leaf of a periodic Siegel gap.
Then consider the space of all cubic laminational equivalence relations ~ which
have a critical class containing the endpoints of D (e.g., the endpoints of D may
well be a class of this equivalence relation). Observe that in this case the class
containing the endpoints of D must be finite.

To each such equivalence relation ~ we associate its minor set m.. defined as
follows. First, if there is a unique critical set (class) of ~, then m. is the convex
hull of its image. Second, if there are two ~-classes and both are finite, then we
choose the one not containing the endpoints of D and set m.. to be the convex hull
of the image of this ~-class. Finally, consider the remaining case which is as follows:
~ has a unique periodic critical Fatou gap of period k such that o% : U — o3(U)
is two-to-one. Evidently, this implies that o% : U — U is two-to-one. We show in
[BOPT16¢]| that there is a unique edge M., of U of period k. In this case we set
ma~ = U3(M~).

One of the main results of [ BOPT16c] is that the minor sets m.. can be viewed
as tags of their laminational equivalence relations ~p (so that the space of all such
laminational equivalence relations is similar to Ms) while the collection of their
convex hulls will give rise to a lamination £p. The corresponding space of all cubic
laminations that admit critical leaf D is S/ ~p. We hope that the ideas and results
of this paper can be properly adjusted to lead to a more explicit description of the
structure of S/ ~p at least for some critical leaves D. A likely candidate for that is

the critical leaf D = %%, first preimage of a o3-fixed angle 0. This is based upon the
fact that if D = %%, then we can prove the Central Strip Lemma for all laminations
admitting D, and this allows us to apply similar arguments to the present paper, in
particular concerning pulling back the minors and thus constructing new minors.
In general, the plan can be as follows. Consider a parameter slice and assume

that its combinatorial model exists. This model will be a lamination £ in D. In
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order to construct £, we will apply a similar procedure to the one described above
for QML. Steps 1-3 will be replaced with similar steps. However, step 4 will
operate with genuine baby QMLs rather than copies of £. Thus, the lamination £
will consist of a sublamination £ in whose infinite gaps we insert copies of QML
rather then copies of L™ itself.

Evidently, a lot of details in the actual implementation of the outlined approach
will be very different from what is done in the current paper. There are also com-
plications related to the fact that some quadratic techniques fail for higher-degree
polynomials. Instead of Thurston’s technique based on the Central Strip Lemma,
we will have to rely on methods developed in [BOPT16¢| or, more generally, in
[BOPT17]. However, even in the simplest cases of cubic parameter laminations, a
complete implementation of this program will require at least as much space as this
paper. Thus we postpone the details to future publications. Still, we believe that
the sketched technique should (hopefully!) work for some (but not all) complex one
dimensional slices.

To summarize, we think that while our dynamical approach to the construction
of the Mandelbrot set is quite consistent with the more static viewpoints of Thurston
[Thu85], Keller [Kel00], Lavaurs [Lav86, Lav89], and Schleicher [Sch09], it is
based upon a familiar pullback construction which has its own advantages, in par-
ticular making it more accessible to those familiar with that dynamically-based
process.

1. Majors and minors

In this section, we recall fundamental properties of quadratic laminations. Since
all statements here can be traced back to [Thu85], we skip references to this seminal
paper of Thurston until the end of the section (see also [Sch09] and [BOPT16|
where some of these results are more fleshed out). The exposition is adapted to
our purposes, and some facts are stated in a different but equivalent form (see
[BMOV13] for an extension of this approach to higher degree laminations). Some
proofs are omitted.

1.1. Notation and terminology. As usual, C is the plane of complex num-
bers identified with the real 2-dimensional vector space R2. For any subset A C C,
we let A denote its closure. For any set G C D of the form G = CH(G NS), we let
o2(G) denote the set CH(o2(G NS)). Chords of S on the boundary of G are called
edges of G. A chord of S with endpoints a, b € S is denoted by ab. If a = b, then
the chord is said to be degenerate, otherwise it is said to be non-degenerate.

We will identify R/Z with S by means of the map § € R/Z + 6 = 2™,
Elements of R/Z are called angles. The point 6 will be sometimes referred to as

the point in S of angle §. For example 0 and % are the only points of S lying on
the real axis, and O% is the corresponding diameter. In order to avoid confusion,

we will always write 0, 1, 1 rather than 1, —1, i, etc.

Let M be a chord of the unit circle. We will write —M for the chord obtained
from M by a half-turn, i.e., by the involution z — —z. Let S be the (closed) strip
between M and —M. Define the map 1 : [0, 3] — [0, 3] by ¥(z) =2z if 0 <z < §
and ¢¥(z) =1— 2z if % << %; the fixed points of ¥ are 0 and % Then it is easy
to see that given a chord ¢, we have |o2(¢)| = ¥(]¢]). The dynamics of ¢ shows that

for any non-degenerate chord ¢ there exists n > 0 such that |05 (¢)] > %. Hence
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if £M are the majors of a lamination then [M| > % and |o2(M)| < 4. Suppose

that |[M| > § and that m = o2(M) is disjoint from the interior of S. Then the
chords =M and the strip S are uniquely determined by m. Under the assumptions
just made, we call m minor-like, set S = S(m), and call it the central strip of m.
Observe that if m is degenerate, then S(m) = M = —M is a diameter, in particular,
it has no interior. We will write Q(m) for the quadrilateral CH(M U (—M)).

LEMMA 1.1. Suppose that £ = ab,a # b is a leaf of a lamination L such that

[0 < % and 0 ¢ H((). Then ¢ is minor-like. In particular if m is a minor and

£ < m, then £ is minor-like.

PrROOF. Either two or all four edges of Q(¢) are leaves of L. If only one vertex
of Q(¢) belongs to H(¢), then at least one edge of Q(¢) belongs to £ and crosses /,
a contradiction. Hence either two preimages a’, b’ of points a and b, respectively,
belong to H({), or none. Set ¢ = a’b’; then o4(¢') = £. Suppose that ¢ # ¢;

then |[¢'| < [€]. If oo(H(¢')) is S\ H(() then the fact that |¢| < i implies that

IS\ H(¢)] > 2 and hence [H(¢')| > %, a contradiction with {¢'| < |¢| < 3. Hence

oa(H(¢')) = H(¢) and |'| < §. Moreover, the restriction of o3 to H(¢') is one-to-
one and expanding. It follows that o9 has a fixed point in H(¢'). The only fixed

point of oy is 0, hence we have 0 € H(¢'), a contradiction. Thus, either ¢/ = ¢ or

Q) N H({) = @ (evidently, all vertices of @(¢) cannot belong to H(()). In the

former case it follows that ¢ = %% is-a minor, in the latter case ¢ is minor-like
by definition. For the last claim of the lemma, note that if m is a minor, then
0¢ H(m). O

A critical chord is a diameter of S. The endpoints of a critical chord are mapped
under o3 to the same point of S. A set G C D of the form G = CH(G' N'S) is said
to be semi-critical if G contains a critical chord. Equivalently, a semi-critical set
contains the center of the disk.

1.2. The Central Strip Lemma. A chord of S is said to be wvertical if it

separates 0 from %, and horizontal otherwise. The distinction between the two
types of chords is important for quadratic laminations.

LEMMA 1.2. Let m be a minor-like chord. Then o2(S(m)NS) = H(m).

PROOF. The set S(m)N'S consists of two arcs, each of length < . Both arcs
map to the same arc A of length < % < % On the other hand, A is bounded by

the endpoints of m, hence A = H(m). O

LEMMA 1.3. Let m be a non-degenerate minor-like chord. Then S(m) is bound-
ed by vertical chords.

The only degenerate minor-like chord for which the statement fails, is 0.

PROOF. Assume that the edges =M of S(m) are horizontal. Then @ C S(m),

hence, 0 € H(m) by Lemma 1.2. Thus 0 belongs to both S(m) and D(m). On the
other hand, by definition of minor-like chords, these two sets cannot have common
interior points. It follows that 0 is an endpoint of m. Let @ be the other endpoint.
Then § € H(m) N S(m), a contradiction. O
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Let us make the following observations.

(a) If £ is a chord of S such that [¢| < %, then |o2(f)] = 2[¢]; otherwise
o2(0)] = 1— 2/,

(b) We have |o2(¢)| > |¢| if and only if [¢| < &.

(c) If ¢ is disjoint from the edges £M of S(m) and [¢| > |M|, then ¢ is a
vertical chord in S(m) (here m = o9(M) is minor-like).

(d) Any non-degenerate chord eventually maps to a chord of length > %

LEMMA 1.4 (The Central Strip Lemma). Let m be a minor-like chord. Suppose
that the chords o (m) do not cross any edge of S(m) for any n > 0.

(1) If o3 (m)| < |m]| for a minimal n > 0, then oy~ (m) is a vertical chord
in S(m) distinct from either edge of S(m), and ol (m) < m;

(2) if o%(m) C S(m) for some n > 0, and n is the smallest positive integer
with this property, then the chord o (m) is vertical.

ProOF. We will write M for the edges of S(m). To prove (1), observe that
loy ™ ( )| > |M| which implies that o} ( ) C S(m) is a vertical chord. Observe
now that (2) follows from (1) since if 02( ) € S(m) is horizontal, then |05 (m)| <
Im|/2.

1.3. Minor leaf laminations. By definition, the Central Strip Lemma, and
by observations (a) — (d), a minor m has the following properties:

(SA1) it is minor-like;

(SA2) all o%(m), wheren > 0, are pairwise unlinked and do not cross any edges
of S(m):

(SA3) for any n > 0 we have |o%(m)| > |m|;

(SA4) if 0% (m) < m for some n > 0, then o (m) = m (thus, images of m are
disjoint from D(m) U S(m)\ (M U —-M)).

For brevity, in what follows we will refer to these properties simply as SA1,
SA2, SA3 and SA4. Clearly, SA3 always implies SA4. Moreover, by the Central
Strip Lemma, if SA1 and SA2 hold for a chord m, then SA3 and SA4 for this chord
are equivalent.

DEFINITION 1.5 (Stand Alone Minor). A chord m is called a stand alone minor
if properties SA1-SA3 hold. (Then automatically SA4 also holds).

Note that all points of S are stand alone minors. Any stand alone minor is the
minor of a certain quadratic lamination. Any such lamination can be constructed
by “pulling back” the minor and all its images. Such pullbacks are mostly unique
but, if m is periodic, allow for small variations.

In this paper we establish dynamical conditions that imply that certain leaves
of a lamination £ with minor m are minors themselves. We do this by verifying for
them that they are stand alone minors. This requires checking for them conditions
SA1 — SA3. It turns out that depending on the location of ¢ with respect to m
or the length of ¢ with respect to the length of m some of these conditions easily
follow.
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LEMMA 1.6. Let £ be a leaf of a lamination L with minor m. Then the following
holds.
(1) Choose the least i > 0 with |04(¢)] = |m|. Then |o3(£)| = |m| for any
j =i. Thus, if |£| < |m| then |¢] < |o2(f)| < ... < |o4(F)| so that property
SA3 holds for L. In particular, oh(m) < m,ch(m) # m is impossible.
(2) If m < £, then no eventual image of £ crosses the edges of S(¢) so that
property SA2 holds for £.

PROOF. (1) By assumption, |o%(¢)| > |m|. If |65 (£)| < |m| for some j > i, then,
by the Central Strip Lemma, for some k the leaf o%(¢) is vertical inside S(m), a
contradiction with the vertical pullbacks £M of m being the majors of £. Observe
that |m| < % as was explained in the paragraph right before Lemma 1.1. Hence
for each r,0 < 7 < i — 1 we have [05(¢)] < |m| < & which easily implies that
lo5(0)] < |os™ ), r=0,...,i— 1.

(2) Since the horizontal pullbacks of ¢ cross the vertical edges of S(m), which
are leaves of £, the vertical pullbacks =L of ¢ (which are the edges of S(¢)) must be
leaves of £. Hence eventual images of ¢ do not cross an edge of S(¢), as desired. O

A few well-known results concerning quadratic laminations with a given minor
m are summarized in Theorem 1.7; these results can be found in [Thu85], or can
be easily deduced from [Thu85].

THEOREM 1.7. If m is a stand alone minor, then there exists a quadratic lam-
ination L with minor m. Depending on m, the following holds.

(1) If m is non-periodic, then either
(a) a quadratic lamination L with minor m is unique, or
(b) if in addition ' m is non-degenerate, then there are at most two qua-

dratic laminations L C L with minor m one of which must be a
g-lamination L with finite gaps.

(2) If m is periodic and non-degenerate, then there exists a unique g-lamina-
tion L such that m is its minor.

(3) If m is periodic and degenerate, then there are at most four quadratic
laminations with m as a minor, and there exists a unique g-lamination L
whose periodic minor m has m as an endpoint. Moreover, if m # 0 then
m is non-degenerate.

In any case, there exists a unique g-lamination E(m) such that, if m is not a
periodic point, then any lamination with minor m contains Z(m) ; moreover, if m is
non-degenerate and non-periodic, then all leaves of EA(m) are non-isolated in E(m)
and all gaps of L(m) are finite. In case (1)(b), any leaf of L\ L(m) is eventually
mapped to vertical edges of Q(m).

We can now define a specific lamination £(m) with minor m.

DEFINITION 1.8. If m is a non-periodic or non-degenerate stand alone minor,
define £(m) as one of the laminations from Theorem 1.7 as follows: in case (1)(a)
the lamination £(m) is the unique quadratic lamination with minor m; in case
(1)(b), the lamination £(m) is the bigger of the two laminations with minor m; in
case (2) it is the unique g-lamination with minor m. In any case the central set of
L(m) is denoted by C(m). Finally, the q-lamination £ from Theorem 1.7 will be
denoted by E(m) and will be called the g-lamination associated with m.
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This defines £(m) except for the case when m is a periodic singleton (which
will be done later). By definition, m is the minor of £(m). Observe that the central
set C'(m) of a lamination £(m) is either a critical leaf (a diameter), a collapsing
quadrilateral, or an infinite periodic quadratic gap.

In the sequel, by a minor we mean a stand alone minor or, which is the same
by Theorem 1.7, the minor of some (not specified) quadratic lamination. Minors
are also identical to leaves of the QML. The lamination £(m) is called the minor
leaf lamination associated with a minor m. In order to construct £(m), we will
describe the process of taking pullbacks of chords.

DEFINITION 1.9 (m-pullbacks). Let m be a minor-like chord, let £ = ab be a
chord of S that is not linked with m. The m-pullbacks of ¢ are defined as follows.
If ¢ = m, then the m-pullbacks are the major(s) £M, the edges of S(m). If £ #m
is a point in S, then the m-pullbacks of ¢ are points in 02_1(6). Otherwise, there are
four points in o ' (¢NS), and there are two possible cases. First, £ C D(m) in which
case all four points belong to S(m). Then we define the m-pullbacks of ¢ as the
horizontal pullbacks of £. Second, £ C D\ D(m) in which case all four points belong
to S\ S(m). If m is non-degenerate or ¢ is disjoint from m, the m-pullbacks of ¢
are defined as the two pullbacks of ¢ that do not cross M or —M. In the remaining
case m is degenerate and is an endpoint of ¢; then we define the m-pullbacks of ¢
to be the pullbacks of ¢ that have length < i.

In the last case in Definition 1.9, if m %0 or if m = 0 but ¢ # 03, there are

exactly two m-pullbacks of ¢ while if m = 0 (hence M = 0%) and ¢ = M then there
are four such pullbacks: Oi, %%, %% and %O.

Observe that if (degenerate) m # 0 is an endpoint of ¢ then the m-pullbacks
of £ are horizontal. Indeed, in that case M #* 0% is a diameter of D with endpoints
+a. We may assume that a is in the upper half-plane. Then m = o9(a) < M.
If ¢ is small, then the m-pullbacks of ¢ are two short chords coming out of the
points +a (the other two candidate pullbacks are of length > i) Clearly, both
chords are horizontal. As we continuously increase the length of ¢, its pullbacks
also continuously increase. The longest option for ¢ is still shorter than a half-
circle, hence these chords are m-pullbacks of ¢. If at some moment they stop
being horizontal, then at this moment the endpoints of these chords not in M
must become either 0 or % Hence their common image ¢ must have an endpoint
02(0) = 0. However £ cannot have 0 as an endpoint, a contradiction.

Importantly, there is no way of making m-pullbacks depend continuously on
m. This is why the definition of m-pullbacks may not look very natural. Observe
the following. If m is a minor, then any chord of the form o%(m) is an m-pullback
of o5 (m) for n > 0. Indeed, this statement is non-trivial only for non-degenerate
m. In this case m-pullbacks are determined by the property that they do not
cross the edges of S(m) (by property (4) of minors, iterated images of m never
enter S(m)\ (M U—M)). The following theorem complements Theorem 1.7; recall
that in case when m is non-degenerate, or degenerate and non-periodic, £(m) was

defined above (see Theorem 1.7).

THEOREM 1.10. If m is a non-degenerate or non-periodic minor then iterated
m-pullbacks of iterated oo-images of m are dense in L(m).
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In fact, Theorem 1.10 inspires the definition of £(m) in the only remaining case
when m is a periodic singleton; in that case we define £(m) as the closure of the
family of all iterated m-pullbacks of M where M is the diameter mapped to m by
g9.

1.4. Classification of dynamic gaps. The key tool that allowed Thurston
to succeed in establishing a complete classification of gaps of quadratic laminations
was Theorem 1.11 (No Wandering Triangles Theorem). Let A be a triangle with
vertices in S. It is said to be wandering if all o5 (A) have non-empty disjoint
interiors for n > 0.

THEOREM 1.11. Wandering triangles do not exist.
The first step in the classification of all gaps is the following corollary.

COROLLARY 1.12. Let G be a gap of a quadratic lamination L. Then an even-
tual image of G either contains a diameter or is periodic and finite.

Semi-critical gaps are classified as follows:

e strictly preperiodic critical finite gaps with more than 4 edges;

e collapsing quadrilaterals, i.e., quadrilaterals that are mapped to non-
degenerate leaves;

e collapsing triangles, i.e., triangles with a critical edge;

e caterpillar gaps, i.e., periodic gaps with a critical edge.

e Siegel gaps, i.e., infinite periodic gaps G such that GNS is a Cantor set,
o4 maps G onto itself for some n, and o3 restricted to the boundary of
G is semi-conjugate to an irrational rotation of the circle under the map
that collapses all edges of G to points.

All edges of a caterpillar gap are eventually mapped to the critical edge. Any
caterpillar gap has countably many edges and countably many vertices.

Let A C S be a compact set. Denote by o4 : S — S the d-tupling map that
takes z to z? for any d > 2. We say that oq : A — 04(A) has degree k covering
property if there is a degree k orientation preserving covering f : S — S such that
0d4la = f|a and such k is minimal.

PrOPOSITION 1.13. Consider a gap G of a quadratic lamination L such that
no edge of G is a critical leaf. Then the map o2 : GNS — 02(GNS) has degree k
covering property, where k =1 or 2.

A bijection from a finite subset A of S to itself is a combinatorial rotation if
it preserves the cyclic order of points. Thus, a combinatorial rotation f : A — A
is a map which extends to an orientation preserving homeomorphism g : S — S,
topologically conjugate to a Euclidean rotation. A gap G of a quadratic lamination
L is periodic if o5(G) = G for some p > 0; the smallest such p is the period of
G. If G is of period p, then o restricted to G NS is the first return map of G.
By Proposition 1.13 the first return map of a finite periodic gap is a combinatorial
rotation. Moreover, if £ has no critical leaves then the first return map of an infinite
periodic gap G has the degree 2 covering property and G NS is a Cantor set.
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LEMMA 1.14. Let G be a periodic gap of a quadratic lamination L, and f :
GNS — GNS its first return map.

(1) If G is finite, then f is a transitive combinatorial rotation. In particular,
for any a, b € G NS such that ab is not an edge of G, the chord f*(ab)
crosses ab for some k > 0.

(2) If a # b € SN G and neither a nor b eventually maps to 0, then f*(ab)
is vertical for some k > 0. This is true, e.qg., if the interior of G contains
the center of D, the lamination L is non-empty, and a, b are arbitrary
points in G NS.

PRrROOF. The only claim that is not explicitly contained in [Thu85] is the last
one. Assume, by way of contradiction, that f*(ab) is horizontal for all k£ > 0. Then,
for every k, either both f¥(a) and f*(b) are in the open upper half of I, or both in
the open lower half of D. Suppose that a point x € S never maps to 0. Define the
address of x as U if z is above O% and as L otherwise. (The symbols U and L come
from “Upper” and “Lower”). The itinerary of x is an infinite word in the alphabet
{U, L} consisting of addresses of all f*(z) for k > 0. Similarly, we can define finite
itineraries of length N if, instead of all k£ > 0, we take all k£ such that 0 < k < N.
It is easy to see that the locus of points with a given finite itinerary is an arc in
S. Moreover, this arc has length 2=, where N is the length of the itinerary. It
follows that every infinite itinerary defines at most one point. In particular, since
by the assumption a and b have the same itinerary, we conclude that a = b, a
contradiction.

If G contains the center of I in its interior, then £ does not have critical
leaves. Hence oo has a degree k covering property on G, with £ = 1 or 2. We
claim that then 0 ¢ G. Indeed, suppose otherwise. Then it is easy to see that G
is invariant and, hence, f = o9 Now, if G is finite, then f fixes 0, hence cannot
act as a transitive combinatorial rotation. If G is infinite, then the fact that £ has
no critical leaves implies that f has degree 2 covering property on G. Using the
density of J,,5405 "(0) in both § and G NS, we conclude that G = D and L is the
empty lamination, a contradiction. Hence we may assume that 0 (and, therefore
%) do not belong to G. Since G is periodic, the points 0 and % do not belong to
iterated oo-images of G either. This implies that if a # b € GN'S then, by the first
paragraph, f¥(ab) is vertical for some k > 0. |

1.5. Classification of parameter gaps. Thurston classified all gaps of QML
(see Theorem I1.6.11 of [Thu85]); we outline this classification below.

Suppose first that G is a finite gap of QML. Then G is strictly preperiodic under
09. Moreover, it is the oo-image of a finite central set C' in a quadratic lamination
L. The gap C has 6 edges or more. Conversely, if a quadratic lamination £ has a
finite central gap C' with 6 or more edges, then o2(C) is a finite gap of QML. To
summarize, finite gaps of QML are precisely finite gaps of quadratic g-laminations
that are the images of their central gaps.

Suppose now that G is an infinite gap of QML. Then all edges of G are periodic
minors. It may be that G = CA°. Otherwise, there is a unique edge mg = m of G
such that all £ < m for any other edge ¢ of G. Then G C 02(C(m)). However, only
the edge m is on the boundary of o2(C(m)). Other edges of G enter the interior of
a2(C(m)).
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It is useful to think about G as a copy of CA® inserted into o2(C'(m)). To make
this more precise, observe that there is a monotone continuous map &, : S = S
with the following properties. Every complementary component of oo(C(m)) in S,
together with endpoints of the edge of o3(C(m)) that bounds it, is mapped to one
point. The map &, semi-conjugates the restriction a§|02(c(m))ﬂg with 2. Here
p is the period of g2(C(m)). The map &, is almost one-to-one on g2(C(m)) N'S
except that it identifies the endpoints of every edge of o3(C(m)). There is a unique
map &, with the properties just listed. Then G is a copy of CA® in the sense
that the &,,-images of the edges of G are precisely the edges of CA°. Moreover,
&m-pullbacks are well defined for all edges of CA€. Indeed, no endpoint of an edge
of o2(C(m)) has period > 1 under the first return map to o2(C(m)). Note that, as
a consequence, the period of m is the smallest among the periods of all edges of G.
Other periods are integer multiples of the period of m.

The case of CA° is somewhat special as this gap is not associated with any
minor. Thurston suggested to think of CA€ as being associated with the degenerate
minor 0. Indeed, with these understanding, most properties of infinite gaps of QML
extend to the case of CA°.

2. Derived minors, children, and offsprings: proof of Theorem A
Let us begin with a technical lemma.

LEMMA 2.1. Let £ be a leaf of a quadratic lamination L where either £ = L(m),
and m is not a periodic point, or L i§ a g-lamination. Moreover, let o (¥) ﬁa%(é) *
@ for some 0 < i < j. Then oi(€) is a periodic leaf. In particular, if £ < m and
o (€) = m for some n, then all leaves o (£) with o (£) < m, ok () # m, are pairwise
disjoint.

PROOF. By Definition 1.8, the lamination £(m) is either a g-lamination, or a
tuning of a g-lamination with finite gaps. Thus, either o}(f) = O’% (¢) is a periodic
leaf (mapped to itself under O'lzj 72'), or both leaves ¢4 (¢) and ¢} (£) are contained in
the same finite periodic gap G of some g-lamination. However, in the latter case,
neither leaf in question can be a diagonal of G because, by Lemma 1.14, eventual
images of such diagonals cross each other. Thus again ¢4(¢) is a periodic leaf.

Now, let £ < m, set n to be the smallest number such that o3 (¢) = m, and
assume that ob(£) N o3 (¢) # @ for some 0 < i < j < n. Then, by the above,
o5(¢) and m belong to the same periodic orbit of leaves. However, o5(m) < m is
impossible unless ¢4 (m) = m, by Lemma 1.6 . O

Let us now describe several ways of producing new minors ¢ from old ones, cf.
part (a) of Lemma I1.6.10a in [Thu85]. We say that a leaf ¢ separates the leaf ¢/
from the leaf ¢ if ¢/ and ¢ are contained in distinct components of D\ £ (except,
possibly, for endpoints). In particular, this means that ¢ # ¢ and ¢ # ¢.

DEFINITION 2.2 (Derived minors and children). Let m be a minor. Let my < m
be a leaf of £(m) such that eventual images of m; do not separate m; from m and
never equal a horizontal edge of the critical quadrilateral Q(m). Then m; is called
a (from m) derived minor. If, in addition, m; is mapped onto m under a suitable
iterate of oo, then my is called a child of m.

By Proposition 2.3 proved below, every derived minor is a minor, justifying its
name. If the central gap C(m) of L(m) is distinct from Q(m) = CH(M U (—=M))
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where M is a major of £(m) (i.e., if the horizontal edges of Q(m) are not leaves of
L(m)), then automatically no image of m; equals a horizontal edge of the critical
quadrilateral Q(m). Observe, that if £ < m and n is the minimal number such that
o3 (€) = m, then to verify that ¢ is a from m derived minor it suffices to verify that
¢ never maps to a horizontal edge of Q(m) and that o}(¢) does not separate ¢ from
m for 0 <i < n (for ¢ > n this will hold automatically by Lemma 1.6).

PROPOSITION 2.3. Let m be a non-degenerate minor. If a leaf my € L(m) is a
from m derived minor, then my is a minor. Moreover, the horizontal edges of the
collapsing quadrilateral Q(mq) belong to L(m), and if c%(my) = m is the first time
my maps to m, then oy~ (my) is a magjor of L(m).

ProoF. By Lemma 1.1, the chord m; is minor-like, i.e., SA1 holds. Let us now
check SA2. Since m; is a leaf of £, the chords o} (m;) are unlinked for k > 0. By
way of contradiction, suppose that for some k > 0 the chord o5 (m;) crosses an edge
M; of S(my). Then it crosses the edge — M, since otherwise o5 (1m;) would cross
my. On the other hand, we know that o5 (m;) cannot cross edges of S(m), hence
o5(my) C S(m). Since o§(my) is a leaf of £(m), it cannot be vertical. Thus o (m;)
is horizontal and separates the two horizontal edges of Q(m1). However, this implies
that o' (m;) separates m; from m. A contradiction with the assumption that
my is a derived minor.

Property SA3 follows from Lemma 1.6." To prove the next to the last claim,
observe that m must have two pullbacksin £(m), and its vertical pullbacks cannot
be leaves of £(m) as they are longer than the majors of £(m). The last claim follows
from the definition of a derived minor. (]

Next we prove a simple but useful technical lemma.

LEMMA 2.4. The following facts hold.

(1) If m is a minor, £ is a chord such that o5(¢) = m with k minimal, and
ok (0) is a horizontal edge of Q(m), then i =k — 1.

(2) If m' and m” are two distinct non-disjoint minors, then they are edges of
the same finite gap G of QML. The gap G is the image of a finite critical
gap of some g-lamination and is pre-periodic so that the forward orbit of
m' does not contain m”, and the forward orbit of m" does not contain m'.
Thus, if my < m are two minors and m is an eventual image of my, then
mp < m.

PrOOF. (1) By the choice of k, we have i > k — 1. Also, o5(¢) = m implies
that o5~*(¢) is a horizontal edge of Q(m). If, for some i > k — 1, the leaf o (¢)
is a horizontal edge of Q(m), then m is a periodic minor whose orbit includes a
horizontal edge of Q(m). However, the orbit of a periodic minor m includes a major
of £(m) but does not include horizontal edges of Q(m).

(2) Easily follows from the No Wandering Triangles Theorem. |

The next lemma is based on Proposition 2.3.

LEMMA 2.5. Let m be a minor. Let a € H(m) be a point and n be the smallest
integer such that o (a) is an endpoint of m. Let £ be a leaf of L(m) with endpoint
a chosen so that oy ~*(¢) is a major of L(m). Among all iterated images of ¢ that
separate a from m, choose the one closest to m; call it £'. If no iterated image of ¢

separates a from m, set £’ = £. Then {' is a from m derived minor.
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The leaf ¢’ is well defined as there are only finitely many iterated images £ < m
of ¢ (this is because no iterated image of m is behind m, which follows from the
Central Strip Lemma). Observe that ¢ defined in the lemma never maps to a
horizontal edge of Q(m) because o5~ (£) is a major of £(m), and majors of £(m)
do not map to horizontal edges of Q(m).

PROOF. By the choice of ¢ the leaf ¢’ is a pullback of m in £(m) such that no
forward image of ¢’ separates m from ¢ and no image of ¢ is a horizontal edge of
Q(m). Hence by definition ¢’ is a from m derived minor. O

We are ready to prove Theorem A. Observe that by Theorem A a minor m < m
is an offspring of a minor m iff ¢4 (M) = m for some n > 0.

PROOF OF THEOREM A. Let m be a minor. Let a € H(m) be a point and n
be a minimal integer such that ¢%(a) is an endpoint of m. Let us find the leaf ¢’
as in Lemma 2.5. Then ¢ € £(m) is a from m derived minor which is a child of
m. If a is an endpoint of ¢/, we are done. Otherwise we apply Lemma 2.5 to a and
¢, Observe that this time we will find the appropriate pullback of ¢’ with endpoint
a in the lamination £(¢'), not in £(m), and our choice will be made to make sure
that this pullback of ¢ does not pass through a horizontal edge of Q(¢'). On the
other hand, the pullback of ¢ that we will find does eventually map to m. After
finitely many steps the just described process will end, and we will find the desired
offspring of m with endpoint a. O

We complete this section with two lemmas that will be used later on.

LEMMA 2.6. Let m be the minor of a lamination L. Then any leaf £ € L such
that £ < m and |¢| > ‘mT‘ is a minor. In particular, if £ < m is sufficiently close to
m, then £ is a minor.

ProoOF. By Lemma 1.1, the chord ¢ is minor-like so that SA1 holds for m. Let
us verify property SA2 for £. Let |m| = 2X. Then the width of the strip S(m) is
A Ifle L, ¢ <mand |¢ > @ = )\, then, by Lemma 1.6(1), we have |o(¢)] > A
for every ¢ > 0. Hence eventual images of ¢ do not enter the interior of S(m)
horizontally. On the other hand, they cannot enter the interior of S(m) vertically
since the edges £M of S(m) are the majors of L. Since ¢ € L, eventual images of
£ do not cross the majors £M of £. Hence they do not intersect S(¢) at all, and ¢
has property SA2. By Lemma 1.6, the leaf ¢ also has property SA3. Hence ¢ is a
stand alone minor. ]

Lemma, 2.7 describes other cases when a minor can be discovered; assumptions
of Lemma 2.7 reverse those of Proposition 2.3.

LEMMA 2.7. Let m be the minor of a lamination L and ¢ € L is a minor-like
leaf such that m < £. Moreover, suppose that m < o (£) < £ is false for any n > 0.
Then £ is a minor. In particular, this is the case if m < £ < m where m € L is a
minor, o%(£) = m for some n, and no leaf o5(¢), 0 < i < n, separates m from £.

PROOF. By the assumptions, SA1 holds for ¢. By Lemma 1.6(2), property
SA2 also holds for £. To verify SA3, assume, by way of contradiction, that for some
minimal n > 0 we have |05 (¢)| < |¢|. Then by the Central Strip Lemma (which
applies because of SA2), the leaf o5~ (¢) C S(¢) is vertical. The fact that m is the
minor of £ now implies that of ~*(£) must be a vertical leaf in S(£) \ S(m) which
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in turn implies that m < o3(¢) < ¢, a contradiction. Thus, SA3 holds for ¢, and £
is a minor.

To prove the second claim of the lemma notice that by the Central Strip Lemma,
no eventual image of m is behind m. Together with the assumptions of the lemma
on / it implies that no eventual image of £ separates £ from m. By the above, £ is
a minor. ]

3. Coexistence and tuning

We start with a general property of minor leaf laminations. A chord £ is said
to coexist with a lamination £ if no leaf of £ is linked with /.

LEMMA 3.1. Let m be a minor, and L(m) the corresponding minor leaf lami-
nation. If Q C S(m) is a collapsing quadrilateral whose vertical edges coexist with
L(m), then Q is contained in the critical gap of L(m).

PROOF. If a horizonal edge ¢}, of @ and a leaf ¢ € L(m) cross in D, then, since
¢ cannot cross the vertical edges of @), £ must cross —¢;. Thus, ¢ is a vertical leaf of
L(m) in S(m), a contradiction. Hence horizonal edges of Q-also coexist with £(m).
Since m is non-degenerate, £(m) has no critical leaves. Thus @ is contained in the
critical gap of L(m). O

Coexistence of chords turns out to be stable under o5.

LEMMA 3.2. Suppose that a chord € coexists with a quadratic lamination L.
Then o3(€) also coexists with L.

PROOF. Assume the contrary: o3(f) is linked with some leaf ab of £. The
chords £/ divide the circle S into four arcs, which will be called the £/-arcs. The
two oo-preimages of a are in the opposite (=not adjacent) +¢-arcs. Similarly, the
two preimages of b are in the remaining opposite t/-arcs. It follows that any
pullback of ab in L crosses ¢ or —¢, a contradiction. |

Two laminations L4, Lo are said to coexist if no leaves 1 € L1 and ¢y € Lo
cross. Thus, coexistence of quadratic laminations is a symmetric relation.

LEMMA 3.3. Let my be a minor that is an offspring of a non-degenerate minor
mo. If L(m1) coezists with some quadratic lamination £ # L(mq) with minor m,
then either m is an endpoint of m1 and L is the corresponding lamination with a
critical leaf, or L is the g-lamination associated to L(m1), or mi < mg < m.

PrOOF. We assume from the very beginning that m is not an endpoint of m;.
It is easy to see that mj is non-periodic since m; is an offspring of mgy. Hence
by Theorem 1.7 the lamination £(m;) contains the critical quadrilateral Q(m;),
and £(my) is obtained from the g-lamination E(ml) (with finite gaps and all leaves
being non-isolated) by inserting vertical edges of Q(m,) in its central gap C(L£(my))
(in this way one adds Q(my) to £(m1)) and then pulling them back within E(ml)
The only two laminations that tune £(m;) are the ones whose minors are endpoints
of my. Hence, by our assumption, it follows that £ cannot have any leaves that do
not belong to £(m,). In other words, £ G L(m;). Since the majors £M of L are
leaves of £(my), then they are located so that S(m) D S(m;) and hence my < m.

Consider the case when my € L. If the majors £M; belong to L, it follows that
m = my. Since m = m; is not periodic, the central gap of £ must be finite. Since by
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Theorem 1.7 the horizontal edges of Q(my) are limits of leaves of E(ml) C L(my),
Q(my) must be a gap of £, and it follows that £ = £(m;). Suppose that m; € L
but +£M; do not belong to L. Let C be the critical set of the g-lamination L
associated to my. Then the horizontal edges of Q(m1) must be edges of C and
leaves of L. Indeed, some leaves of £ must map to mi, and the vertical edges of
Q(m1) do not belong to £. Hence the critical set of £ is a gap H containing the
horizontal edges of @Q(m1) in the boundary. Consider two cases.

If H is finite, then the fact that +=M; do not belong to £ and the fact that
edges of C are approached from the outside of C by leaves of Lc L(my) imply that
H c C is different from Q(my). Since no edges of H can cross £M; and the images
of the edges of H must be edges of o9 (6) (otherwise some of their eventual images
will cross), we have H = C and, hence, £ = L is the g-lamination associated to
ma.

If H is infinite, then H is a quadratic Fatou gap, and m; is an edge of its
image; it is well known that then H is periodic of period, say, n. It is known that
there is a unique periodic edge M of H, and it is of period m. Moreover, M and
its sibling —M are the majors of the unique lamination that has H as its gap; this
lamination is in fact a g-lamination and, evidently, it has to coincide with £ so
that m = o9(M) is an edge (actually, unique periodic edge) of oo(H). It is known
that all edges of H eventually map to m (it is a consequence of the Central Strip
Lemma), in particular so does m; (which is an edge of g9(H)) and mg (which is an
eventual image of my).

The Central Strip Lemma also imposes restrictions on possible locations of
iterated images of H. Namely, the entire gap oo(H) is located under m while all
other iterated images of H are located on the other side of m. Now, mg is a minor
of some lamination and an eventual image of m;. Since m is an eventual image of
my, it follows that m is an eventual image of mq. If mg is an edge of some iterated
image of H different from o3(H ), then m; < mg implies m < myg (recall that both
my and m are edges of o2(H)). Since mg is eventually mapped to m < mg, we
must have m ='myg, and we are done in this case. Thus we may assume that mg is
an edge of o9(H). Since the only edge ¢ of H such that m; < £ is the edge m, the
fact that m; < mg implies again that mo = m. All that covers the “trivial” cases
included in the theorem.

Now, if my ¢ L, then my is a diagonal of a gap G of £ whose edges are leaves
of £(my). Since my is approached by uncountably many leaves of £(m4) from at
least one side, G NS is infinite and uncountable (in particular, G is not an iterated
pullback of a caterpillar gap). Also, G is not an iterated pullback of a periodic
Siegel gap as otherwise mq, being a diagonal of G, will have some eventual images
that cross. Since G is infinite, it is eventually precritical and an image 04(G) = H
of G is a periodic critical quadratic Fatou gap containing as a diagonal the leaf
ob(my). As in the previous paragraph, there is a unique periodic edge M of H,
and it is of period n. Moreover, M and its sibling —M are the majors of a unique
lamination that has H as its gap; this lamination is in fact a g-lamination and,
evidently, it coincides with £ so that m = g2(M).

The majors £M; coexist with £ and cannot cross edges of H. Hence m; =
o9(My) is a diagonal or an edge of oo(H). Since m; < m and m; < myp, we have
that either mg < m, or m < mg, m # mgy. By way of contradiction assume that
m < mg, m # mgy. However, then under some iteration of oy the leaf mg, which is
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an eventual image of my, will be mapped back to oo(H) so that for the appropriate
eventual image o3 (mg) of mg we have o3 (mg) < m < mg, which is only possible for
the minor my if in fact mg = m, a contradiction. Thus, my < m, as desired. O

The next theorem describes some cases when one lamination tunes another
one. Recall that, by Definition 1.8, the central gap of a lamination £(mg) is either
a collapsing quadrilateral or an infinite gap.

THEOREM 3.4. Given minors mg, my and m, the following statements hold.

(1) If L(mq1) has majors £M; contained in the central gap of L(my), then
L(mo) C L(mq); if m1 # mo, then L(mq) # L(mg).

(2) If m, mo and my are non-degenerate minors such that my is a child of
mo, the lamination L£(my) coexists with £(m), and m is neither my nor
an endpoint of my, then L(m) C L(my).

(3) If my is an offspring of mo and L(m) G L(my), then L(m) G L(mo).

PRrROOF. (1) Let the central gap C(mg) of L£(mg) be a collapsing quadrilateral.
Then the fact that £M; C C(mo) implies that my = mo and L(mq) = L(my).

Let now C(myg) be an infinite gap. Then mg is periodic of the same period
as C(mg). Let us write My for the pullback of mg that is invariant under the
first return map f of C(mp) N'S. Assume that M; separates —M; from My (or
M; = —M; is critical). Consider iterated pullbacks of M; chosen so that each next
pullback separates the previous pullback from M. By definition of mi-pullbacks,
all these pullbacks belong to £(my). Since these f-pullbacks converge to My, we
have My € L(my). Similarly; all edges of C(mg) are in fact mq-pullbacks of M,
which implies that all edges of C'(mg) belong to L£(m1). In the same way, it follows
from definition of m;-pullbacks that all other leaves of £(myg) are in fact leaves of
L(mq). Hence, L£L(mg) C L{my).

(2) Let =M, =M, be the majors of L(m), L(m;), for i = 0, 1. Since the “trivial”
cases of Lemma 3.3 do mnot hold, then by Lemma 3.3 we see that m; < mg < m.
Thus, S(my) C S(mg) C S(m). Since m; maps to either My or —My under some
iterate of oo (see Proposition 2.3), the majors £ My coexist with £(m). We have
+My C S(mg) C S(m), therefore, £ My are contained in the central gap C(m) of
L(m). The result now follows from (1).

(3) By Theorem A we may assume that mi; < me_1)/m < --- < My, < Mo
where m; 1)/, is a child of m;/, for i =0, ..., n — 1. Applying (2) inductively,
we see that L(m) G L(m,_1)/2), -, L(m) G L(mg). O

4. Almost non-renormalizable minors: proof of Theorem B

We begin by discussing which minors can be approximated by offsprings of a
given minor. Recall the following fact.

LEMMA 4.1 ([Thu85], Lemma I1.6.10a, part (b)). Let mqg be a non-degenerate
minor. If m < myg is a minor, then mgo € L(m). In particular, 0% (m) cannot cross
mg forn > 0.

The next lemma elaborates on Lemma 2.5.
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LEMMA 4.2. Suppose that . < m are two minors and oy (m) = m for a
minimal n > 0. Then the following holds.
(1) If no image o(m) for 0 < i < n is a minor separating m from m, then
m is a child of m (in particular, m € L(m)).
(2) Let m=mg <mq < -+ < myp_1 < m, =m be all images of m that are
minors separating m fromm. Then m; is a child of m;1q for0 <i < r—1.

PROOF. (1) To prove that m € L(m), consider oi(m) for 0 < i < n — 1.
Choose the greatest i < n such that o(m) = m’ satisfies m < m’ < m. Then no
iterated image of m’ separates 7 from m. We claim that no image of m’ enters
S(m) vertically. Indeed, otherwise the next image of m’ would have to enter C'(m)
either separating m and m (impossible by the choice of 7), or behind 7 (impossible
because m is a minor). Hence the leaves ol (m), where j =n—1,n—-2 ..., 1
are pullbacks of m in £(m). Thus, m’ € L(m) and is, therefore, a from m derived
minor. If ¢ > 0, then m’ is a minor separating m from m, a contradiction with the
assumptions of the lemma. We must conclude that ¢ = 0'and m’ = m, in particular,
m € L(m). By definition, it follows that m is a child of m.

(2) Follows from (1) applied to pairs of minors m; < myy1, where 0 < @ <
r—1. (]

The following lemma relates approximation by dynamical pullbacks and ap-
proximation by parameter pullbacks.

LEMMA 4.3. Let mg be a mon-degenerate minor. Suppose that m < mg is a
minor approzimated by pullbacks of mg in L(m). Then m can be approzimated by

offsprings of my.

PROOF. We may assume that m is never mapped to mg under os. By Lemma
4.1, the chord my is a leaf of L(m). Let £, be a sequence of leaves of £(m) converging
to m and such that o5"(¢,) = my for some k,,. Since infinitely many £,’s cannot
share an endpoint with m, then we may assume that all ¢,, are disjoint from m
in D. We may assume that ¢, < mg. If £, < m for infinitely many values of n,
then, by Lemma 2.6, we may assume that these ¢,, are minors, and, by Lemma 4.2
and Theorem A, they are offsprings of mg. Suppose now that ¢,, > m for infinitely
many values of n; we may assume this is true for all n. Consider all images of ¢,
that separate m from mg and choose among them the closest to m leaf o}(¢). By
Lemma 2.7 o4(¢) is a minor, and by Theorem A ¢4(¢) is an offspring of mg. This
completes the proof of the lemma. O

We can now prove the following theorem.

THEOREM 4.4. Let mg be a periodic non-degenerate minor, and let m < mg be a
non-degenerate minor. Suppose that any lamination £ G L(m) satisfies L G L(my).
Then m s a limit of offsprings of my.

PRrROOF. By Lemma 4.3, it suffices to approximate m by pullbacks of mg in
L(m). Consider the lamination £; consisting of iterated pullbacks of mg in L(m)
and their limits (this includes the iterated images of mg since mg is periodic);
then £; C L(m). If £ = L(m), we are done; let £; # L(m). Then, by our
assumption, £q ; L(mg). However, since mg € Ly, it follows from Theorem 1.7
that £1 = L(myg), a contradiction with our assumption. O
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We need a lemma dealing with tuning of g-laminations.

LEMMA 4.5. Let £, ; Lo be g-laminations where L1 is not the empty lami-
nation. Then L1 has a periodic quadratic Fatou gap, and, therefore, its minor is
periodic and non-degenerate.

PROOF. Suppose that £, does not have a periodic quadratic Fatou gap. Then
all gaps of £; are either (a) finite, or (b) infinite eventually mapped to a periodic
Siegel gap for whom the first return map is semiconjugate to an irrational rotation
(the semiconjugacy collapses the edges of the gap). Evidently, no leaves of Lo can
be contained in finite gaps of £; because both laminations are g-laminations. On
the other hand, no leaves of L5 can be contained in periodic Siegel gaps because
any such leaf would cross itself under a suitable power of oo (this conclusion easily
follows from the semiconjugacy with an irrational rotation). Thus, if £; does not
have a periodic quadratic Fatou gap then no new leaves can be added to £; and
the inclusion £, G L is impossible. ]

Recall that a quadratic lamination £ is called almost non-renormalizable if
L ; L implies that £’ is the empty lamination. Note that all almost non-
renormalizable laminations with non-degenerate minors are g-laminations (if £ is
not a g-lamination with a non-degenerate minor then by Theorem 1.7 there exists
a unique non-empty g-lamination L ; L, a contradiction). The role of almost
non-renormalizable minors is clear from the next lemma.

LEMMA 4.6. Let L be a lamination with non-degenerate minor m. Then there
exists a unique almost non-renormalizable lamination Lo C L with non-degenerate
minor mo such that m C o2(C(my)).

ProOOF. Consider a lamination £’ C £ with minor m’. Then, by definition,
m < m’. Hence minors of all laminations contained in £ are linearly ordered. Take
the intersection Ly of all non-empty laminations contained in L£; note that this
intersection is not the empty lamination as every non-empty lamination contains a
leaf of length at least % It follows that L is itself a non-empty lamination and that
the minor mg of Ly is such that m’ < mg for every non-empty lamination £ C £
(here m/ is the minor of £). Evidently, m C o2(C(my)) (notice that if £’ C L then
C(L) o> C(L)). |

The set QML™ by definition consists of all singletons in S and the postcriti-
cal sets of all almost non-renormalizable laminations. The following theorem was
obtained [BOT17]; for completeness, we prove it below.

THEOREM 4.7. The set QML"" is a lamination.

ProOF. We only need to prove that QML"™" is closed in the Hausdorff metric.
We claim that QML"™ is obtained from QML by removing all minors that are
contained in the interiors of the gaps o2(C(m)) (except for their endpoints), where
m are non-degenerate almost non-renormalizable periodic minors. The theorem will
follow from this claim (indeed, the set of removed leaves is open in the Hausdorff
metric).

Firstly, we show that a leaf ¢ of QML"" cannot intersect the interior of a gap
G = 02(C(m)) with m € QML. Indeed, otherwise the fact that all our leaves are
leaves of QML implies that £ C G. Hence the majors +L of L(¢) are contained in
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C(m). By Theorem 3.4, part (1), we have then £(m) & L(£). By definition, this
contradicts the fact that ¢ is a minor of an almost non-renormalizable lamination.

Secondly, suppose that m is a minor that does not intersect the interior of any
gap o2(C(m)), where m is a non-degenerate periodic almost non-renormalizable
minor. We may assume that m is non-degenerate. We claim that m € QML"™", i.e.
that m is an edge of the postcritical set of an almost non-renormalizable lamination.
By way of contradiction, assume otherwise. Observe that m is an edge of the
posteritical set of the g-lamination £(f). By the assumption, it follows that £(r)
is not almost non-renormalizable. Hence by Lemmas 4.5 and 4.6 there exists a
non-empty almost non-renormalizable lamination £’ such that m C o2(C(L')), a

contradiction with the assumption on m.
|

Let mg be a non-degenerate periodic minor. Define the set OL(mg) consisting
of all offsprings of my and their limits. The following theorem is a reformulation of
Theorem B.

THEOREM 4.8. The lamination QML"" is the union of OL(my), where mg runs
through all edges of CA°.

ProoF. Consider an almost non-renormalizable minor m € QML"™". There is
an edge mg of the combinatorial main cardioid such that m < mg. We claim that
m € OL(mg). Indeed, consider all pullbacks of mg in'£(m) and all limit leaves of
such pullbacks. By [BMOV13], this collection £’ of leaves is a lamination, and
by construction £ C L(m). Since L£(m) is almost non-renormalizable, £’ = L.
Hence, pullbacks of mg in £(m) approximate m. By Lemma 4.3, the minor m is
approximated by offsprings of my.

Now, let m € OL(my), where mg is an edge of CA®. Then there is a sequence
of minors ¢; converging to m such that each ¢; is an offspring of my. We claim
that m is almost non-renormalizable, i.e., that m € QML"™". Assume the contrary:
m is contained dn a gap U of QML"™" and intersects the interior of U. The only
way it can happen is when U = 05(C(m;)) is the postcritical gap of an almost
non-renormalizable lamination £(m;). Then ¢; must also intersect the interior of
U for some 14, hence ¢; must be contained in U. By Theorem 3.4, part (1), we have
L(m1) G L(¢;). Since ¢; is an offspring of my, it follows by Theorem 3.4, part (3),
that £(m1) & L(mg). However, this is impossible because my itself is almost non-
renormalizable, and the only lamination strictly contained in £(my) is the empty
lamination. (]
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