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DNA recombinant processes can involve gene segments that overlap or interleave with gene segments of
another gene. Such gene segment appearances relative to each other are called here gene segment orga-
nization. We use graphs to represent the gene segment organization in a chromosome locus. Vertices of
the graph represent contigs resulting after the recombination and the edges represent the gene segment
organization prior to rearrangement. To each graph we associate a vector whose entries correspond to
graph properties, and consider this vector as a point in a higher dimensional Euclidean space such that
cluster formations and analysis can be performed with a hierarchical clustering method. The analysis is
applied to a recently sequenced model organism Oxytricha trifallax, a species of ciliate with highly scram-
bled genome that undergoes massive rearrangement process after conjugation. The analysis shows some
emerging star-like graph structures indicating that segments of a single gene can interleave, or even con-
tain all of the segments from fifteen or more other genes in between its segments. We also observe that

as many as six genes can have their segments mutually interleaving or overlapping.

© 2020 Published by Elsevier Ltd.

1. Introduction

It has long been observed that genome combining processes on
an evolutionary scale can lead to speciation (Dobzhansky, 1933),
while on developmental scale they often involve DNA dele-
tions (Beermann, 1977; Shibata et al., 2012) as well as who-
lescale programmed rearrangements (Smith et al., 2012; Prescott,
1994). For example, the highly diverse collection of antibodies of-
ten is attributed to somatic DNA recombination (Tonegawa, 1983),
and rearrangements on a chromosomal levels can be observed
during homologous recombination (Rieseberg, 2001). In recent
years there are numerous observations of alternative splicing
where rearranging patterns of exons and introns of a single
gene can produce different protein variants from a single mRNA
(e.g. Haussmann et al. (2016)). Rearranging segments of nucleotide
sequences can be organized in a variety of arrangements on
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the locus, for example, they can be overlapping or interleav-
ing (Braun et al., 2018). Oxytricha trifallax is a single cell organism
that is often taken as a model organism to study DNA rearrange-
ment processes. This, and similar species of ciliates undergo mas-
sive genetic restructuring of a germline micronucleus (MIC) dur-
ing the development of a somatic macronucleus (MAC) specializing
in gene expression Within this process, over 16,000 macronuclear
nanochromosomes assemble through DNA processing events in-
volving global deletion of 90-95% of the germline DNA, effectively
eliminating nearly all so-called “junk” DNA, including interven-
ing DNA segments (internally eliminated sequences, IESs). Because
these IES segments interrupt the coding regions of the precursor
macronuclear gene loci in the micronucleus, each macronuclear
gene may appear as several nonconsecutive segments (macronu-
clear destined sequences, MDSs) in the micronucleus. Moreover,
the precursor order of these MDS segments for thousands of genes
can be permuted or inverted in the micronucleus such that during
the macronuclear development, all IESs are deleted and the MDSs
are rearranged to form thousands of gene-sized chromosomes.

In Chen et al. (2014) and later in Braun et al. (2018), it was ob-
served that an IES between consecutive MDSs of one gene can con-
tain MDS segments from other genes, and that this process can be
nested. Furthermore MDSs from different MAC genes can overlap
or one MDS can be a subsegment of an MDS of another gene.
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MIC contig

MAC contig {1]2[3]4]s[e[7] [1]2[3]4ls]

Fig. 1. An example of a rearrangement of interleaving gene segments in Oxytricha
trifallax. A MIC contig containing MDSs of three MAC contigs indicated in red, blue
and yellow. The MDSs are indicated with colored boxes with numbers correspond-
ing to their respective order in the corresponding MAC contig, while the IESs are
short line segments in the precursor MIC contig connecting the MDSs. The differ-
ent colors indicate different genes. Barred numbers represent segments that are in-
verted with the respect to the other segments in the MAC contig, their rearrange-
ment requires inversions which are indicated with loops (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.).

An example of a type of interleaving situation is schematically
depicted in Fig. 1. The MDSs are represented by colored boxes with
numbers. This illustrative example shows a MIC contig® that con-
tains MDSs of three MAC contigs indicated with red, blue and yel-
low. Each MDS segment is represented by a box while the numbers
within the boxes correlate with the order of the MDSs in the cor-
responding MAC contigs. The barred numbers indicate MDSs in a
reverse orientation (inverted) in the MIC contig relative to the or-
dering of the MDSs in the corresponding MAC contig. The short
line segments between the boxes indicate IESs. Recent sequenc-
ing and annotation of the whole O. trifallax genome allows genome
level studies (Chen et al., 2014; Burns et al., 2015). Scrambling pat-
terns within thousands of genes were observed revealing hidden
structures among the scrambled gene/nanochromosome segments
that explain over 95% of the scrambled genome (Burns et al., 2016).
While those studies were focused on scrambled recurrent patterns
within a single gene, in this paper we study inter-gene segment
arrangements.

The goal of this paper is to expand the studies of gene segment
arrangement and identify prevalent patterns in inter-gene segment
organization in O. trifallax. DNA rearrangement processes involve
MIC segments of the same MAC chromosome that can overlap or
interleave with segments of other MAC chromosomes. Such over-
lapping or interleaving gene segment appearances are called here
gene segment organization. Prevalent scrambling patterns of DNA
segments from the same gene were used in evolutionary analy-
sis of several ciliate species (Chang et al, 2005). Detecting pat-
terns in inter-gene segment organization may provide another ad-
ditional method for species comparison. To our knowledge, se-
quencing of the whole genome has not been reported for another
ciliate species within the subclass of Stichotrichia, where scram-
bled genetic structure is most pronounced. While the method that
we present in this paper is used on O. trifalax, it can be applied
to other species as their genomes are readily available. Our initial
findings of this study were a basis for more systematic descrip-
tion of certain segment organizations in O. trifallax that resembled
‘Russian dolls’ (Braun et al., 2018).

We use graphs to represent segment organizations in a chromo-
some locus. We represent a micronuclear locus with the interleav-
ing and overlapping gene segments by a directed graph. Such ob-
tained graph data is then converted to a set of points (point cloud)
in a Euclidean space and we apply hierarchical clustering technique
to the whole genome data of Oxytricha trifallax (Chen et al., 2014;
Burns et al., 2015). We identified a set of star-like graphs that show
several situations where segments of a single gene interleave with
segments of up to 15 other genes.

3 contig is a term used for an adjoining length of a DNA sequence obtained by
assembly process after sequencing

Due to advances in bioscience and biotechnology, the growth of
biomolecular data has exploded and many data analysis algorithms
have been developed aiming to better understand the generated
data (Cheng et al., 2006; Fernandez-Lozano et al., 2014; Meinicke,
2015). Data analysis using topological methods has proven to be
useful in showing general patterns that were difficult to observe
with other techniques. In the last decade, Topological Data Analysis
(TDA) has shown to be another tool for data analysis and data min-
ing that can be used to extract topological information from vari-
ous types of data (Carlsson, 2009). TDA in dimension 0 can be used
for hierarchical analysis, and this is the approach we use in this
paper (Section 3). More details on TDA and persistence homology
can be found in Carlsson (2009); Edelsbrunner and Harer (2008);
Ghrist (2008a).

Our data set consists of a set of graphs G representing inter-
gene segment organizations of the O. trifallax scrambled genome.
This set is converted to a set of points in a Euclidean space, a point
cloud Sg (Section 2). For the hierarchical clustering analysis we ap-
plied TDA at dimension zero to the obtained point cloud in R™.
This process is described in Section 3. Section 4 describes the re-
sults of our findings. We end our exposition with a short discus-
sion (Section 5).

2. Graphs associated with gene segment organization
2.1. Sequencing data used

The MDS interrelationship analyzed below uses the genome se-
quencing data in Chen et al. (2014), and can be downloaded from
the Supplemental Information in Chen et al. (2014) and also in
Burns et al. (2016). In this paper, the data used for analysis is the
same data used in Burns et al. (2016) where it was suitably pro-
cessed. No further processing for our study was performed. We re-
fer to this data as data D and it is available at http://knot.math.usf.
edu/data/scrambled_patterns/processed_annotation_of_oxy_tri.gff.

2.2. Graphs corresponding to MIC contings

As MDS from different MAC contigs can overlap or interleave
in a MIC contig we define the following types of relationships be-
tween MAC contigs located on a single MIC contig.

e (Type 1 : Overlapping) If an MDS of a MAC contig g; overlaps
with an MDS of another, distinct MAC contig g,, then it is said
that g; and g, overlap, or they are overlapping. We also say that
g1 has type 1 interaction with gy, or g; has interaction of type
1 with 2.

Two MAC contigs are considered to be overlapping if they have
at least one pair of MDSs that overlap with at least 20bp in
common. This is because two consecutive MDSs of the same
MAC contig usually share sequences at their ends (pointers)
that guide the rearrangement process (Prescott, 1994), and two
MDSs from distinct MAC contigs can share the same pointer se-
quence. The length of these pointer sequences usually ranges
between 2 to 20 nucleotides.

The overlapping relation is symmetric in the sense that, if g
overlaps with g,, then g, overlaps with g;. The situation is de-
picted in Fig. 2 (Type 1). In the figure, MDSs of g; and g, are
represented by blue and red rectangles, respectively. This case
excludes the case when one MDS is completely included in an-
other, even though being a subsequence is a particular type of
“overlapping”. Such situation is included in Type 2 case (below).

e (Type 2 : Containment) If an MDS of a MAC contig g; (the blue
segments in Fig. 2) is contained in (is a subsegment of) an MDS
of another distinct MAC contig g, (red in Fig. 2), then it is said
that an MDS of g; is contained in an MDS of g, and we say g;
has type 2 interaction with g;.
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Fig. 2. Three types of MDS segment organization of different MAC contigs. MDSs
of the same MAC contig are colored the same. The overlapping, subsegment and
interleaving relationships of segments of distinct genes are indicated by circles in
the figure, respectively. Uncircled segments indicate that there may be other gene
segments that may or may not participate in gene organizations in question. The
blue segments correspond to gene g; and the red segments correspond to gene
g, (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).

For this interaction when an MDS M of g, contains an MDS M’
of gq, we require that both ends of M have at least 5 bps that
are not in common with M’. That is, we require a complete
inclusion such that there are no pointer sequences in com-
mon. In Fig. 2 (Type 2), MDSs of g; are depicted in blue, and
those for g, in red. This relation is not symmetric. We distin-
guish this situation from the one in Type 1 because the un-
scrambling of an MDS that is next to at least one IES (Type 1)
may use a different biological process involving Piwi-interacting
RNA (Fang et al., 2012) rather than the one that does not neigh-
bor an IES (g; in Type 2).

e (Type 3 : Interleaving) If an IES of a MAC contig g; (blue in
Fig. 2) contains an MDS of another, distinct MAC contig g, (red
in Fig. 2), then it is said that an MDS of g; interleaves (or is
interleaving) with g, or g; has Type 3 interaction with g,. This
relationship may not be symmetric. We allow that the ends of
an interleaving MDS of g; and the MDSs of g, to intersect (over-
lap) up to (including) 5 bases. This requirement distinguishes
type 3 case from the ‘overlapping’ case where the requirement
is at least 20 bases.

We consider pairs (g7, g;) of MAC contigs g; and g, that belong
to the same MIC contig. To each pair of MAC contigs (g1, g2) we
associate a triple c(gq,82) = (bq, by, b3) where each entry b; (i =
1,2, 3) indicates whether g; is in relationship of Type i with g;.
The value of b; is either O (there is no relationship of Type i) or 1
(g7 is related to g, with Type i).

To investigate the situations of these three types of interactions
of MDSs, we associate an edge-labeled graph with directed edges
to each MIC contig in data D as follows.

Each graph G = Gy = (V(Gy), E(Gy)), which may be discon-
nected and have multiple connected components, corresponds to
a MIC contig M. Each vertex g € V(Gy) corresponds to a MAC con-
tig g whose MDSs are segments of the MIC contig M.

A labeled directed edge from g; to g, with label c(g;, g, is in
E(Gy) if c(g1,82) # (0,0,0).

In the figures below we use colors on the edges to indi-
cate the labels of the edges: red= (1,1, 1), green= (1, 1,0), blue=
(1,0,1), orange= (0,1,1), purple= (1,0,0), cyan= (0,1,0), and
black= (0, 0, 1). All graphs can be found at

http://knot.math.usf.edu/data/Colored_Graphs/index.html.

Fig. 3 shows a locus of the MIC contig ctg7180000069854 con-
taining MDSs of three MAC contigs 5027.0 (purple), 21621.0 (black),
and 4739.0 (cyan). Figures 15 and 28 depict some other examples
of graphs for MIC contigs in the data.

The set of graphs corresponding to the data D that is ana-
lyzed here is denoted Gp such that Gp = {Gy; | M is a MIC contig
in D}. There are 629 distinct colored graph isomorphism classes
and 288 isomorphism classes of colored connected components of

the graphs in D, and they can be found at: http://knot.math.usf.
edu/data/Colored_Components/index.html.

2.3. Graph features selection

We describe a method of converting graph data set to a set of
points in the Euclidean space R”, i.e., the point cloud.

To each (directed and colored) graph G in the data we associate
a vector P(G) € R" obtained by using relevant numerical graph in-
variants. This vector is then considered as a point in R" (Fig. 4).

The vector P(G) is obtained by using local, vertex specific, and
global, graph specific, features of G. In this first global analysis of
the genome we cluster the data according to general graph struc-
ture properties, therefore for each G € Gp we also consider a corre-
sponding undirected graph U(G). The undirected, uncolored graph
U(G) is obtained from G by replacing each pair of parallel edges
with opposite directions in G with an undirected edge, and by ig-
noring the direction and the colors of the edges as shown in Fig. 5.

Global Vector. A vector Py(G) with three entries, called the
global vector, is associated to each graph G e Gp. This vector Pg(G)
consists of three features (|V(G)|, |[E(G)|, CN(G)) where |V(G)| and
|E(G)| are the numbers of vertices and edges in G, respectively, and
CN(G) is the size of the largest clique in U(G). The isolated vertices
are not counted in |V(G)| as they represent MAC contigs that have
no interrelation with any other MAC contig present in the MIC con-
tig represented by the graph. In the analyzed data the maximum
number of vertices is 43, the maximum number of edges is 74, and
the largest clique size is 6 (appears twice in the data).

Local Vector. Vectors that use local properties of the vertices
are associated to each G e Gp. For each vertex v; we consider two
numbers, its valency val(v;), and the clique number cq(v;). The va-
lency val(v;) is a summation of its out-degree and its in-degree (in-
cluding the parallel oppositely oriented edges). The clique number
cq(v;) is the number of cliques (induced subgraphs of U(G) isomor-
phic to the complete graph K for some k) that contain vertex v;.

The vertices in G, vy, vy, ..., V() are ordered such that their
valences are non-increasing such that vy is minimal. Vertices
that have the same valency are further ordered such that their
clique numbers are non-increasing. This order remains fixed for
the graph G. The valency vector, denoted P,,;(G), consists of a list of
valencies of the preordered vertices Py (G) = (valence(Vy))y.cv ()
of the graph G. The maximum valency of a vertex in the analyzed
data is 29 achieved by contig 67157 with 25 outgoing edges and 4
incoming edges. Out of those 29 edges, 23 of the outgoing edges
have label (0,0,1), one edge has label (0,1,0) and the other is la-
beled (0,1,1). The maximum outgoing valency is 25 achieved by the
contig 67157 (see Figure 25 in the SI). The maximum incoming va-
lency is 6 and it is achieved by contig 67223 (see Figure 26 in SI).

The vertex order of the clique vector follows the same prede-
termined order of vertices for G. We denote this vector by Pq(G) =
(Cq(vi))vieV(G)- An example of construction of Pg(G) is depicted in
Fig. 7.

The Graph Vector. The graph feature vector P(G) is defined by
concatenating the vectors Pg(G), P,q(G) and Pe(G). For a graph G,
the number of entries of the vectors P,y;(G) and Py(G) are the
same and therefore P(G) is a vector in R2IV(®I+3, We denote the
set of vectors associated to Gp with Sp, or simply S.

The Point Cloud. Observe that the number of entries of the
vectors in S is not uniform, because this number depends on the
number of vertices in the corresponding graph. In order to work
in the common Euclidean space, we expand some of the vectors
(by appending 0’s) to obtain a consistent number of entries in all
vectors. This modification is obtained in the following way.

Let d = max{ |[V(G)| | G € Gp }. If the valence vector of G is

Py (G) = (v1, V2, ... V(o))
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Fig. 3. A segment of MIC contig ctg7180000069854 (top) and its corresponding graph (bottom). There is an overlap of MDSs of the black and purple contigs (as circled in
the top figure) and the purple contig interleaves with the black (hence there is a blue edge indicating label (1,0,1) from the purple to the black vertex) but there is no MDS
segment of the black purple contig that interleaves with the purple contig, so there is a purple edge indicating (1,0,0) in the opposite direction. IESs of both black and purple
contigs contain MDSs of the cyan contig, so there are two black edges indicating labels (0,0,1) ending at the cyan vertex.

Rn

o

G

—

Fig. 4. Every graph G is associated to a feature vector P(G), a point in the Euclidean
space R".

then we construct an auxiliary valence vector for G with

13,,,,1(6) = <1/], V..., UlV(G)ls 0,.. ,0)

R R

Fig. 5. An undirected graph to the right, associated to a directed one to the left.

increasing the number of entries of P,;(G) to d such that d —
[V(G)| entries of zeros are added at the end. Similarly we construct
auxiliary clique vector P,(G) by adding d — |V(G)| zeros at the end
of P¢g(G). The graph vector P(G) is redefined with the concatena-
tion (Py (G), Byt (G), Feq (G)).
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There are several reasons for adding Os to the vector entries
where necessary. The points of the point cloud must be in the
same dimension in order to apply hierarchical clustering. The addi-
tional Os can be seen as a situation where there are other MIC con-
tigs, that are further away from the MIC contig in question, that do
not have any relative interactions. Furthermore the entries of va-
lency and clique vectors are arranged in non-increasing orders so
that the entries to the right are smaller numbers therefore adding
0Os to the right would not make significant differences representing
graph features we analyze. Lastly, vector entries representing the
local features (valencies and cliques) must compare with entries of
the same type of local features, i.e., we cannot compare valencies
with cliques.

For the analyzed graph data Gp, the maximum number of ver-
tices in a graph is d = 43. We abuse the notation and use P(G) in-
stead of P(G) to refer to the zero-augmented feature vector asso-
ciated with a graph G. The final point cloud set S = {P(G)|G € Gp }
forms a subset of R24+3 = R89,

For comparison, we also consider the point cloud Sy from the
global features vector Pg(G). The point cloud Sy is in R3. The data
produced 273 vectors obtained with the above construction.

It is important to notice that the entries of the vectors P, and
Py for a graph G are graph isomorphism invariants.

Lemma 2.1. If graphs G and G’ are graph isomorphic (but not neces-
sarily edge label preserving) then P(G) = P(G').

Proof. Let ¢: G — G’ be a graph isomorphism. Then G and G’
have the same number of vertices, edges and the size of the max-
imal cliques in their undirected versions U(G) and U(G’). Therefore
Py (G) = Py(G') and the first three entries of P(G) and P(G’) are the
same. Also the number of non-zero entries in P(G) and P(G’) are
the same. A graph isomorphism maps vertices of G to vertices of
G’ with the same number of outgoing and incoming edges. Simi-
larly, the number of cliques incident to a vertex in U(G) is the same

-

1<

(1.1,1,1,1,1,1)
(5,4,4,4,3,33)

(44,42322)

4\6
\

to the number of cliques of the corresponding vertex in U(G’). Let
V1, ..., Vs be a partition of V(G) such that

i for all vy w € V;, for all i=1,..., s val(v) = val(w) and
cq(v) = cq(w), and
ii. forall veViand we V;withi<j@{j=1,...,s), either

val(v) > val(w) or val(v) = val(w) and cq(v) > cq(w).

Then {¢p(V;)....,¢(Vs)} is a partition of the vertices of G’ sat-
isfying the properties [i] and [ii]. Any order of vertices of V(G)
(resp. V(G')) that has non-increasing valencies and non-increasing
clique numbers must list vertices of V; (resp. ¢(V;)) before ver-
tices of V; (resp. V(G')) whenever i < j. Therefore it must be that
Pya1 (G) = Py G). O

The construction of the vectors induced 273 distinct vectors for
the 629 isomorphism clases in data D. There are three reasons that
produced this size reduction. First, many of the graphs obtainded
from D are isomorphic if the edge color is ignored, and second,
distinct directed graphs often correspond to isomorphic undirected
graphs. Lastly, of course, there are graphs G and G’ that are non
isomorphic but P(G) = P(G'). Consider attaching two edges to a 4-
cycle to obtain a 6-vertex graph. They can be attached to neighbor-
ing or to diagonally opposite vertices of the cycle, producing non-
isomorphic graphs. However, in both cases the associated feature
vectors will be the same.

3. Clustering analysis with TDA

For a data set S ¢ R", in our case corresponding to a set of di-
rected graphs, a TDA analysis at dimension O gives rise to a hier-
archy of connected components of (clustered) graphs as described
below.

To understand the distribution of the points of S in R" we use
the notion of the neighborhood graph, as defined below, and con-
struct a hierarchy of undirected graphs whose vertices are S. The
neighborhood graph of S depends on a chosen distance function.
In our case the distance d is the Euclidean distance between two
points, that is, for x = (x;,...,xp) and y = (y1,...,yn) the distance

d(x, y) is d(x.y) = /3 (xi — y1)?.

Definition 3.1. Let S be a set of points in R" and let € > 0
be a non-negative number. The e-neighborhood graph is an undi-
rected graph I'¢(S), where I'c(S) = (S,E(T'¢) and E(T'¢) = {[u, v] |
du,v) <e,u,veS u+#uv}

The clustering analysis is done by considering a sequence of
neighborhood graphs I'¢, (S), ', (S),... for S c R" obtained by a
sequence of incrementally increasing values €; < €; < ---

Definition 3.2. A cluster of S at level € is a connected component
in the neighborhood graph I'¢(S).

(1,1,1,0,1,0,0)

Fig. 7. The number of cliques associated with the vertex v;, vertices ordered as in Fig. 6. Left: vector entries for cliques k =1 (vertices) and k = 2 (incident edges) for each
vertex. Middle: vector entries for clique k = 3 (three cycles). Right: vector entries for clique k = 4 (complete graph on four vertices, K;). There is only one clique Ky, therefore
only four vertices have entries 1 in the vector. This graph has no cliques of size higher than 4. The clique vector in this example is P4 (G) = (11,10, 10, 7, 8, 6, 6) which is the

sum of the four described vectors.
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We observe some facts about the graph vectors P(G) and Pg(G).
Suppose G is a family of graphs and S=S5(G) and Sy = 54(G) are
points in R" obtained as described above. The vectors of the sets
S and Sy are part of the integer lattice of R" and R3 respectively,
therefore any distance between two distinct vectors is at least 1.
The observations below indicate that small changes in the graphs
can induce relatively large distances of the corresponding vectors
in S.

Lemma 3.3. Let G, G’ € G. Then the following hold.

(a) If G is obtained from G by addition of one vertex and one
edge incident to that vertex. Then d(P(G), P(G)) > 3 and
d(Py(G), Py(G) = V2.

(b) If G’ is obtained from G by addition of one directed edge with-
out changing the total number of vertices, nor the number of
cliques, then d(P(G), P(G')) = V/3.

(c) If G is obtained from G by addition of one edge that adds a
clique to the graph U(G') without changing the number of ver-
tices, then d(P(G), P(G')) > +/5.

(d) If G is obtained from G by changing the target of one edge
from vertex v to vertex v/ without changing the number of the
cliques, either d(P(G), P(G')) = v/2 or d(P(G), P(G')) =0.

Proof. (a) The addition of a vertex in G’ changes the number of
non-zero entries in P(G’) in two places, once at P,,(G’) and again
at P(G'). Let w be the new vertex in G’ added to V(G) and let [v,
w] be the new edge in G’ connecting v € V(G) with the new ver-
tex w. Then w can be taken to be the last vertex in V(G’) in the
order of the vertices, while the order of v in V(G’') might be ei-
ther the same as its order in V(G) or different. In both cases the
entries in P(G’') corresponding to |V(G')|, |[E(G")|, val(v), cq(v), val(w)
are at least one more than the corresponding entries in P(G) and
the entry of cq(w) is at least two more (a 1-clique vertex w and
a 2-clique the new edge) than the corresponding entry in P(G)
which is 0. So d(P(G),P(G)) = \/Zi(xi -y > \/5 +22 >3, and
d(Py(G), Py(G)) = V2.

The proofs of (b) and (c) follow a similar argument. Note that
in case of (b), if the new directed edge is incident to vertices v
and w, then because the number of cliques in U(G’) is not changed
from the number of cliques in U(G), there is an edge in G incident
to v and w in opposite direction. So P(G’) has at least one more in
the entries |E(G)|, val(v) and val(w). Observe that this may imply
a change in the order of the vertices, in which case there may be
a difference in the entries corresponding to the cq(v) and cq(w)
which would increase the distance between the vectors. Therefore
d(P(G),P(G")) = /3.

For the case of (c), the entries of |E(G')|, val(v), val(w), cq(v),
cq(w) in vector P(G') have a change of at least one and therefore
the distance d(P(G),P(G')) > v/5 and d(Py(G),Py(G)) = V1 =1.
The case (d) follows the argument of (b) if the valencies change or,
if valencies don’t change, the graphs are represented by the same
vectors and the distance is 0. O

3.1. Analyzing the data using neighborhood graphs

A filtration of a graph " is a sequence of nested graphs I'; C
I'yc..-cTI'y =T where each I'; is a subgraph of I';, ;. The defi-
nition of the neighborhood graph for a point cloud S naturally in-
duces a filtration for a connected graph with vertices S. Namely,
given a point cloud S € R" and a finite sequence of non-negative
numbers 0=¢€; <€ <--- <€, we obtain a filtration ¢, (S) €
Fe,(S) - C Ce, (S). We assume that €; = 0, which implies that
E(T'¢,) = 9. This filtration also helps to extract the connected com-
ponents (clusters) of S at various spatial resolutions. For a given
€, each connected component of I"¢(S) corresponds to a cluster of
graphs whose corresponding points in R" are connected by edges

that are of lengths less than €. This means that each graph as-
sociated to a vector in a cluster is at most € apart from some
other graphs within the same cluster, i.e., the corresponding graphs
within the cluster have similar graph properties represented by
in the vectors. To have a better information about the topological
properties encoded in a filtration one usually considers the persis-
tence diagram of the filtration. For our purpose, the persistence di-
agram describes a way the connected components of the neighbor-
hood graph merge together as we increase the value of €. The per-
sistence diagram is also equivalently described by the persistence
barcode (Ghrist, 2008b). The barcode construction is described as
follows.

Let S=Sp c R", where n=2d+3 (in our case n=389). In
Figs. 8 and 12, the vertical axis enumerates points of S, and e-
values are listed on the horizontal axis. At €; =0, E(I'¢;) =¥, and
each point of S ¢ R" forms a single connected component. There
are |[S| connected components, and hence the number of bars in
the barcode at value 0 is equal to the number of data points in
S corresponding to the “birth” of all connected components. With
appropriate increments of € new edges are added to the neighbor-
hood graph and the connected components start joining each other
forming larger clusters. The merging event of connected compo-
nents is represented by a termination of all but one of the corre-
sponding bars of the barcode. The choice of the bar that does not
terminate in a merge of components is arbitrary, and we use the
established convention (see Ghrist (2008b)) where bars are ver-
tically ordered by their length from the shortest at the bottom of
the diagram to the longest on the top.

The number of connected components of the graph I'¢ is the
number of horizontal bars intersecting the vertical line at distance
equal to €. For instance, from Fig. 8 we deduce that the number
of connected components in I'¢(S) is 2 for € = 15 indicating two
clusters at that distance. Typically, the filtration ends with a neigh-
borhood graph that has a single connected component. That is, the
sequence of € values increase from O to the value that gives rise
to a single component graph. In the case of data D for the set of
global vectors and the point clouds S and S, the € values range
from O to 22 and O to 15 respectively.

3.2. Tree diagrams representing merging components

The merging events of connected components described in the
persistence diagram can be encoded using a tree diagram called
a dendrogram (Murtagh, 1983). The bottom points of the tree dia-
gram correspond to the points of S (resp. Sg), that also correspond
to the connected components of Gy(S). The vertical direction of the
tree diagram represents values of €.

At each level € the connected components (clusters) are enu-
merated and each vertex in the tree is labeled by (i, €) where i is
an index that corresponds to the ith cluster of the graph at level e.
At each level €, the number of nodes corresponds to the number of
clusters of I'¢(S). For a node (vertex) v at level €, the children of
v correspond to the clusters at level €,_; (i.e., the connected com-
ponents pf graph I'¢,_, (S)) that have joined to a single connected
component represented by v in [¢,.

For a large enough value of €, I'¢(S) is connected, and it corre-
sponds to the single node (root) of the tree. The dendrograms cor-
responding to the persistent diagrams for S and S, are shown in
Figs. 9 and 13 in the supplementary documentation, respectively.

3.3. Implementation

The point cloud generated from the data D was com-
puted using a custom Python script. The persistence diagrams
were generated using Javaplex (Tausz et al., 2014) and the
dendrogram tree diagrams were generated using Mathematica
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Fig. 8. The barcode diagram describing the birth and death of the connected components of the neighborhood graph of the dataset S. The horizontal axis represents
increasing values of €. Each horizontal bar represents a point in the point cloud. The horizontal line stops at the € value when the corresponding point joins a connected
component of I'c. The number of horizontal bars intersecting a vertical line at a given € value indicate the number of components in I'c. The short bars at the bottom
indicate that the corresponding points are merged into the same cluster at a small ( < 2) value of €. The vertical line at € = 15 intersects with two horizontal bars,
indicating that there are two clusters at € = 15.
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Fig. 9. The dendrogram clustering tree of dataset S.
(Wolfram Research, Inc., 2017). The sequence data, the graph 4.1. Output of hierarchal clustering
data and the scripts are available at http://knot.math.usf.edu/data/
GeneSegmentInteractions/dna_graph_study/. The bar code diagram and the dendrogram for the filtration and
clustering of the neighborhood graph of S are depicted in Fig. 8 and

4. Results Fig. 9. As expected by Lemma 3.3, the neighborhood graph consists

of isolated vertices for € < 1 and the first edges appear at € = 1.5

The analyzed data D consists of processed (Burns et al., 2016) when there are 14 two point and 4 three point clusters. The two
micronuclear contigs obtained after sequencing of O. trifallax or three graphs joined at this distance differ from each other by
(Chen et al., 2014) as used in Burns et al. (2016). The directed  small changes such as a single directed edge addition that does

graphs that correspond to the contigs in D can be found at http: not change the cliques.
//knot.math.usf.edu/data/Colored_Graphs/index.html. At € =2, as noted in Lemma 3.3, most points remain distant
As mentioned, the data D produced 273 distinct vectors corre- from each other and only those representing graphs with small

sponding to G = Gp that raise to the same number of isomorphism changes in their structure are joined by en edge. In addition two,
classes of graphs ranging from 2 to 43 vertices. Each MIC contig three and in one instance four of the previously formed clusters
corresponds to a vector in S = Sp while the MAC contigs whose join in (also with some additional points) to form new clusters,
MDS segments do not have any of the types 1, 2 or 3 interac- and there are 25 new small two or three point clusters. Most of
tions with MDSs of other contigs represent isolated vertices in the ~ the points in S remain as isolated vertices. At € = 2.5 a dramatic
graphs and are not taken in consideration for the construction of change occurs and one large cluster of 155 elements is formed
Sp. with a second cluster of 5 points, and several small (two or three

We constructed filtration with € increments of.5 in order to de- point) clusters. All other points stay as isolated vertices. At this
tect small neighborhood changes in the neighborhood graph, these point the feature of the point-cloud becomes clear, it consists of
sometimes are reflected by reorienting a directed edge. a single large cluster, singletons, and some small two or three el-
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Fig. 10. Graphs for contigs ctg7180000088928 and ctg7180000088096 (top) and graphs for contigs ctg7180000067742 and ctg7180000067187 (down).

ement components. From Lemma 3.3 we can conclude that each
graph in the 155 member cluster has a neighbor in the cluster that
differs only by a vertex or an edge.

At € =9.5, there is one large cluster of 269 points while the
second largest cluster is of 4 elements, and there are 10 isolated
points.

In the last 5 digits of contig numbers (see notation of the con-
tigs in Chen et al. (2014)), the second largest cluster consists of
contigs

88928, 88096, 67742, 67187.

Fig. 10 shows the graphs that are contained in this cluster.

All four of these graphs contain a ‘star’ vertex that is of high
valency having multiple black (label (0,0,1)) outgoing edges. Such a
‘star’ vertex represents a MAC contig whose MDSs interleave with
MDSs of many other MDS contigs. We observed that for most of
the ‘star’ vertices, one IES contains all (or most of) MDSs of other
contigs. This feature was further investigated in Braun et al. (2018),
where the interleaving depth was considered.

The isolated points belong to 10 contigs

67761, 87162, 87484, 67363, 67280,
67157, 67223, 67417, 67411.
These are depicted in the corresponding figures in Supplemen-

tary Material Section. We note that some of these graphs have
multiple ‘star’ vertices, or the component that contains a ‘star’ ver-

67243,

tex also has additional cycles and cliques. In particular, the two
graphs with 6-cliques (contigs 67243 and 67223) and the one with
a 5-clique (contig 67411) are part of these isolated points. Further-
more, the graph with the longest path of 5 vertices (contig 87484)
also featured in Braun et al. (2018) as one of the most in-depth
embedding of genes within a single IES is also on this list. In all
these cases we observe that the majority of the edges are black
and purple, meaning that the prevailing inter-gene MDS organiza-
tion is interleaving.

As € increases, the four-element cluster becomes part of the
large cluster at € = 10.5 and the isolated singleton points join the
large cluster one or two at the time until € = 14.5 when the two,
most distant contigs 67517 and 67223 remain isolated until € = 22
and € = 23 respectively.

The pattern of clusters for Sy is similar to that of S. A large
single cluster is formed at value € = 1.5, with 2 clusters of 5 ele-
ments, 3 clusters of 2 elements, and 23 singleton clusters.

At € = 4.5, the clusters consist of a large single cluster, the sec-
ond largest of 9 elements, two clusters of two elements, and 5
singleton clusters. The size two clusters are {67417, 67243} and
{67187, 67228}. The elements of the former cluster appear as iso-
lated points in the neighborhood € = 9.5 of S, while 67187 of the
latter cluster, appears in the 4-elements cluster of S, and 67228 is
in the largest cluster of S.

The isolated points for €=45 are
67223,67363,67157,67280,87484. We note that all these con-
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Fig. 11. A 2d multidimensional scaling projection for S as a visual depiction of the point cloud S. The points of S are colored according to clustering at € = 9.5. At this level
we have 12 clusters, the largest cluster is colored red in the figure, the second largest cluster consists of 4 elements and is colored green and the singletons are all colored
blue. To generate the 2d multidimensional scaling projection, we used the software implementation available in the Scikit-Learn Python Library (Pedregosa et al., 2011). Here
and in figure 14 in SI there are no particular interpretations of coordinate axes (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.).

tigs also appear as isolated points of the neighborhood graph of S
for € = 9.5.

In the case of Sy, as in the case of S, the two most distant
graphs correspond to the contigs 67517 and 67223 that join the
large cluster at € = 14.5 and € = 18.5 respectfully.

Figs. 11 and 14 represent the 2d multidimensional scaling
(MDS) projections (Kruskal and Wish, 1978) of the point clouds S
and Sy, respectively. Multidimensional scaling projections are com-
monly used to visualize a higher dimensional point cloud as points
in the plane. The already developed technique (available in Math-
Lab with toolbox cmdscale) projects the points of the point cloud
in a plane such that mutual distances between the points are more
or less preserved. Since our point cloud S is in R3%, we used 2d
multidimensional scaling projections to produce Figs. 11 and 14.

5. Discussion

In this paper we initiated a mathematical method of represent-
ing and analyzing inter-gene segment organization in a scrambled
genome of Oxytricha trifallax. Although the whole genome was se-
quenced, such genome wide study for inter-gene segment arrange-
ment has not been done before. The segment arrangements are
represented by graphs representing their mutual relationship, such
as overlapping and interleaving sequences. We analyzed the graph
data by converting these graphs to a point cloud in a higher di-
mensional Euclidean space. In order to identify patterns in the
graph structures, we applied hierarchical clustering methods bor-
rowed from topological data analysis.

The big majority of segment organization within a single MIC
contig are represented with small graphs up to five vertices (corre-
sponding to the large cluster at € = 2.5) and one can ‘move’ from
one graph to another by small vertex/edge changes. These small
graphs constitute a major cluster. There are clusters consisting of
singletons (represented by isolated points farther away from ma-
jor clusters in Figs. 11 and 14) that correspond to MAC contigs
with complex interaction patterns, and their patterns are often
unique and rare. Most of inter-gene organizations involve only two
or three MAC contigs, and interactions appear between two gene
segments.

The most prevalent multi-gene segment organization in the
Oxytricha’s genome are interleaving and often this appears as one

gene interleaving with multiple other MAC contigs (as observed as
the ‘star’ like vertices). For most of the ‘star’ vertices, one IES con-
tains all (or most of) MDSs of other contigs. In the cluster con-
sisting of four graphs, a single IES of the ‘star’ MAC contig inter-
leaves with multiple MAC contigs. All star contigs are scrambled,
which follows the analysis in Braun et al. (2018) where it was ob-
served that contigs whose IESs interleave with other MAC contigs
are mostly scrambled.

The graph representation of the inter-gene segment relation-
ship introduced here is novel. We hope that a similar approach
can be used in studies of scrambled genomes of other species,
in particular those somewhat closely related to O. trifallax, such
as Tetmemena. Comparisons among orthologous genes in other
species with scrambled genomes may reveal whether patterns in
these graph structures are conserved or abolished over evolution-
ary time. Furthermore, if genes with interleaved gene segments
are co-expressed may indicate whether the rearrangement of these
MAC segments are in parallel or sequential. We suggest that mod-
els that study gene rearrangement should also focus on opera-
tions that can be applied to these frequent interleaving gene seg-
ments, which in some cases resemble the odd-even patterns de-
tected within scrambled genes (Burns et al., 2016).

The representation of the graph data into a point cloud in this
paper is by a vector whose entries are common graph invariant
properties, such as the number of vertices, edges and cliques. We
used two vectors, one that had more local vertex properties and
the other in R3 which included only the number of vertices, edges
and the maximal clique. It is interesting that in both cases the iso-
lated points are the same, and much distant from the rest of the
points. The rearrangement process of the MIC contigs correspond-
ing to these isolated points may indicate specific biological pro-
cess that include multiple genes simultaneously. Studies that iso-
late intermediate DNA produced during the rearrangement may re-
veal the process in which they recombine. The graphs with large
cliques (5 and 6) imply that segments of up to 5 or 6 genes mutu-
ally interleave and we suggest further experimentation to analyze
rearrangement processes for these situations. In our study we did
not consider the length of overlapping segments, nor the number
of interleaving gene segments. Further methods can include edge
weights on the graphs indicating size of overlaps and number of
interleaving segments to give more detailed analysis.
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Although this paper is focused on analysis of a specific data of
interleaving/overlapping gene segments, the method that we pro-
pose for converting a graph data to a point cloud data is novel
and general, and can be applied to analyze similarities in vari-
ous graph data. We represented of graphs via a feature vectors
in R". Similar attempts in this direction have been made for de-
tecting “graph similarities”. In Gibert et al. (2012); Riesen and
Bunke (2010); Hajij et al. (2018) the focus is on undirected graphs
and the local properties that we used here are not considered.
There are other avenues for developing a similarity measure be-
tween graphs (Bunke and Riesen, 2011; Papadimitriou et al., 2010),
or graph kernels (Gartner et al., 2003; Baur and Benkert, 2005),
that we have not explored here. These methods often rely on the
structural properties of the graph sometimes identified through
topological methods. Such an approach may reveal other proper-
ties in the genome. For example, such methods have been suc-
cessfully applied in protein function prediction (Borgwardt et al.,
2005). Comparison of such graph analysis methods is subject of
another study.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/].jtbi.2020.110215.
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