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Abstract— Stroke is the leading cause of long-term disability.
Stroke patients can recover faster with personalized therapy
treatments. This requires both clinical assessments and in-home
assessments of daily activities. In this paper, we propose a daily
activity recognition and assessment system for stroke patients.
Our system is able to classify daily activities in real home
environments and quantitatively evaluate upper body motions
while preserving privacy by utilizing depth videos. Specifically,
our system collects the depth videos and skeletal joint data of daily
activities using a VicoVR sensor. It then recognizes and localizes
clinically relevant actions from continuous untrimmed depth
videos using a customized convolutional de-convolutional
network. In addition, it assesses the extent of reach and speed
metrics of both hands using skeletal joint data. The system has
been tested on simulated cooking videos and real-life cooking
videos in various kitchens with different room layouts and light
conditions. The action recognition accuracies for simulated and
real-life videos can reach 90.9% and 87.5%, respectively. With the
valuable assessment feedback of our system, therapists can make
better personalized treatments for stroke patients.

Keywords—VicoVR, Wireless, Android, Daily Activity
Recognition, Assessment, Stroke Rehabilitation

1. INTRODUCTION

Nearly 800,000 people each year experience strokes in the
U.S. [1]. Moreover, about 50% report hemiparesis, or weakness
of one side of the body afterwards [1]. Stroke patients can
recover through rehabilitation. To make the rehabilitation
treatment effective, it is essential for a therapist to personalize
and refine the rehabilitation plan for each patient. This requires
the therapist to monitor the patient’s health status and recovery
progress continuously. Traditional rehabilitation involves
patients performing exercises in a clinic or at home, monitored
by a therapist [2, 3]. A patient usually receives treatment only a
few hours per week, and evaluations of progress are typically
only done at the beginning and end of an episode of care. As a
result, the health information and feedback from the treatment
are limited. High demands are placed on the therapist’s
professional knowledge to identify the most effective and
appropriate methods of treatment for the individual patient.

We propose a new daily activity recognition and assessment
system (DARAS) using a wireless depth sensor VicoVR to
perform activity recognition and assessment in real-home
settings. The system is comprised of three modules: a data
logging module, an action localization module and an action
assessment module. The data logging module was built using a
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VicoVR and an android application. It records the depth videos
and skeletal data of a patient’s daily activities. It utilizes a
customized convolution-deconvolution neural network [4]
which learns the spatial features of videos, and preserves the
temporal information and recognizes the actions from
untrimmed videos. The action assessment module quantifies the
motion performance using evaluation metrics based on skeletal
data, such as hand extent of reach and movement speed.

This paper makes three contributions: (1) To the best of our
knowledge, we are the first to provide a video-based system to
observe the daily activities of a stroke patient in a kitchen and
quantitatively evaluate the upper body motions. To reduce the
layout size and connection overhead of the system, we utilize
the wireless VicoVR sensor paired with a mobile device. (2)
The proposed system is tested on realistic video records, while
most of the existing activity recognition approaches are trained
and tested on datasets collected in well-controlled laboratory
environments. (3) This work studies the effective use of
temporal action localization of untrimmed depth videos in
everyday stroke rehabilitation. Specifically, we customized the
convolution-deconvolution (CDC) neural network so that it can
be used with untrimmed depth videos as input.

This paper is organized as follows. We survey the related
work in Section II. We describe the implementation of the data
logging system, the temporal action localization algorithm and
the activity assessment in Sections III, IV and V, respectively.
We present the experiments and results in Section VI and
conclude our work in Section VII.

II.  RELATED WORK

A. Daily Activity Recognition

Recognizing daily activities is an important technology in
pervasive computing. It benefits many real-life, human-centric
problems such as stroke rehabilitation [5]. Various sensors have
been investigated to capture and log human activities.

Videos have been widely studied for activity recognition.
With the advance of computing ability and the improvement of
sensor techniques, various data modalities including RGB data,
depth data and skeletal data have been introduced. To recognize
an action from a given video, features are extracted and encoded
to represent the input video. The encoded features are processed
by a classifier to output the class of the action [6]. Without using
deep learning, hand-crafted features need to be extracted. A
large set of gradient-based descriptors have appeared for action



recognition. Examples are histogram of oriented gradients
(HOG) [7], cuboid descriptor [8] and scale-invariant feature
transform (SIFT) [9]. In recent years, with the development of
Convolutional Neural Networks, features can be learned and
extracted by a network [6]; the deep-learning convolutional
features generally outperform the hand-crafted features.
Previously, actions were manually segmented for training and
testing. In recent years, researchers have started investigating
temporal action localization, which detects the start and end of
the actions in input video streams.

B. Daily Activity Assessment

Walking and gait measurement are vital metrics for health
and rehabilitation assessments. However, the assessment on
walking-related motions focuses on lower body movement only,
whereas the quality of upper-body movement is also important
for patients with stroke. In [20] researchers sought to analyze
the data using metrics otherwise immeasurable by standard in-
clinic tests, e.g., movement intensity/smoothness. One downside
to these approaches is that it paints an incomplete picture of
rehabilitation status. Assessing each action category will better
depict the rehabilitation status, and thus, is preferred by
therapists.

III.  IMPLEMENTTION OF ACTION LOGGING MODULE

The action logging module of our daily activity recognition
and assessment system (DARAS) records depth and skeletal
data from a VicoVR sensor [10]. Fig. 1 shows the module
diagram. The main components are a VicoVR sensor and an
android-based application. The VicoVR sensor is a Wi-Fi
accessory that provides wireless full body and positional
tracking to Android devices. To set up a reliable connection, the
VicoVR broadcasts the depth data over a private wifi network.
The data stream includes three-dimensional coordinates of
skeletal joints, and a raw depth map with a maximum resolution
of 640x480 at 30 frames per second [10]. The Android device
connects to the WiFi hotspot and runs a lightweight application
built with Unity and the Nuitrack SDK. The application records
the depth frames at maximum possible transfer rate. The skeletal
joints’  three-dimensional positions are recorded in
synchronization with each corresponding frame. In this test
implementation, data were saved to an external SD card on the
android device, for transfer offsite, to be used with temporal
action localization and assessment.

IV. ACTION LOCALIZATION ON DEPTH VIDEOS

The depth videos and skeletal joint data of daily activities
were collected by using the action logging app. The collected
data consisted of continuous untrimmed video. In order to
perform real world assessments, a process of recognizing the
specific actions and locating these actions from the untrimmed
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Fig. 1. The diagram of action logging module.
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videos is desired. Shou et al. [4] proposed a convolutional-de-
convolutional network to recognize the actions at the frame
level. Thus, the recognized actions can be located based on the
per-frame action labels.

A. Convolutional-De-Convolutional (CDC) network

Convolution neural networks (CNN), where the dimension
of the convolution kernel is two-dimensional, have been widely
used in image classification, detection, segmentation and other
tasks. For video analysis, the temporal features need to be
preserved. However, 2D convolution cannot capture the timing
information very well. So, 3D convolution neural networks (3D
CNN) were proposed in [11]. Although the 3D CNN can learn
the advanced semantic abstraction of time and space, the output
of video time sequence length is decreased. Thus, the fine-
grained time has been lost. Shou et al. [4] proposed a
Convolutional-De-Convolutional (CDC) network which places
CDC filters on top of 3D ConvNets. The CDC network
performs spatial down-sampling to extract the action semantics
and temporal up-sampling to preserve the time information.
Thus, it provides the prediction score at each frame, which can
be used to locate the actions.

B. CDC networks on depth kitchen videos

The CDC network has been evaluated using THUMOS’ 14,
an untrimmed RGB sport video dataset. The evaluation results
show that the model outperforms state-of-the-art methods in
video per-frame action labeling. Due to the privacy requirement,
anetwork that can perform temporal action localization on depth
action videos is desired in DARAS. However, the proposed
CDC network was designed for RGB videos. So, we adopted the
CDC network for depth videos and then fine-tuned the network
using a new collected depth video dataset.

Given a piece of untrimmed depth video (as shown in Fig.
2), it is input into the CDC network, in which the 3D convolution
neural network is used to extract semantics, and the CDC
network is used to predict the dense frame number level scores.
Since a depth image only has one grey channel compared to a
RGB image, the input of the network is adjusted for depth
videos. The time boundary of action instances is identified by
grouping the same labels of frames.

V. ACTION ASSESSMENT

If therapists can track patient progress regularly, care can be
adjusted accordingly. Quantitative measures of movement
quality are key metrics when reporting on the functional status
of stroke patients. Kinematic metrics in relation to joint
displacements, analysis of hand trajectories and velocity profiles
have been commonly used to perform quantitative measures.
For this reason, maximum extent of reach and speed related
metrics of hands are calculated in the DARAS system. Each
piece of information can be used to track improvement over
time, or indicate a decline where intervention is needed.

Extent of reach was calculated for each recognized action.
Extent of reach was defined as the distance from the hand joint
to the shoulder center, where shoulder center is the middle of the
left and right shoulder joints. We also calculated maximum and
mean velocities for each action. For a healthy user, the ratio
between mean and maximum velocity should be close to 1.0, but
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Fig. 2. A framework for positioning of temporal action recognization and
localization.
in the presence of movement disorders this metric could detect
changes during the movement pattern related to various
acceleration and deceleration periods.

VI. EXPERIMENTS, RESULTS AND ANALYSIS

There are three main modules of the DARAS system. The
action data logging app, action recognition and action
assessment. In this section, we first present the training and
prediction results of the CDC network using a simulated kitchen
dataset and the recognition results on real-life cooking data.
Since there are more upper-body movements among cooking
activities in a kitchen, kitchen environments were chosen to test
the DARAS system. Finally, we present the assessment results
for each recognized action category.

A. Action recognition and localization

a) Datasets: We collected a cooking action dataset in a
simulated kitchen to train the action recognition and
localization network, CDC, and collected a cooking dataset in
real kitchens to test the prediction accuracy.

Simulated kitchen dataset. We collected kitchen action
videos in a simulated kitchen to train the CDC network. Though
there are public depth-video datasets containing kitchen related
actions, they were recorded using the Kinect sensor. Due to the
difference of the depth images generated from these two types
of sensors, we decided to record a new dataset using the
proposed DARAS app to keep consistency of depth format in
both training and test datasets. Eleven subjects were recruited to
perform three pre-designed action scenarios at least three times.
In total, 100 continuous, untrimmed action video sequences
were logged. The scenarios of continuous actions are described
below:

e Scenario 1: Walk into the kitchen carrying a gallon of
milk and put it in the fridge. Get out the peanut butter and
jelly from the overhead cabinet. Get out the knife from
the drawer. Get out the cutting board from the cabinet
below. Walk out of the kitchen.

e Scenario 2: Walk into the kitchen. Get out the pasta from
the overhead cabinet. Get out the strainer from the
cabinet below. Rinse off the strainer in the sink and put
it on the counter. Use the towel to dry it. Walk out.
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e Scenario 3: Walk into the kitchen. You notice that
someone has spilled some cereal on the floor! Get the
broom and dustpan and sweep it up. Carry the swept up
cereal to the trashcan. Come back and sit in the chair.

In-home kitchen dataset. We collected real-life cooking
videos from three subjects as a test dataset. In order to test the
ability of the CDC network in different levels of difficulty, we
also designed two types of test sequences performed in the home
kitchen, as well as actual cooking.

e Level 1: Test Scenarios. The subject was asked to
perform the test scenarios which are exactly the same as
the actions recorded in the training set. In this level, we
tested whether the system can recognize the actions in
videos where only the backgrounds are different.

e Level 2: Action Combinations. The subject was asked to
perform actions from the test scenarios in a random
sequence. In this level, we tested whether the system can
recognize the actions in randomly selected sequences
with different backgrounds.

e Level 3: Cooking. We recorded videos when the subject
was cooking. One subject made salad and the other
subjects made sandwiches for themselves.

Based on the input from occupational therapists, each frame
has been labeled to one of these 8 action categories which are
background (no wuser/no classification), walking, sitting,
reaching above the head, reaching forward, reaching below the
waist, hand manipulation and sweeping.

b) Training and prediction via simulated dataset: We
first trained and evaluated the CDC network using the
simulated kitchen dataset. Although the CDC filter can be
applied to input of arbitrary size, due to the memory limitation,
we applied a 32-frame sliding window to segment the videos
without overlapping. We then fed each window with per-frame
labels into the CDC network. Note that the frames in one
window can have different action labels. The CDC network was
initialized by the model trained on the THUMOS dataset and
trained on the collected dataset. The stochastic gradient descent
was applied for optimization. Following conventional settings,
the momentum was 0.9 and the weight decay was 0.005. We
randomly selected 90 videos as the training set and the
remaining 10 videos as the test set. To find the suitable initial
learning rate, we trained the network using different learning
rates ranging from 0.0000001 to 0.01. The network was trained
for three times at the same learning rate and the training
iteration was 10000. The average per-frame recognition
accuracies of different learning rates were shown in Fig. 3.
Learning rate 0.001 generated the best per-frame accuracy.

After the best initial learning rate was found, we initialized
the learning rate as the optimal value 0.001, and then decreased
by 0.1 for each 5000 iterations, resulting in a total of 30,000
iterations. To evaluate the ability of detecting the actions, the
per-action accuracy was calculated. To test the ability of
localizing the actions, the per-frame accuracy was calculated.
The recognition and localization results of the simulated dataset
are shown in Table I. The normalized confusion matrix of per-
action recognition is shown in Fig. 4. The background category
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Fig. 3. Anexperiment of selecting suitable hyperparameter, learning rate.
The network was trained on ramdomly selected 90 videos from the
simulated dataset and tested on the rest of 10 videos for three times
under different learning rates. The avarage per-frame accuracies
were calculated. The accuracy was highest when the learning rate
was 0.001.

was excluded for per-action accuracy performance. Reaching
over head, sitting and hand manipulation categories show
exceptional recognition results.

¢) Prediction via in-home dataset. The CDC model has
been trained and tested using the simulated kitchen dataset.
Actions can be detected and localized by grouping the per-frame
labels. But our aim is to provide a system to recognize actions
from real-life cooking videos. As a result, the in-home kitchen
dataset was collected to evaluate the trained model, using actual
cooking sequences from three participants in three different
kitchens (Cooking). One participant prepared a salad, and two
made sandwiches. There were many differences between the
training videos and the real-life cooking sequences, e.g., the
background. In order to investigate which factors affected the
recognition accuracy, two additional types of videos were
collected: (1) the test scenarios performed in each participant's
kitchen (Test Scenarios), and (2) a different combination of
actions from the test scenarios (Action Combinations).

Table II shows the per-frame accuracies and per-action
accuracies of Test Scenarios, Action Combinations and Cooking
in different kitchens. For each participant, we randomly selected
ten videos for Test Scenarios and three videos for Action
Combinations. In addition, the cooking videos we collected last
at least two minutes. For action localization, the highest per-
frame accuracies of pre-designed actions and cooking actions
were 90.7% and 84.3%, respectively. For action detection, the
highest per-action accuracies of pre-designed actions and
cooking actions were 90.9% and 87.5%, respectively.
Comparing the recognition results between the simulated
kitchen sets and the test scenario sets, the change of background
did not affect the recognition accuracy. However, the
performance dropped on the action combinations tests, which
indicates that the sequence of action could be a feature of
recognition. The normalized confusion matrix of per-action
recognition is shown in Fig. 5. The background category was
excluded for per-action accuracy evaluation. The recognition
accuracies of walking, reaching below the waist and sweeping
categories were above 90%.
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TABLE L PER-FRAME ACCURACIES AND PER-ACTION
ACCURACIES OF TEST VIDEOS FROM SIMULATED KITCHEN DATASET

Average Accuracy

Per frame | Per action

Simulated kitchen 85.1% 92.1%

TABLE IL PER-FRAME ACCURACIES AND PER-ACTION ACCURACIES
OF TEST SCENARIO, COMBINATION AND COOKING TEST VIDEOS FROM
THREE DIFFERENT KITCHENS.

. Action .
Test Scenarios Combinations Cooking
Per Per Per Per Per Per
frame | action | frame | action | frame | action
Kitchen 1 88.5% | 87.3% | 79.2% | 85.7% | 81.0% | 80.0%
Kitchen2 | 87.9% | 89.2% | 85.9% | 86.4% | 84.1% | 82.4%
Kitchen 3 90.4% | 90.1% | 90.7% | 90.9% | 84.3% | 87.5%

B. Assessments

We obtained the action segments by grouping continuous
frames of the same per-frame labels together. The assessments
were performed for each recognized action using joint data.
Specifically, we use the timestamps of the first and last frames
of an action to locate the corresponding joint data samples. With
five trials selected for each action, we averaged the results of
each assessment metric. The assessment outcomes of maximum
extent of reach and speed metrics are presented in Table III.

VII. DISCUSSION

The aim of this study is to provide an automatic daily activity
recognition and assessment system that can provide sufficient
quantitative assessments of daily activities of stroke patients to
occupational therapists so that they can design more
personalized treatment plans to help patients recover faster. We
are the first to design and test a depth video based model in real-
life cooking videos. We have shown the assessment results on a
set of action categories, which has significant implications for
clinical rehabilitation practice. We discuss each of these points
below. We conclude with limitations and next steps for research.
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Fig. 4. Normalized confusion matrix of recognizing actions from
simulated kitchen dataset.
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kitchen dataset.

We demonstrated the application's capability to provide
continuous data collection by creating the training and testing
datasets in different kitchen environments. The CDC neural
network was customized for recognizing and localizing actions
from continuous depth videos. The results showed that the
considered actions can be recognized from real-cooking videos
efficiently. We found that the accuracy of recognizing the
manipulation category decreased in real-kitchen test. In the
training set, actions of rinsing off and drying the strainer were
considered as the manipulation category, while in cooking test
set, other actions, such as cutting vegetables, were also
considered in the manipulation category. We also found that the
accuracy of recognizing sitting decreased in real-kitchen test.
Since the training set was collected in one room with chair
position fixed and the sitting action doesn’t contain much upper-
body movement, the recognition result may decrease when
testing in different rooms with different setting. As a result, the
manipulation and sitting categories in the training set is not
complex enough for recognizing these actions from real-life
videos. We demonstrated that the quantitative assessment can be
performed on clinically relevant action categories. The tools
used in test scenarios were placed on the left side of the cabinets.
From our observation, most subjects turned to open the cabinets
using their left arms, which matches the assessment result of
reaching above the head and reaching below the waist actions.

TABLE IIL

This study has a few limitations. First, the Wi-Fi module of
the Samsung tablet S3 does not have enough capability to
receive all the depth frames sampled from the sensor. Second,
the current system can only handle the situation with one person
in the view. The next step for our research is to set up the system
in kitchens with both healthy subjects and stroke patients. The
collected data will be used to create a more comprehensive
training set for a more robust model. In addition, we will
investigate the assessment results for both healthy and
pathologic subjects. At last, we will improve our algorithm to
handle the situations with multiple persons in the view.
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QUANTITATIVELY ASSESSMENT OF CLINICALLY RELEVENT ACTIONS PERFORMED BY SUBJECTS IN THEIR KITCHENS. ASSESSMENT METRICS

INCLUDES EXTENT OF REACH IN MILLIMETER, AND SPEED METRICS IN MILLIMETER/S. FIVE RECOGNIZED TRIALS OF EACH ACTION CATEGORY WERE SELECTED TO
PERFORM THE ASSESSMENT. THE AVERAGE VALUES WERE CALCULATED FOR EACH METRIC.

Actions Extent,” Extent, Extent, Extentsq Max speed Mean speed Max/Mean

L R L R L R L R L R L R L R

Reaching above * | 280.1 184.0 | 326.1 237.2 | 243.6 | 246.1 351.8 | 315.7 | 3146.5 3497.5 | 4984 | 4704 6.3 7.5
Reaching forward | 134.8 152.4 | 205.1 1984 | 2456 | 2193 | 3412 | 297.6 | 18415 1543.7 7162 | 673.5 2.6 2.2
Reaching below 2224 | 2265 | 248.0 | 1944 | 291.6 | 216.5 | 344.6 | 295.7 | 22824 19934 | 694.8 | 604.0 3.1 2.8
Manipulation 236.7 175.7 148.1 74.1 202.3 | 2442 | 3032 | 2899 | 6157 476.6 129.9 109.8 4.6 3.5
Walking 2185 | 2044 | 1684 | 1594 | 234.8 | 245.7 | 3142 | 329.1 | 3014.7 | 29704 | 985.6 | 997.1 3.1 3.0
Sitting 80.1 59.3 189.5 188.4 199.0 | 233.7 | 2832 | 299.2 | 187.6 254.6 45.2 51.7 4.6 5.2
Sweeping 246.3 182.4 | 246.7 | 2392 | 246.6 | 219.8 | 327.6 | 3053 | 2118.7 | 2581.7 7453 | 853.2 3.5 3.0

 Reaching above represents reaching above the head actions and reaching below represents reaching below the waist actions. > Extent x, y, z means the hand maximum extent of reach projection in depth, lateral and
vertical dimensions. Extent 3d means the hand maximum extent of reach in 3d space. Max/Mean represents the ratio between maximum and mean velocities.
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