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Abstract. A double occurrence word (DOW) is a word in which every symbol appears exactly

twice; two DOWs are equivalent if one is a symbol-to-symbol image of the other. We consider

the so called repeat pattern (αα) and the return pattern (ααR), with gaps allowed between the α’s.

These patterns generalize square and palindromic factors of DOWs, respectively. We introduce a

notion of inserting repeat/return words into DOWs and study how two distinct insertions into the

same word can produce equivalent DOWs. Given a DOW w, we characterize the structure of w
which allows two distinct insertions to yield equivalent DOWs. This characterization depends on

the locations of the insertions and on the length of the inserted repeat/return words and implies

that when one inserted word is a repeat word and the other is a return word, then both words must

be trivial (i.e., have only one symbol). The characterization also introduces a method to generate

families of words recursively.

∗Address for correspondence: University of South Florida, Tampa FL, 33620, USA



2 D.A. Cruz et al. / Insertions on Double Occurrence Words

1. Introduction

A word w over an alphabet Σ is a double occurrence word (DOW) if each element of Σ appears either

zero or two times. DOWs have been studied in relation to knot theory [4, 10, 19], mathematical logic

[8], and algebraic combinatorics [17]. DOWs are also known as Gauss words and are closely related to

linear diagrams, chord diagrams, and circle graphs. In the context of genomics, DOWs and operations

on DOWs have been used in studies of DNA rearrangement [2, 3, 9, 11]. By modeling the DNA

rearrangement process using DOWs, it was observed that over 95% of the scrambled genome of the

ciliate Oxytricha trifallax could be described by iterative insertions of the “repeat pattern” (αα) and

the “return pattern” (ααR) [5]. Roughly speaking, a pattern is a sequence of variables, and we say

that an instance of a pattern appears in a word w if each variable of the pattern can be mapped to a

non-empty factor of w [11]. The repeat pattern αα generalizes square factors while the return pattern

ααR generalizes palindromic factors. We refer to instances of the repeat and return pattern as repeat

words and return words, respectively [1, 5, 11].

Patterns in DNA rearrangement are discussed in [5], while transformations on DOWs where in-

stances of patterns are deleted or inserted are considered in [11]. In studies of DNA rearrangement,

it has been observed that the insertion of a repeat or return pattern may have evolutionary signifi-

cance [6], and the process of obtaining one word from another by the insertion of a repeat or return

word may be of interest. Relatedly, similar operations on words have been studied with applications

to computational linguistics and natural language processing. In the literature, four so-called edit op-

erations are primarily considered: insertion of a symbol, deletion of a symbol, substitution of one

symbol with another, and transposition of two adjacent symbols [12, 15, 16]. The pattern-based word

transformations considered here may be regarded as a generalization of these edit operations.

Here we define a notion of inserting repeat and return words in DOWs at prespecified indices. We

consider equivalence classes of DOWs where two DOWs are equivalent if one is obtained from the

other by a symbol-to-symbol morphism. Equivalent words correspond to the same chord diagrams, as

well as isomorphic assembly graphs. The main question considered here is under which conditions two

distinct insertions into the same word can produce equivalent DOWs. A pair of insertions in a given

DOW falls in one of the three types: interleaving, nested, and sequential (see Section 3 for definitions).

The paper characterizes the words that yield the equivalent results in each of these situations.

2. Background

An ordered alphabet Σ is a countable set with a linear order that is bounded below which can naturally

be identified with the set of natural numbers N = {1, 2, . . .}, so we set Σ = N throughout the rest of

the paper. For n ∈ N, we denote {1, 2, . . . , n} by [n]. For the remainder of the paper, we reserve the

letters a, b as symbols in Σ, and reserve the letters s, t, u, . . . , z as “words” in Σ∗ (defined below).

We use standard definitions and conventions (e.g., [7, 8, 13, 11]). A word w over Σ is a finite

sequence of symbols a1 · · · an in Σ; the length of w, denoted |w|, is n. The set of all words over Σ is

denoted by Σ∗ and includes the empty word ε whose length is 0; and Σ+ = Σ∗ \ {ε}. The set of all

symbols {a1, . . . , an} comprising w is denoted by Σ[w]. The reverse of w = a1a2 · · · an (ai ∈ Σ) is

the word wR = an · · · a2a1. The word v is a factor of the word w, denoted v v w, if ∃w1, w2 ∈ Σ∗
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such that w = w1vw2; if w1 = ε then v is a prefix of w, while if w2 = ε then v is a suffix of w; the

word w1w2 is denoted by w− v. If |v| < |w|, then v is a proper factor, prefix, or suffix as appropriate.

The set of common factors of u, v ∈ Σ∗ is denoted by u ∩ v. Let 1 ≤ d ≤ n = |w|, and write

w = a1a2 · · · an. The prefix (suffix resp.) of w with length d is denoted pre(w, d) = a1a2 · · · ad
(suf(w, d) = an−d+1 · · · an−1an resp.).

A word w in Σ∗ is a double occurrence word (DOW) if every symbol in w appears either zero

or twice. We use ΣDOW to denote the set of all double occurrence words over Σ. Single occurrence

words (SOWs) denoted ΣSOW are nonempty words with distinct symbols. Given w ∈ ΣDOW , |w|/2
is the size of w. Given u ∈ ΣSOW , we say that uu is a repeat word in w if w = z1uz2uz3 for some

z1, z2, z3 ∈ Σ∗. Similarly, uuR is a return word in w if w = z1uz2u
Rz3 for some z1, z2, z3 ∈ Σ∗.

A morphism f on Σ∗ induced by a bijection (symbol-to-symbol map) on Σ is called an equivalence

map. We write w1 ∼ w2 if there is an equivalence map f such that f(w1) = w2. The relation ∼ is

an equivalence on Σ∗. A word w = a1a2 · · · an is in ascending order if a1 is the least element in the

alphabet and the first appearance of a symbol is one greater than the largest of all preceding symbols

in the word [3]. Since a word in ascending order is unique in the considered alphabet, we take words

in ascending order as class representatives of the equivalence classes determined by the relation ∼.

Example 2.1. Consider the words w = 121323 and w′ = 131232. Note that w ∼ w′, but w is in

ascending order while the word w′ is not because the symbol 3 appears before 2.

Definition 2.2. Let w = z1z2z3 ∈ ΣDOW for some z1, z2, z3 ∈ Σ∗ be in ascending order. Let u
be a SOW over Σ \ Σ[w] which is in ascending order and |u| = ν. Suppose k and ` are such that

k − 1 = |z1| and `− 1 = |z1z2|. Then

• w′ = z1uz2uz3 is obtained from w by a repeat insertion denoted w′ = w ? ρ(ν, k, `), and

• w′ = z1uz2u
Rz3 is obtained from w by a return insertion denoted w′ = w ? τ(ν, k, `).

We do not specify the word u in the notation of repeat and return insertions because the inserted

word has distinct symbols from w and consists of symbols immediately following the largest symbol

of w; hence it is uniquely determined by its length.

Example 2.3. Let w = 1232314554, then

w ? ρ(2, 4, 6) = 12367236714554 = w1 w ? τ(2, 7, 11) = 12323167455476 = w3

w ? ρ(2, 2, 4) = 16723672314554 = w2 w ? τ(2, 9, 9) = 12323145677654 = w4

Observe that w1 ∼ w2 and w3 ∼ w4 but w1 6∼ w3.

Let v be a repeat or return word in w ∈ ΣDOW ; we write v = uu′ where u′ = u if v is a

repeat word and u′ = uR if v is a return word. For the rest of the paper, we use u′ for a SOW u
to denote u or uR as is appropriate in the context of repeat and return words. We use the notation

w ? I(ν, k, `) to indicate that the insertion is either a repeat insertion or a return insertion. We denote

by Rep (Ret resp.) the set of all repeat insertions (return insertions resp.), and we write I ∈ Rep
(I ∈ Ret resp.) to indicate that the insertion is a repeat insertion (return insertion resp.). Observe that
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In Lemma 2.6, note that if sz = zt, then f is the identity mapping, and so we arrive at the lemma

from [14]. In Section 3, we use the lemma symmetrically when s = t, and sz ∼ zs. An illustration

of the situation described with Lemma 2.6 can be seen within the prefixes of w1 and w2, as well as in

the suffixes of w3 and w4.

Lemma 2.7. Suppose x, y1, y2 ∈ Σ+ with |y1| = |y2| and f is an equivalence map. Let f(xy1) = y1x
and either f(xRy2) = y2x

R or f(y2x) = xy2. Then either |x| ≤ |y1| = |y2| or Σ[x] ∩ Σ[y2] 6= ∅.

Proof:

Let x = x′a for a ∈ Σ and let |x| > |y1| = |y2|. Then f(x′ay1) = y1x implies f(a) ∈ Σ[x]. In both

cases when f(ax′Ry2) = y2x
R or f(y2x

′a) = xy2 we have f(a) ∈ Σ[y2]. ut

The last lemma from [11] details useful properties of repeat and return words.

Lemma 2.8. Let w ∈ ΣDOW , let xx′ and yy′ be two repeat (return resp.) words in w, and let

u ∈ x∩ y. Then both (x−u)(x′−u) ((x−u)(x′−uR) resp.) and (y−u)(y′−u) ((y−u)(y′−uR)
resp.) are repeat (return resp.) words in w. Furthermore, if xx′ and yy′ are repeat and return words,

respectively, in w, then x ∩ y = {ε}, |x| = 1, or |y| = 1.

3. Insertions yielding equivalent words

In this section, we fix w ∈ ΣDOW in ascending order of length n. Let Ii(νi, ki, `i) for i = 1, 2 be

distinct insertions into w such that wi = w ? Ii(νi, ki, `i) are equivalent with f(w1) = w2 for an

equivalence map f . By Remark 2.4 and Definition 2.5, ν1 = ν2 = ν and (k1, `1) 6= (k2, `2). Without

loss of generality, we assume that k1 ≤ k2. Because the inserted words have no symbols in common

with w, we consider that uu′1 is inserted with I1 and uu′2 is inserted with I2 (u′1, u
′
2 ∈ {u, uR}). If

I1, I2 ∈ Rep (I1, I2 ∈ Ret resp.), then we consider that they both insert uu′.

Observe that k1 6= k2, because if k1 = k2, then f(u) = u, implying `1 = `2, and hence the

insertions are equal. Up to symmetry, the indices k1, k2, `1, `2 can have the following possibilities.

• Interleaving insertions, k1 < k2 ≤ `1 < `2: I2 inserts u at a location before I1 inserts u′1.

• Nested insertions, k1 < k2 ≤ `2 < `1: I2 inserts u and u′2 at locations before I1 inserts u′1.

• Sequential insertions, k1 ≤ `1 < k2 ≤ `2: I2 inserts u and u′2 at locations after I1 inserts u′1.

Further, without loss of generality, we can assume k1 = 1 and ` = max{`1, `2} = n+ 1. For the

remainder of the section, we set w = z1z2z3 where |z1| = k2−1 in the case of interleaving and nested

insertions and |z1| = `1 − 1 in the case of sequential insertions. Also |z1z2| equals `1 − 1, `2 − 1, or

k2 − 1 for interleaving, nested, or sequential insertions, respectively. Hence the four positions for the

two insertions into w are 1, |z1|+ 1, |z1z2|+ 1, and n+ 1. We consider that w is in ascending order.
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fh+1(v1) is a proper prefix of u, and so Σ[xh]∩Σ[u] 6= ∅. But then ∅ 6= Σ[xh]∩Σ[u] ⊂ Σ[z3]∩Σ[u],
contradictory to Definition 2.2. This implies that h = |z1|/|u| = (k2− k1)/ν is a positive integer. ut

Example 3.4. Let w = 123456653412 with the insertions ρ(2, 1, 13) and ρ(2, 5, 9) into w; also let

w′ = 12345677654321 with the insertions τ(2, 1, 15) and τ(2, 6, 10) into w′.

w1 = 7812345665341278 w′
1 = 891234567765432198

w2 = 1234785665783412 w′
2 = 123458967769854321

Note that w1 ∼ w2 with z1z3 = 12343412 ∼ Nes(2, 2) and w′
1 ∼ w′

2 with z1 = 12345 and z3 = zR1 .

Proposition 3.5. Let ν ∈ N, and suppose one of the following holds:

(1) t = 12 · · ·m12 · · ·m (3) t = Nes(h, ν)

(2) t = Int(h, ν) (4) t = 12 · · ·mm · · · 21

for some m ≥ 1 or h ≥ 1, as appropriate. Then there exist two distinct insertions, I1(ν, k1, `1) and

I2(ν, k2, `2), such that t ? I1(ν, k1, `1) ∼ t ? I2(ν, k2, `2). Moreover, the following table holds for this

pair of insertions (based on the corresponding case):

Interleaving Nested

I1, I2 ∈ Rep (1) (3)

I1, I2 ∈ Ret (2) (4)

Proof:

Let t ∈ ΣDOW correspond to one of the given cases with |t| = n. We define a pair of distinct

insertions into t as follows so that the table above holds:

(1) - (2) I1(ν, 1,
n
2
+ 1) and I2(ν,

n
2
+ 1, n+ 1)

(3) - (4) I1(ν, 1, n+ 1) and I2(ν,
n
2
+ 1, n

2
+ 1)

In all cases, let uu′ ∈ ΣDOW be inserted into t. Observe the following for each case:

(1) (u12 · · ·m)(u12 · · ·m) ∼ (12 · · ·mu)(12 · · ·mu)

(2) (ux1x2 · · ·xh)(u
RxR1 x

R
2 · · ·xRh ) ∼ (x1x2 · · ·xhu)(x

R
1 x

R
2 · · ·xRh u

R)

(3) (ux1x2 · · ·xh)(xh · · ·x2x1u) ∼ (x1x2 · · ·xhu)(uxh · · ·x2x1)

(4) (u12 · · ·m)(m · · · 21uR) ∼ (12 · · ·mu)(uRm · · · 21).
ut

3.2. Sequential insertions

In this section we consider the case when both indices of insertion I1 into w precede both indices of

the insertion I2 into w. First we observe the following lemma.

Lemma 3.6. If k1 ≤ `1 < k2 ≤ `2, then k2 − `1 ≥ ν.
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Note that |z3| = |z1| since |yi| = |u| = ν for all i. We observe that z1z2z3 ∼ Tρ(ν, `1 − k1, p) in the

case p ≥ h as well. Indeed, taking s0, . . . , sp as in Definition 3.7:

s0 ∼ x1 · · ·xhx1 · · ·xh

s1 ∼ x1 · · ·xhy1x1 · · ·xhy1
...

sh ∼ x1 · · ·xhy1x1y2x2 · · · yhxhy1y2 · · · yh

sh+1 ∼ x1 · · ·xhy1x1y2x2 · · · yhxhvyh+1f(xh)y2 · · · yhyh+1

...

sp ∼ z1z2z3.

(2) Suppose that I1, I2 ∈ Ret. First, observe that |z1| ≥ |u|. On the contrary, suppose that

0 < |z1| < |u1|. Similarly, and with the same notation, as in case (1.a), we have that

z2 = y1v
RxR1 y2f(v

R)f(xR1 ) · · · ypf
p−1(vR)fp−1(xR1 ) with p =

k2 − `1
2|u|

,

where x1 = z1, v is the nonempty prefix of z2 such that x1v = f(u), yi = f i−1(v)f i(x1) for

1 ≤ i ≤ p and f(yp) = f(fp−1(v)fp(x1)) = fp(v)fp+1(x1) = u. Note that fp(v) is a proper prefix

of u, hence fp(v)R is a proper suffix of uR. Considering the suffix ypf
p−1(vR)fp−1(xR1 ) of z2, we

have that f(ypf
p−1(vR)) = f(yp)f

p(vR) = ufp(v)R v w2 (see Figure 6). But ufp(v)R v w2 and

uR v w2 contradicts the fact that w2 is a DOW; thus |z1| ≥ |u|.

In the rest of the proof we use similar arguments to those used in case (1.b) for repeat insertions

(with the same notation).

If p < h, then z2 = y1x
R
1 · · · ypx

R
p with f(yp) = u, which implies that p = k2−`1

2ν
because

|yi| = |xi| for 1 ≤ i ≤ p < h. It follows that

xRp+1 · · ·x
R
h−1v

RxRh f(v
R)f(xRh ) · · · f

p−1(vR)fp−1(xRh )f
p(xRh )

is a prefix of z3 (see Figure 7). Assume that ν does not divide |z1| = `1 − k1 in this situation; then

v 6= ε. Since f(yp) = f(fp−1(v)fp(xh)) = fp(v)fp+1(xh) = u, we have that fp(v)R is a proper

suffix of uR and fp+1(xh)
R is a proper prefix of uR. But then f(fp−1(vR)fp−1(xRh )f

p(xRh )) =
fp(vR)fp(xRh )f

p+1(xRh ) v w2 with uR v w2 contradicts the fact that w2 is a DOW. Thus,

p < h =

⌈

`1 − k1
ν

⌉

=
`1 − k1

ν
.

Then |z1| = hν, v = ε, |xh| = ν, and yi = f i(xh) for 1 ≤ i ≤ p. Because f−1(uR) = yRp , it

follows that z3 = xRp+1 · · ·x
R
h f(x

R
h ) · · · f

p(xRh ) = xRp+1 · · ·x
R
h y

R
1 · · · yRp , and so |z3| = |z1| = hν

since |yi| = |u| for all i. Hence,

z1z2z3 = x1 · · ·xhy1x
R
1 · · · ypx

R
p x

R
p+1 · · ·x

R
h y

R
1 · · · yRp

for 1 ≤ p < h. Similarly as in case (1.b) we observe that z1z2z3 ∼ Tτ (ν, `1 − k1, p) in this situation.
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In case p ≥ h we have that

z2 = y1x
R
1 y2x

R
2 · · ·xRh−1yhv

RxRh yh+1f(v
R)f(xRh )yh+2 · · · ypf

p−h(vR)fp−h(xRh ),

where yi = f i−1(v)f i(xh) for 1 ≤ i ≤ p and f(yp) = u. Because |vRxRh | = |u|, it follows that |z2|
is a multiple of 2|u|; in particular |z2| = 2pν, where p = k2−`1

2ν
. Moreover, we have that

fp−h+1(vR)fp−h+1(xRh ) · · · f
p−1(vR)fp−1(xRh )f

p(xRh )

is a prefix of z3 (see Figure 7). Similarly as above, |u| = ν divides |z1| = `1 − k1. Thus h = `1−k1
ν

;

so |z1| = hν, v = ε, |xh| = |u|, and yi = f i(xh) for 1 ≤ i ≤ p. It then follows that

z2 = y1x
R
1 y2x

R
2 · · ·xRh−1yhx

R
h yh+1f(x

R
h )yh+2 · · · ypf

p−h(xRh )

= y1x
R
1 y2x

R
2 · · ·xRh−1yhx

R
h yh+1y

R
1 yh+2 · · · ypy

R
p−h

z3 = fp−h+1(xRh )f
p−h+2(xRh ) · · · f

p(xRh ) = yRp−h+1y
R
p−h+2 · · · y

R
p

because f−1(uR) = yRp . Note that |z3| = |z1| = hν since |yi| = |u| for all i. Finally we observe that

z1z2z3 ∼ Tτ (ν, `1 − k1, p). ut

Example 3.11. Let w = 12312453467567 = Tρ(2, 1, 3) and consider the insertions ρ(2, 1, 2) and

ρ(2, 14, 15) into w; also, let w′ = 123456214365 = Tτ (2, 4, 1) and consider the insertions τ(2, 1, 5)
and τ(2, 9, 13) into w′. Then

w1 = 891892312453467567 w′
1 = 7812348756214365

w2 = 123124534675689789 w′
2 = 1234562178436587

Note that w1 ∼ w2 and w′
1 ∼ w′

2.

Corollary 3.12. For every Tσ(ν,m, j), we have that Tσ(ν,m, j) ? I(ν, 1,m + 1) ∼ Tσ(ν,m, j + 1)
where σ ∈ {ρ, τ} and I ∈ Rep (I ∈ Ret resp.) if σ = ρ (σ = τ resp.).

Proof:

The result follows by using similar arguments as in the proofs of Lemma 3.9 and Proposition 3.10. ut

A DOW is a palindrome if it is equivalent to its reverse [3]. Let m ≥ 1 be an integer; observe that

the repeat word 12 · · ·m12 · · ·m and the return word 12 · · ·mm · · · 21 are palindromes. Let h, ν ≥ 1.

Observe that Int(h, ν) = x1 · · ·xhx
R
1 · · ·xRh is a palindrome. Indeed, consider f : Σ → Σ such

that f(xi) = xh−i+1 for all i. Similarly, Nes(h, ν) = x1 · · ·xhxh · · ·x1 is a palindrome; consider

f : Σ → Σ such that f(xi) = xRi for all i.

Proposition 3.13. Every Tσ(ν,m, j) is a palindrome where σ ∈ {ρ, τ}.
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Proof:

Let ν ≥ 1, m ≥ 0, and σ ∈ {ρ, τ}. We show that the result holds by inducting on j. Note that

Tρ(ν,m, 1) is a repeat word of size m+ν and Tτ (ν,m, 1) = Int(m
ν
+1, ν). In either case, Tσ(ν,m, 1)

is a palindrome. Next, suppose that w = Tσ(ν,m, j − 1) is a palindrome for j > 1, and let n = |w|.
The following shows that Tρ(ν,m, j) is a palindrome:

Tρ(ν,m, j) ∼ w ? ρ(ν, 1,m+ 1) (by Corollary 3.12)

∼ wR ? ρ(ν, 1,m+ 1) (because w ∼ wR)

∼ (w ? ρ(ν, n−m+ 1, n+ 1))R

∼ (Tρ(ν,m, j))R (by the definition of Tρ(ν,m, j)).

The case for Tτ (ν,m, j) follows equivalently. ut

Observe that there exist words that are palindromes but are neither ρ-tangled cords nor τ -tangled

cords, like 12324143. However, note that 12324143 is equivalent to a cyclic permutation of the tangled

cord Tρ(1, 1, 3).

Definition 3.14. Let w ∈ ΣDOW , and let uu′ be a repeat (return resp.) word in w. We say that uu′

is a maximal repeat (return resp.) word in w if for any repeat (return resp.) word vv′ in w such that

u v v, we have that u = v.

Example 3.15. Consider Tρ(2, 3, 2) = s2 and Tτ (2, 4, 1) = s′1.

s0 = 123123 s′0 = 12342143

s1 = s0 ? ρ(2, 4, 7) = 1234512345 s′1 = s′0 ? τ(2, 5, 9) = 123456214365

s2 = s1 ? ρ(2, 8, 11) = 12345126734567

Note that Tρ(2, 3, 2) contains four maximal repeat words: 33, 1212, 4545, and 6767. On the other

hand, Tτ (2, 4, 1) contains three maximal return words: 1221, 3443 and 5665.

As the previous example suggests, every τ -tangled cord ends with a maximal return word of size

ν. The same property holds for ρ-tangled cord whenever j > 1.

Proposition 3.16. The following hold.

(1) If Tρ(ν1,m1, j1) ∼ Tρ(ν2,m2, j2) and j1 > 1, then (ν1,m1, j1) = (ν2,m2, j2).

(2) If Tτ (ν1,m1, j1) ∼ Tτ (ν2,m2, j2), then (ν1,m1, j1) = (ν2,m2, j2).

Proof:

(1) Let Tρ(ν1,m1, j1) and Tρ(ν2,m2, j2) be as given with j1 > 1. Because these DOWs are equivalent

and thus have equal lengths, note that m1 + ν1j1 = m2 + ν2j2. Moreover, Tρ(ν1,m1, j1) ends with

a maximal repeat word of size ν1. If j2 = 1, then Tρ(ν2,m2, j2) is a repeat word of size m2 + ν2
which cannot be equivalent to Tρ(ν1,m1, j1); thus, j2 > 1. It follows that Tρ(ν2,m2, j2) ends with a

maximal repeat word of size ν2; so ν1 = ν2. By setting ν = ν1, we get |m1 −m2| = ν|j1 − j2|. We
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4. Summary

In this section, we summarize the results from Section 3. First, we collect the main results for Sec-

tion 3, generalizing appropriately. Let w ∈ ΣDOW be in ascending order of length n and Ii(ν, ki, `i)
for i = 1, 2 be two distinct insertions into w. Assume that k1 < k2 without loss of generality. Write

w = z0z1z2z3z4 and assume that the four locations of insertions (two from each I1 and I2) appear

between words zi and zi+1 for i = 0, . . . , 3. In particular |z0| = k1 − 1. In the following result we

summarize Propositions 3.1, 3.3, and 3.10. Observe that, by Theorem 3.17, the classification below is

exhaustive.

Theorem 4.1. Let w ∈ ΣDOW , and let Ii(ν, ki, `i) for i = 1, 2 be two distinct insertions into w. Let

wi = w ? I(ν, ki, `i) for i = 1, 2. Write w = z0z1z2z3z4 using the notation above. If w1 ∼ w2, then

the following hold:

I1, I2 ∈ Rep I1, I2 ∈ Ret

Interleaving
z1z3 is a repeat word z1z3 ∼ Int

(

|z1|
ν
, ν

)

k1 < k2 ≤ `1 < `2

Nested
z1z3 ∼ Nes

(

|z1|
ν
, ν

)

z1z3 is a return word
k1 < k2 ≤ `2 < `1

Sequential
z1z2z3 ∼ Tρ

(

ν, |z1|,
|z2|
2ν

)

z1z2z3 ∼ Tτ

(

ν, |z1|,
|z2|
2ν

)

k1 ≤ `1 < k2 ≤ `2

Remark 4.2. Let w,w1, w2 ∈ ΣDOW be as in Theorem 4.1; then the structure of the words w1 and

w2 obtained by the insertions satisfies the following properties (uu′ is the inserted repeat or return

word):

I1, I2 ∈ Rep I1, I2 ∈ Ret

Interleaving z1uz3u is a repeat word z1uz3u
R ∼ Int

(

|z1|
ν

+ 1, ν
)

Nested z1uuz3 ∼ Nes
(

|z1|
ν

+ 1, ν
)

z1uu
Rz3 is a return word

Sequential z1z2uz3u ∼ Tρ

(

ν, |z1|,
|z2|
2ν

+ 1
)

z1z2uz3u
R ∼ Tτ

(

ν, |z1|,
|z2|
2ν

+ 1
)

We generalize Proposition 3.5 and Corollary 3.12 with the following theorem.

Theorem 4.3. Let w ∈ ΣDOW and ν ∈ N. Suppose z1z2z3 v w for some z1, z3 ∈ ΣSOW and

z2 ∈ Σ∗. If one of the following (1) - (6) holds, then there exist two distinct insertions, I1(ν, k1, `1)
and I2(ν, k2, `2), such that w ? I1(ν, k1, `1) ∼ w ? I2(ν, k2, `2).
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(1) z1z3 is a repeat word in w (I1, I2 ∈ Rep and interleaving insertions)

(2) z1z3 ∼ Int(h, ν) for some h ≥ 1 (I1, I2 ∈ Ret and interleaving insertions)

(3) z1z3 ∼ Nes(h, ν) for some h ≥ 1 (I1, I2 ∈ Rep and nested insertions)

(4) z1z3 is a return word in w (I1, I2 ∈ Ret and nested insertions)

(5) z1z2z3 ∼ Tρ(ν,m, j) (I1, I2 ∈ Rep and sequential insertions)

for some m ≥ 0 and j ≥ 1

(6) z1z2z3 ∼ Tτ (ν,m, j) (I1, I2 ∈ Ret and sequential insertions)

for some m ≥ 0 and j ≥ 1

Remark 4.4. Observe that 11 is the class representative for trivial repeat and return words in Σ∗, and

Int(1, 1) = Nes(1, 1) = Tρ(1, 0, 1) = Tτ (1, 0, 1) = 11.

By Theorem 4.3, it follows that for any w ∈ ΣDOW \{ε}, any a ∈ Σ[w] can serve as z1 = a and z3 =
a, and for any ν ∈ N, there exist a pair of interleaving (nested resp.) insertions into w, ρ(ν, k1, `1) and

ρ(ν, k2, `2) (τ(ν, k1, `1) and τ(ν, k2, `2) resp.), which yield equivalent words. Moreover, if aa v w,

then there is also a pair of sequential and trivial insertions into w which yield equivalent words.

5. Conclusion

In this paper, we characterized the structure of a DOW w which allows two distinct insertions to

yield equivalent words. In particular, we proved that a nontrivial repeat insertion and a nontrivial

return insertion into w cannot produce equivalent resulting words. We summarized these results in

Section 4; with them, we can consider a “word graph” in which vertices are equivalence classes of

DOWs (with respect to ∼) and directed edges exist from [w]∼ to [w′]∼ if w′ ∼ w ? I(ν, k, `) for

some insertion I(ν, k, `). Our results characterize when two insertions define the same edge in this

graph. It is also natural to define the distance between [w]∼ and [w′]∼ as the length of a shortest path

from [w]∼ to [w′]∼ in the word graph. The notion of determining the distance from the empty word

[ε]∼ to [w]∼ may describe the complexity of a particular DNA rearrangement processes in the ciliate

Oxytricha trifallax [5, 11]. It may also be of interested to compare different paths between two given

equivalence classes and to characterize the subgraphs which may appear in such a word graph.
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