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Abstract

Game-based learning (GBL) has increasingly been used to promote students’ learning

engagement. Although prior GBL studies have highlighted the significance of learning

engagement as a mediator of students’ meaningful learning, the existing accounts

failed to capture specific evidence of how exactly students’ in-game actions in GBL

enhance learning engagement. Hence, this mixed-method study was designed to

examine whether middle school students’ in-game actions are likely to promote

certain types of learning engagement (i.e., content and cognitive engagement). This

study used and examined the game E-Rebuild, a single-player three-dimensional archi-

tecture game that requires learners’ application of math knowledge. Using in-depth

gameplay behavior analysis, this study sampled a total of 92 screen-recorded and

video-captured gameplay sessions attended by 25 middle school students. We

adopted two analytic approaches: sequential analysis and thematic analysis.

Whereas sequential analysis explored which in-game actions by students were

likely to promote each type of learning engagement, the thematic analysis depicted

how certain gameplay contexts contributed to students’ enhanced learning engage-

ment. The study found that refugee allocation and material trading actions promoted

students’ content engagement, whereas using in-game building tools and learning

support boosted their cognitive engagement. This study also found that students’
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learning engagement was associated with their development of mathematical thinking

in a GBL context.

Keywords

learning engagement, game-based learning, sequential analysis, thematic analysis

Most primary school students in the United States have encountered challenges
with learning math (e.g., arithmetic and geometry; Kebritchi, Hirumi, & Bai,
2010). These challenges likely cause students to experience emotional depression
(Hopko, Mahadevan, Bare, & Hunt, 2003) as well as task anxiety (Ashcraft,
2002) in approaching math problems. They also cause students’ disengagement
(Loong & Herbert, 2012). Research on game-based learning (GBL) has generally
stated that high engagement is a key precursor of students’ continuous success in
learning (Filsecker & Hickey, 2014; Hamari et al., 2016). Researchers explain
that learning math through gameplay contributes to students’ perseverance by
enhancing their learning engagement (Ke, 2008; Tsai, Kuang-Chao, & Hsiao,
2012). Enhancing learning engagement via GBL refers to not only promoting
students’ perseverance in challenging tasks but also fostering learners’ mindful
thinking (Huizenga, Admiraal, Akkerman, & Dam, 2009; Plass, Homer, &
Kinzer, 2015). Learning engagement indicates students’ cognitive awareness of
knowledge application with high internal motivation (Abdul Jabbar & Felicia,
2015). Although several researchers attempted to demonstrate the effect of GBL
on learning engagement (Hamari et al., 2016; Ke, Xie, & Xie, 2016), the question
as to how game design fosters students’ learning engagement remains. Although
multiple previous studies (Abdul Jabbar & Felicia, 2015; Eseryel, Law,
Ifenthaler, Ge, & Miller, 2014; Hamari et al., 2016) have addressed the import-
ance of students’ learning engagement in GBL, there is a paucity of research
examining specific game features that promote learning engagement. This
mixed-method study aims to explore to what extent certain game actions pro-
mote learning engagement (i.e., content and cognitive engagement). In this
study, we employed a three-dimensional (3D) architecture game E-Rebuild
that is designed to engage students in architecture-themed mathematical prob-
lem solving. To measure associations between game actions and learning engage-
ment, this study adopted multiple data analysis approaches, including sequential
analysis and qualitative thematic analysis. The sequential analyses in this study
estimated how likely students were engaged in their learning via their in-game
actions, while the thematic analysis provided explorative findings of why certain
game actions promoted students’ learning engagement. Overall, two research
questions guided this study: (a) Which in-game actions in a 3D math game
are most likely to promote students’ learning engagement? (b) What is the rela-
tionship among the types of game actions, learning engagement, and the devel-
opment of mathematical thinking in gameplay?
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Literature Review

Learning Engagement in GBL

Researchers have defined learning engagement as a key mediator that bridges
learning and motivation (Abdul Jabbar & Felicia, 2015) and an ongoing condi-
tion in which a learner pays full attention to learning tasks (Ke et al., 2016).
Research also states that learning engagement leads to students’ growth of
internal motivation with subject matters longitudinally (Bodovski & Farkas,
2007). Generally, learning engagement in GBL refers to the participatory mind-
set for acquiring desired goals (Eseryel et al., 2014). The definitions of learning
engagement in the literature on GBL vary. While some researchers state that
engagement indicates playfulness (Bai, Pan, Hirumi, & Kebritchi, 2012) and
enjoyment (Hainey, Boyle, Connolly, & Stansfield, 2011), others focus on lear-
ners’ cognitive reflection (Huizenga et al., 2009), including metacognitive skills
(Plass et al., 2015). Early motivation theories have speculated how a game stimu-
lates learners’ engagement (Boyle, Connolly, & Hainey, 2011; Farrell & Moffat,
2014). Furthermore, research on self-determination theory depicts engagement
with three key driving factors (i.e., autonomy, competence, and relatedness). The
interplay among these three factors is deemed significant in explaining how
students become engaged by satisfying fundamental human needs (Przybylski,
Rigby, & Ryan, 2010).

Early researchers have considered engagement as an essential element of self-
regulated learning, which focuses on students’ motivated actions on their learn-
ing. Plass et al. (2015) classified four types of learning engagement: cognitive,
affective, behavioral, and sociocultural engagement. Among these types of
engagement, their study reports that cognitive engagement is highly related to
students’ mental processing with high metacognition. They also report that cog-
nitive engagement is the variable that most reliably predicts students’ effective
problem-solving actions aiming at their learning goal. Similarly, Ke et al. (2016)
stated the two types of learning engagement as content and cognitive engage-
ment. They primarily addressed the nature of learning engagement regarding
students’ problem-solving skills and content knowledge acquisition. While con-
tent engagement represents the way in which learners apply procedural and
conceptual knowledge only through game requests, cognitive engagement
refers to students’ mindful attention to decompose the nature of given problems
and rearrange it to determine ways to solve goal-free requests. Content engage-
ment focuses on learners’ involvement with the content-related gameplay,
whereas cognitive engagement describes learners’ domain-generic thinking to
explore problem solutions.

Although GBL researchers have largely investigated wide-ranging natures of
learning engagement (Sharek & Wiebe, 2014), prior research has insufficiently
explored the ways to maintain high learning engagement. Due to dynamic and
contextual traits of learning engagement (Arnone, Small, Chauncey, &
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McKenna, 2011), researchers have noticed that learning engagement in GBL
may decrease even though a game is likely to draw learners’ attention at the
beginning of their play. In other words, learning engagement in students’ early
gameplay can be high due to its novelty effect, and it remains unclear whether a
game may maintain students’ learning engagement during their entire gameplay.
According to Ke’s (2008) qualitative analysis, students were likely to lose their
attention when they became accustomed to given sensory stimuli in their game-
play (e.g., visual stimuli and interactive functions). Romero, Usart, Ott, Earp,
and de Freitas (2012) also agreed with this that decreasing engagement pattern
was caused by students’ off-task thoughts and actions in GBL. These consistent
study findings refer to the importance of designing game actions that fully pro-
mote learning engagement in GBL.

Game Design to Increase Learning Engagement in GBL

Because learning engagement is believed to predict students’ future learning
outcomes (Abdul Jabbar & Felicia, 2015; Eseryel et al., 2014), GBL researchers
have proposed specific game design elements to enhance students’ learning
engagement. Specifically, aligned with evidence-centered design (Shute, 2011),
researchers have taken into consideration analyzing students’ in-game actions,
with an aim to designing game actions that enhance learning engagement pur-
posefully. Plass et al. (2015) highlight the importance of associating students’ in-
game experiences with learning engagement through game action design. As an
example, their study introduced the game Noobs vs. Leets, which is a geometry
game that asked students to identify missing angles by using their knowledge of
multiple angle types. In the meantime, learners in this game are requested to
unlock angles to create a path, thus allowing the players to save trapped friends
at the cage. The game mechanic of this study made students engaged in game
action-based content engagement.

Recent GBL reviews discussed how GBL design should consider key factors
that will promote students’ learning engagement (Proulx, Romero, & Arnab,
2017; Przybylski et al., 2010). Abdul Jabbar and Felicia (2015) scrutinized major
gaming elements that help learners to attain high learning engagement. The
study sampled 91 key articles and clustered core game-design features, such as
(a) playfulness and discoveries, (b) challenges and conflict, (c) control and
choices for attention, (d) scaffolding helps, and (e) learning tools and gaming
aids. This study stated that giving students opportunities to discover and test
interactive visual stimuli in their game environment may enhance the students’
learning engagement. In addition to the visual stimuli, using a variety of game
support tools inherent to GBL is believed to facilitate students’ proactive game
actions in experiencing meaningful learning.

Although researchers have explored the ways a variety of game mechanics are
likely to stimulate students’ learning engagement, the systematic association
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analyses between game mechanics and learning engagement are still lacking. It is
believed that students’ in-game actions can give clues of how game mechanics
promote learning engagement, yet there were few explorations in prior GBL
design research. Under the evidence-centered design framework (Mislevy,
Almond, & Lukas, 2003; Mislevy & Haertel, 2006), recent GBL research has
decided to trace how students’ learning trajectories are associated with their
learning engagement. This data-driven approach in GBL studies has offered
researchers opportunities to identify empirical evidence governing how GBL
design should foster students’ learning engagement.

Data Analysis Approaches to Capture Students’ Learning
Engagement

Although numerous GBL studies have highlighted the significance of students’
learning engagement (Abdul Jabbar & Felicia, 2015; Barzilai & Blau, 2014; Gil-
Doménech & Berbegal-Mirabent, 2017; Hsieh, Yi-Chun, & Hou, 2015), the
methods to capture their learning engagement are lacking. Although research
stated that learners’ emotion or motivation states attribute to the level of learn-
ing engagement over time, researchers had failed to address the dynamic changes
inherent in learning engagement. In other words, even if learners’ engagement is
deemed a ‘‘continuum with different degrees’’ (Romero, 2012, p. 16), prior
studies have largely relied on post hoc test findings via survey instruments.
Recent studies stated that those post hoc analysis approaches had scarcely
investigated specific game design features that promote students’ learning
engagement over time. Responding to this problem, researchers have suggested
using alternative data analysis techniques that may precisely explore associations
between a wide spectrum of game mechanics and students’ learning engagement
portrayed in their game actions.

In order to capture students’ learning engagement, recent GBL studies have
increasingly adopted behavior analysis frameworks to examine the type and
frequency of students’ game actions associated with learning engagement.
From early theorems of behavior analyses, researchers argued that a set of
behaviors is the result of the ‘‘dynamic interplay between an individual and
the environment’’ (Hintze, Volpe, & Shapiro, 2002, p. 994). Sharek and Wiebe
(2014) employed a systematic behavior coding that calculated the number of
students’ game-clock clicks and the time duration they spent on their game-task
completions. Although this study did not implement association analyses to
identify the relationship between game mechanics and learning engagement, it
attempted to use behavioral analyses to quantify students’ learning engagement
when performing various gameplay actions. Furthermore, Ocumpaugh, Baker,
and Rodrigo (2015) introduced a behavior-analysis protocol, demonstrating the
ways to quantify students’ occurrences of behaviors and affective states. This
behavior analysis protocol was employed by several empirical studies to
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investigate associations between students’ learning engagement and interactive
stimuli in GBL environments. However, while those studies proposed systematic
behavior analytics to capture students’ learning engagement states, they still lack
empirical approaches to map out statistical associations between game mech-
anics and students’ learning engagement.

When it comes to a data analysis technique in capturing learning engagement,
researchers have employed a variety of sequential data mining approaches.
Sequential data mining is a kind of learning analytics, which aims to compile
salient sequence patterns of students’ action occurrences. Associated with GBL
research, this analysis technique emphasizes grasping sequences of students’ in-
game actions and the embedded game mechanics. When used with behavior
analysis, sequential data mining has proved effective in indicating potential
impacts of game mechanics on students’ learning actions during their gameplay.
Another goal of sequential data mining is to identify students’ in-game actions
that promote meaningful learning. Several GBL studies discussed the usage of
sequential data mining to study students’ in-game behavior patterns (Hou, 2015;
Kang, Liu, & Qu, 2017; Yang, Chen, & Hwang, 2015). Kang et al. (2017) used
cSPADE pattern mining techniques to analyze learners’ logs in the game Alien
Rescue. They sampled 202 middle school students and decomposed each lear-
ner’s gameplay patterns according to the number of times she or he used in-game
tools. Primarily, they emphasized capturing prominent in-game events, such as
which game sequences were used frequently during the students’ gameplay.
In addition, the study examined the ways in which the students’ sequences
differed according to their performance level. Furthermore, under the systematic
behavioral coding, Hou (2015) implemented sequential analyses of students’
in-game actions in two different groups categorized by additional cluster
analysis. The study collected learners’ in-game action patterns in a roleplaying
simulation game for science education. This study analyzed 86 undergraduates’
videotaped gameplay sessions to elucidate how students’ learning processes
changed over time. Specifically, the study found that the different patterns of
gameplay predicted degrees of mindful reflection of students about game tasks
for learning. The study finding also demonstrated that students’ learning engage-
ment during gameplay tends to vary according to their preexisting knowledge as
well as their motivation level.

Method

Participants

This study sampled a total of 92 gameplay sessions played by 25 middle school
students (males¼ 15, females¼ 10) from the sixth to eighth grades in a public
school in the Southern United States, with screen- and webcam capture soft-
ware. We conducted the gameplay sessions in multiple sessions of their math
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class for 6 weeks. The students of the gameplay sessions were randomly seated
and played at their own pace. The number of gameplay sessions sampled for
each student ranged from 1 to 8 (mean¼ 5.15, SD¼ 1.71). We sampled a dif-
ferent number of gameplay sessions across students to better capture a variety of
game tasks and hence actions engaged by the students, and students differed in
the game tasks completed. A teacher and multiple facilitators gave technical help
when the students needed. A gameplay session for each individual lasted around
50 minutes on average. At the beginning of the gameplay session, all students
watched a 15-minute video tutorial that described how to use basic game mech-
anics to fulfill given game tasks.

Game: E-Rebuild

E-Rebuild is a 3D architecture game that offers a single-player mode that allows
gameplayers to engage in architectural design to rebuild a disaster-destroyed
structure or neighborhood for refugees. This game is designed to increase lear-
ners’ engagement and performance in math problem-solving through fulfilling
various architectural design tasks. The targeted content knowledge in this game
complies with the mathematics Common Core State Standards. The students in
this study performed three major tasks during the gameplay: (a) material trad-
ing, (b) structure (e.g., shelter) building, and (c) allocation of refugees in the
shelter (Ke, Shute, Clark, & Erlebacher, 2019). In addition to the three major
game tasks, the game episodes in this study depicted the scenes of (a) island, (b)
desert, and (c) urban school (Figure 1). While the students assign refugees to
shelters in all three episodes, they must alter their building techniques because of
variant design needs and limited resources in the game world.

Concerning material trading, in all three game episodes, the students must
visit the store to buy an appropriate number of building materials, such as
containers, bricks, and flooring. The amount of materials purchased should be
sufficient to construct shelters that will accommodate all the refugees’ living
space needs (which involve the comprehension and application of the concepts
of area, unit, and ratio). In addition, the students need to calculate the cost of all
the materials, by considering the discount offers that embed the concept of per-
cent. The player should estimate a trading strategy to determine whether she or
he can spend less money on the resources. The less money the students spend on
their resources, the better scores they can achieve in the game.

When constructing shelters in different episodes, students need to engage in
different building acts. For example, in the island episode, the students are
prompted to buy a minimum number of shipping containers to compose a
preset structure based on 2D and 3D visual aids. In the desert episode, the
students build an adobe-style red brick house. They must estimate/purchase
the number of bricks needed and stack/join them to construct the house. This
task requires learners to exhibit more dexterity in executing a series of building
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Figure 1. Three screen-captured images demonstrate major gameplay scenes in each

episode of the game E-Rebuild (1¼ shipping container, 2¼ desert, and 3¼ school).
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acts (e.g., object positioning, rotation, stacking, joining, and pasting) embedded
in the game. In the urban school episode, the students must build variant facil-
ities with both containers and bricks to restore a school campus and must do so
without any visual aids. Rather, the students need to investigate the design
features of the existing facilities in the school and create new buildings corres-
pondingly. Regardless of the types of game episodes, the students must appor-
tion refugees to a given number of shelters by addressing variant living space
needs.

Data Preprocessing

We conducted in-depth analyses with behavioral observations based on a pre-
defined ethogram. An ethogram defined a series of salient behaviors with a
classification of the elements and function of each behavior. Via an initial
open-ended coding with the gameplay behaviors, we developed a coding
scheme for the later systematic behavior analyses via the analytic tool BORIS
(Friard & Gamba, 2016). BORIS is an open-source software designed specific-
ally for in-depth behavior analyses. Based on the coding scheme, the software
allows the researcher to label types of students’ behaviors and review relevant
sample materials simultaneously. Along with the screen-captured gameplay
behaviors, the video samples also captured students’ upper bodies and facial
expressions during gameplay.

Multiple expert E-Rebuild game players who also have expertise in GBL
research participated in developing an initial ethogram of the study. To begin,
in open coding, they spent 3 weeks working to implement exploratory behavior
analyses and create an initial coding scheme. They then performed the iterative
steps to elaborate the coding scheme. This coding scheme used two types of
behavioral codes, point and state behaviors. While a point code counts the
number of behaviors, a state code estimates a particular behavior’s duration.
All behavior codes for the analyses are shown in Table 1.

As shown in Table 1, the independent variables in this study were all the game
events (i.e., Building and UsingHelp) in which the learners engaged, while the
dependent variable is two states of learning engagement (i.e., cognitive and
content engagement). Cognitive engagement represents a learning state in
which students attempt to perform multifaceted steps to complete a game
goal, whereas content engagement refers to behavioral moments interacting
with the GBL content. For example, a student was requested to place a few
shipping containers in the ground. At the beginning of his building process, he
appeared to be fully aware of how he would locate each container based on a
given visual blueprint. The student leaned his upper body toward the computer
screen and looked engaged and effortful pondering on the ways to move the
containers appropriately. These observations suggested the state of cognitive
engagement. As another example, when the student hovered their mouse
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cursor over the item inventory and read the information of each item, the coders
labeled the behavior as mining information (or a subcategory of cognitive
engagement). In another case, players were observed calculating the total cost
of the game resources (e.g., red blocks, a door, and a floor) based on the pro-
vided price information. Such a behavior was coded as content engagement as
well.

Data Analysis

Sequential analysis. This study extracted several types of sequential analysis meas-
ures from the systematic human behavior observations (Quera & Bakeman,
2000; Suen & Ary, 1989). They were overall behavior frequencies, a transition
probability matrix, and a random permutation test. Overall behavior frequencies
demonstrate students’ behavior tendencies, indicating how often students
attempted to use certain in-game action. This result helps to understand the
proportion of each in-game behavior type students used. A transition probabil-
ity matrix (Friard & Gamba, 2016) is a stochastic matrix derived from a hidden
Markov chain algorithm (Ghahramani & Jordan, 1997). Compared to existing

Table 1. Behavior Codes in the Coding Scheme.

Major behavior codes Definition Modifiers

Cognitive engagement Learning engagement that

focuses on students’ strategic

approaches in problem-sol-

ving tasks in a game

Mining information, planning,

evaluating, testing, and

refining

Content engagement Learning engagement that

focuses students’ attention on

content knowledge

comprehension

Processing, application,

calculation

Building All the actions needed to com-

plete building construction

tasks

Copy, joint, position, stacking,

rotating, recollecting,

undesirable perspective

Site-surveying Measuring tool to estimate

numerical value of construc-

tion sites

Intended/unintended

Trading All the actions of buying mater-

ials for building design tasks

Accurate/inaccurate

Allocation All the actions to assign each

refugee to the shelter

Appropriate/inappropriate

UsingHelp Processing in-game scaffolds Help panel, summary screen,

scratch tool tips
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sequential analysis techniques, the hidden Markov chain can detect a causal
relation between game event variables and the dependent variable (i.e., learning
engagement). This measure predicts the likelihood of after behavior through
collecting a series of behavior events. In this study, all the sequentially arranged
behavior codes in each row have a unique numeric probability value associated
with the behavior codes in each column, respectively. The value in each cell of
the matrix represents the association between two events. Thus, each dyadic
association value in the matrix denotes the degree to which a certain behavior
is likely to promote another behavior. Based on this rule of a transitional prob-
ability matrix, this study sampled only those behaviors that were likely to pro-
mote each type of learning engagement. We converted all raw behavior analysis
data to the form of a transition probability matrix. This study initially captured
all 1,490,020 association cases from the 92 behavior-annotated video files in the
transition probability matrix. To compute significant associations among
numerous cases, this study implemented a set of data cleaning procedures in
advance—specifically, we filtered in only the behaviors that are most likely to
promote learning engagement (i.e., content and cognitive engagement) and
tagged as mostly probable paths (or having the highest probabilities). In the
analysis, we set the cutoff value 0.10 as significant. Once the path was below the
threshold value, it was tagged as a rare transition.

We also employed a random permutation test for analyzing whether certain in-
game actions by students are likely to occur with statistically high chances
(Bakeman, Mcarthur, & Quera, 1996). The random permutation test is a non-
parametric analysis that does not assume the normal sample distribution.
Sequential analysis studies are largely exposed to the problem of skewed marginal
distributions. Alternate to the lag-sequential analysis as parametric statistics, a
random permutation test is designed to detect whether the relation between two
behaviors is empirically meaningful or occurs by chance. While the transition
probability matrix emphasizes the likelihood of behavior occurrences regardless
of the numbers or lengths of sequences, the random permutation test aims at
examining whether students’ in-game actions are statistically meaningful among
the behavior association cases from the transition probability matrix.

Thematic analysis. To further explore how students’ specific in-game actions were
associated with high learning engagement, a qualitative thematic analysis was
also performed (Braun & Clarke, 2006; Braun, Clarke, Hayfield, & Terry, 2019).
The thematic analysis was implemented to depict the contextual factors largely
associated with students’ behavior patterns that promote GBL engagement. The
analysis helped to explain how and why students’ gameplay sequences occurred
in a certain way. Multiple behavior coders initially piloted themes from the
observations and then finalized said themes through iterative elaborations. We
triangulated the findings of sequential analysis and thematic analysis to synthe-
size the pattern of students’ in-game actions in relation to learning engagement.
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Results

Sequential Analysis

Descriptive statistics. Using systematic behavior observations, this study initially
sampled a total of 9,021 behavior events from the participants’ gameplay ses-
sions. We found a total of 505 behavior combination cases. The bar and pie
charts that show the proportion and numbers of key behavior events from the
observation coding are shown in Figure 2. The most frequent behavior type is
building (n¼ 4,749). In addition, there are frequent events of Learning
Engagement (n¼ 2,657), UsingHelp (n¼ 1,041), Allocation (n¼ 288), Trading
(n¼ 190), and Site-Surveying (n¼ 96). There are a total of 613 behaviors
(23%) with content engagement, whereas the number of behaviors under cog-
nitive engagement is 2,044 (77%).

Exploratory transition probability matrix analysis. By analyzing the transition probabil-
ity matrix, this study confirmed several causal relations among the game actions
and learning engagement. As illustrated in Figure 3, a total of 12 significant
relationships (Pr> .10) was captured. With respect to content engagement
alone, there were four major causal relations among game events and each type
of content engagement (Appropriate+Allocation ! ContentEngagement+
Application, Accurate+Trading ! ContentEngagement+Application,
Accurate+Trading ! ContentEngagement+Processing, and
ContentEngagement+Calculation ! Content Engagement+Processing).
According to the order of the relations between the game behaviors and engage-
ment, the one action most likely to promote the state of content engagement was
appropriate allocation, in which the learners assigned families to each shelter
appropriately during the gameplay (Pr¼ .40). Furthermore, trading building
materials in the store during gameplay was found as a behavior that promotes
the knowledge ‘‘application’’ state of content engagement (Pr¼ .33) and was con-
firmed to be an event that predicts the ‘‘processing’’ state of content engagement
as well (Pr¼ .28). Finally, the ‘‘calculation’’ state was positively associated with
the ‘‘processing’’ state in content engagement (Pr¼ .21).

Five casual relations were identified in cognitive engagement overall
(Intended+Building+Positioning ! CognitiveEngagement+
Testing&Refining, UsingHelp ! CognitiveEngagement+MiningInformation,
UsingHelp ! CognitiveEngagement+Planning, SiteSurveying !

CognitiveEngagement+Planning, and Intended+Building+Stacking !

CognitiveEngagement+Testing&Refining). According to the results, the game
actions of object positioning (Pr¼ .47) and stacking (Pr¼ .13) during gameplay
promoted the testing and refining states of cognitive engagement. Furthermore,
UsingHelp, such as interacting with the help panel in the game, also predicted
learners’ acts of mining information (Pr¼ .36) and planning (Pr¼ .18) in cogni-
tive engagement. Learners’ site-surveying actions, such as measuring the
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distance and size of the containers or blocks during gameplay, also promoted
planning behavior (Pr¼ .18) in cognitive engagement.

Notably, content engagement also predicted cognitive engagements signifi-
cantly (ContentEngagement+Calculation ! CognitiveEngagement+
MiningInformation and ContentEngagement+Processing !

Figure 2. Frequency of each behavior type.
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CognitiveEngagement+MiningInformation). Calculation (Pr¼ .13) and pro-
cessing behaviors (Pr¼ .11) both promoted information mining in cognitive
engagement.

Random permutation test. This study implemented a random permutation test to
analyze the statistical significance of the game sequences with high likelihood
from the transition probability matrix analysis. The permutation test was
designed to approximate the p value of each behavior path by simulation.

Figure 3. Probability values and directions among students’ in-game actions.
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To assess a significance threshold of behavior sequences, this study conducted
1,000 permutations under a-level of .05 (Studer, Ritschard, Gabadinho, &
Müller, 2011). For i number of permutation test, the order of the captured
behavior sequences was randomly shuffled. The null hypothesis of this testing
was that behavior sequences occurred only by chances. As shown in Table 2, the
null hypothesis was rejected for all sampled sequences from the transition prob-
ability matrix, indicating that all the behavior sequences were statistically
significant.

Qualitative Results

Enactments of students’ content engagement by material-trading and refugee-allocation

actions. Students’ gameplay actions, especially material-trading and refugee-allo-
cation, facilitated students’ math computation behaviors. In a material-trading
action, players had to calculate the cost of an item, gauge the discount offer for a
batch purchase, and plan the purchasing strategy to reduce the cost. In a refu-
gee-allocation action, the students had to translate the ratio and unit statements
specifying different refugees’ living space need, calculate the total and unit spaces
available and needed, and coordinate all these different pieces of information to
configure the appropriate number and type of refugees to be assigned to each
shelter.

Table 2. Summary Results of the Random Permutation Test.

Behavior sequences

p value

(permutation)

Null

hypothesis

Appropriate +Allocation ! ContentEngagement +Application .03 Rejected

Accurate + Trading ! ContentEngagement +Application <.01 Rejected

Accurate + Trading ! ContentEngagement + Processing <.01 Rejected

ContentEngagement +Calculation ! Content

Engagement + Processing

<.01 Rejected

Intended + Building + Positioning ! CognitiveEngagement +

Test&Refining

<.01 Rejected

UsingHelp ! CognitiveEngagement +MiningInformation,

UsingHelp ! CognitiveEngagement + Planning

<.01 Rejected

SiteSurveying ! CognitiveEngagement + Planning <.01 Rejected

Intended + Building + Stacking ! CognitiveEngagement +

Test&Refining

<.01 Rejected

ContentEngagement +Calculation ! CognitiveEngagement +

MiningInformation

<.01 Rejected

ContentEngagement + Processing ! CognitiveEngagement +

MiningInformation

.02 Rejected
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As observed, the participant Christina tended to physically count on her fin-
gers to tally the total number of containers or blocks during her gameplay.
Although her overall game performance was not comparable with other stu-
dents, she appeared enthusiastic in performing her math computation tasks. In
addition, she also tended to zoom in on her game screen to focus on each price of
the products offered by the item shop. She occasionally hovered her mouse
cursor to double-check the price of each item to ensure her computations.
These in-game actions demonstrated her deliberation on accurate math compu-
tations when performing material trading actions. After multiple material trad-
ing transactions, she became accustomed to the item cost calculation process.
She also realized that she could buy building items by batch at a reduced price.
Her subsequent trading actions were obviously faster than her previous
attempts.

Regarding the refugee-allocation action, the player is supposed to collect and
integrate all related background information, such as the size of each structure
or shelter, unit space need of each type of refugee, as well as the number and
composition of refugees. At an initial attempt, participant Shaydin tended to
assign refugees to each house randomly without computing the space needed for
refugees in relation to the space limit of each shelter. He iteratively failed at this
action, without understanding the reasons. Shaydin’s multiple failures made him
reflective and ultimately noticed that he needed to first examine the space needs
of each type of refugees. He started to process all related and embedded math
concepts effortfully since then. Shaydin appeared to be engaged in his compu-
tation during his allocation of the refugees. After he finally succeeded in the
refugee allocation action, he exclaimed, ‘‘I saved this family!’’

Enactment of students’ cognitive engagement by a series of building actions. Some stu-
dents in the gameplay were inclined to become cognitively engaged when imple-
menting a set of building sequences in response to their design quests. As
designed, once students complete their material-trading action, they need to
assemble the building materials to construct a shelter. They have been trained
to plan and execute a series of building acts in an optimal sequence. For exam-
ple, Brandon was a successful performer in building his adobe-style house during
the desert episode. During his building action, he often referred to the game task
narrative to ensure that his design artifact met the task requirement. His early
gameplay experience fostered his dexterity in the building action. He strived for
an optimum state in his building work and would iteratively refine his acts, even
when the quality of his artifact was sufficient enough to pass the game level. His
gameplay behaviors also demonstrated a strategic planning effort. For example,
his increased uses of site-surveying tools demonstrated the gradual development
of a sensible gameplay style.

Jayden was another mindful player in his building actions. In particular, he
was astute with his building actions at the school episode. The goal of this design
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quest was to build a grandstand for the school stadium. The key challenge of this
quest was that the player could only use 20% fewer blocks than those of the
blocks they could purchase in constructing the grandstand. Different from other
students who experienced game failures without being aware of this design
requirement, Jayden was attentive. After he failed in his game quest a few
times, he began surveying the construction site again and then examined the
structure of the existing grandstands. He noticed that the backside of the exem-
plary grandstands had numerous hollow spaces, which indicated that he could
use fewer blocks to simulate/compose the stand. With this insight, he attempted
to replicate the design of the example grandstands. Although his replication was
not fully successful, his explorations allowed him to change his design plan and
modify his building actions. He was also enthusiastic in sharing his design
insights with other classmates, who were playing the game concurrently.

Although most students were found engaged in the building actions, quite a
few students were inattentive. They had hard time or lack awareness of analyz-
ing the composition of the structure to be built. Even when they read the task
panel to search task-relevant cues, they failed to attain insights.

Using in-game help to support task-related math variable interpretation. In-game learn-
ing support appeared helpful to foster students’ design-based, math problem-
solving. At the very beginning of gameplay, most students failed to connect
task-relevant, contextual information in the game world with the design problem
to be solved. Instead, they would pick a random number of materials and built a
random structure. After a few failures in the game tasks, they gradually realized
that they need to purchase the proper amounts of blocks and the building has to
satisfy certain design conditions. Their behavior pattern indicated that they
attempted to hypothesize on the math computations based on environmental
variables in the game world. For example, after multiple game failures, students
tended to execute site-surveying actions before they purchased their materials.
They were much more frequent in using the task/help panel to attain the salient
task information. In other words, the students were attentive in processing envir-
onmental variables of their game quest. Also, the embedded in-game learning
supports (e.g., help panel, game summary screen) had facilitated the students’
comprehension and coordination of the embedded math variables in the game
world to solve design-based math context problem.

Discussion

Enhanced Learning Engagement Elicited by Students’ In-Game
Actions

The present study explored the association between students’ in-game actions
and learning engagement during their math gameplay. According to prior study
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findings (Abdul Jabbar & Felicia, 2015; Przybylski et al., 2010), students’ mas-
tery of game mechanics and learning support uses were potentially effective in
enhancing their learning engagement. The current behavior observations of stu-
dents’ gameplay supported this finding. This study demonstrated how students
become engaged in learning via salient game actions.

Specifically, we found that refugee allocation and material trading actions
promoted students’ content learning engagement. Using in-game building
design tools with embedded learning support enhanced their cognitive engage-
ment. This study finding suggests that game designers should examine the nature
of different game actions in relation to students’ content and cognitive
engagement.

A series of building design sequences that students experienced served as the
introduction to their problem-solving tasks, which contributed to their develop-
ment of gameplay heuristics (Schoenfeld, 2014), which could mediate the stu-
dents’ enhanced cognitive engagement. This study found that the students were
inclined to use in-game learning support in their building actions. The in-game
learning support motivated and helped the students to refer to given contextual
clues from each game episode. During their iterative building actions, students
become cognitively engaged because their recursive in-game actions possibly
developed their competency in game control (Przybylski et al., 2010;
Schoenfeld, 2014).

Students’ In-Game Actions and Mathematical Thinking

The qualitative findings of this study support that students’ in-game actions
enabled the enactment of mathematical thinking. Specifically, in-game actions
of materials trading and refugee allocation have activated students’ identifica-
tion and interpretation of mathematical information distributed across
game objects (e.g., translating the ratio and unit statements, checking the
price and geometric properties of building items) and the application of the
conceptual understanding to solve a mathematical problem (e.g., computing
the individual and total space need in relation to the space limit to allocate
refugees). They demonstrated mindfulness in collecting and translating task-
related mathematical information and applied math-related problem-solving
procedures. In addition, students have demonstrated cognitive engagement in
terms of strategic planning, purposeful construction site survey, and geometric
shape analysis during building actions. Based on prior research on learning
transfer (Boaler, 1993; Bransford & Schwartz, 1999), the more variations stu-
dents experienced in gameplay-based mathematical practices, the greater trans-
fer they would achieve in developing and applying mathematical thinking. In
this study, the students engaged in content-related game actions (e.g., trading
and allocation) in different game tasks and construction scenarios (e.g., in the
scenes of an island, a desert, and an urban school). They hence performed their
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mathematical thinking iteratively through in-game actions tailored to various in-
game circumstances.

Video Analysis-Based Data Capturing on Learning Engagement in
GBL Research

Prior GBL research relatively lacked the measurement that captures students’
dynamics change in GBL engagement. Compared to prior works in GBL (Gil-
Doménech & Berbegal-Mirabent, 2017; Jagušt, Botički, & So, 2018) and on using
video analysis for in-depth observations of students (Derry et al., 2010; Goldman,
Pea, Barron, & Derry, 2007), this study adopted a synthesized data-capturing
approach including both sequential analysis and thematic analysis. This analysis
approach helped to elucidate interplays occurred between students and in-game
tools. The study finding evidenced that game actions are salient indicators show-
ing when and how students become engaged as related to their gradual develop-
ments of mathematical thinking. This study illustrated that students’ meaningful
gameplay actions correspond with their mathematical sense-making steps. The
results of this study would inform future research on predicting students’ learning
engagement to support adaptive learning in GBL for math.

Conclusion

Overall, this study found that students’ in-game actions significantly predicted
their learning engagement in their math gameplay. The findings of the sequential
analysis and thematic analysis coherently indicated that variant types of stu-
dents’ in-game actions fostered learning engagement differently. This study also
found that the in-game learning support enhanced students’ understandings of
in-game math variables and actions.

Limitation and Future Research

This mixed-method study investigated the association between students’ in-game
behaviors and their learning engagement with a relatively small sample of stu-
dents. To corroborate the study findings, a future experimental study should be
conducted. Future research should also investigate how the in-game learning
support promotes students’ in-game actions with high learning engagement.
Moreover, future studies can also examine how students’ enhanced learning
engagement mediates their mathematical problem-solving in GBL.
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