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Fluid droplets can be induced to move over rigid or flexible surfaces under external or body forces. We
describe the effect of variations in material properties of a flexible substrate as a mechanism for motion.
In this paper, we consider a droplet placed on a substrate with either a stiffness or surface energy gradi-
ent, and consider its potential for motion via coupling to elastic deformations of the substrate. In order to
clarify the role of contact angles and to obtain a tractable model, we consider a two-dimensional droplet.
The gradients in substrate material properties give rise to asymmetric solid deformation and to unequal
contact angles, thereby producing a force on the droplet. We then use a dynamic viscoelastic model to
predict the resulting dynamics of droplets. Numerical results quantifying the effect of the gradients estab-
lish that it is more feasible to induce droplet motion with a gradient in surface energy. The results show
that the magnitude of elastic modulus gradient needed to induce droplet motion exceeds experimentally
feasible limits in the production of soft solids and is therefore unlikely as a passive mechanism for cell
motion. In both cases, of surface energy or elastic modulus, the threshold to initiate motion is achieved
at lower mean values of the material properties.
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1. Introduction

The deformation of a soft substrate induced by the presence of a resting fluid droplet raises issues of force balance at
the contact line, and how to determine the shape of the substrate free surface. These issues have been addressed with
experiments, modeling and theory (Andreotti , 2016a; Bardall, 2018; Bostwick, 2014; Jerison, 2011; Limat, 2012;
Style, 2012; van Gorcum, 2019). A more challenging problem, addressed in this paper, is to characterize conditions
under which the droplet can be set in motion and to determine the subsequent dynamics, specifically the droplet speed.

In durotaxis, the motion of cells is induced by a rigidity gradient in the surrounding soft material (Palchkesko,
2012). In this process, the cells are thought to actively sense and relay changes in stiffness and respond by contract-
ing and altering cellular shape to migrate to regions of higher stiffness. Interestingly, this direction of migration is
opposite to the observations of droplet motion over substrates of varying thickness (Style, 2013b), in which substrate
thickness is considered to be a surrogate for bulk elastic modulus. In those experiments, inorganic fluid droplets are
observed to migrate towards thicker, less hard regions of the substrate. On the other hand, recent computational results
have suggested that fluid droplet migration across a true rigidity gradient may be biased toward stiffer regions of the
substrate (Bueno, 2018), and may depend on the balance of interfacial energies at the fluid-solid-vapor contact line.
Considering this mixture of evidence concerning durotaxis, analysis of modes of migration of fluid droplets will help
resolve the issue, and potentially provide insight into the driving mechanisms for living cells.

Droplet motion on rigid surfaces can be induced by periodically patterned surface energies (Chaudhury, 1992;
Herde, 2013; Sun, 2019), thermal gradients (Onuki, 2005), and magnetic fields (Dhir, 2004). In general, droplet
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motion (on rigid or soft substrates) relies on contact angle asymmetry, resulting in a force imbalance that drives motion.
However, droplet motion across soft substrates also depends on elastic deformation, and the resulting elastic energy,
as well as bulk energy dissipation, within the substrate. The analysis of these quantities is central to determining
conditions under which a fluid droplet will passively migrate across a soft surface.

Throughout the paper, we consider a two-dimensional droplet. This simplification, though unphysical, allows us
to analyze the contact angle asymmetry resulting from nonuniformity in substrate properties. In §2 we formulate
equations for the substrate deformation due to the droplet, as well as due to gradients in substrate properties such as
elastic modulus and surface energy. Boundary conditions are formulated that help determine the free surface of the
substrate and the structure of the contact line. The equations are analyzed using Fourier transforms. We show the
dependence of contact angle asymmetry on the degree of substrate nonuniformity as a precursor to analyzing droplet
motion in §3. In that section, we formulate a model that predicts the droplet velocity, based on the rate of energy
dissipation. Finally, in §4 we summarize and interpret the results. In particular we deduce that for practical purposes,
a gradient in surface energy is more likely to induce droplet motion than a gradient in elastic modulus.

2. Substrate Gradients and Asymmetric Deformation

When a fluid droplet rests on a horizontal rigid substrate, surface energies γ at the phase interfaces govern the equilib-
rium contact angle θY of the droplet through Young’s equation:

γsg− γls = γlg cosθY . (2.1)

Here, subscripts on surface energy terms γ refer to the associated interface, e.g., γsg is the surface energy of the
solid-gas interface. Throughout the paper, the liquid-gas surface energy will be denoted by γ , while solid surface
energies will remain specified as in (2.1). Young’s equation results from minimization of the total surface energy at
the phase interfaces; it represents horizontal force balance at the contact line. The remaining vertical force caused
by the liquid-gas interface of the droplet is assumed to be resolved by the property of an ideal rigid solid substrate
in which strains approach zero as the elastic modulus tends to infinity. When the difference in solid surface tensions
γsg− γls is positive, the droplet-substrate system is termed hydrophilic, with an equilibrium Young’s angle θY < 90◦,
whereas if the difference is negative, the droplet-substrate system is hydrophobic, with Young’s angle θY > 90◦.

In contrast, for a fluid droplet resting on a soft solids substrate, non-zero deformations occur in the substrate,
influenced by the capillary forces of the droplet that introduce elastic energy into the system. This elastic energy
competes with surface energy so that determination of the equilibrium contact angle via minimization of the total
system energy becomes more complex.

The vertical component of force from the liquid-gas interface pulls up on the substrate creating a wetting ridge,
as illustrated in Fig. 1. The solid interfaces on either side of the triple point angle downward, opposing the upward
pull of the droplet edge. This creates a total force balance at the contact line quantified by Neumann’s triangle (Style,
2012, 2017):

~ϒsg +~ϒls +~γ =~0. (2.2)

In this generalization of Young’s equation, solid surface stress vectors ~ϒ balance the liquid surface tension vector~γ of
the droplet edge. It is worth noting that surface stress ϒ differs in definition from surface energy γ , in that surface stress
is the force per length needed to add surface area by stretching, while surface energy is the energy needed to generate
one unit of area. The wetting ridge represents a deformation magnitude of approximately the elastocapillary length
Le = γ/E, where E is the elastic modulus of the solid substrate. With typical liquid surface energies γ ≈ 6× 10−2

N/m, we find that micro-scale deformations occur at elastic moduli E of order 1−10 kPa. Note that in Style (2013a)
it is shown that, though deformation is negligible in stiff substrates with elastocapillary length Le much less than one
micrometer (Le � 1 µm), if Le is larger than the atomic length scale, then Neumann’s triangle is still formed at the
elastocapillary length scale despite visibly negligible deformation.

For droplets of size comparable to the elastocapillary length Le, substrate deformations are significant enough to
alter the apparent contact angle θ of the droplet (shown in Fig. 1) several degrees from Young’s angle θY in (2.1)
(Style, 2012). While deviation from Young’s angle causes total surface energy to increase, deviations that reduce the
angle at which the ///////////liquid-gas///////////interface///////meets/////the //////solid/////////surfacedroplet edge meets the solid surface reduce the upward
pull of the liquid edge, resulting in shallower deformations and smaller strains, ////and/////////strains ////and//////thus///////lowerlowering the
elastic energy. The competition between these two trends generally results in hydrophobic droplet-substrate systems
having equilibrium angles slightly greater than those predicted by (2.1), and similarly results in hydrophilic systems
having slightly smaller equilibrium angles than those predicted by (2.1) (Bueno, 2018; Style, 2012).



GRADIENT INDUCED DROPLET MOTION OVER SOFT SOLIDS 3 of 14

θ

θls θsg
droplet

substrate

air
γ

Υls Υsg

FIG. 1: Wetting ridge formed by a resting fluid droplet. Solid surface stress ϒ balances surface tension of the contact
line γ . Apparent contact angle θ illustrated in blue as the angle the fluid surface forms with the far field horizontal
(dashed line), while solid contact angles θls and θsg define respectively the angle of the liquid-solid and solid-gas
interfaces form with the far field horizontal.

When a contact line at the fluid-solid-vapor interface advances or recedes, there are associated advancing and
receding contact angles θa and θb respectively such that θb 6 θ 6 θa, where θ is the static contact angle of the
droplet. These dynamic contact lines exhibit hysteretic behavior. Specifically, when fluid is added to the droplet, the
contact angle will increase to the advancing angle θa, and the contact line will advance, eventually settling when the
equilibrium contact angle is reached. If the additional fluid is then removed, the contact angle decreases down to the
receding contact angle θb before the contact line recedes to achieve the droplet equilibrium shape (Ahmed, 2014).
These angles can be found experimentally using the tilted plate method, in which a droplet is rested on a horizontal
plate which is then tilted until the droplet begins to migrate. The contact angles formed at the front and back of the
droplet are the advancing and receding contact angles respectively (Ahmed, 2014).

By introducing a gradient in a substrate property such as the elastic modulus or the surface energy, the apparent
contact angle of a resting droplet becomes spatially dependent, resulting in contact angle asymmetry. With enough
bias in one direction, the force imbalance generated by the asymmetry can overcome pinning forces at the contact
line and droplet motion is induced. Experimental results of Style (2013b) determine that a contact angle difference of
∆θ = θa−θb ≈ 1.8◦ is sufficient for water droplet motion over a silicone gel substrate. These results were independent
of the droplet size, which is a factor in the equilibrium contact angle of the droplet on a soft surface. This suggests
that motion is governed by the relative difference in contact angles as opposed to the advancing and receding angles
themselves.

We consider a droplet on a soft substrate with either a gradient in elastic shear modulus G(x) or a gradient in solid
surface energy γs(x). We focus on incompressible substrates, for which the Poisson’s ratio is ν = 1/2. In addition, for
simplicity we assume that the strain dependence of the surface stress is negligible compared to the mean surface stress.
This allows us to set the surface stress ϒ (x) equal to γs(x). Furthermore we restrict the analysis to that where the solid
surface energies are equal (γls = γsg), and are given by γs(x). /////This ////////allows///us////to ////////assign //a //////////Young’s///////angle///of///////////θY = 90◦.
For the case of applying a gradient in shear modulus G(x), we will take the solid surface energy γs to be constant and
in the case of the surface energy gradient we will take shear modulus G to be constant.

By allowing spatially dependent substrate properties such as the modulus G and the surface energy γs, the static
deformation caused by a resting fluid droplet becomes asymmetric. Altering these properties also affects the apparent
contact angle of the droplet (Lubbers, 2014; Style, 2012, 2013b). Thus, allowing stiffness or surface energy to become
spatially dependent in general allows the two dimensional droplet to have an asymmetric profile and a nonzero differ-
ence in contact angle from left to right. This contact angle difference determines the onset of droplet motion (Ahmed,
2014; Style, 2013b) and we will use the magnitude of contact angle difference of 1.8◦, from Style (2013b), as a bench-
mark for inducing droplet motion. We acknowledge that this threshold may be a function of the liquid-solid system as



4 of 14 BARDALL, CHEN, DANIELS, SHEARER

shown in Gao (2017) but, as indicated by the results of Style (2013b), it is not a function of the droplet size.
To formulate equations for deformation of the substrate, we define a reference configuration Ω = {(x,z) : −∞ <

x < ∞,0 < z < h}, representing the substrate with no deformation. Deformation is then given by a mapping (u,w), so
that the deformed substrate in physical space is {〈x+u(x,z),z+w(x,z)〉 : (x,z) ∈Ω}, and the substrate free surface is
{〈x+u(x,h),h+w(x,h)〉, |x|< ∞}. We assume the droplet covers the portion {(x,h),−R < x < R} of the free surface,
in the reference configuration.

Since deformations within the substrate are small, we assume linear elasticity, for which the stress-strain relation
is written

τi j(x,z) = 2Gεi j(x,z)− p(x,z)δi j, i, j = 1,2, (2.3)

where G = G(x) is the shear modulus of the substrate (independent of z) and p represents the isotropic stress in the
solid. Along with this stress tensor, for a finite value of p we enforce the incompressibility condition that the strain
tensor ε (the symmetric part of ∇〈u,w〉) is trace-free:

εxx + εzz = ∂xu+∂zw = 0. (2.4)

Note that subscripts i, j = 1,2 are used interchangeably with x,z in notation for stress and strain tensors. Stress
boundary conditions due to the effect of the droplet on the free surface in general allow two different contact angles θl
and θr (on the left and right, respectively). Since the droplet contact angles may differ from Young’s angle θY due to
elastic deformation at the wetting ridge, tangential contact line forces fl and fr are given by

fl,r = γ(cosθl,r− cosθY ). (2.5)

Then stress boundary conditions at the substrate free surface are:

τxz|z=h = flδ (x+R)− frδ (x−R)+ k2
ϒ ∂xxu|z=h (2.6a)

τzz|z=h = γ sinθl δ (x+R)+ γ sinθr δ (x−R)−Π H(R−|x|)+ϒ ∂xxw|z=h (2.6b)

Here, γ is the fluid surface stress, ϒ = γs is the solid surface stress, Π is the fluid pressure underneath the droplet, and
δ and H are respectively the Dirac-delta and Heaviside distributions. In addition to the contact line force and pressure
distribution, traction terms resulting from the deformed surface curvature are included in (2.6). These linearized
curvature terms are necessary for the model to provide bounded displacement solutions at the contact line. The
parameter k2 represents the average square value of ∂xw at the contact line, as outlined in Bardall (2018).

Π

h
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z
x

γ sinθr

fr

θr

FIG. 2: Depiction of the undeformed substrate geometry and the capillary influence on the substrate. The pressure
distribution Π compresses the substrate under the droplet, and the contact line pulls the substrate up to form the wetting
ridge (inset right).

We employ a Fourier transform approach, generalized to allow for asymmetric contact angles and deformation, to
solve the equilibrium equation

∇ · τ̄ =~0, (2.7)

with fixed boundary conditions at the base of the substrate (u(x,0) = w(x,0) = 0), and the stress boundary conditions
(2.6) at the free surface z = h.

Next we compute the elastic energy in the substrate for the calculated deformation field. The total energy func-
tional, the sum of the elastic and surface energies, depends on static contact angles θl,r that appear in the boundary
conditions. Consequently, by minimizing the total energy we determine the static contact angles θl,r for given surface
stress or substrate stiffness distributions.
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2.1 Surface Energy Gradient

In this subsection, we solve the model equations for the case of a gradient in solid surface energy γs. Under our
assumptions we have that ϒ (x) = γs(x), and we prescribe a small perturbation to the average surface energy γ̄s:

γs(x) = γ̄s +aγ̃s(x) γ̃s(x) =
2
π

arctan(x/L) (2.8)

where a is a small parameter so that the total variation in surface energy is much less than the average surface energy
(|a| � γ̄s), and L controls the length over which the surface energy gradient is present. In order to solve the model
equations ∂ jτi j = 0, we utilize an expansion in the small parameter a and apply a Fourier transform in the horizontal
direction on the scale separated boundary value problems. We expand with respect to small parameter a : p = p0 +
ap1 +O(a2), etc. Applying scale separation to the force balance equations, we have, at O(1) :

∇p0 = G∆〈u0,w0〉, (2.9a)[
G(∂zu0 +∂xw0)− k2

γ̄s∂xxu0
]

z=h = flδ (x+R)− frδ (x−R) (2.9b)[
2G∂zw0− p0− γ̄s∂xxw0

]
z=h = γ

(
sinθlδ (x+R)+ sinθrδ (x−R)

)
−ΠH(R−|x|), (2.9c)

and at O(a) :

∇p1 = G∆〈u1,w1〉, (2.10a)[
G(∂zu1 +∂xw1)− k2

γ̄s∂xxu1
]

z=h =
[
k2

γ̃s∂xxu0
]

z=h (2.10b)[
2G∂zw1− p1− γ̄s∂xxw1

]
z=h =

[
γ̃s∂xxw0

]
z=h. (2.10c)

Note that the scale separated equations (2.9a), (2.10a), together with (2.4), have the same homogeneous PDE structure.
We define the Fourier transform pair to be

F
[

f (x)
]
=
∫

∞

−∞

f (x)e−isxdx = f̂ (s), F−1[ f̂ (s)
]
=

1
2π

∫
∞

−∞

f̂ (s)eisxds = f (x).

Transforming the system (2.4), (2.9a), (2.10a) and eliminating pi, i = 0,1, we obtain ordinary differential equations
governing the transformed displacements:

(∂zz− s2)2ŵ j = 0, û j = is−1
∂zŵ j, ( j = 0,1).

The general solution satisfying the boundary conditions at z = 0, takes the form

û j(s,z) = iC j(s)ψ ′(sz)+ iD j(s)ψ ′′(sz), ŵ j(s,z) =C j(s)ψ(sz)+D j(s)ψ ′(sz) (2.11)

where

ψ(ξ ) =−sinh(ξ )+ξ cosh(ξ ), ψ
(k)(sz) =

dk

dξ k ψ(ξ )|ξ=sz = s−k(∂z)
k
ψ(sz), k = 0,1,2, · · · . (2.12)

The Fourier coefficients C j(s), D j(s) ( j = 0,1) are obtained by transforming the shear and normal boundary conditions
(2.6), leading to the linear system of equations:

C j(s)β (s)+D j(s)β �(s) = M j(s), C j(s)µ(s)+D j(s)µ�(s)= N j(s), (2.13a)

where the right hand sides of the linear system, obtained by transforming the right hand sides of (2.9b), (2.9c), (2.10b)
and (2.10c) respectively, are defined as

M0(s) = ( fr + fl)sin(sR)+ i( fr− fl)cos(sR), (2.14a)

N0(s) = γ(sinθl + sinθr)cos(sR)+ iγ(sinθl− sinθr)sin(sR)−2Π
sin(sR)

s
, (2.14b)

M1(s) =
ik2

2π

(
F
[
γ̃s
′]

s

)
∗
(
s∂zŵ0

)
z=h, N1(s) =

i
2π

(
F
[
γ̃s
′]

s

)
∗
(
s2ŵ0

)
z=h, (2.14c)
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and the coefficient functions, obtained from the left hand sides of (2.9b), (2.9c), (2.10b) and (2.10c), are given by:

β (s) = Ḡs
(
ψ(sh)+ψ

′′(sh)
)
+ k2

γ̄ss2
ψ
′(sh), β

�(s) = Ḡs
(
ψ
′(sh)+ψ

′′′(sh)
)
+ k2

γ̄ss2
ψ
′′(sh), (2.15a)

µ(s) = Ḡs
(
3ψ
′(sh)−ψ

′′′(sh)
)
+ γ̄ss2

ψ(sh), µ
�(s) = Ḡs

(
3ψ
′′(sh)−ψ

′′′′(sh)
)
+ γ̄ss2

ψ
′(sh). (2.15b)

These formulas define the solution of the boundary value problem (2.10), from which we can calculate deformations as
well as stresses and strains within the substrate, which are used in the energy calculations of §2.3. Note that in (2.15),
the shear modulus G is constant in the case of the surface energy gradient outlined here (Ḡ = G). These expressions
will be used throughout the remainder of the paper; in the case of a shear modulus gradient we will have γ̄s = γs.

2.2 Stiffness Gradient

Here we outline the static asymmetric two dimensional solution to the model for the case of a gradient in elastic shear
modulus G of the form:

G(x) = Ḡ+aG̃(x) G̃(x) =
2
π

arctan(x/L) (2.16)

where Ḡ is the average modulus, a is a small parameter with Ḡ (|a| � Ḡ), and L is as defined previously. Following a
similar procedure as §2.1, we obtain the same boundary value problem (2.9) at O(1), and at O(a) we have:

∇p1 = Ḡ∆〈u1,w1〉+ G̃∆〈u0,w0〉+ G̃′〈2∂xu0,∂xw0 +∂zu0〉, (2.17a)[
Ḡ(∂zu1 +∂xw1)− k2

γs∂xxu1
]

z=h =−
[
G̃(∂zu0 +∂xw0)

]
z=h (2.17b)[

2Ḡ∂zw1− p1− γs∂xxw1
]

z=h =−
[
2G̃∂zw0

]
z=h, (2.17c)

Note that the first order correction boundary value problem (2.17) is markedly different in structure from (2.10). By
transforming system (2.17), we obtain

(∂zz− s2)2ŵ1 =
is

2πḠ

[
−2F

[
G̃′
]
∗
(
(∂zz− s2)ŵ0

)
+
(

sF
[
G̃′
])
∗
(
s−1(∂zz + s2)ŵ0

)]
, (2.18)

together with û1 = is−1∂zŵ1 from the incompressibility condition (2.4). Solving, we obtain:

û1 = iC1(s)ψ ′(sz)+ iD1(s)ψ ′′(sz)+ iF̂1(s,z), ŵ1 =C1(s)ψ(sz)+D1(s)ψ ′(sz)+ F̂0(s,z), (2.19a)

where
F̂k(s,z) =

1
2s3

∫ z

0
Φ(s,z−ξ )ψ(k)(sξ ) dξ , k = 0,1,2,3

and Φ(s,z) denotes the right hand side of (2.18) and ψ is as defined in (2.12). Switching the order of integration in
F̂k(s,z), we obtain a useful version of the non-homogeneous solution to the first order correction terms:

F̂k(s,z) =
i

4πḠs2

∫
∞

−∞

[
−2F

[
G̃′
]
χ
[
(∂zz−η

2)ŵ0(η ,z),ψ(k)]+ (sF [G̃′])χ[η−1(∂zz +η
2)ŵ0(η ,z),ψ(k)]] dη ,

(2.20)
in which the operator χ is defined as

χ
[
g(η ,z),ψ(k)(sz)

]
=
∫ z

0
g(η ,z−ξ )ψ(k)(sξ ) dξ .

Applying boundary conditions from (2.9), (2.17), we obtain the same linear system (2.13) as previously, but the right
hand sides of the O(a) equations are now given by:

M1(s) =
i

2π

[(F
[
G̃′
]

s

)
∗
(
s−1(∂zz + s2)ŵ0

)]
z=h
− Ḡs

[
F̂2(s,h)+ F̂0(s,h)

]
− k2

γss2F̂1(s,h), (2.21a)

N1(s) =
i

2π

[
2
(F

[
G̃′
]

s

)
∗∂zŵ0− s−1

(F
[
G̃′
]

s

)
∗
(
s−1(∂zz− s2)∂zŵ0

)
+2s−1F

[
G̃′
]
∗∂zŵ0

]
z=h

− Ḡs
[
3F̂1(s,h)− F̂3(s,h)

]
− γss2F̂0(s,h), (2.21b)

while M0 and N0 are defined by (2.14a) and (2.14b) respectively. Solving the linear system (2.13) for C j, D j ( j = 0,1)
with right hand sides given by (2.21) gives the transformed displacements û and ŵ and thus the stress and strain within
the solid substrate for the case of a gradient in shear modulus. These calculations are used in §2.3.
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2.3 Elastic Energy and the Total Energy Functional

Here we outline the procedure to calculate the total system energy, defined to be the sum of elastic and surface energies,
as a function of contact angles θl and θr of a two dimensional droplet resting on an elastic substrate. We then determine
contact angles θl and θr that minimize the total system energy, for given system parameters and gradient applied to
the substrate.

The elastic energy in the substrate is computed by the following integration over the solid domain Ω :

Eelastic =
1
2

∫∫
Ω

τ̄ : ε̄ dΩ=
1
2

∫ h

0

[∫
∞

−∞

2G(x)
(
ε

2
xx +2ε

2
xz + ε

2
zz
)
− p(εxx + εzz) dx

]
dz.

//////After////////////////manipulation////we////////obtain//a//////form//////////suitable////for////the//////////////formulation////on/////////Fourier////////space:
Applying the incompressibility condition (2.4), we manipulate the above expression and rewrite the functional in

Fourier space by regarding the interior integral as the Fourier transform of the integrand at wavenumber s = 0. The
convolution identity is then implemented giving our expression for elastic energy:

Eelastic =
1
π

∫ h

0

[(
Ḡ+

a
2π

(
F
[
G̃
]
∗
))(

ε̂zz ∗ ε̂zz + ε̂xz ∗ ε̂xz
)]

s=0
dz. (2.22)

FIG. 3: (a. & b.) Contact angle asymmetry. ∆θ as a function of the maximum surface energy gradient (a) and the
maximum shear modulus gradient (b) (‘maximum’ referring to the gradient at the center of the droplet). The predicted
threshold angle difference ∆θ = 1.8◦ is shown as a dashed line. (c. & d.) The minimum surface energy gradient (c),
and shear modulus gradient (d) needed to reach the threshold ∆θ = 1.8◦. Parameters: h = 50 µm, A = 600π µm2,
L = 50 µm, γ = 64 mN/m, G = 1 kPa (left), γs = 40 mN/m (right).

The integrand of elastic energy (2.22) is then numerically constructed via the outlined procedures in §2.1 and §2.2
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where the deformation and strain transforms are approximated. The total energy functional is then defined as

Etotal = Eelastic +Esur f ace, (2.23)

where the surface energy functional is given by

Esur f ace = γLdrop +
∫

∞

−∞

γs(x)
[
dl(x)−dx

]
. (2.24)

This formula relies on inverting the displacement transforms û and ŵ to obtain the free surface profile. Then the solid
surface energy, represented by the integral in (2.24), uses dl(x), the differential arc length of the deformed free surface.
The energy contribution of the liquid-gas interface is γLdrop, where Ldrop is the arc length of the liquid-gas interface,
calculated for prescribed contact angles θl,r and droplet area A, as calculated in Herde (2013).

The total energy minimization was done for typical ideal but physically realistic sets of parameters which could be
experimentally tested. Energy minimizing contact angles θl and θr were obtained by minimizing the energy functional
(2.23) as a function of contact angles. We utilized MATLAB’s fminsearch function to search for optimal contact
angles near the corresponding Young’s angle values θY = 90◦. The total energy output as a function of θl and θr was
observed to be a global energy minimum for tested parameter values, by examining the graph of the energy over a
reasonable region around the obtained minimum, where it was found to be smooth and convex.

The contact angle difference ∆θ = θr−θl is then calculated and compared to the benchmark contact angle differ-
ence from Style (2013b) of ∆θ = 1.8◦. We use this as our benchmark threshold difference necessary to drive droplet
motion, but acknowledge that this difference will depend on the liquid-solid interaction of the particular physical
system when tested experimentally. We use these results, shown in Fig. 3, to predict conditions for the induced spon-
taneous motion of the fluid droplet. As explained in §4, the values of fixed Ḡ in Fig. 3(a) and of fixed γ̄s in Fig. 3(b) are
based on our understanding of the role of these parameters. In §3, we predict the velocity of the droplet using energy
balance.

3. Droplet Dynamics

In this section we predict the dynamics of a droplet driven by a sufficiently large gradient, based on our results from
§2. The velocity of the droplet is determined by calculating the rate at which total energy is released from the system
and comparing this to the rate at which energy is dissipated from the substrate for a given velocity.

In §3.1 we describe the procedure for obtaining the deformation field of the substrate caused by a two dimensional
droplet migrating at velocity v across the substrate surface. In a short time ∆ t the droplet moves a distance ∆x = v∆ t.
In this time, the viscoelastic solid has relaxed and the free surface has changed. With the droplet in the new position we
can calculate in §3.2 the new total energy and the solid energy dissipation in the substrate. Finally in §3.3 we find the
velocity v by matching the rate of energy release to the rate of energy dissipation. The results are velocity predictions
for both stiffness and surface energy gradients in the substrate.

Throughout the section, we use the solid dissipation as an approximation for the total energy dissipation of the
system, neglecting dissipation within the droplet. This approximation, also employed in Long (1996), is justified by
experimental results by Shanahan (1995) in which motion of droplets over soft rubber is observed to be slower by
several orders of magnitude compared to droplets on rigid surfaces, and it is shown that the kinetics are independent
of liquid viscosity. This phenomenon, coined viscoelastic braking (Shanahan, 1995), is attributed to the dominant
dissipation being from the solid rather than the liquid.

3.1 Moving Droplet Model

We adopt the dynamic stress tensor given in Karpitschka (2015):

τi j(x,z, t) = 2
∫ t

−∞

ζ (x,z, t− t ′)ε̇i j(x,z, t ′) dt ′− p(x,z, t)δi j, (3.1)

where ζ is the relaxation function of the soft solid. For a reticulated polymer such as silicone gel, the response function
has the power law form (Karpitschka, 2015):

ζ (x,z, t) = G(x)
(

1+
(t/tv)−n

Γ (1−n)

)
, (3.2)
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where G(x) is the static shear modulus, tv is the viscous time scale, n > 0 is a fitting exponent and Γ is the Gamma
function. We introduce a temporal Fourier transform similar to the spatial transform defined previously:

Ft
[

f (x, t)
]
=
∫

∞

−∞

f (x, t)e−iωtdt = f̆ (x,ω), F−1
t
[

f̆ (x,ω)
]
=

1
2π

∫
∞

−∞

f̆ (x,ω)eiωtdt = f (x, t);

further use of the spatial Fourier transform will be denoted by Fx
[
·
]

or the ˆ symbol. For simplicity of notation we
will write a twice transformed variable with a capital letter, for example:

Fx

[
Ft
[

f (x, t)
]]

= Ft

[
Fx
[

f (x, t)
]]

= F(s,ω).

Applying the temporal Fourier transform to (3.1) we obtain the temporally transformed stress tensor:

τ̆i j = 2gε̆i j− p̆ δi j, (3.3)

with complex shear modulus g given by Karpitschka (2015):

g(x,ω) = iω
∫

∞

0
ζ e−iωtdt = G(x)

(
1+(iωtv)n). (3.4)

To adapt the solution to a moving droplet, we consider a droplet moving at a constant velocity v > 0. The stress
boundary conditions are rewritten in terms of the variable x′ = x− vt in the moving reference frame:

τxz(x′,h) = flδ (x′+R)− frδ (x′−R)+ k2
ϒ ∂xxu(x′,h), (3.5a)

τzz(x′,h) = γ sinθlδ (x′+R)+ γ sinθrδ (x′−R)−ΠH(R−|x′|)+ϒ ∂xxw(x′,h). (3.5b)

We consider quasi-static displacement in the substrate, as done in Karpitschka (2015):

∂ jτi j = 0, so that Ft
[
∂ jτi j

]
= ∂ j τ̆i j = 0,

with stress boundary conditions (3.5) at the free surface z = h, along with fixed boundary conditions at the bottom
surface z = 0. We proceed with only the zero order boundary value problem in the dynamic case, as the solution
will be sufficient to predict energy and dissipation to leading order. We define the dynamic boundary value problem
formed by the fixed boundary conditions at z = 0, stress boundary conditions given by (3.5) and manipulation of the
quasi-static divergence-free stress tensor above, presented in temporally transformed space (ḡ is the spatially averaged
complex shear modulus, see (2.16), (3.4)):

∇ p̆ =ḡ∆〈ŭ, w̆〉, (3.6a)[
ḡ(∂zŭ+∂xw̆)− k2

γ̄s∂xxŭ
]

z=h =Ft
[

flδ (x′+R)− frδ (x′−R)
]
, (3.6b)

[2ḡ∂zw̆− p̆− γ̄s∂xxw̆]z=h =Ft
[
γ
(

sinθlδ (x′+R)+ sinθrδ (x′−R)
)
−ΠH(R−|x′|)

]
. (3.6c)

We apply the spatial Fourier transform as in §2 to solve (3.6). We use the following identity,

F(s,ω) = Ft

[
Fx
[

f (x− vt)
]]

= 2π f̂ (s)δ (ω + sv),

where f̂ (s) is the spatial Fourier transform of a function f = f (x′) in the moving reference frame. Applying the spatial
Fourier transform to (3.6) we obtain (

∂zz− s2)2
W = 0, U = is−1

∂zW,

which when solved and applying the fixed boundary conditions gives us the general solution

U(s,ω,z) = iC(s,ω)ψ ′(sz)+ iD(s,ω)ψ ′′(sz), W (s,ω,z) =C(s,ω)ψ(sz)+D(s,ω)ψ ′(sz), (3.7)

where ψ is again defined by (2.12). This leads to a linear system for Fourier coefficients C and D:

C(s,ω)β (s,ω)+D(s,ω)β �(s,ω) =2πM0(s)δ (ω + sv),

C(s,ω)µ(s,ω)+D(s,ω)µ�(s,ω) =2πN0(s)δ (ω + sv),
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where formulas for β , β �, µ, and µ� are as given in (2.15) but with the spatially averaged complex shear modulus
ḡ(ω) in place of the average static shear modulus Ḡ.

Next we apply the inverse temporal Fourier Transform to obtain the spatial transforms of displacements u and w
in the moving reference frame:

ŵ(s,z) =
[
(µ�M0−β �N0)ψ +(βN0−µM0)ψ

′

β µ�−β �µ

]
ω=−sv

, û(s,z) = is−1
∂zŵ(s,z). (3.8)

With these transform solutions (3.8), we can proceed in §3.2 to solve for the elastic energy necessary to calculate the
rate at which energy is released from the system. In addition we solve for the rate of solid energy dissipation; then
comparison is used to predict droplet dynamics.

3.2 Elastic Energy and Energy Dissipation Generated by the Moving Droplet

The elastic energy for the dynamic model is calculated similarly to that derived in §2.3 using the dynamic stress tensor
(3.1). The dynamic elastic energy is given by

Eelastic =
Ḡ
π

∫ h

0

[
ε̂zz ∗

(
(1+(−isvtv)n)ε̂zz

)
+ ε̂xz ∗

(
(1+(−isvtv)n)

ε̂xz
)]

s=0 dz. (3.9)

We use this formula to calculate the elastic energy contained in the substrate for a moving droplet traveling at con-
stant speed v. The integral in (3.9) is calculated using Gaussian quadrature with the integrand evaluated at Gaussian
abscissae corresponding to the interval z∈ [0,h] and integrated numerically using the associated weights and integrand
evaluations.

Note that equation (3.9) generalizes the elastic energy for a given droplet velocity, and indeed is consistent with
the zero order elastic energy formulation derived in §2 for v = 0. We construct the total energy functional Etotal by
including the new surface energy function from (2.24), and calculate the rate at which total energy is released from
the system by taking a discrete derivative approximation of the total energy (we use ∆ t = 10−4 sec, but the results are
insensitive to the choice of ∆ t):

d
dt

Etotal ≈
Etotal(∆ t)−Etotal(0)

∆ t
. (3.10)

Similarly to the elastic energy in the system, we seek to compute the rate Psolid at which energy is dissipated within
the substrate. Balancing this with the rate at which energy is released from the system due to migration will give us
the predicted velocity v of the droplet for a given gradient in substrate properties. The formula for solid dissipation
rate is given by Long (1996); Tschoegl (2002):

Psolid =
1
2

∫∫
Ω

τ̄ : ˙̄ε dΩ ,

which we manipulate similarly to the definition of elastic energy to obtain:

Psolid =
Ḡv
π

∫ h

0

[(
− isε̂zz

)
∗
(
(1+(−isvtv)n)ε̂zz

)
+
(
− isε̂xz

)
∗
(
(1+(−isvtv)n)ε̂xz

)]
s=0 dz. (3.11)

With traveling displacement transforms (3.8) defined in §3.1, we can numerically construct and evaluate the integrand
of (3.11) at Gaussian nodes on an interval z ∈ [0,h] and evaluate (3.11) using Gaussian quadrature as done for (3.9).
With these computations we can solve for the velocity v such that the rate at which energy is released by migration
(3.10) matches that of dissipation within the solid (3.11). Furthermore we can assign gradients in surface energy
or shear modulus above the critical gradient necessary to induce motion, to predict the droplet velocity for larger
gradients.

3.3 Dynamics Results

With the formulation of energy release rate (3.10) and energy dissipation (3.11) from §3.2, we can now predict the
velocity v of a droplet for which motion has been induced by equating the rate of energy release with the rate at which
energy is dissipated to heat. This involves solving the equation

d
dt

Etotal(v; G̃, γ̃s) = Psolid(v; G̃, γ̃s). (3.12)
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The solution v of (3.12) is obtained by a bisection algorithm, and solution curves are shown in Fig. 4. These plots
indicate that the predicted velocities in the case of the surface energy gradient are largely universal as a function of
the mean surface energy γ̄s while the velocities in the case of the shear modulus gradient exhibit distinct behavior for
different mean shear moduli Ḡ. A power law fit of the form v ∝

(
∂x(·)

)b gives exponents bγs ≈ 1.48 and bG ≈ 1.51 for
the surface energy and shear modulus gradients respectively.

It should be noted that equation (3.12) is a rate balance equation, used to calculate the instantaneous velocity
at onset from equilibrium under a prescribed gradient. In this paper, there is no attempt to model the subsequent
dynamics.

FIG. 4: Dynamic velocity predictions of fluid droplets resulting from gradients in surface energy γs (left) and shear
modulus G (right). Vertical dashed lines show the minimum gradient necessary to induce motion for the given average
surface energy γ̄s (a) or shear modulus Ḡ (b). Parameters: h = 50 µm, A = 600π µm2, γ = 64 mN/m, L = 50 µm,
G = 1 kPa (left), γs = 40 mN/m (right), tv = 0.03 sec, n = 2/3.

4. Discussion

The dynamics are much slower on softer substrates due to viscoelastic braking, as discussed in §3. For this reason we
selected the lowest shear modulus for the surface energy gradient case Fig. 3(a). Similarly, in Fig. 3(b) we test with the
lowest value of solid surface energy γs = 40 mN/m because raising this value only increases the driving force needed
to cause motion, as seen in Fig. 4(a).

In Fig. 3, we observe that in the parameter ranges tested, the shear modulus gradient is less effective than the
surface energy gradient in driving the contact angle asymmetry to the threshold level for inducing droplet motion. In
the figure we can see that only average shear moduli of Ḡ = 1 kPa or lower are successful in generating a contact angle
difference sufficient to drive droplet motion according the the benchmark threshold of 1.8◦ (simulations calculated up
to |a|/Ḡ = 0.6, L = 50 µm).

We can benchmark these results against experimentally-accessible soft substrates. By inter-diffusing soft gel
networks with differing moduli, Crowe-Willoughby (2010) are able to produce a total variation in modulus of approx-
imately 90% over roughly 10 cm with average modulus Ḡ ≈ 35 kPa. A solid with this average shear modulus and
modulus gradient, as indicated by our results, would be insufficient to drive droplet motion. Similarly, gradients in
ultra-violet intensity during the curing of PDMS gels, as discussed in Stricher (2016), do not create a modulus gra-
dient large enough to drive motion of a fluid droplet. The most promising option, by Moriyama (2019), is to cure
styrenated gelatin using visible light. This results in materials with stiffness Ḡ ≈ 1 kPa and a gradient around 0.04
kPa/µm, close to our predicted limit of motion. This suggests that advances must be made to create substrates which
exhibit both extremely soft elastic moduli as well as sharp moduli gradients to make motion induced by a substrate
gradient attainable. For these reasons, we believe that the stiffness gradient is likely a physically unrealistic method
for inducing spontaneous droplet motion.

Most previous durotaxis experiments have been done with either a substrate stiffer than the threshold of our cal-
culation (Kidoaki, 2008) or with the stiffness gradient smaller than the threshold of our calculation (Wong, 2003).
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In addition, cell durotaxis (Bueno, 2018) and droplet motion on thickness gradients (Style, 2013b) exhibit dynamics
in opposite directions from each other. Therefore, we believe that the elastocapillarity plays an insignificant role in
cellular durotaxis. Instead, cells sense the substrate stiffness and change the cytoskeleton, which induces the cell
motion.

On the contrary, the capability to generate a contact angle asymmetry using a surface energy gradient is experimen-
tally feasible. In Chaudhury (1992), by exposing the surface to the diffusing front of a vapor of decyltrichlorosilane
(Cl3Si(CH2)9CH3), a gradient in solid surface energy was generated causing a contact angle asymmetry of 2-3◦. This
contact angle asymmetry was sufficient to cause droplets of water to migrate uphill on a rigid surface. Supplying
asymmetry of the magnitude capable by methods in Chaudhury (1992) is sufficient to meet the benchmark asymmetry
threshold of 1.8◦ (Style, 2013b).

In Fig. 4 we see the predicted droplet velocities resulting from gradients in surface energy γs or shear modulus G.
Here we observe that droplet velocities increase as the shear modulus decreases, while velocities as the result of surface
energy gradients are universal given the gradient is sufficient to spontaneously induce droplet motion. This indicates
that in the case of the surface energy gradient, the mean stiffness determines the gradient necessary to induce motion
but is not a factor in the resulting dynamics. On the other hand, dynamics as a result of a shear modulus gradient is
largely influenced by the mean shear modulus. We believe the reason for the different behaviors is the result of the
energy minimizing conditions for each substrate property. By adjusting the shear modulus, the deformation of the
substrate and therefore the elastic and surface energies of the system are drastically altered. However, the deformation
and elastic energy of the substrate are highly independent of the surface energy. While the total surface energy as a
whole is largely affected by adjusting the surface energy γs, the total change in surface energy from the undeformed to
a deformed state will also be independent of the mean surface energy.

Our results suggest that spontaneous droplet motion as a result of an elastic modulus gradient is currently infeasible
given current experimental capabilities. However, we see from the results of Figs. 3 and 4 that dynamics as a result
of gradients in elastic modulus drastically benefit from extremely low moduli in both the gradient required to induce
motion and the resulting droplet velocity. For the case of surface energy gradients, our results indicate that droplet
motion over soft solids as a result of a surface energy gradient is currently feasible despite larger magnitude energy
dissipation from the soft solid. The dynamics of droplets exposed to a surface with a surface energy gradient benefit
from lower surface energy values, which reduces the gradient necessary to induce motion.
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