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We study an optimization problem of a computational folding model, proving its 
hardness and proposing heuristic algorithms. RNA cotranscriptional folding refers to the 
phenomenon in which an RNA transcript folds upon itself while being synthesized out of a 
gene. An oritatami model (OM) is a computational model of this phenomenon that lets its 
sequence of beads (abstract molecules) fold cotranscriptionally by the interactions between 
beads, according to its ruleset. We study the problem of reducing the ruleset size, while 
keeping the terminal conformations geometrically the same. We first prove the hardness 
of finding the smallest ruleset, and then suggest two approaches that reduce the ruleset 
size efficiently.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In nature, a one-dimensional RNA sequence folds itself autonomously, giving rise to a high-dimensional tertiary structure. 
However, predicting the tertiary structure from a primary structure is a challenge. Based on experimental observations, 
researchers have established various RNA structure prediction models, including RNAfold [1], Pknots [2], mFold [3], and 
KineFold [4].

Recently, biochemists showed that the kinetics—the step-by-step dynamics of the reaction—plays an essential role in 
the geometric shape of the RNA foldings [6], because the folding caused by intermolecular reactions is faster than the 
RNA transcription rate [7]. By controlling cotranscriptional foldings, researchers have succeeded in assembling a rectangular 
tile out of RNA, which is called RNA Origami [5]. This cotranscriptional folding is observed even at a single-nucleotide 
resolution [8]. From this kinetic point of view, Geary et al. [9] proposed a new folding model called an oritatami model (OM) 
as in Fig. 1. An Oritatami System (OS) consists of a sequence of beads (the transcript) and a set of rules for the possible 
intermolecular reactions between beads. An OS folds its bead sequence as follows. For each bead, the OS determines the best 
location that maximizes the number of possible interactions, using a lookahead of a few upcoming beads, and then places 
the current bead at that location. Then, it reads the next bead, and repeats the procedure until there are no further beads. 
The lookahead represents the reaction rate of the cotranscriptional folding, and the number of interactions represents the 
energy level. In an OS, we call the secondary structure the conformation, and the resulting secondary structure the terminal 
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Fig. 1. (Left) An example of an RNA tile generated by RNA Origami [5]. (Right) A conformation representing the RNA tile in OM. The directed solid line 
represents a path, dots represent beads, and dotted lines represent interactions.

Fig. 2. A Comparison of RNA origami and oritatami model.

conformation. Fig. 2 compares RNA origami and oritatami model. Geary et al. implemented an OS counting in binary [10]
and an OS simulating a cyclic tag system [9]. Han et al. [11] implemented an OS to solve the DNF tautology problem, and 
proved the hardness of the OS equivalence problem. Han et al. [12] proposed the problem of removing self-attracting rules, 
and proved upper and lower bounds for the number of copies of bead types required to remove self-attracting rules.

RNA consists of only four nucleotides (A, G, C, U) and three interaction rules (A-U, C-G, G-U). However, we can design a 
system with more bead types and rules in experiments by combining multiple nucleotides to represent a bead type [5,10]. It 
is straightforward that with more rules, it becomes more difficult to realize the system in experiments. Using experiments, 
biochemists have studied methods that synthesize the desired structure using a smaller number of basic components [13]. 
This motivates us to consider the problem of reducing the size of the alphabet and the ruleset from a theoretical point of 
view. Since an OS folds its transcript on the triangular lattice, it is important to preserve its geometric properties, including 
the transcript path and interactions between beads, while reducing the ruleset. Geary et al. [10] proved that, given a set 
of paths and a transcript, it is NP-complete to find a ruleset that folds the transcript to the set of paths. Ota and Seki [14]
proved that, given a path, a transcript, and a set of interactions, it is NP-complete to find a ruleset that folds the transcript 
to the path according to the given interactions. However, there is no research on reducing and optimizing the ruleset of a 
given OS while preserving all its geometric properties.

We say that two OSs are isomorphic if both have the same geometric properties. We first prove that, given an OS, 
it is NP-hard to find the smallest ruleset of an isomorphic OS, in general. Then, we propose two practical approaches to the 
problem: 1) the bead-type merging method, which merges two bead types that have the same interactions with other bead 
types; and 2) a representative fuzzy ruleset construction, which is a set of rulesets that results in the same set of terminal 
conformations. We design efficient algorithms to find a representative fuzzy ruleset from a given OS, reduce the size of the fuzzy 
ruleset using a modified bead-type merge, and construct a reduced ruleset from the fuzzy ruleset.

2. Preliminaries

Let ! be a finite set of types of abstract molecules, or bead types. By !∗ (respectively, !ω), we denote the set of finite 
(one-way infinite) sequences of bead types in !. A sequence w in !∗ can be represented as w = b1b2 · · ·bn , for some n ≥ 0
and bead types b1, b2, . . . , bn ∈ !, where n is the length of w and is denoted by |w|; in other words, a sequence w is a 
string over !. The sequence of length 0 is denoted by λ. For 1 ≤ i ≤ j ≤ n, the subsequence of w ranging from the i-th bead 
to j-th bead is denoted by w[i : j]; that is, w[i : j] = bibi+1 · · ·b j . This notation is simplified as w[i] when j = i, referring 
to the i-th bead of w . For k ≥ 1, w[1 : k] is a prefix of w . We use w = w1 · w2, or simply w1 w2 to denote the catenation of 
two strings w1 and w2.

An undirected graph G = (V , E) consists of a finite nonempty set V of nodes, and a set E of unordered pairs of nodes 
of V . Each pair e = {u, v} of nodes in E is an edge of G , and e is said to join u and v . A weighted graph G = (V , E) is a 
graph where each edge e = (u, v) has an assigned weight w(e). We denote an edge between u and v with a weight w in a 
weighted graph by e = ({u, v}, w). The reader may refer to Gibbons [15] for more details in graph theory.

Oritatami systems fold their transcript, a sequence of beads, over the triangular lattice cotranscriptionally by letting 
nascent beads form as many hydrogen-bond-based interactions (h-interactions, or simply interactions) as possible, according 
to a given set of rules. Let T = (V , E) be the triangular grid graph. A directed simple path P = p1 p2 · · · in T is a possibly 
infinite sequence of pairwise-distinct points (vertices). Let P [i] be the i-th point pi and |P | be the number of points in P . 
A ruleset H ⊂ ! × ! is a symmetric relation over the set of pairs of bead types, such that, for all bead types a, b ∈ !, 
(a, b) ∈ H implies (b, a) ∈ H.
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Fig. 3. An example OS with delay 2 and arity 2. The seed is colored in red, and the stabilized beads and interactions are colored in black. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

A conformation instance, or configuration, is a triple (P , w, H) of a directed path P in T , w ∈ !∗ ∪ !ω , and a set 
H ⊆

!
(i, j)

"" 1 ≤ i, i + 2 ≤ j, {P [i], P [ j]} ∈ E
#

of interactions. This is interpreted as the sequence w being folded, while its 
i-th bead w[i] is placed on the i-th point P [i] along the path, and there is an interaction between the i-th and j-th beads 
if and only if (i, j) ∈ H . Configurations (P1, w1, H1) and (P2, w2, H2) are congruent provided w1 = w2, H1 = H2, and P1
can be transformed into P2 by a combination of a translation, a reflection, and rotations by 60 degrees. The set of all 
configurations congruent to a configuration (P , w, H) is called the conformation of the configuration, and is denoted by 
C = [(P , w, H)]. We call w a primary structure of C . Given a conformation C , we say that a point p is annotated in C if there 
exists a bead placed on p, and unannotated otherwise.

Let H be a ruleset. An interaction (i, j) ∈ H is valid with respect to H, or simply H-valid, if (w[i], w[ j]) ∈ H. We say that a 
conformation C is H-valid if all of its interactions are H-valid. For an integer α ≥ 1, C is of arity α if the maximum number 
of interactions per bead is α; that is, if for any k ≥ 1, 

""{i | (i, k) ∈ H}
""+
""{ j | (k, j) ∈ H}

""≤ α, and this inequality holds as an 
equation for some k. Then, we use C≤α to denote the set of all conformations of arity at most α.

Oritatami systems grow conformations by elongating them under their own ruleset. For a finite conformation C1, we say 
that a finite conformation C2 is an elongation of C1 by a bead b ∈! under a ruleset H, written as C1

H→b C2, if there exists 
a configuration (P , w, H) of C1, such that C2 includes a configuration (P · p, w · b, H ∪ H ′), where p ∈ V is a point not in P
and H ′ ⊆

!
(i, |P |+1)

"" 1 ≤ i ≤ |P |− 1, {P [i], p} ∈ E, (w[i],b) ∈ H
#

. This operation is recursively extended to the elongation 

by a finite sequence of beads, as follows: For any conformation C , C
H→

∗
λ C , and for a finite sequence of beads w and a 

bead b, a conformation C1 is elongated to a conformation C2 by w · b, written as C1
H→

∗
w·b C2, if there is a conformation C ′

that satisfies C1
H→

∗
w C ′ and C ′ H→b C2. We denote the set of all conformations that are elongated to C2 by w · b under α as 

Eα(C2, w · b).
An oritatami system (OS) is a 6-tuple %  = (!, w, H, δ, α, Cσ = [(Pσ , wσ , Hσ )]), where H is a ruleset, δ ≥ 1 is a delay, 

and Cσ is an H-valid initial seed conformation of arity at most α, upon which its transcript w ∈ !∗ ∪!ω is to be folded 
by stabilizing beads of w one at a time and minimizing energy collaboratively with the succeeding δ − 1 nascent beads. 
The set F(% ) of conformations foldable by this system is defined recursively, as follows: the seed Cσ is in F(% ); then 
provided that an elongation Ci of Cσ by the prefix w[1 : i] is foldable (i.e., C0 = Cσ ), its further elongation Ci+1 by the next 
bead w[i+1] is foldable if

Ci+1 ∈ argmin
C∈Eα(C1,x[1])

min
!
(G(C ′)

"" C ′ ∈ Eα(C, x[2,d]))
#
, (1)

where (G(C ′) is an energy function that assigns to C ′ with the negation of the number of h-interactions within 
C ′ as energy. Informally speaking, C2 is a conformation obtained by elongating C1 by the bead x[1] such that the 
beads x[1], x[2], . . . , x[d] create as many h-interactions as possible. Then, we write C1

%
)→x C2, and the superscript % is 

omitted whenever % is clear from the context. Through the folding, the first bead of x is stabilized.
A conformation foldable by % is terminal if none of its elongations is foldable by % . We use C = [(Pσ P , wσ w, Hσ ∪ H)]

to denote a terminal conformation, where w is folded along the path P with interactions in H . An OS is deterministic if, 
for all i, there exists at most one Ci+1 that satisfies Equation (1). In other words, a deterministic OS folds into a unique 
terminal conformation.

Fig. 3 illustrates an example of an OS with delay 2, arity 2, and the ruleset {(a, b), (b, f ), (d, f ), (d, e)}; in (a), the system 
tries to stabilize the first bead a of the transcript, and the elongation in (a) gives one interaction. However, it is not the 
most stable because the elongation in (b) gives two interactions in total. Thus, the first bead a is stabilized according to the 
location in (b). In (c), the system tries to stabilize the second bead f , and the elongation in (c) gives one interaction for the 
primary structure f e. However, the elongation in (d) gives two interactions in total. Thus, the second bead f is stabilized 
according to the location in (d). Note that f is not stabilized according to the location in (b), although the elongation in (b) 
is used to stabilize the first bead a.

Conformations C1 and C2 are isomorphic if there exist an instance (P1, w1, H1) of C1 and an instance (P2, w2, H2) of 
C2, such that P1 = P2 and H1 = H2. For two sets C1 and C2 of conformations, we say that two sets are isomorphic if 
there exists a one-to-one mapping C1 ∈ C1 → C2 ∈ C2, such that C1 and C2 are isomorphic. We say that two oritatami 
systems are isomorphic if they fold the isomorphic set of foldable terminal conformations. A rule (a, b) is useful in an 
OS %  = (!, w, H, δ, α, Cσ ) if % ′ = (!, w, H \ {(a, b)}, δ, α, Cσ ) does not fold the same set of terminal conformations as % .
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Fig. 4. An Illustration of two representations of Problem 1. The seed is colored in red.

Fig. 5. An Illustration of a block for Ci = (v1 ∨ v2 ∨ v3) when m= 4. The path from the previous block is colored in gray.

3. Hardness of ruleset optimization on isomorphic oritatami systems

We first define the Ruleset Optimization problem on isomorphic OSs.

Problem 1 (Ruleset Optimization). Given an OS %  = (!, w, H, δ, α, Cσ = [(Pσ , wσ , Hσ )]), find an isomorphic OS % ′ = (!′, w ′, H′,
δ,α, C ′

σ = [(Pσ , wσ , Hσ )]), where |H′| is minimum. (See Fig. 4 (a) and (c).)

We can think of the problem as follows: Suppose we are given a delay δ, an arity α, a path Pσ , a set Hσ of inter-
actions, and a set {(Pi, Hi)}, where Pi is a path and Hi is a set of interactions on Pi . Then, the problem is to find a 
transcript w ′ and a smallest ruleset H′ , where the OS % ′ = (!′, w ′, H′, δ, α, C ′

σ = [(Pσ , wσ , Hσ )]) successfully folds the 
set {[(Pσ Pi, wσ w ′, Hσ ∪ Hi)]} of terminal conformations. (See Fig. 4 (b) and (c).)

Theorem 2. The Ruleset Optimization problem is NP-hard.

Proof. We reduce the problem from 1-IN-3-SAT problem. The problem is similar to 3SAT problem, except that every clause 
has only positive literals and exactly one literal on each clause should be satisfied. Suppose a formula φ = $ 1≤i≤n(u(i,1) ∨
u(i,2) ∨ u(i,3)) is given, where u(i,k) ∈ {v j | 1 ≤ j ≤ m}. We construct a Ruleset Optimization problem instance from the 
formula. We set ! = {a, a, b, b}, δ = 2m + 3 and α = 4. The seed Cσ , the path P and the set H of interactions consist of 
repetition of n blocks, where each block represents one clause in φ.

Fig. 5 shows one block for Ci = (v1 ∨ v2 ∨ v3) when m = 4. The path for a partial transcript consists of three zigzags, 
colored in black. Two parts of the seed surround the path from the left and the right. On the left of the zigzags, there exist 
two tunnel-like structures which allow only the straight path to fold. Fig. 6 (a) shows the block for C1 = (v1 ∨ v2 ∨ v3)
when m = 4. Since there is no previous block, the seed guides the zig-transcription. Fig. 6 (b) shows the block for Cn =
(v1 ∨ v2 ∨ v3) when m = 4.

Now, we claim that the Ruleset Optimization problem instance has a solution of |H′| = 2 if and only if the formula 
satisfies the 1-IN-3-SAT problem. First, suppose that the formula satisfies the problem. We use H′ = {(a, a), (b, b)}. For 
the transcript w ′ , we claim that there exists a transcript that folds into the target conformation. Note that the ruleset is 
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Fig. 6. (a) An Illustration of a block for C1 = (v1 ∨ v2 ∨ v3) when m= 4. (b) An Illustration of a block for Cn = (v1 ∨ v2 ∨ v3) when m= 4.

Fig. 7. Partially determined bead types for the first block.

complementary—for each bead type, there exists an unique bead type that can interact with. From Fig. 5 and Fig. 6, there are 
beads that are connected by a sequence of interactions with a bead on the seed. These beads are immediately determined as 
in Fig. 7 and Fig. 8. In the first zig of Fig. 7, we have m beads that are both adjacent to b and b and do not have interactions 
with either. This implies that one of a or a should be assigned for these beads, which refers to a possible assignment 
of truth values for vi ’s. We regard bead type a as T and a as F. Then, an assignment in Fig. 7 represents that v1 = T
and v2 = v3 = v4 = F. The assignment at the first zig of the first block is propagated downward by the complementary 
rule (a, a).

Now, when we try to stabilize the first bead of the first zig, there are three major elongations that we can use.

1. Proceed to the upper left tunnel.
2. Proceed to the lower left tunnel.
3. Follow the path of the terminal conformation.

Given the bead type assignment so far, the number of interactions for the first and the third elongation is 2m + 5. Since the 
system has only one terminal conformation and should be deterministic, the second elongation, which stabilizes the first 
bead following the terminal conformation, should have at least 2m + 6 interactions, as in Fig. 9.

Once the first bead is stabilized following the terminal conformation, to stabilize the second bead, we may extend the 
second and the third elongations. Since the location of the second bead is different in two elongations, the extension of the 
third elongation should be the most powerful one. Since the number of interactions is 2m + 6, the extension of the second 
elongation should have at most 2m +5 interactions. For the second elongation, a is adjacent to the sequence of beads on the 
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Fig. 8. Partially determined bead types for a block.

Fig. 9. Stabilizing the first bead of the block.

Fig. 10. Stabilizing the second bead of the block.

seed that represent truth value assignments for variable in the clause Ci . It turns out that the previous two conditions about 
the number of interactions can be satisfied if and only if exactly one bead on the elongation interacts with a bead a on the 
seed, which implies that only one variable in the clause is true from the current assignment. (See Fig. 10.) Thus, if there 
exists a truth value assignment that satisfies all clauses, then there exists a transcript that can fold the target conformation 
uniquely.

Second, suppose there exists a ruleset H′ of size 2 and a transcript w ′ such that the OS % ′ = (!, w ′, H′, δ, α, C ′
σ =

[(Pσ , wσ , Hσ )]) successfully folds the target conformation. From the adjacent bead pairs in the seed, we have the following 
observations about H′:

• (b, b) ∈ H′ .
• (b, b), (b, b), (a, b), (a, b), (a, b), (a, b) /∈ H′ .

Since (b, b) ∈ H′ , bead type assignments in Fig. 7 and Fig. 8 hold for w ′ . Same as before, we may assign a or a for m
beads in the first zig of Fig. 7. Since |H′| = 2, we may have only one of three rules {(a, a), (a, a), (a, a)} in H′ .

1. If (a, a) ∈ H′ , then all beads in the first zig of Fig. 7 are a, since these beads have interactions with following beads. 
Then, while stabilizing the first bead of the block, all three elongations in Fig. 9 yields the same 2m + 5 interactions, 
which leads to nondeterministic conformations.

2. If (a, a) ∈ H′ , then all beads in the first zig of Fig. 7 are a. Then, while stabilizing the second bead of the block, the 
elongation to the lower left tunnel has 2m +7 interactions and becomes the most stable one, which is not a target path.

3. If (a, a) ∈ H′ , then we may assign a or a beads in the first zig of Fig. 7. As previously described, if the transcript folds 
into the target conformation, then only one variable in the clause is true from the current assignment. Thus, if there 
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Fig. 11. A part of a DNF tautology checking OS by Han et al. [11]. In the figure, the formula has three clauses C1, C2 and C3, and their values are evaluated. 
The last part of the transcript has periodic probes (colored in red) that scan the sequence of beads (colored in blue) and changes the path if it encodes
TRUE. Interactions in the terminal conformation are omitted. The dotted line represents an interaction from a rule r1 that attracts the last probe downward 
when C1 is evaluated to FALSE.

exists a transcript that can fold the target conformation uniquely, then there exists an truth value assignment that 
satisfies all clauses. ✷

4. Ruleset reduction by bead type merging

Since the Ruleset Optimization problem is NP-hard in general, we consider poly-time heuristics to reduce the size of a 
ruleset efficiently. Because not all rules in a ruleset are useful, we start with removing useless rules. Note that some rules 
can be useful but not visible in the terminal conformation, even when the system is deterministic. For a deterministic OS, 
it is sufficient to simulate the OS and find the useless rules. The simulation takes O (n · 5δ) time, where n is the length of 
the transcript.

Corollary 3. For a deterministic OS %  = (!, w, H, δ, α, Cσ = [(Pσ , wσ , Hσ )]), we can remove useless rules in O (n ·5δ) time, where 
n = |w|.

For a nondeterministic OS, we show the hardness of the problem.

Theorem 4. For a nondeterministic OS %  = (!, w, H, δ, α, Cσ = [(Pσ , wσ , Hσ )]) and a rule r ∈ H, it is coNP-hard to determine if r
is useless.

Proof. We reduce the problem from the DNF tautology problem. A DNF formula φ is written as 
%

1≤i≤n Ci for 
clauses C1, . . . , Cn , each of which is a logical AND (∧) of Boolean variables v1, . . . , vm and their negations. The DNF tautology 
problem asks whether or not a given DNF formula is TRUE on all possible assignments. This problem is coNP-complete [16]. 
We use the tautology checking OS by Han et al. [11], which nondeterministically assigns values to variables and evaluates 
the formula by the location of the last bead. At the last part of the terminal conformation, the folding starts from the lower 
row. For each clause, the transcript probes a sequence of beads that represents the value of the clause. If the clause is 
evaluated TRUE, the transcript changes its path to the upper row, as depicted in Fig. 11. If there exists at least one TRUE
evaluation, the last bead stabilizes at the point psat at the upper row, and punsat at the lower row otherwise. The probe part 
is periodic and repeats n times, according to the number of clauses.

Now, assume that we use different, distinct bead types for the last probe, which interacts in the same way as the original 
bead types. There exists a rule r1 that attracts the bead in the last probe downward when C1 is evaluated to FALSE, as 
shown in Fig. 11. If the tautology problem is true, then the formula is always evaluated to TRUE, and there is no chance 
that the last bead stabilizes at punsat . Thus, the last probe cannot reach punsat and r1 becomes useless. On the other hand, if 
the tautology problem is false, then there exists a terminal conformation where the last bead is stabilized at punsat , which 
means that r1 is useful. Therefore, the problem becomes coNP-hard. ✷

It is coNP-hard to identify and remove useless rules in general. Thus, we propose a method to reduce the ruleset size 
regardless of usefulness of rules. For two bead types a and b, suppose (a, c) ∈ H if and only if (b, c) ∈ H for all possible 
bead types c. If we merge beads a and b and replace all b’s in the transcript and the seed to a’s, it is straightforward to 
verify that the resulting OS is isomorphic to the original OS. We formally define the problem of finding a smallest ruleset 
based on the bead type merging.

Problem 5 (Ruleset Optimization by Bead Type Merging). Given a ruleset H ⊆ ! ×! of an OS, find a minimum alphabet !′ and a 
ruleset H′ ⊆!′ ×!′ , where there exists a homomorphism h :! →!′ such that

• for each (xi, x j) ∈ H, (h(xi), h(x j)) ∈ H′ , and
• for each (xi, x j) /∈ H, (h(xi), h(x j)) /∈ H′ .
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Fig. 12. When we stabilize the bead x, suppose the path Px in (a) is the most stable one with the sum of interactions sx = 4. Since the path P ′
x in (b), 

(c) and (d) stabilizes x at a location different from Px , we may assign arbitrary interactions for these paths as long as the sum s′
x of interactions does not 

exceed 4.

Theorem 6. We can solve the Ruleset Optimization by Bead Type Merging problem in O (t2) time, using O (t) space, where t = |!|.

Proof. We may construct a binary string xi for each bead type σi , where xi [k] is 1 if (σi, σk) ∈ H, and 0 otherwise. It is 
straightforward that if xi = x j , then σi and σ j can be merged successfully and result in the same homomorphic bead type. 
We run a radix sort for strings x1, x2, . . . , xt , where t = |σ |. After the sorting, any set of bead types corresponding to the 
same (consecutive) string can be merged successfully. Since the length of the strings is t , the radix sort requires O (t2) time, 
using O (t) space.

Suppose we have the new alphabet !′ ⊆ ! after the merging by the radix sort. For each bead type pair (xi, x j) ∈ !′ 2, 
there exists a bead type xk ∈ !′ such that (xi, xk) ∈ !′ 2 and (x j, xk) /∈ !′ 2. Thus, if there exists a minimum alphabet !′′

smaller than !′ and the corresponding homomorphism h′′ :! →!′′ , there should exist a bead type triple (xi, x j, xk) ∈!3

such that h′′(xi) = h′′(x j), (xi, xk) ∈ H, (x j, xk) /∈ H, and (h′′(xi), h′′(xk)) ∈ H if and only if (h′′(x j), h′′(xk)) ∈ H, which is 
contradiction. Thus, we know that !′ is minimal. ✷

5. Ruleset reduction by fuzzy ruleset construction

The bead-type merging only uses information from the ruleset, not the whole OS. Note that we can remove rules from 
or add rules to the ruleset while maintaining an OS as isomorphic. Thus, we propose another, more efficient heuristic that 
finds a reduced ruleset from a set of rulesets for an isomorphic OS.

Given an alphabet !, we define a fuzzy ruleset to be a pair of a required ruleset HP ⊆ ! × !, and a forbidden rule-
set HN ⊆ ! × ! such that HP ∩ HN = ∅. Given an OS %  = (!, w, H, δ, α, Cσ ), we say that a fuzzy ruleset (HP , HN ) is 
a representative fuzzy ruleset of the OS if % ′ = (!, w, H′, δ, α, Cσ ) is isomorphic to % for all H′ satisfying the following 
conditions:

1. If (a, b) ∈ HP , then (a, b) ∈ H′ .
2. If (a, b) /∈ HN , then (a, b) /∈ H′ .

We say that such H′ is in the representative fuzzy ruleset (HP , HN ). In other words, if a fuzzy ruleset (HP , HN ) is 
representative, then rules in HP should be included in the ruleset, and rules in HN should be excluded from the ruleset, 
which ensures that the system is isomorphic to the original system. These conditions are obtained by the property of the 
cotranscriptional folding. When we want to design an isomorphic system, we should keep the same location of the stabilized 
beads and the same interactions. While stabilizing a bead x, the bead and its δ − 1 nascent beads choose a path P x that 
maximizes the sum sx of interactions. Then, for any alternative path P ′

x , where the bead is not stabilized at the target 
location, we can arbitrarily assign interactions for P ′

x , as long as the sum s′
x of interactions does not exceed sx , as illustrated 

in Fig. 12.
We reduce the ruleset size in two phases: 1) given an OS % , we extract a representative fuzzy ruleset from % ; 2) we 

propose a graph representation of the representative fuzzy ruleset and reduce the ruleset size based on the graph theory 
approach.

Problem 7 (Fuzzy Ruleset Optimization). Given an OS %  = (!, w, H, δ, α, Cσ = [(Pσ , wσ , Hσ )]), find a representative fuzzy rule-
set (HP , HN) minimizing |HP | + |HN |.

Theorem 8. The Fuzzy Ruleset Optimization problem is NP-hard.

Proof. We use the same reduction used in the proof of Theorem 2, except the last block shown in Fig. 13. We claim 
that the 1-IN-3-SAT problem instance has a solution if and only if there exists a representative fuzzy ruleset where 
|HP | + |HN | = 10. If the 1-IN-3-SAT problem instance has a solution, we may use HP = {(a, a), (b, b)} and HN =
{(a, a), (b, b), (a, a), (a, b), (a, b), (a, b), (a, b), (a, b)}. This fuzzy ruleset represents one ruleset that was used in the proof 
of Theorem 2, which folds to the target conformation if the 1-IN-3-SAT problem instance has a solution. Now, suppose there 
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Fig. 13. The modified block for Cn = (v1 ∨ v2 ∨ v3) when m= 4.

Fig. 14. An illustration of Algorithm 1. Beads in the elongation are represented by disks, and beads already stabilized are represented by circles. Suppose 
the delay of the system is 5 and the path in (a) is chosen to stabilize the first bead x, with the sum of interactions si = 6. Rules for blue interactions in 
(a) are added to P . In (b), interactions that should not exist are colored in red, and added to N . In (c), one path that is not chosen is illustrated. This path 
has the basic strength of o j = 3 from rules in P . In (d), two interactions that should not exist (those in N) are colored in red. The set of all 5 possible 
interactions that are not from P are colored in brown. Rules for brown interactions are added to K , and (K , 3) is added to Hc , indicating that we can add 
no more than three rules for brown interactions to the ruleset.

exists a representative fuzzy ruleset where |HP | + |HN | = 10. The seed assigns nine rules explicitly to HP and HN , except 
one rule (a, a). The rule (a, a) is necessary for interactions between the seed and the given path of the primary structure, 
so (a, a) /∈ HN . If (a, a) ∈ HP , then the 1-IN-3-SAT problem instance has a solution, following the proof of Theorem 2. ✷

Next, we design a heuristic algorithm for the Fuzzy Ruleset Optimization problem. Assume that an OS % folds the 
set {Ci = [(Pσ Pi, wσ w, Hσ ∪ Hi)]} of t terminal conformations. We assume that |w| = n, and |wσ | and |Hi | are bounded 
to O (n). We first propose an algorithm for one terminal conformation C1, and then apply the algorithm for all terminal 
conformations. Given that % folds C1, we find conditions of the rules, which are necessary and sufficient for an isomorphic 
OS. Then, we construct a representative fuzzy ruleset from these conditions.

Let P1 = p1 p2 · · · pn and Pσ = pn+1 pn+2 · · · pn+m . We run Algorithm 1, which returns three conditions that are necessary 
and sufficient for an isomorphic OS. The required condition set P (the forbidden condition set N) includes the set of 
rules that should be included in (excluded from) the desired ruleset H. Later, the construction of a representative fuzzy 
ruleset (HP , HN) starts from (P , N). The last output is the conditional ruleset Hc = {(K ⊂! ×!, s)}. The element (K , s) ∈
Hc implies that the number of rules in K ∩ H′ should not exceed s, where H′ is in (HP , HN ). The conditional ruleset 
has information of rules that are not explicitly shown in the most stable elongation, but that prevent the path from not 
following P1. Fig. 14 illustrates Algorithm 1.

Lemma 9. Algorithm 1 runs in O (5δδn) time using O (5δδn) space.
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Algorithm 1: ExtractConditionSets.
Input: An OS %  = (!, w, H, δ, α, Cσ = [(Pσ , wσ , Hσ )]), the terminal conformation C1 = [(P1, w, H1)]
Output: A required condition set P , a forbidden condition set N , and a conditional ruleset Hc

1 for i ← 1 to n do
2 κi ← wσ [i]
3 for i ← n+1 to n+m do
4 κi ← w[i−n]
5 calculate the sum si of the interactions that led kappai to the position pi .
6 for each annotated neighbors p j of pi do
7 if {pi , p j} ∈ H1 then add (κi , κ j) to P .
8 else add (κi , κ j) to N .

9 for each unannotated path P ′ = p′
1 p′

2 · · · p′
δ where p′

1 ≠ pi is an unannotated neighbor of pi−1 do
10 o j ← 0, K ← ∅
11 for j ← 1 to δ do
12 for each annotated neighbors pk of p′

j where pk has interactions less than α do
13 if (κi+ j−1, κk) ∈ P then o j ← o j + 1
14 else
15 if si = 1 then add (κi+ j−1, κk) to N .
16 else add (κi+ j−1, κk) to K .

17 if si ≠ 1 then add (K , si − o j − 1) to Hc .

18 return P , N, Hc

Proof. It takes O (δ) time to check si in Line 5 and O (1) time to check annotated neighbors of pi in Lines 6 to 8. In Line 9, 
there are O (5δ) unannotated paths. For each path, calculating o j in Line 13 takes O (δ), adding pairs to N in Line 15 takes 
O (δ), and adding elements to C in Line 16 takes O (δ). Therefore, the total runtime is O (n · 5δδ). For the space requirement, 
the size of P is O (n), the size of N is O (n +δ), and the space requirement for H is O (5δδn). Therefore, the space complexity 
is O (5δδn). ✷

Since the conditions in Hc are about the rules that are not explicitly shown in the most stable elongation, there is no 
necessary rule that should be added to P , because of Hc . Thus, we construct a representative fuzzy ruleset (P , HN ), where 
HN = N ∪ Nadd and Nadd satisfies the conditions in Hc . We prove that minimizing |HN | is NP-complete.

Lemma 10. Given a set Hc ⊆ 2!×! × N , let Nadd ⊆ ! × ! be a set such that, for all (Ki, si) ∈ Hc , |Ki | − |Ki ∩ Nadd| < si holds. 
Then, it is NP-complete to decide whether |Nadd| < k for given k.

Proof. Once Nadd with |Nadd| < k is given, we can check whether or not Nadd satisfies the condition in polynomial time. 
Therefore, the problem is NP.

Next, we prove that the problem is NP-hard. We reduce the set cover problem to the proposed problem. Suppose that a 
universe U = {1, 2, . . . , n} and a set S = {S1, S2, . . . , Sm} of subsets of U are given. Then, we construct a set Hc as follows: 
For each i ∈ U , (Ki, si) ∈ Hc , where Ki = {(κ j1, κ j2)} for all S j ∈ S that contains i, and si = |Ki |. For a cover C ⊆ S , we 
construct Nadd = {(κ j1, κ j2)} for all S j ∈ C . Now, suppose that a cover C satisfies the set cover problem. Then, for all i ∈ U , 
there exists j such that S j ∈ C , which implies that |Ki | − |Ki ∩ Nadd| < |Ki | = si . Therefore, Nadd satisfies the given condition 
in the problem. For the other direction, suppose that Nadd satisfies the condition in the problem. Then, for all i ∈ U , there 
exists j such that (κ j1, κ j2) ∈ Ki , which implies that i ∈ S j ∈ C . Therefore, the problem is NP-hard. ✷

Since finding the minimum Nadd is NP-complete, we suggest three heuristics to create Nadd . We assume that a condi-
tion (Ki, si) is in Hc .

1. While adding pairs to N to satisfy conditions in Hc , we add as few pairs as possible, since more pairs in a negative 
condition set makes reduction harder.

2. We prefer (Ki, si) with the largest si , since we need to add more pairs to satisfy that condition.
3. For a pair (κ j, κk) ∈ Ki , we prefer a pair with the most frequent appearances in all Ki ’s, since adding the pair (κ j, κk)

helps satisfy all these conditions.

Based on these heuristics, we run Algorithm 2.

Lemma 11. Algorithm 2 runs in O (5δδn(δ + log n)) time using O (5δδn) space.

Proof. The size of Hc is O (5δn), where each Ki has O (δ) pairs. It takes O (5δδn log n) time to sort Hc according to si . 
Note that for (κ j, κk) ∈ Ki , either κ j or κk is from a point in a path P1. Thus, if we maintain links between all Ki ’s from 
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Algorithm 2: ExtractFuzzyRuleset.
Input: A conditional ruleset Hc
Output: A set Nadd

1 while Hc ≠ ∅ do
2 for each (Ki , si) with the largest si do
3 count the number occ( j,k) of appearances of (κ j, κk) in all Ki ’s.

4 for each (Ki , si) with the largest si do
5 while the condition does not hold do
6 find a pair (κ j , κk) of bead types with the biggest occ( j,k) .
7 add (κ j , κk) to Nadd .

8 delete (Ki , si) from Hc .

9 return Nadd

same point, it requires O (5δδ2n) time to calculate the number of occurrences occ( j,k) . Finding a pair of bead types with the 
biggest occ( j,k) takes O (5δδn log n) time in total. Therefore, the total runtime is O (5δδn(δ + log n)). Since the size of Nadd is 
O (5δδn), the space requirement is O (5δδn). ✷

Once we have a representative fuzzy ruleset (HP , HN ), the next step is to construct a reduced ruleset that satisfies the 
conditions of the fuzzy ruleset. We construct a fuzzy ruleset graph from (HP , HN ) by adding positive edges for rules in HP
and negative edges for rules in HN .

• V =!
• For each pair of molecules (x1, x2) ∈! ×!,

– add ({x1, x2}, 1) to E if (x1, x2) ∈ HP ,
– add ({x1, x2}, −1) to E if (x1, x2) ∈ HN .

Problem 12 (Fuzzy Ruleset Optimization by Bead Type Merging). Given a representative fuzzy ruleset (HP , HN ) of an OS over an 
alphabet !, find a minimum alphabet !′ and a ruleset H′ ⊆!′ ×!′ , where there exists a homomorphism h :! →!′ such that for 
every (x1, x2) ∈! ×!, ((x1, x2) ∈ HP ∧ (x1, x2) /∈ HN ) ⇔ (h(x1), h(x2)) ∈ H′ .

Lemma 13. The Fuzzy Ruleset Optimization by Bead Type Merging problem is NP-complete.

Proof. Note that there exists a one-to-one correspondence between a fuzzy ruleset and a fuzzy ruleset graph. We consider 
the problem of finding a ruleset that is reduced from the ruleset yielded by G , with an alphabet size less than k. First, 
once a reduced fuzzy graph G ′ = (V ′, E ′) with |V ′| < k is given, we can check whether or not G ′ can be reduced from G in 
polynomial time. Therefore, the problem is NP.

Next, we prove that the problem is NP-hard. We reduce the vertex coloring problem to the given problem. For a 
graph Gc = (V c, Ec), we construct a fuzzy ruleset graph Gr = (V c, Er) using the following rules:

• For all v ∈ V c , ({v, v}, −1) ∈ Er .
• For all (vi, v j) ∈ Ec , ({vi, v j}, 1) ∈ Er .

Then, it is straightforward to verify that we can merge two nodes vi, v j in Gr if and only if they can be colored by the 
same color in Gc . Therefore, once we know the existence of a reduced graph G ′ = (V ′, E ′) with |V ′| < k, we can determine 
whether or not Gc can be colored using fewer than k colors. Therefore, the problem is NP-hard. ✷

Note that we reduce the vertex coloring problem to the Fuzzy Ruleset Optimization by Bead Type Merging problem. We 
formally establish the function f from a fuzzy ruleset graph Gr = (V , Er) to a graph Gc = (V , Ec) using the following rules: 
For all (vi, v j) ∈ V 2, (vi, v j) ∈ Ec if and only if we cannot merge vi and v j . It requires O (n3) to construct f (Gr) from Gr , 
when n = |V |. We establish the following lemma.

Lemma 14. For a fuzzy ruleset graph Gr = (V , Er), let Gc = f (Gr). Let v1 and v2 be two mergeable nodes in V . Let G ′
r (G ′

c ) be the 
graph resulting from Gr (Gc) after merging v1 and v2 . Then, G ′

c = f (G ′
r).

Proof. Let {vi, v j} be a pair of nodes in V , except {v1, v2}. We consider two cases separately.

1. There is no edge between {vi, v j} and {v1, v2} in Gr : It is immediate that merging v1 and v2 does not change whether 
or not vi and v j can be merged. Therefore, (vi, v j) is an edge of G ′

c if and only if vi and v j can be merged in G ′
r .
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2. There is an edge between {vi, v j} and {v1, v2} in Gr : Without loss of generality, suppose there is an edge ({vi, v1}, 1)
in Gr . Since v1 and v2 are mergeable, ({vi, v2}, −1) /∈ Er . Therefore, ({vi, v1}, 1) ∈ E ′

r . Then, vi and v j can be merged 
in G ′

r if and only if they can be merged in Gr , and (vi, v j) is an edge of G ′
c if and only if vi and v j can be merged in 

G ′
r . The same analysis holds for the case when v1 has an edge with both vi and v j , or both v1 and v2 have an edge 

with vi or v j . ✷

From Lemma 14, we know that any solution to the vertex coloring problem has its pair solution to the Fuzzy Ruleset 
Optimization by Bead Type Merging problem. Therefore, we can use approximation algorithms for the vertex coloring prob-
lem to find approximate solutions for the Fuzzy Ruleset Optimization by Bead Type Merging problem. One such algorithm 
is the Welsh-Powell algorithm [17]. Once all vertices vi are ordered according to their degrees di , the algorithm runs in 
O (n2) time and gives at most maxi min{di + 1, i} colors.

In summary, we have proposed the Fuzzy Ruleset Optimization problem, which is a variation of the Ruleset Optimization 
problem and NP-hard. We propose a heuristic to construct a representative fuzzy ruleset. We first extract the necessary 
and sufficient conditions of rules from the set of ruleset sizes using Algorithm 1. We accumulate P , N , and Hc by running 
Algorithm 1 for 1 ≤ i ≤ t , and then run Algorithm 2 to construct a representative fuzzy ruleset. The Ruleset Optimization 
by Bead Type Merging problem, calculating the minimum ruleset from the given representative fuzzy ruleset by bead type 
merging, is also NP-complete. Thus, we construct a fuzzy ruleset graph from the representative fuzzy ruleset, and use an 
approximation algorithm for the vertex coloring problem to find an approximate solution for the Fuzzy Ruleset Optimization 
by Bead Type Merging problem. We propose a heuristic that can solve the Ruleset Optimization problem in O (5δδn(δ +
log n + t) + n3) time, using O (5δδn) space. Note that the bead-type modification for a given ruleset in Section 4 is a special 
case of the Fuzzy Ruleset Optimization by Bead Type Merging problem, where HP ∪ HN = ! ×!. Therefore, the method 
proposed in Section 5 is at least as efficient as bead-type merging in the size of the reduced ruleset.

6. Conclusions

The oritatami system (OS) is a computational model inspired by RNA cotranscriptional folding, where an RNA transcript 
folds upon itself while being synthesized out of a gene. One element of the OS is the ruleset, which defines interactions 
between beads in the system. It is crucial to reduce the ruleset size to implement a simpler OS in experiments. We first 
defined the concept of isomorphism of OSs. Then, we proved that it is NP-hard to find the smallest ruleset of an isomorphic 
OS, in general. We have proposed a bead-type merging method and a representative fuzzy ruleset construction to reduce 
the ruleset size.

There remain open questions. For example, it is necessary to find theoretical bounds of approximation ratios—the size of 
the resulting ruleset over the size of the optimal ruleset—of the proposed heuristic algorithms, and to design an efficient 
algorithm that removes useless rules. We can also consider a ruleset optimization for a given path without considering the 
set of interactions, and a transcript optimization for a given ruleset.
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