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Abstract. A double occurrence word (DOW) is a word in which every symbol appears exactly
twice; two DOWs are equivalent if one is a symbol-to-symbol image of the other. We consider
the so called repeat pattern («r) and the return pattern (aa'?), with gaps allowed between the ’s.
These patterns generalize square and palindromic factors of DOWs, respectively. We introduce a
notion of inserting repeat/return words into DOWs and study how two distinct insertions into the
same word can produce equivalent DOWs. Given a DOW w, we characterize the structure of w
which allows two distinct insertions to yield equivalent DOWs. This characterization depends on
the locations of the insertions and on the length of the inserted repeat/return words and implies
that when one inserted word is a repeat word and the other is a return word, then both words must
be trivial (i.e., have only one symbol). The characterization also introduces a method to generate
families of words recursively.
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1. Introduction

A word w over an alphabet X is a double occurrence word (DOW) if each element of X appears either
zero or two times. DOWs have been studied in relation to knot theory [4, 10, 19], mathematical logic
[8], and algebraic combinatorics [17]. DOWs are also known as Gauss words and are closely related to
linear diagrams, chord diagrams, and circle graphs. In the context of genomics, DOWs and operations
on DOWSs have been used in studies of DNA rearrangement [2, 3, 9, 11]. By modeling the DNA
rearrangement process using DOWs, it was observed that over 95% of the scrambled genome of the
ciliate Oxytricha trifallax could be described by iterative insertions of the “repeat pattern” () and
the “return pattern” (aa?) [5]. Roughly speaking, a pattern is a sequence of variables, and we say
that an instance of a pattern appears in a word w if each variable of the pattern can be mapped to a
non-empty factor of w [11]. The repeat pattern ccv generalizes square factors while the return pattern
aa’t generalizes palindromic factors. We refer to instances of the repeat and return pattern as repeat
words and return words, respectively [1, 5, 11].

Patterns in DNA rearrangement are discussed in [5], while transformations on DOWs where in-
stances of patterns are deleted or inserted are considered in [11]. In studies of DNA rearrangement,
it has been observed that the insertion of a repeat or return pattern may have evolutionary signifi-
cance [6], and the process of obtaining one word from another by the insertion of a repeat or return
word may be of interest. Relatedly, similar operations on words have been studied with applications
to computational linguistics and natural language processing. In the literature, four so-called edit op-
erations are primarily considered: insertion of a symbol, deletion of a symbol, substitution of one
symbol with another, and transposition of two adjacent symbols [12, 15, 16]. The pattern-based word
transformations considered here may be regarded as a generalization of these edit operations.

Here we define a notion of inserting repeat and return words in DOWs at prespecified indices. We
consider equivalence classes of DOWs where two DOWSs are equivalent if one is obtained from the
other by a symbol-to-symbol morphism. Equivalent words correspond to the same chord diagrams, as
well as isomorphic assembly graphs. The main question considered here is under which conditions two
distinct insertions into the same word can produce equivalent DOWs. A pair of insertions in a given
DOW falls in one of the three types: interleaving, nested, and sequential (see Section 3 for definitions).
The paper characterizes the words that yield the equivalent results in each of these situations.

2. Background

An ordered alphabet Y. is a countable set with a linear order that is bounded below which can naturally
be identified with the set of natural numbers N = {1,2,...}, so we set ¥ = N throughout the rest of
the paper. For n € N, we denote {1,2,...,n} by [n]. For the remainder of the paper, we reserve the
letters a, b as symbols in 3, and reserve the letters s, %, u, ..., z as “words” in X* (defined below).
We use standard definitions and conventions (e.g., [7, 8, 13, 11]). A word w over % is a finite
sequence of symbols a; - - - a,, in 3; the length of w, denoted |w|, is n. The set of all words over ¥ is
denoted by ¥* and includes the empty word € whose length is 0; and X = ¥* \ {e}. The set of all
symbols {ay,...,a,} comprising w is denoted by X[w]. The reverse of w = ajas---ay, (a; € X)is
the word w® = a,, - - - aga1. The word v is a factor of the word w, denoted v T w, if Jw, wy € L*
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such that w = wivws; if w; = € then v is a prefix of w, while if wy = € then v is a suffix of w; the
word wjws is denoted by w — v. If |v| < |w], then v is a proper factor, prefix, or suffix as appropriate.
The set of common factors of u,v € ¥* is denoted by u N w. Let 1 < d < n = |w|, and write
w = ajasg---a,. The prefix (suffix resp.) of w with length d is denoted pre(w,d) = ajas---aq
(suf(w,d) = ap—gs1 - Ap—1ay resp.).

A word w in X* is a double occurrence word (DOW) if every symbol in w appears either zero
or twice. We use X poyy to denote the set of all double occurrence words over X.. Single occurrence
words (SOWs) denoted X gop are nonempty words with distinct symbols. Given w € Xpow, |w|/2
is the size of w. Given u € Y gow, we say that uu is a repeat word in w if w = zjuzouzs3 for some
21, 22, 23 € ¥*. Similarly, uu® is a return word in w if w = zuzou’ 23 for some 21, 20, 23 € X*.

A morphism f on ¥* induced by a bijection (symbol-to-symbol map) on X is called an equivalence
map. We write w; ~ ws if there is an equivalence map f such that f(w;) = ws. The relation ~ is
an equivalence on ¥*. A word w = ajas - - - ay, is in ascending order if a, is the least element in the
alphabet and the first appearance of a symbol is one greater than the largest of all preceding symbols
in the word [3]. Since a word in ascending order is unique in the considered alphabet, we take words
in ascending order as class representatives of the equivalence classes determined by the relation ~.

Example 2.1. Consider the words w = 121323 and w’ = 131232. Note that w ~ w’, but w is in
ascending order while the word w’ is not because the symbol 3 appears before 2.

Definition 2.2. Let w = 212023 € Xpow for some z1, 22,23 € ¥* be in ascending order. Let u
be a SOW over ¥ \ X[w] which is in ascending order and |u| = v. Suppose k and ¢ are such that
k—1=|z1|and ¢ — 1 = |z22|. Then

e w' = zjuzuzs is obtained from w by a repeat insertion denoted w' = w x p(v, k, £), and

R

e w' = zjuzou'tz3 is obtained from w by a return insertion denoted w' = w * 7(v, k, £).

We do not specify the word u in the notation of repeat and return insertions because the inserted
word has distinct symbols from w and consists of symbols immediately following the largest symbol
of w; hence it is uniquely determined by its length.

Example 2.3. Let w = 1232314554, then

w* p(2,4,6) = 12367236714554 = w; w*7(2,7,11) = 12323167455476 = ws
w*p(2,2,4) = 16723672314554 = w, w*7(2,9,9) = 12323145677654 = w,

Observe that wy ~ wy and w3 ~ wy4 but wy % ws.

Let v be a repeat or return word in w € Y pow; we write v = uu’ where v/ = w if v is a
repeat word and «/ = u’ if v is a return word. For the rest of the paper, we use u’ for a SOW
to denote u or u* as is appropriate in the context of repeat and return words. We use the notation
w x J(v, k, £) to indicate that the insertion is either a repeat insertion or a return insertion. We denote
by Rep (Ret resp.) the set of all repeat insertions (return insertions resp.), and we write J € Rep
(J € Ret resp.) to indicate that the insertion is a repeat insertion (return insertion resp.). Observe that
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(w I, k, O) ~ w5 I(v, |w] — €+ 2, |w| — k + 2). We say that uu or uu® is a trivial repeat
or return word, respectively, if |u| = 1, and an insertion J(1, k, ¢) is called trivial. A trivial repeat
insertion into w is also a trivial return insertion, so we focus on nontrivial insertions. As a convention,
if k = ¢ we setwI(v, k, k) = z1uu2923 as shown in wy in Example 2.3.

Remark 2.4. Suppose w x Jq(v1,k1,01) ~ w x Jo(va, ko, l2), then 11 = v = v, and because the
inserted word has distinct symbols from w, by definition we have that u;u) inserted by J; and ugu,
by Jo are such that u; = up = wu (and u},ub € {u,u’}). For all w' ~ w we also have that
w' * J1(v, k1, 01) ~ w' x Jo(v, ko, l2). This follows from the fact that if f(w % Iy (v, k1,01)) =
w * Jo(v, ke, l2) and g(w') = w for equivalence maps f and g, then f(g(w') x J1(v, k1,¢1)) =
g(w') * Ia(v, ko, £2).

Considering the above remark, we have the following definition for equality of two insertions.

Definition 2.5. We say that two nontrivial insertions J1(v, k1, ¢1) and Ja(v, ko, (2) are equal for a
DOW w if w % jl(V, kl, 51) ~ W * jg(l/, /432, 52) and (kl, 61) = (kg, 62).

It becomes a natural question to consider the situations when two distinct (unequal) nontrivial
insertions into w yield equivalent words.

The following three results are used repeatedly throughout Section 3. The first generalizes a well
known lemma by Lyndon and Schiitzenberger [14]; it describes the structures of two equivalent words
where a suffix of one word is a prefix of the other.

Lemma 2.6. Let s € X" and ¢,z € ¥* such that f(sz) = =zt for an equivalence map f. Then,
s =s159 with z = f(s) - f"71(s)f(s1), and t = fP(sq) f"*1(s1) for h = [|z|/]s]].

S 4 S Z
T s .7(/;:). Tsos [l | f"l’l(S) IJ”"(Sll)
F(s1) f(s3) f2(s1) T ) s (s (sh)
(a) ~ t (b) z t

Figure 1: Representation of sz ~ zt when (a) 0 < |z| < |s]|, or (b) |z| > |s].

Proof:
If z = ¢, then f(t) = s and the statement holds with h = 0 and s = s;. If 0 < |z| < |s|, then write
s = s182 where |s1| = |z|. It follows that f(s1) = z because f(s1) is a prefix of f(s), and f(s2) is a

prefix of ¢ because f(s2) is a suffix of f(s) and f(s) Nt # 0. Then sz ~ zt implies f(2) = f2(s1) is
a suffix of t, so t = f(s2)f?(s1) (Figure la). If |z| > |s|, let h = [|z|/|s|] and write s = 5155 Where
|s1] = |z| — (h — 1)|s|. Note that s; # €. Then z = f(s)--- f"=1(s)f"(s1) and t = f"(s3) fH1(s1)
(Figure 1b). O
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In Lemma 2.6, note that if sz = zt, then f is the identity mapping, and so we arrive at the lemma
from [14]. In Section 3, we use the lemma symmetrically when s = ¢, and sz ~ zs. An illustration
of the situation described with Lemma 2.6 can be seen within the prefixes of w; and ws, as well as in
the suffixes of w3 and wy.

Lemma 2.7. Suppose z,y1,y2 € X1 with |y1| = |y2| and f is an equivalence map. Let f(zy;)

=lhx
and either f(xfys) = yoxf or f(y22) = 2yo. Then either |z| < |y1| = |y2| or T[x] N X[ys] # 0.

Proof:
Let x = 2’a for a € ¥ and let |x| > |y1| = |y2|. Then f(2'ay,) = yix implies f(a) € X[z]. In both
cases when f(ax'fys) = yox or f(y22'a) = zyo we have f(a) € X[ya). O

The last lemma from [11] details useful properties of repeat and return words.

Lemma 2.8. Let w € Xpow, let xz’ and yy' be two repeat (return resp.) words in w, and let
u € xNy. Then both (z —u) (2’ —u) ((x —u)(z’ —u®) resp.) and (y —u)(y' —u) (y — u)(y’ — u®)
resp.) are repeat (return resp.) words in w. Furthermore, if 2z’ and yy’ are repeat and return words,
respectively, in w, then x Ny = {e}, |z| = 1, or |y| = 1.

3. Insertions yielding equivalent words

In this section, we fix w € Xpow in ascending order of length n. Let J;(v;, k;, £;) for i = 1,2 be
distinct insertions into w such that w; = w * J;(v;, k;, ¢;) are equivalent with f(w;1) = ws for an
equivalence map f. By Remark 2.4 and Definition 2.5, v; = vo = v and (k1,¢1) # (ke, 2). Without
loss of generality, we assume that k; < ko. Because the inserted words have no symbols in common
with w, we consider that uu/ is inserted with J; and wu) is inserted with Jo (v}, uhy € {u,uft}). If
J1,J2 € Rep (J1,J2 € Ret resp.), then we consider that they both insert uu/'.

Observe that k1 # ko, because if ky = ko, then f(u) = wu, implying ¢; = {9, and hence the
insertions are equal. Up to symmetry, the indices k1, ko, £1, {2 can have the following possibilities.

e [nterleaving insertions, k1 < ko < ¢1 < £2: J5 inserts u at a location before J; inserts u’l
e Nested insertions, k1 < ko < f5 < £1: J5 inserts u and v, at locations before J; inserts u.

e Sequential insertions, k1 < {1 < ko < f9: J5 inserts u and v}, at locations after J; inserts u].

Further, without loss of generality, we can assume k; = 1 and ¢ = max{¢y,¢2} = n + 1. For the
remainder of the section, we set w = z1 2923 where |21| = ks — 1 in the case of interleaving and nested
insertions and |z1| = ¢1 — 1 in the case of sequential insertions. Also |z1 22| equals /1 — 1, /o — 1, or
ko — 1 for interleaving, nested, or sequential insertions, respectively. Hence the four positions for the
two insertions into w are 1, |z1| 4+ 1, |2122| + 1, and n + 1. We consider that w is in ascending order.
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3.1. Interleaving and nested insertions

Let ¢ € Xpow be in ascending order. We say that ¢ is an interleaving sequence of return words if
there exist integers h,v > 1 such that t = zyx9 - - wpriol .- xf, where |z;| = v for all 4; in this
case we write ¢ = Int(h, v). Clearly, z; € X gow for all i. Note that if v = 1, then Int(h, 1) is a repeat
word of size h > 1.

In Proposition 3.1, we consider two interleaving insertions into a DOW w which yield equivalent
words. To describe the structure of w, we track the image of the inserted word w in the resulting words
w1, w2 € LYpow by using the equivalence map as described by Lemmas 2.6 and 2.7. We also use this

“image tracking” method when considering nested and sequential insertions.

Proposition 3.1. If J; and J, are interleaving insertions, that is k1 < ko < ¢1 < {5, then 21,23 €
Y. sow are such that

(1) If J1,J2 € Rep, then z; 23 is a repeat word in w.
(2) If 31,92 € Ret, then 2123 ~ Int(h, v) where h = (ko — k1) /v is a positive integer.

Proof:
We have that w; = uzjz9u)z3 and we = zjuzezzub. Because uz; ~ zju and u is SOW, we have
that z; is a SOW by Lemma 2.6. Similarly, we have that z3 is a SOW, and thus |z1| = |z3| since 2

is a DOW. Moreover, z; = 129 -, where f{(u) = x; for 1 < i < h (if any such exist) and
xy, = f"(v1) where vy is a prefix of .

(1) Suppose J1,J2 € Rep. Then u = v} = ufy and the two equivalences uz, ~ zyu and uzs ~ z3u
are with the same equivalence map. Since z; and z3 are of the same length, by Lemma 2.6 they have
the same structure, i.e., 21 = T1T2 -+ Tp = 23.

(2) Suppose J1,J2 € Ret. Then u} = u) = uf*. By
fluz1) = z1u, f(ufz3) = 23uf?, and L[w] N X[u] = (. Finally, observe that |z}| = |u| = v.

U 21 =
w 'x“ﬁhzz. L P '7’”31’1
i /_.._./ % / /_.._./ [
ST thh(fh) 2 l’{% s 3 anf (1))
o u Zg’uR

Figure 2: Representation of w; and wy when J1,Jo € Ret are such that k1 < ko < 01 < fa.
Since uffz3 ~ z3ufl, by Lemma 2.6, 23 = xfizfl---zft 2l with fi(u) = 2; (1 < i < h)
and u = f"(vy) f"*(vy1) = vive. It follows that f(zff | 2f) = fr(uf) fr(f) friti(wf) =
i)l AL () s a suffix of zzu®® (Figure 2). If |z| = |v1] < |ul, fAT1(0f) is a proper



D.A. Cruz et al. | Insertions on Double Occurrence Words 7

suffix of u%, and so ) # L[z¥] N S[u] C T[z3] N S[u], contradictory to Definition 2.2. The above
implies that h = |21|/|u| = (k2 — k1) /v is a positive integer. ]

Example 3.2. Let w = 12345677612345 and consider the insertions p(2,1,10) and p(2,6,15) into
w; also let w’ = 123456652143 with insertions 7(2,1,9) and 7(2, 5, 13) into w'.

wy = 891234567768912345 w)] = 7812345665872143
wg = 123458967761234589 wh = 1234785665214387

Note that wy ~ wg with 21 = z3 = 12345, and w) ~ w), with z1z3 = 12342143 ~ Int(2, 2).

Lett € ¥ pow be in ascending order. We say that ¢ is a nested sequence of repeat words if there
exist integers h, v > 1 such that t = xyx9 - - xpxpTH—_1 - - - T1, Where |z;| = v for all ¢; in this case
we write t = Nes(h, v). Clearly, z; € X gow for all 7 and if v = 1, then Nes(h, 1) is a return word of
size h > 1.

Proposition 3.3. If J; and Js are nested insertions, that is k1 < ko < fo < {1, then z1, z3 € Ysow
are such that

(1) If J1,J2 € Ret, then 2723 is a return word in w.
(2) If 31,92 € Rep, then z; 23 ~ Nes(h,v) where h = (ko — k1) /v is a positive integer.

Proof:
We have that w = uz12923u) and wy = zjuzaubzs. As in the proof of Proposition 3.1, it must be
that z; and z3 are SOW by Lemma 2.6 because u is SOW; hence |z1| = |z3]. Also, 21 = 129 - - xp,

where f(u) = x; for 1 < i < h (if any such exist) and zj, = f"(v1) where v is a prefix of u.

(1) First, assume that J;1,J2 € Ret and v} = ’2 = uf'. Because ulz3 = f(z3u?), applying
Lemma 2.6 symmetrically we have that 23 = 2zt | ... 2ft = 2%
u 21 Z3
Ul U2 Th—1 CCh 22 l‘h Th—1 u
wy | R | [
5 / / / / ' ¢\ \ \ \ |
------- l'h)th (,) 22 thh({,m”” X1
21
U uz3

Figure 3: Representation of w; and wg when Jq,Jo2 € Rep are such that k1 < ko < lo < ¢5.

(2) Suppose J1,J2 € Rep and u = u} = u). Because f(uz1) = zju and f(z3u) = uzs, by
Lemma 2.7 we have |u| < |z1| = |z3|. Similarly as in Proposition 3.1, we observe that |z}| = |u].
Applying Lemma 2.6 symmetrically (Figure 3) z3 = xpxp_1 - - zox;. It follows that f(zpzn—1) =
P on) P (01) M (v2) = P (vi)anf"(vg) is a prefix of uzs and if [z = [vi| < |ul, then
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f*1(vy) is a proper prefix of u, and so X[x;] N S[u] # 0. But then () # S[x;] N E[u] C B[z3] N E[u],
contradictory to Definition 2.2. This implies that h = |z1|/|u| = (k2 — k1) /v is a positive integer. O

Example 3.4. Let w = 123456653412 with the insertions p(2,1,13) and p(2,5,9) into w; also let
w' = 12345677654321 with the insertions 7(2, 1, 15) and 7(2, 6, 10) into w’.

wy = 7812345665341278 w) = 891234567765432198
we = 1234785665783412 wh = 123458967769854321

Note that w1 ~ wy with 2123 = 12343412 ~ Nes(2,2) and w] ~ w} with z; = 12345 and z3 = 2.

Proposition 3.5. Let v € N, and suppose one of the following holds:
(1) t=12---ml12---m  (3) t=Nes(h,v)
(2) t=Int(h,v) 4) t=12---mm---21

for some m > 1 or h > 1, as appropriate. Then there exist two distinct insertions, J; (v, k1, ¢1) and
Jo(v, ko, £2), such that t x Iy (v, k1, 1) ~ t xJo(v, ko, £2). Moreover, the following table holds for this
pair of insertions (based on the corresponding case):

‘ Interleaving  Nested

J1,J2 € Rep (D) 3)
J1,J2 € Ret 2) 4)
Proof:
Let t € Xpow correspond to one of the given cases with [t| = n. We define a pair of distinct

insertions into ¢ as follows so that the table above holds:

(1)-(2) (1,5 +1)andJz(v, 5 +1,n+1)
(3)-(4) Ji(v,I,n+1)andJo(v, 5 +1,5 +1)

In all cases, let uu’ € Y pow be inserted into ¢. Observe the following for each case:

(1) (ul2---m)(ul2---m) ~ (12---mu)(12-- - mu)

(2) (uzyma - zp)(Wlafal - 2lt) ~ (z120 - wpu) (efiall - 2 ltult)
Q) (uxixg---xp)(xp - - - xom1U) ~ (122 - - - TRU) (UT, - - - T2XT1)

@) (ul2---m)(m---21u®) ~ (12---mu) (ufim - - - 21).

3.2. Sequential insertions

In this section we consider the case when both indices of insertion J; into w precede both indices of
the insertion Jo into w. First we observe the following lemma.

Lemma 3.6. If k; < {1 < kg < /{5, then ky — 41 > .
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U
!/
U z1 Uy 2223 P S
wy | | | | v 21 vF 2223
| ! o I wy | T |
| T I |
wo : : :
21 RN~ Zauh wa | = i I
(a) U 342 2122 et o
(b) u 3

Figure 4: Representation of w; and we when k1 < 01 < kg < ¢y and ky — 01 < |ul.

Proof:
We have that wy = uzju] 2023 and wy = 21 zouzzub, with f(w1) = wo.

If |u| > |z2| = ko — ¢; then a prefix of v} maps to suffix of u. Because a prefix of u maps also
to prefix of z1, u} # u, i.e., u) = uft. Similarly, because a suffix of 2223 maps to a suffix of u}, and
a prefix of u® maps to a suffix of u, it can’t be u = u), (symbols of w are disjoint with those in u).
Hence, uj, = uf!. We can exclude the situation in Figure 4a where f(u) is a prefix of z122. Thus it
must be that |21 22| < |u|, and a suffix of u, call it v, maps to a prefix of u. Because X[u] N X[z3] = 0,
it must be that the prefix v of «* maps into a suffix of u. Hence the symbols in a prefix of u equal
symbols in a suffix of u, which can only happen if |z1| = 0 contrary to the assumption that k1 # k.
Therefore |u| < |z2|. 0

The structure of the words that allow distinct sequential insertions yielding equivalent words is
described with the following recursive construction.

Definition 3.7. Letm > 0and v,j > 1 beintegers and let so = 12---m12---m (if m = 0, sp = ¢€).
Define s; = s;_1xp(v, [sj—1| —m+1,|sj—1|+1) for j = 1,2,.... The word s; is called a p-tangled
cord at level j, and is denoted s; = T,(v, m, j).

Let v divide m and ty = Int(h,v) where h = 2% (if m = 0, s9 = ¢). Define t; = t; 1
T(v,|sj—1| —m +1,|sj—1| + 1) for j = 1,2,.... The word ¢; is called a T-tangled cord at level j,
and is denoted t; = 1% (v, m, j).

In both p- and 7-tangled cord words the insertion in the subsequent word is performed at the end
of the previous word (inserting /) and m symbols from the last symbol (inserting u).

Example 3.8. A level 3 p-tangled cord w = T,(2, 1, 3) is obtained in the following way
sop =11 s1=123123 so = 1231245345 s3 = 12312453467567,
and a level 2 T-tangled cord w = T (2, 4, 2) is obtained with
to = 12342143 t1 = 123456214365 to = 1234562178436587.
Recall that Int(h, 1) for h > 1 is a repeat word of size h. It follows that 7,(1,m, j) = T-(1,m, j)
form > 0 and j > 1. Moreover, if w = T,(v,0, j) foro € {p, 7} and v, j > 1, then for |v;| = v,

V1U1 '--Ujl)j ifo= 1%
w =

Ul’U{%'--Uﬂ)JR ifo=r.
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As with interleaving and nested insertions, we will use the “image tracking” method given by
Lemmas 2.6 and 2.7 when considering sequential insertions. Since both indices k1 < ¢; of the first
insertion precede the indices ky < ¢9 of the second, we must adapt this method to describe the structure
of w in between ¢ and k2. In Lemma 3.9, we begin by considering the case in which &y = ¢; = 1.

Lemma 3.9. If J; and J are sequential insertions such that k; = ¢; < kg < (o, then ko = f9 and
ko — €1 = 2pv for some positive integer p. Moreover, if J1,Jo € Rep (J1,J2 € Ret resp.) then
212023 ~ Tp(v,0,p) (212223 ~ Tr(v, 0, p) resp.).

22

Figure 5: Representation of w; and wy when |21| = 0 and |22] is not an even multiple of |u|.

Proof:

Suppose that ky = ¢; < ky < f5. The situation is such that w; = wuu'z923 and we = zouzgu'.
Recall that |z3| > |u| = v by Lemma 3.6. Assume that |z3| = ko — ¢; is not an even multiple of |u|,
and let w = by ---b,. If J1,J2 € Rep, then there exists a positive integer ¢ such that either fi(bl) or
f¥(b,) belongs to X[z2] N X[u] (see Figure 5) contradicting the fact that X[w] N X[u] = (). Similarly, if
J1,92 € Ret, then there exists a positive integer 4 such that f*(b,) f'(b,) C u, or fi(b1) € X[z2]NX[u].
Then either u € Xgow or X[w] N X[u] # 0. It follows that ky — ¢1 = |z2| = 2p|u| = 2pv for some
positive integer p such that fP*!(u) = u.

We now apply Lemma 2.6 with s = uu’/, z = 29, and t = upre(z3u’,v). Note that |z3| = 2pv
implies that s = uu’ = sy, and thus u pre(z3u’, v) = uu/ (i.e., 23 = €) because X[u]NX[w]| = ). Thus
Zo = Y1y1 - Yplp (22 = yrylt- - ypyzl,2 resp.) where 3; = f%(u) for 1 < i < p in the case of two
repeat (return resp.) insertions. That is to say, 2o is equivalent to 7),(v, 0, p) (T (v, 0, p) resp.). O

Proposition 3.10. If J; and J are sequential insertions such that k1 < ¢1 < ko < lo, then ko — {1 =
2pv for some positive integer p and |z1| = |z3| = ¢. Moreover, if J;,Jo € Rep then z12923 ~
T,(v,q,p), while if J1,Jo € Ret then 212023 ~ T (v, ¢, p) where v divides q.
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Proof:
The situation k1 = ¥¢; follows from Lemma 3.9, so we assume that k1 < {1 < kg < ¥5 with
w1 = uziu' 2923, we = 2129uz3u’, and recall that |23| > |u| = v by Lemma 3.6.

(1) Suppose J1,J2 € Rep; we consider two cases: (1.a) 0 < |z1| < |u| and (1.b) |z1| > |ul.

(L.a) Let 0 < |z1] < |u|, write x1 = 21, and let y; be the prefix of 2z such that |y1| = |ul;
note that y; exists by Lemma 3.6 and that uz; ~ z1y;. Lemma 2.6 implies u1 = vivy with v1 # ¢,

z1 = f(v1) =z, and y1 = f(v2) f2(v1) = f(v2)f(z1).

Write v = f(vg) so that y; = vf(x1). Then, f(uy1) = z1vf(y1) = z1vf(v)f?(x1). Note that
x1v C z9, which implies that yyz1v is a prefix of z9 of length 2|u|. Moreover, f(y;1) cannot have a
proper factor in common with u, otherwise f(z1)Nu # () contradicting the fact that ¥[z2] N X[u] = 0.
Thus, there are two possibilities: either f(y;) = u or f(yi1) is a proper factor of z9. In the first
situation, 2o = y1z1v = vf(x1)z1v, and thus 22| = 2|u| = 2v, with f(v) a prefix of u; thus,
zg = f(x1) and |z3| = |z1]. Then 212923 = zyy1z1vf(21) = T1Y171y1. Observe that 212923 ~
Tp(u7 01 — k1,1) and in particular sgp ~ 121 (Where s starts the induction of the tangled cord as in
Definition 3.7).

2

2 Y1 Yp Z3
w | u I Ty I u M f(z1) e l 77 w) I JP (1) pr*l(ilfl)I 77 v) I JP(z1) I
o o1 — f(z1) | e ! f(v) Ifz(ln) o | u I f”(:m)I v I
Y1 Yo z3

Z2

Figure 6: Representation of w; and wg when |21| < |u| and f(y;) is a proper factor of zo.

In the second situation, we set y2 = f(y1) = f(v)f?(x1) C 29. Similarly as above, we have that
y1z1vy2f(x1) f(v) is a prefix of z9 of length 4|u/|, and either f(y2) = w or f(y2) is a proper factor of
z9. Inductively, there is p > 1 such that y, = fP~1(v) fP(z1) and f(y,) = u (see Figure 6). It follows

that

ko — 04

29 = yrzroya f(@1) f(0) - yp fP7H (w1) f27 1 (v) with p = w

Because fP(v) is a prefix of u, z3 = fP(x1) and | 23] = |21|. As a consequence,

212023 = x1y1c1vy f(x1) f(v) - "ypfp_l(xl)fp_l(v)fp(ﬁ) =35p

for p > 1. Observe that z12023 ~ T, (v, {1 — ki1,p) because y; = f=(v) fi(x1) for 1 < i < p. In
fact, taking sg ~ 121 we have

sp = wyrvyaf (©1) f(0) -y (@)Y ~ sp-1xp (v spa| =21 |+, [sp-r[+1) ~ Typ(w, |21, p).

(1.b) Let |z1| > |u| = v, and set as above y; to be the prefix of z5 such that |y;| = |u|. Because
uz1 ~ z1y1, by Lemma 2.6 we have that u = vive with vy # €, 21 = x122 - - - 2, Where f'(u) = x;
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for 1 <4 < h (if any such exist) with z;, = f*(v1), and y1 = f"(va) f" 1 (v1) = P (va) f(1,). Write
v = f"(vy) sothat y; = vf(xy); if va = ¢, thenv = e and y; = f(x3) (see Figure 7). Similarly
as in the case (1.a), using the same notation, it 1mp11es that there is a positive integer p > 1 such that

fyp) =

21 22 23
x X a: é
Wy e e b
¢/¢ 7 // ,./¢y¢/¢ /¢/¢;
21/
e TR R T o A
1 2 h’['f( s u Yp u

22

Figure 7: Representation of w; and we when |z1| > |u| and f(y;) is a proper factor of zo. If p < h,
then s = z,,; otherwise s = fP~"(zv).

Suppose first p < h; then zo = y121 - - - Ypxp, indicating p = % because |y;| = |z;| for
1 <1i < p < h(see Figure 7 where s = x,). Because y,z, is a suffix of 25 and f(y,z,) = uzpi1, it
follows that x,,1 - - - xp, is a prefix of z3. Note that f(z,_1xp) = zpvf(2h) = TRY15 SO Tpi1 - - THY1
is a prefix of z3. Inductively, we have that 23 = 2,41 - TpYy1 - - - yp because f () = Yp, and so
|z3| = |21| since |y;| = |u| = v for all 7. Hence,

212223 = T1 - ThY1T1 " " YpTpTp+1 - ThY1 " Yp

for 1 < p < h. Observe that 212023 ~ T),(v,¢1 — k1, p) in this case (i.e., when 1 < p < h). Indeed,
following Definition 3.7, taking so ~ x1 - -+ xpxy1 - - - &, We have that

S1 ™~ X1 TRY1T1 " ThY1

89 ~ X1 TRY1T1Y2Z2 * * - ThY1Y2

Sp ~ T1 " TRYL1T1Y2X2 « " YpTpTp+1 - " TpYL ** * Yp-
Now suppose that p > h, then
zo = Y121Y2%2 T 1YnThVYn+1.f (Tn) f (V) Yny2 - - ypfp_h(xh)fp_h(v)7
where y; = fi1(v)fi(xp,) for 1 < i < p (see Figure 7, where s = fP~"(x),v)). Because x,v has

length |u| = v, we again obtain that 29| is a multiple of 2|u| = 2v; in particular |z3| = 2pv where
p= ]“22—251. Because f~!(u) = y,, we have that

2y = [P an) 27 ) 7 () R (0) P () - P (0) P () -

/

"'

Yp—h+2 Yp—h+3 Yp
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Note that |z3| = |21] since |y;| = |u| = v for all i. We observe that 212023 ~ T, (v, {1 — k1, p) in the
case p > h as well. Indeed, taking s, . . ., s, as in Definition 3.7:

S1~ X1 TpY1T1 - ThY1

Sp ~ X1 TRYIT1Y2Z2 * * * YhTRY1Y2 - * * Yh

Shel ~ X1 TRYIT1Y2T2 -+ YhThVYh+1 f (Th)Y2 - YnYn+1

Sp ~ Z129Z3.

(2) Suppose that J;,Jo € Ret. First, observe that |z;| > |u|. On the contrary, suppose that
0 < |z1| < |uq]|. Similarly, and with the same notation, as in case (1.a), we have that

ko — 4
2|ul

29 = yrvallys fF(0T) f(22) -y, P (W) PN (@) with p =

where z1 = 21, v is the nonempty prefix of z3 such that z1v = f(u), y; = 1 (v)f'(z1) for
1<i<pand f(y,) = f(fP1(v) fP(21)) = fP(v) fPT1(z1) = u. Note that fP(v) is a proper prefix
of u, hence fP(v) is a proper suffix of u®. Considering the suffix y, f?~1(vf) fP=1(2) of 22, we
have that f(y, fP~1(v%)) = f(yp) fP(vF) = ufP(v)® C wy (see Figure 6). But ufP(v)f C wy and
u’! C wy contradicts the fact that wo is a DOW; thus |z1| > |u).

In the rest of the proof we use similar arguments to those used in case (1.b) for repeat insertions
(with the same notation).

If p < h, then 2z = yyoft.. -ypr with f(y,) = u, which implies that p = ’“227;131 because
lyi| = |x;| for 1 < i < p < h. It follows that

affoy W f ) ) ) T ) P ()

is a prefix of z3 (see Figure 7). Assume that v does not divide |z1| = ¢; — k; in this situation; then

v # e Since f(yp) = F(fP71(0)fP(zn)) = fP(v)fP L (x) = u, we have that fP(v) is a proper
suffix of u and fP™1(z)" is a proper prefix of uff. But then f(fP~1(vf) fP=1(af) fP(2f)) =
PR fP(aB) fPH(2R) C wy with uf* C ws contradicts the fact that w, is a DOW. Thus,

0 —k 06—k
p<h— { 1 1—‘ _h-m
v v
Then |z1| = hv, v = ¢, \a:h\ =v,and y; = fi(x )for 1 < i < p. Because f~1(uft) = yf, it
follows that z3 = :cpH el f(@l) - fP(al) = p+1 xfy{z"-yf, and so |z3| = |z1] = hv

since |y;| = |u| for all 7. Hence,

R R,_.R R, R R
212223:x1xhy1x1 ypl'pxp_"_ll'hyl yp

for 1 < p < h. Similarly as in case (1.b) we observe that z1 2923 ~ T (v, 1 — k1, p) in this situation.
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In case p > h we have that

2o = yixpyrs - ap ypv e yn e F ) F@)ynge - yp PR P (),

where y; = f(v) fi(xy) for 1 < i < pand f(y,) = u. Because [v2!t| = |ul, it follows that |z

is a multiple of 2|u|; in particular |z2| = 2pr, where p = % Moreover, we have that

fp_hH(vR)fp_hH(inf) .. fp—1<vR)fp—1(;pf)fP(xf)

is a prefix of z3 (see Figure 7). Similarly as above, |u| = v divides |z1| = ¢1 — k;. Thus h = 21_7’“1;
80 |z1] = hv, v =€, |xp| = |ul, and y; = f*(xp) for 1 < i < p. It then follows that

20 =ty - ol yna iy f (@) ynan - yp P (@)
= YL Yomy - TR YRTR YR UL Yh2 e Ypl

—h+1/,.R —h+2/, R R R R R
z3 = f? + (xp) f7 * (xh)"'fp(l?h):yp_h+1yp—h+2"'yp

because f~!(uf) = yf. Note that |z3| = |2z1| = hv since |y;| = |u] for all 7. Finally we observe that
212223 ~ Tr(v, 01 = k1, p). U

Example 3.11. Let w = 12312453467567 = T),(2,1,3) and consider the insertions p(2,1,2) and
p(2,14,15) into wj also, let w' = 123456214365 = T-(2,4, 1) and consider the insertions 7(2, 1, 5)
and 7(2,9,13) into w’. Then

wy = 891892312453467567 w) = 7812348756214365
wy = 123124534675689789 wh = 1234562178436587

Note that wq ~ wy and w) ~ w).

Corollary 3.12. For every T, (v, m, j), we have that T, (v, m, j) *I(v,1,m + 1) ~ Ty(v,m,j + 1)
where 0 € {p,7} and J € Rep (J € Ret resp.) if 0 = p (0 = 7 resp.).

Proof:
The result follows by using similar arguments as in the proofs of Lemma 3.9 and Proposition 3.10. O

A DOW is a palindrome if it is equivalent to its reverse [3]. Let m > 1 be an integer; observe that
the repeat word 12 - - - m12 - - - m and the return word 12 - - - mm - - - 21 are palindromes. Let h, v > 1.
Observe that Int(h,v) = x1---zpzfl- - xf is a palindrome. Indeed, consider f : ¥ — X such
that f(x;) = xp_;41 for all 4. Similarly, Nes(h,v) = x1---xpxp - - - 21 is a palindrome; consider

f: 3 — X such that f(z;) = 2 for all i.

Proposition 3.13. Every 7., (v, m, j) is a palindrome where o € {p, 7}.
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Proof:

Letv > 1,m > 0, and 0 € {p,7}. We show that the result holds by inducting on j. Note that
T,(v,m, 1) is arepeat word of size m+v and T’ (v, m, 1) = Int("* +1,v). In either case, T, (v, m, 1)
is a palindrome. Next, suppose that w = T, (v, m, j — 1) is a palindrome for j > 1, and let n = |w|.
The following shows that T),(v, m, j) is a palindrome:

Ty(v,m,j) ~wxp(v,1,m+1) (by Corollary 3.12)
~wfxp(v,1,m+1) (because w ~ w')
~ (wxp(v,n —m+1,n+1))"
~ (Ty(v,m, j))" (by the definition of T),(v, m, j)).
The case for T (v, m, j) follows equivalently. O

Observe that there exist words that are palindromes but are neither p-tangled cords nor 7-tangled
cords, like 12324143. However, note that 12324143 is equivalent to a cyclic permutation of the tangled
cord T),(1,1,3).

Definition 3.14. Let w € Y pow, and let uu’ be a repeat (return resp.) word in w. We say that uu’
is a maximal repeat (return resp.) word in w if for any repeat (return resp.) word vv’ in w such that
u C v, we have that u = v.

Example 3.15. Consider 7,(2,3,2) = s9 and T-(2,4,1) = s].

so = 123123 s = 12342143
s1= so* p(2,4,7) = 1234512345 s = shx7(2,5,9) = 123456214365
o= s1 % p(2,8,11) = 12345126734567

Note that T,(2, 3, 2) contains four maximal repeat words: 33, 1212, 4545, and 6767. On the other
hand, 7 (2, 4, 1) contains three maximal return words: 1221, 3443 and 5665.

As the previous example suggests, every 7-tangled cord ends with a maximal return word of size
v. The same property holds for p-tangled cord whenever j > 1.

Proposition 3.16. The following hold.

(1) ¥ T,(v1,ma, j1) ~ Tp(ve, ma, j2) and ji > 1, then (v1,m1, j1) = (v2, m2, j2).
(2) X Tr(vi,m1, j1) ~ Tr(v2, ma, j2), then (v1,m1, j1) = (v2, ma, ja2).

Proof:

(1) Let T),(v1,m1, j1) and T, (v2, ma, jo) be as given with j; > 1. Because these DOWs are equivalent
and thus have equal lengths, note that m; + v1j1 = mgo + voj2. Moreover, T, p(yl, m1, j1) ends with
a maximal repeat word of size v;. If jo = 1, then T, p(VQ, ma, J2) is a repeat word of size mgy + v
which cannot be equivalent to Tp(ul, mi, j1); thus, jo > 1. It follows that T,(v2, ma, j2) ends with a
maximal repeat word of size vo; so 11 = vo. By setting v = v, we get |my — ma| = v|j1 — ja| We
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now distinguish between the following two cases:
i) mi,mg >0 (i1))mq1 =0ormeo = 0.

(1.i) Suppose mi,my > 0. Then pre(T,(v,m1,j1),m1 + v + 1) = 12---myv1l and
pre(T,(v,ma, jo),ma + v + 1) = 12---mg011, with |v1| = |01| = v. It follows that m; = mo
because T),(v, m1, j1) ~ T,(v, m2, j2).

(Lii) Suppose that m; = 0 but mg # 0. Then pre(T,(v,m1,j1),2v) = wvivy while
pre(T,(v,ma, j2), ma + v) = 12---ma0y, with |v1| = |01] = v. But this contradicts the assumption
that 7 (v, m1, j1) ~ Tr(v,ma, j2). So my = 0 implies mo = 0. The same argument can be applied
to show that mo = 0 implies m; = 0.

In both cases above, m; = my and so j; = j2. We can apply a similar argument to prove (2). O

3.3. Repeat vs return insertions

In this section we show that two distinct nontrivial insertions which yield equivalent words must both
be of the same type, that is, both repeat insertions or both return insertions. We note that the proof for
this result follows the same methodology, notation, and very similar arguments to those presented in
Sections 3.1 and 3.2.

Theorem 3.17. Let J1(v, k1, ¢1) and Ja(v, ko, 2) be two distinct nontrivial insertions into w €
Ypow. Ifw; = wx* jl(V, kl,fl) ~ W *JQ(V, ks, 62) = ws, then either J;,Jo € Rep or J1,J5 € Ret.

Proof:
Let w = 212923, as in Sections 3.1 and 3.2 be of length n, and w; ~ wy with equivalence map f.
Because J; and J are nontrivial, v > 2. We prove the result by contradiction.

Z1 Z3
PR P fPMu) 2 fr=1w)
NI N LAY Ay //
P SPUR  E  S // 4 N AR
(a) 21 u Z9 z3 uR (u) fZ(U u 22 f(u) f (u
(b) Z1 Z3

Figure 8: Representation of w; and we when J; € Rep, Jo € Ret; (a) 0 < |21] < |u|, or (b) |21] > |u|.

Case of interleaving or nested insertions. Suppose k1 < ko < ¢1 < f9 and without loss of
generality we assume that J; € Rep and Jo € Ret. If |z1] < |ul, then f(u) N u # 0 (see Figure
8a). Because uu is a repeat word in wy, f(u)f(u) is a repeat word in ws; so by Lemma 2.8 we have
|f(u)] = 1 or |u| = 1 because uu’ is return word in wo. Thus |u| = 1 implying that the insertions
must be trivial. If |z1| > |u/, then observe that f(u) is a prefix of z1. But then f2(u) is either a factor
of 21 or f?(u) Nu # 0. Inductively, for some h > 1 we have that f*(u) is a factor of z for 1 <i < h
and f(u) Nu # () (see Figure 8b). Consider the second occurrence of u in wy; we have that f%(u)
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is a factor of z3 for 1 < i < hand f"(u) Nu®® # 0. But f(u)fi(u) is a repeat word in ws of size
|u| for every 1 < i < h; by Lemma 2.8, f(u) Nu # () implies that | f*(u)| = 1 or |u| = 1 because
uu is a return word in ws. Thus, |u| = 1 contradicting v > 2. The case of nested insertions, that is,
k1 < ko < {5 < {1, follows by similar arguments.

Sequential insertions. Suppose that k1 < ¢; < ky < ¢ and without loss of generality assume that
J; € Rep and J5 € Ret. As in Lemma 3.9 and Proposition 3.10, we consider the cases: (I) k1 = ¢;
and (IT) k; # ¢;. In both cases recall that |z3| > |u| by Lemma 3.6.

2o
U U Y1 Y1 Yp Yp
w | | | | FESTRE frooeens | | |
T Tl ot Wl B
wy | | : : oo oo = | |
Y1 Y1 Y2 Y2 u ul

22

Figure 9: Representation of w; and wy when J; € Rep, Jo2 € Ret, and k1 = /5.

(D Let ky = {¢1; i.e., 21 = €. As in proof of Lemma 3.9 for repeat insertions, we have that
zo = y1y1 -+ Ypyp Where y; = fi(u) for 1 < i < p, f(yp,) = uvand p = k22_fl (see Figure 9). It
follows that f(y,)f(yp) is a repeat word in wsy of size |u|. Then, by Lemma 2.8, f(y,) = u implies

that | f(y,)| = 1 or |u| = 1, and the insertions must be trivial.

(II) Let k1 # ¢4, so that z; # €. If 0 < |21] < |u|, by the proof of Proposition 3.10 for case (1.a), we
have that

ko — 04

=

where 1 = 21, v is the nonempty prefix of z3 such that x1v = f(u), y; = 1 (v)fi(z1) for
1 <i<pand f(y,) = f(fP L) fP(z1)) = fP(v) P (x1) = u (see Figure 6). It follows that
FypfP= (1) fP1(v)) = ufP(z1) fP(v), where fP(x1) is a proper suffix of y, and fP(v) is a proper
prefix of u. Because u!t C wo, this contradicts the fact that ws is a DOW.

2o = yix1vya f(21) f(0) - yp fP7 (1) fP7 (v) with p =

So assume that |z1| > |u|, and let y; be the prefix of z9 such that |y;| = |u| (exists by Lemma 3.6).
By applying arguments similar to the ones used in the proof of Proposition 3.10 for case (1.b) (with
the same notation), we obtain that there exists a positive integer p > 1 such that f(y,) = u. If p < h,
then z9 = Y121 -+ - Ypxp and 23 = Tpy1 - TRY1 -+ - Yp (see Figure 7). On the other hand, for p > h
we have

22 = Y121Y2%2 - T YRh VYL (@0) F ()2 - yp P (@n) [P (0)

and z3 = fP~"*(2p)yp—nia - yp (see Figure 7). In both cases, p = % and f(yp)f(yp) is a

repeat word in wy of size |u|. Then, by Lemma 2.8, f(y,) = u implies that | f(y,)| = 1 or |u| =1
contradicting the fact that the insertions are nontrivial. O
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4. Summary

In this section, we summarize the results from Section 3. First, we collect the main results for Sec-
tion 3, generalizing appropriately. Let w € X pow be in ascending order of length n and J;(v, k;, ¢;)
for i = 1,2 be two distinct insertions into w. Assume that k1 < ko without loss of generality. Write
w = zpz12223%4 and assume that the four locations of insertions (two from each J; and Jo) appear
between words z; and z;41 for ¢ = 0,...,3. In particular |z9| = k1 — 1. In the following result we
summarize Propositions 3.1, 3.3, and 3.10. Observe that, by Theorem 3.17, the classification below is
exhaustive.

Theorem 4.1. Let w € Xpow, and let J;(v, k;, ¢;) for i = 1,2 be two distinct insertions into w. Let
w; = wxI(v, ki, b;) fori = 1,2. Write w = 2021222324 using the notation above. If wy ~ ws, then
the following hold:

31,32 S Rep 31,52 € Ret
Interleaving ) |21
2123 1s a repeat word 2123 ~ Int (7, y)
kl < kz < 61 < 52
Nested ™ .
2123 ~ Nes (7, V) 2123 1s a return word
kl < kQ < 62 < 61
Sequential |2a) |22
212923 ~ T, (V 21 —2> 212923 ~ T, (1/ 21 —2)
ki <l < kg </t A (e

Remark 4.2. Let w, w1, ws € YXpow be as in Theorem 4.1; then the structure of the words w; and
wo obtained by the insertions satisfies the following properties (uu’ is the inserted repeat or return
word):

J1,J2 € Rep J1,J5 € Ret
Interleaving z1uz3u is a repeat word zuzzul® ~ Int (@ + 1, u)
Nested ziuuzg ~ Nes (\lel + 1, y) z1uulzg is a return word
Sequential z1zouzgu ~ T, <V, |21, % + 1) 21 zouzgult ~ T, (1/, |21/, % + 1)

We generalize Proposition 3.5 and Corollary 3.12 with the following theorem.

Theorem 4.3. Let w € YXpow and v € N. Suppose 212923 T w for some z1, 23 € Xgow and
z9 € ¥*. If one of the following (1) - (6) holds, then there exist two distinct insertions, J; (v, k1, £1)
and 32(1/, ko, 22), such that w % jl(V, k1, fl) ~ W * jg(l/, ko, 62)
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(1) z123is arepeat word in w (J1,J2 € Rep and interleaving insertions)

(2) z123 ~ Int(h,v) for some h > 1 (J1,J2 € Ret and interleaving insertions)

(3) 2123 ~Nes(h,v) forsome h > 1  (J1,J2 € Rep and nested insertions)

(4) 2123 is areturn word in w (71,95 € Ret and nested insertions)

(5) z12023 ~ Tp(v,m, j) (J1,J2 € Rep and sequential insertions)
forsomem >0and j > 1

(6) 212923 ~ Tr(v,m,j) (J1,72 € Ret and sequential insertions)

for somem > 0and j > 1

Remark 4.4. Observe that 11 is the class representative for trivial repeat and return words in ¥*, and
Int(1,1) = Nes(1,1) = T,(1,0,1) = T(1,0,1) = 11.

By Theorem 4.3, it follows that for any w € Xpow \ {€}, any a € X[w] can serve as z; = a and z3 =
a, and for any v € N, there exist a pair of interleaving (nested resp.) insertions into w, p(v, k1, ¢1) and
p(v, ka, la) (T(v, k1,01) and 7(v, ko, £2) resp.), which yield equivalent words. Moreover, if aa C w,
then there is also a pair of sequential and trivial insertions into w which yield equivalent words.

5. Conclusion

In this paper, we characterized the structure of a DOW w which allows two distinct insertions to
yield equivalent words. In particular, we proved that a nontrivial repeat insertion and a nontrivial
return insertion into w cannot produce equivalent resulting words. We summarized these results in
Section 4; with them, we can consider a “word graph” in which vertices are equivalence classes of
DOWs (with respect to ~) and directed edges exist from [w]. to [w']~ if W' ~ w % I(v, k, ) for
some insertion J(v, k, ¢). Our results characterize when two insertions define the same edge in this
graph. It is also natural to define the distance between [w].. and [w']~. as the length of a shortest path
from [w]. to [w']~ in the word graph. The notion of determining the distance from the empty word
[€]~ to [w]~ may describe the complexity of a particular DNA rearrangement processes in the ciliate
Oxytricha trifallax [5, 11]. It may also be of interested to compare different paths between two given
equivalence classes and to characterize the subgraphs which may appear in such a word graph.
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