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a b s t r a c t 

DNA recombinant processes can involve gene segments that overlap or interleave with gene segments of 

another gene. Such gene segment appearances relative to each other are called here gene segment orga- 

nization . We use graphs to represent the gene segment organization in a chromosome locus. Vertices of 

the graph represent contigs resulting after the recombination and the edges represent the gene segment 

organization prior to rearrangement. To each graph we associate a vector whose entries correspond to 

graph properties, and consider this vector as a point in a higher dimensional Euclidean space such that 

cluster formations and analysis can be performed with a hierarchical clustering method. The analysis is 

applied to a recently sequenced model organism Oxytricha trifallax , a species of ciliate with highly scram- 

bled genome that undergoes massive rearrangement process after conjugation. The analysis shows some 

emerging star-like graph structures indicating that segments of a single gene can interleave, or even con- 

tain all of the segments from fifteen or more other genes in between its segments. We also observe that 

as many as six genes can have their segments mutually interleaving or overlapping. 

© 2020 Published by Elsevier Ltd. 

1. Introduction 

It has long been observed that genome combining processes on 

an evolutionary scale can lead to speciation ( Dobzhansky, 1933 ), 

while on developmental scale they often involve DNA dele- 

tions ( Beermann, 1977; Shibata et al., 2012 ) as well as who- 

lescale programmed rearrangements ( Smith et al., 2012; Prescott, 

1994 ). For example, the highly diverse collection of antibodies of- 

ten is attributed to somatic DNA recombination ( Tonegawa, 1983 ), 

and rearrangements on a chromosomal levels can be observed 

during homologous recombination ( Rieseberg, 2001 ). In recent 

years there are numerous observations of alternative splicing 

where rearranging patterns of exons and introns of a single 

gene can produce different protein variants from a single mRNA 

(e.g. Haussmann et al. (2016) ). Rearranging segments of nucleotide 

sequences can be organized in a variety of arrangements on 
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the locus, for example, they can be overlapping or interleav- 

ing ( Braun et al., 2018 ). Oxytricha trifallax is a single cell organism 

that is often taken as a model organism to study DNA rearrange- 

ment processes. This, and similar species of ciliates undergo mas- 

sive genetic restructuring of a germline micronucleus (MIC) dur- 

ing the development of a somatic macronucleus (MAC) specializing 

in gene expression Within this process, over 16,0 0 0 macronuclear 

nanochromosomes assemble through DNA processing events in- 

volving global deletion of 90-95% of the germline DNA, effectively 

eliminating nearly all so-called “junk” DNA, including interven- 

ing DNA segments (internally eliminated sequences, IESs). Because 

these IES segments interrupt the coding regions of the precursor 

macronuclear gene loci in the micronucleus, each macronuclear 

gene may appear as several nonconsecutive segments (macronu- 

clear destined sequences, MDSs) in the micronucleus. Moreover, 

the precursor order of these MDS segments for thousands of genes 

can be permuted or inverted in the micronucleus such that during 

the macronuclear development, all IESs are deleted and the MDSs 

are rearranged to form thousands of gene-sized chromosomes. 

In Chen et al. (2014) and later in Braun et al. (2018) , it was ob- 

served that an IES between consecutive MDSs of one gene can con- 

tain MDS segments from other genes, and that this process can be 

nested. Furthermore MDSs from different MAC genes can overlap 

or one MDS can be a subsegment of an MDS of another gene. 

https://doi.org/10.1016/j.jtbi.2020.110215 

0022-5193/© 2020 Published by Elsevier Ltd. 
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Fig. 1. An example of a rearrangement of interleaving gene segments in Oxytricha 

trifallax . A MIC contig containing MDSs of three MAC contigs indicated in red, blue 

and yellow. The MDSs are indicated with colored boxes with numbers correspond- 

ing to their respective order in the corresponding MAC contig, while the IESs are 

short line segments in the precursor MIC contig connecting the MDSs. The differ- 

ent colors indicate different genes. Barred numbers represent segments that are in- 

verted with the respect to the other segments in the MAC contig, their rearrange- 

ment requires inversions which are indicated with loops (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.). 

An example of a type of interleaving situation is schematically 

depicted in Fig. 1 . The MDSs are represented by colored boxes with 

numbers. This illustrative example shows a MIC contig 3 that con- 

tains MDSs of three MAC contigs indicated with red, blue and yel- 

low. Each MDS segment is represented by a box while the numbers 

within the boxes correlate with the order of the MDSs in the cor- 

responding MAC contigs. The barred numbers indicate MDSs in a 

reverse orientation (inverted) in the MIC contig relative to the or- 

dering of the MDSs in the corresponding MAC contig. The short 

line segments between the boxes indicate IESs. Recent sequenc- 

ing and annotation of the whole O. trifallax genome allows genome 

level studies ( Chen et al., 2014; Burns et al., 2015 ). Scrambling pat- 

terns within thousands of genes were observed revealing hidden 

structures among the scrambled gene/nanochromosome segments 

that explain over 95% of the scrambled genome ( Burns et al., 2016 ). 

While those studies were focused on scrambled recurrent patterns 

within a single gene, in this paper we study inter-gene segment 

arrangements. 

The goal of this paper is to expand the studies of gene segment 

arrangement and identify prevalent patterns in inter-gene segment 

organization in O. trifallax . DNA rearrangement processes involve 

MIC segments of the same MAC chromosome that can overlap or 

interleave with segments of other MAC chromosomes. Such over- 

lapping or interleaving gene segment appearances are called here 

gene segment organization . Prevalent scrambling patterns of DNA 

segments from the same gene were used in evolutionary analy- 

sis of several ciliate species ( Chang et al., 2005 ). Detecting pat- 

terns in inter-gene segment organization may provide another ad- 

ditional method for species comparison. To our knowledge, se- 

quencing of the whole genome has not been reported for another 

ciliate species within the subclass of Stichotrichia , where scram- 

bled genetic structure is most pronounced. While the method that 

we present in this paper is used on O. trifalax , it can be applied 

to other species as their genomes are readily available. Our initial 

findings of this study were a basis for more systematic descrip- 

tion of certain segment organizations in O. trifallax that resembled 

‘Russian dolls’ ( Braun et al., 2018 ). 

We use graphs to represent segment organizations in a chromo- 

some locus. We represent a micronuclear locus with the interleav- 

ing and overlapping gene segments by a directed graph. Such ob- 

tained graph data is then converted to a set of points (point cloud) 

in a Euclidean space and we apply hierarchical clustering technique 

to the whole genome data of Oxytricha trifallax ( Chen et al., 2014; 

Burns et al., 2015 ). We identified a set of star-like graphs that show 

several situations where segments of a single gene interleave with 

segments of up to 15 other genes. 

3 contig is a term used for an adjoining length of a DNA sequence obtained by 

assembly process after sequencing 

Due to advances in bioscience and biotechnology, the growth of 

biomolecular data has exploded and many data analysis algorithms 

have been developed aiming to better understand the generated 

data ( Cheng et al., 2006; Fernandez-Lozano et al., 2014; Meinicke, 

2015 ). Data analysis using topological methods has proven to be 

useful in showing general patterns that were difficult to observe 

with other techniques. In the last decade, Topological Data Analysis 

(TDA) has shown to be another tool for data analysis and data min- 

ing that can be used to extract topological information from vari- 

ous types of data ( Carlsson, 2009 ). TDA in dimension 0 can be used 

for hierarchical analysis, and this is the approach we use in this 

paper ( Section 3 ). More details on TDA and persistence homology 

can be found in Carlsson (2009) ; Edelsbrunner and Harer (2008) ; 

Ghrist (2008a) . 

Our data set consists of a set of graphs G representing inter- 

gene segment organizations of the O. trifallax scrambled genome. 

This set is converted to a set of points in a Euclidean space, a point 

cloud S G ( Section 2 ). For the hierarchical clustering analysis we ap- 

plied TDA at dimension zero to the obtained point cloud in R n . 

This process is described in Section 3 . Section 4 describes the re- 

sults of our findings. We end our exposition with a short discus- 

sion ( Section 5 ). 

2. Graphs associated with gene segment organization 

2.1. Sequencing data used 

The MDS interrelationship analyzed below uses the genome se- 

quencing data in Chen et al. (2014) , and can be downloaded from 

the Supplemental Information in Chen et al. (2014) and also in 

Burns et al. (2016) . In this paper, the data used for analysis is the 

same data used in Burns et al. (2016) where it was suitably pro- 

cessed. No further processing for our study was performed. We re- 

fer to this data as data D and it is available at http://knot.math.usf. 

edu/data/scrambled _ patterns/processed _ annotation _ of _ oxy _ tri.gff. 

2.2. Graphs corresponding to MIC contings 

As MDS from different MAC contigs can overlap or interleave 

in a MIC contig we define the following types of relationships be- 

tween MAC contigs located on a single MIC contig. 

• (Type 1 : Overlapping) If an MDS of a MAC contig g 1 overlaps 

with an MDS of another, distinct MAC contig g 2 , then it is said 

that g 1 and g 2 overlap , or they are overlapping . We also say that 

g 1 has type 1 interaction with g 2 , or g 1 has interaction of type 

1 with g 2 . 

Two MAC contigs are considered to be overlapping if they have 

at least one pair of MDSs that overlap with at least 20bp in 

common. This is because two consecutive MDSs of the same 

MAC contig usually share sequences at their ends (pointers) 

that guide the rearrangement process ( Prescott, 1994 ), and two 

MDSs from distinct MAC contigs can share the same pointer se- 

quence. The length of these pointer sequences usually ranges 

between 2 to 20 nucleotides. 

The overlapping relation is symmetric in the sense that, if g 1 
overlaps with g 2 , then g 2 overlaps with g 1 . The situation is de- 

picted in Fig. 2 (Type 1). In the figure, MDSs of g 1 and g 2 are 

represented by blue and red rectangles, respectively. This case 

excludes the case when one MDS is completely included in an- 

other, even though being a subsequence is a particular type of 

“overlapping”. Such situation is included in Type 2 case (below). 
• (Type 2 : Containment) If an MDS of a MAC contig g 1 (the blue 

segments in Fig. 2 ) is contained in (is a subsegment of) an MDS 

of another distinct MAC contig g 2 (red in Fig. 2 ), then it is said 

that an MDS of g 1 is contained in an MDS of g 2 , and we say g 1 
has type 2 interaction with g 2 . 
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Fig. 2. Three types of MDS segment organization of different MAC contigs. MDSs 

of the same MAC contig are colored the same. The overlapping, subsegment and 

interleaving relationships of segments of distinct genes are indicated by circles in 

the figure, respectively. Uncircled segments indicate that there may be other gene 

segments that may or may not participate in gene organizations in question. The 

blue segments correspond to gene g 1 and the red segments correspond to gene 

g 2 (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.). 

For this interaction when an MDS M of g 2 contains an MDS M ′ 

of g 1 , we require that both ends of M have at least 5 bps that 

are not in common with M ′ . That is, we require a complete 

inclusion such that there are no pointer sequences in com- 

mon. In Fig. 2 (Type 2), MDSs of g 1 are depicted in blue, and 

those for g 2 in red. This relation is not symmetric. We distin- 

guish this situation from the one in Type 1 because the un- 

scrambling of an MDS that is next to at least one IES (Type 1) 

may use a different biological process involving Piwi-interacting 

RNA ( Fang et al., 2012 ) rather than the one that does not neigh- 

bor an IES ( g 1 in Type 2). 
• (Type 3 : Interleaving) If an IES of a MAC contig g 1 (blue in 

Fig. 2 ) contains an MDS of another, distinct MAC contig g 2 (red 

in Fig. 2 ), then it is said that an MDS of g 1 interleaves (or is 

interleaving) with g 2 , or g 1 has Type 3 interaction with g 2 . This 

relationship may not be symmetric. We allow that the ends of 

an interleaving MDS of g 1 and the MDSs of g 2 to intersect (over- 

lap) up to (including) 5 bases. This requirement distinguishes 

type 3 case from the ‘overlapping’ case where the requirement 

is at least 20 bases. 

We consider pairs ( g 1 , g 2 ) of MAC contigs g 1 and g 2 that belong 

to the same MIC contig. To each pair of MAC contigs ( g 1 , g 2 ) we 

associate a triple c(g 1 , g 2 ) = (b 1 , b 2 , b 3 ) where each entry b i ( i = 

1 , 2 , 3 ) indicates whether g 1 is in relationship of Type i with g 2 . 

The value of b i is either 0 (there is no relationship of Type i ) or 1 

( g 1 is related to g 2 with Type i ). 

To investigate the situations of these three types of interactions 

of MDSs, we associate an edge-labeled graph with directed edges 

to each MIC contig in data D as follows. 

Each graph G = G M = (V (G M ) , E(G M )) , which may be discon- 

nected and have multiple connected components, corresponds to 

a MIC contig M . Each vertex g ∈ V ( G M ) corresponds to a MAC con- 

tig g whose MDSs are segments of the MIC contig M . 

A labeled directed edge from g 1 to g 2 with label c ( g 1 , g 2 is in 

E ( G M ) if c(g 1 , g 2 ) � = (0 , 0 , 0) . 

In the figures below we use colors on the edges to indi- 

cate the labels of the edges: red = (1 , 1 , 1) , green = (1 , 1 , 0) , blue = 

(1 , 0 , 1) , orange = (0 , 1 , 1) , purple = (1 , 0 , 0) , cyan = (0 , 1 , 0) , and 

black = (0 , 0 , 1) . All graphs can be found at 

http://knot.math.usf.edu/data/Colored _ Graphs/index.html . 

Fig. 3 shows a locus of the MIC contig ctg7180 0 0 0 069854 con- 

taining MDSs of three MAC contigs 5027.0 (purple), 21621.0 (black), 

and 4739.0 (cyan). Figures 15 and 28 depict some other examples 

of graphs for MIC contigs in the data. 

The set of graphs corresponding to the data D that is ana- 

lyzed here is denoted G D such that G D = { G M | M is a MIC contig 

in D } . There are 629 distinct colored graph isomorphism classes 

and 288 isomorphism classes of colored connected components of 

the graphs in D, and they can be found at: http://knot.math.usf. 

edu/data/Colored _ Components/index.html . 

2.3. Graph features selection 

We describe a method of converting graph data set to a set of 

points in the Euclidean space R n , i.e., the point cloud. 

To each (directed and colored) graph G in the data we associate 

a vector P (G ) ∈ R n obtained by using relevant numerical graph in- 

variants. This vector is then considered as a point in R n ( Fig. 4 ). 

The vector P ( G ) is obtained by using local, vertex specific, and 

global, graph specific, features of G . In this first global analysis of 

the genome we cluster the data according to general graph struc- 

ture properties, therefore for each G ∈ G D we also consider a corre- 

sponding undirected graph U ( G ). The undirected, uncolored graph 

U ( G ) is obtained from G by replacing each pair of parallel edges 

with opposite directions in G with an undirected edge, and by ig- 

noring the direction and the colors of the edges as shown in Fig. 5 . 

Global Vector. A vector P gl ( G ) with three entries, called the 

global vector , is associated to each graph G ∈ G D . This vector P gl ( G ) 

consists of three features 〈 | V ( G )|, | E ( G )|, CN ( G ) 〉 where | V ( G )| and 

| E ( G )| are the numbers of vertices and edges in G , respectively, and 

CN ( G ) is the size of the largest clique in U ( G ). The isolated vertices 

are not counted in | V ( G )| as they represent MAC contigs that have 

no interrelation with any other MAC contig present in the MIC con- 

tig represented by the graph. In the analyzed data the maximum 

number of vertices is 43, the maximum number of edges is 74, and 

the largest clique size is 6 (appears twice in the data). 

Local Vector. Vectors that use local properties of the vertices 

are associated to each G ∈ G D . For each vertex v i we consider two 

numbers, its valency val ( v i ), and the clique number cq ( v i ). The va- 

lency val ( v i ) is a summation of its out-degree and its in-degree (in- 

cluding the parallel oppositely oriented edges). The clique number 

cq ( v i ) is the number of cliques (induced subgraphs of U ( G ) isomor- 

phic to the complete graph K k for some k ) that contain vertex v i . 

The vertices in G , v 1 , v 2 , . . . , v | V (G ) | are ordered such that their 
valences are non-increasing such that v | V ( G )| is minimal. Vertices 

that have the same valency are further ordered such that their 

clique numbers are non-increasing. This order remains fixed for 

the graph G . The valency vector , denoted P val ( G ), consists of a list of 

valencies of the preordered vertices P 
v al (G ) = 〈 valence (v i ) 〉 v i ∈ V (G ) 

of the graph G . The maximum valency of a vertex in the analyzed 

data is 29 achieved by contig 67157 with 25 outgoing edges and 4 

incoming edges. Out of those 29 edges, 23 of the outgoing edges 

have label (0,0,1), one edge has label (0,1,0) and the other is la- 

beled (0,1,1). The maximum outgoing valency is 25 achieved by the 

contig 67157 (see Figure 25 in the SI). The maximum incoming va- 

lency is 6 and it is achieved by contig 67223 (see Figure 26 in SI). 

The vertex order of the clique vector follows the same prede- 

termined order of vertices for G . We denote this vector by P cq (G ) = 

〈 cq (v i ) 〉 v i ∈ V (G ) . An example of construction of P cq ( G ) is depicted in 

Fig. 7 . 

The Graph Vector. The graph feature vector P ( G ) is defined by 

concatenating the vectors P gl ( G ), P val ( G ) and P cq ( G ). For a graph G , 

the number of entries of the vectors P val ( G ) and P cq ( G ) are the 

same and therefore P ( G ) is a vector in R 2 | V (G ) | +3 . We denote the 

set of vectors associated to G D with S D , or simply S . 

The Point Cloud. Observe that the number of entries of the 

vectors in S is not uniform, because this number depends on the 

number of vertices in the corresponding graph. In order to work 

in the common Euclidean space, we expand some of the vectors 

(by appending 0’s) to obtain a consistent number of entries in all 

vectors. This modification is obtained in the following way. 

Let d = max { | V (G ) | | G ∈ G D } . If the valence vector of G is 

P 
v al (G ) = 〈 v 1 , v 2 , . . . , v | V (G ) | 〉 , 
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Fig. 3. A segment of MIC contig ctg7180 0 0 0 069854 (top) and its corresponding graph (bottom). There is an overlap of MDSs of the black and purple contigs (as circled in 

the top figure) and the purple contig interleaves with the black (hence there is a blue edge indicating label (1,0,1) from the purple to the black vertex) but there is no MDS 

segment of the black purple contig that interleaves with the purple contig, so there is a purple edge indicating (1,0,0) in the opposite direction. IESs of both black and purple 

contigs contain MDSs of the cyan contig, so there are two black edges indicating labels (0,0,1) ending at the cyan vertex. 

Fig. 4. Every graph G is associated to a feature vector P ( G ), a point in the Euclidean 

space R n . 

then we construct an auxiliary valence vector for G with 

ˆ P 
v al (G ) = 〈 v 1 , v 2 , . . . , v | V (G ) | , 0 , . . . , 0 〉 

Fig. 5. An undirected graph to the right, associated to a directed one to the left. 

increasing the number of entries of P val ( G ) to d such that d −
| V (G ) | entries of zeros are added at the end. Similarly we construct 

auxiliary clique vector ˆ P cq (G ) by adding d − | V (G ) | zeros at the end 
of P cq ( G ). The graph vector ˆ P (G ) is redefined with the concatena- 

tion 〈 P gl (G ) , ˆ P 
v al (G ) , ˆ P cq (G ) 〉 . 
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Fig. 6. Vertices of a graph G are ordered by their valances. Here, P 
v al (G ) = 

〈 6 , 5 , 4 , 4 , 3 , 3 , 3 〉 . 

There are several reasons for adding 0s to the vector entries 

where necessary. The points of the point cloud must be in the 

same dimension in order to apply hierarchical clustering. The addi- 

tional 0s can be seen as a situation where there are other MIC con- 

tigs, that are further away from the MIC contig in question, that do 

not have any relative interactions. Furthermore the entries of va- 

lency and clique vectors are arranged in non-increasing orders so 

that the entries to the right are smaller numbers therefore adding 

0s to the right would not make significant differences representing 

graph features we analyze. Lastly, vector entries representing the 

local features (valencies and cliques) must compare with entries of 

the same type of local features, i.e., we cannot compare valencies 

with cliques. 

For the analyzed graph data G D , the maximum number of ver- 

tices in a graph is d = 43 . We abuse the notation and use P ( G ) in- 

stead of ˆ P (G ) to refer to the zero-augmented feature vector asso- 

ciated with a graph G . The final point cloud set S = { P (G ) | G ∈ G D } 
forms a subset of R 2 d+3 = R 89 . 

For comparison, we also consider the point cloud S gl from the 

global features vector P gl ( G ). The point cloud S gl is in R 3 . The data 

produced 273 vectors obtained with the above construction. 

It is important to notice that the entries of the vectors P , and 

P gl for a graph G are graph isomorphism invariants. 

Lemma 2.1. If graphs G and G ′ are graph isomorphic (but not neces- 

sarily edge label preserving) then P (G ) = P (G ′ ) . 

Proof. Let φ: G → G ′ be a graph isomorphism. Then G and G ′ 

have the same number of vertices, edges and the size of the max- 

imal cliques in their undirected versions U ( G ) and U ( G ′ ). Therefore 
P gl (G ) = P gl (G ′ ) and the first three entries of P ( G ) and P ( G ′ ) are the 
same. Also the number of non-zero entries in P ( G ) and P ( G ′ ) are 
the same. A graph isomorphism maps vertices of G to vertices of 

G ′ with the same number of outgoing and incoming edges. Simi- 

larly, the number of cliques incident to a vertex in U ( G ) is the same 

to the number of cliques of the corresponding vertex in U ( G ′ ). Let 
V 1 , . . . , V s be a partition of V ( G ) such that 

i. for all v, w ∈ V i , for all i = 1 , . . . , s v al(v ) = v al(w ) and 

cq (v ) = cq (w ) , and 

ii. for all v ∈ V i and w ∈ V j with i < j (i, j = 1 , . . . , s ) , either 

val ( v ) > val ( w ) or v al(v ) = v al(w ) and cq ( v ) > cq ( w ). 

Then { φ(V 1 ) , . . . , φ(V s ) } is a partition of the vertices of G ′ sat- 
isfying the properties [i] and [ii]. Any order of vertices of V ( G ) 

(resp. V ( G ′ )) that has non-increasing valencies and non-increasing 
clique numbers must list vertices of V i (resp. φ( V i )) before ver- 

tices of V j (resp. V ( G ′ )) whenever i < j . Therefore it must be that 

P 
v al (G ) = P 

v al (G ′ ) . �

The construction of the vectors induced 273 distinct vectors for 

the 629 isomorphism clases in data D. There are three reasons that 

produced this size reduction. First, many of the graphs obtainded 

from D are isomorphic if the edge color is ignored, and second, 

distinct directed graphs often correspond to isomorphic undirected 

graphs. Lastly, of course, there are graphs G and G ′ that are non 
isomorphic but P (G ) = P (G ′ ) . Consider attaching two edges to a 4- 

cycle to obtain a 6-vertex graph. They can be attached to neighbor- 

ing or to diagonally opposite vertices of the cycle, producing non- 

isomorphic graphs. However, in both cases the associated feature 

vectors will be the same. 

3. Clustering analysis with TDA 

For a data set S ⊂ R n , in our case corresponding to a set of di- 

rected graphs, a TDA analysis at dimension 0 gives rise to a hier- 

archy of connected components of (clustered) graphs as described 

below. 

To understand the distribution of the points of S in R n we use 

the notion of the neighborhood graph, as defined below, and con- 

struct a hierarchy of undirected graphs whose vertices are S . The 

neighborhood graph of S depends on a chosen distance function. 

In our case the distance d is the Euclidean distance between two 

points, that is, for x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ) the distance 

d ( x, y ) is d(x, y ) = 
√ 

∑ 

i (x i − y i ) 
2 . 

Definition 3.1. Let S be a set of points in R n and let ε ≥ 0 

be a non-negative number. The ε-neighborhood graph is an undi- 

rected graph �ε ( S ), where �ε (S) = (S, E (�ε ) and E (�ε ) = { [ u, v ] | 
d(u, v ) ≤ ε, u, v ∈ S, u � = v } . 

The clustering analysis is done by considering a sequence of 

neighborhood graphs �ε1 (S) , �ε2 (S) , . . . for S ⊂ R n obtained by a 

sequence of incrementally increasing values ε1 < ε2 < ���. 

Definition 3.2. A cluster of S at level ε is a connected component 

in the neighborhood graph �ε ( S ). 

Fig. 7. The number of cliques associated with the vertex v i , vertices ordered as in Fig. 6 . Left: vector entries for cliques k = 1 (vertices) and k = 2 (incident edges) for each 

vertex. Middle: vector entries for clique k = 3 (three cycles). Right: vector entries for clique k = 4 (complete graph on four vertices, K 4 ). There is only one clique K 4 , therefore 

only four vertices have entries 1 in the vector. This graph has no cliques of size higher than 4. The clique vector in this example is P cq (G ) = 〈 11 , 10 , 10 , 7 , 8 , 6 , 6 〉 which is the 

sum of the four described vectors. 
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We observe some facts about the graph vectors P ( G ) and P gl ( G ). 

Suppose G is a family of graphs and S = S(G) and S gl = S gl (G) are 

points in R n obtained as described above. The vectors of the sets 

S and S gl are part of the integer lattice of R n and R 3 respectively, 

therefore any distance between two distinct vectors is at least 1. 

The observations below indicate that small changes in the graphs 

can induce relatively large distances of the corresponding vectors 

in S . 

Lemma 3.3. Let G, G ′ ∈ G. Then the following hold. 

(a) If G ′ is obtained from G by addition of one vertex and one 

edge incident to that vertex. Then d ( P ( G ), P ( G ′ )) ≥ 3 and 

d(P gl (G ) , P gl (G ′ )) ≥
√ 
2 . 

(b) If G ′ is obtained from G by addition of one directed edge with- 

out changing the total number of vertices, nor the number of 

cliques, then d(P (G ) , P (G ′ )) ≥
√ 
3 . 

(c) If G ′ is obtained from G by addition of one edge that adds a 

clique to the graph U ( G ′ ) without changing the number of ver- 

tices, then d(P (G ) , P (G ′ )) ≥
√ 
5 . 

(d) If G ′ is obtained from G by changing the target of one edge 

from vertex v to vertex v ′ without changing the number of the 

cliques, either d(P (G ) , P (G ′ )) ≥
√ 
2 or d(P (G ) , P (G ′ )) = 0 . 

Proof. (a) The addition of a vertex in G ′ changes the number of 

non-zero entries in P ( G ′ ) in two places, once at P val ( G ′ ) and again 
at P cq ( G ′ ). Let w be the new vertex in G ′ added to V ( G ) and let [ v, 

w ] be the new edge in G ′ connecting v ∈ V ( G ) with the new ver- 

tex w . Then w can be taken to be the last vertex in V ( G ′ ) in the 
order of the vertices, while the order of v in V ( G ′ ) might be ei- 

ther the same as its order in V ( G ) or different. In both cases the 

entries in P ( G ′ ) corresponding to | V ( G ′ )|, | E ( G ′ )|, val ( v ), cq ( v ), val ( w ) 

are at least one more than the corresponding entries in P ( G ) and 

the entry of cq ( w ) is at least two more (a 1-clique vertex w and 

a 2-clique the new edge) than the corresponding entry in P ( G ) 

which is 0. So d(P (G ) , P (G ′ )) = 
√ 

∑ 

i (x i − y i ) 
2 ≥

√ 

5 + 2 2 ≥ 3 , and 

d(P gl (G ) , P gl (G ′ )) ≥
√ 
2 . 

The proofs of (b) and (c) follow a similar argument. Note that 

in case of (b), if the new directed edge is incident to vertices v 

and w , then because the number of cliques in U ( G ′ ) is not changed 
from the number of cliques in U ( G ), there is an edge in G incident 

to v and w in opposite direction. So P ( G ′ ) has at least one more in 

the entries | E ( G )|, val ( v ) and val ( w ). Observe that this may imply 

a change in the order of the vertices, in which case there may be 

a difference in the entries corresponding to the cq ( v ) and cq ( w ) 

which would increase the distance between the vectors. Therefore 

d(P (G ) , P (G ′ )) ≥
√ 
3 . 

For the case of (c), the entries of | E ( G ′ )|, val ( v ), val ( w ), cq ( v ), 

cq ( w ) in vector P ( G ′ ) have a change of at least one and therefore 
the distance d(P (G ) , P (G ′ )) ≥

√ 
5 and d(P gl (G ) , P gl (G ′ )) ≥

√ 
1 = 1 . 

The case (d) follows the argument of (b) if the valencies change or, 

if valencies don’t change, the graphs are represented by the same 

vectors and the distance is 0. �

3.1. Analyzing the data using neighborhood graphs 

A filtration of a graph � is a sequence of nested graphs �1 ⊆
�2 ⊆ · · · ⊆ �k = � where each �i is a subgraph of �i +1 . The defi- 

nition of the neighborhood graph for a point cloud S naturally in- 

duces a filtration for a connected graph with vertices S . Namely, 

given a point cloud S ∈ R n and a finite sequence of non-negative 

numbers 0 = ε1 < ε2 < · · · < εk , we obtain a filtration �ε1 (S) ⊆
�ε2 (S) ⊆ · · · ⊆ �εk (S) . We assume that ε1 = 0 , which implies that 

E(�ε1 ) = ∅ . This filtration also helps to extract the connected com- 

ponents (clusters) of S at various spatial resolutions. For a given 

ε, each connected component of �ε( S ) corresponds to a cluster of 

graphs whose corresponding points in R n are connected by edges 

that are of lengths less than ε. This means that each graph as- 

sociated to a vector in a cluster is at most ε apart from some 

other graphs within the same cluster, i.e., the corresponding graphs 

within the cluster have similar graph properties represented by 

in the vectors. To have a better information about the topological 

properties encoded in a filtration one usually considers the persis- 

tence diagram of the filtration. For our purpose, the persistence di- 

agram describes a way the connected components of the neighbor- 

hood graph merge together as we increase the value of ε. The per- 

sistence diagram is also equivalently described by the persistence 

barcode ( Ghrist, 2008b ). The barcode construction is described as 

follows. 

Let S = S D ⊂ R n , where n = 2 d + 3 (in our case n = 89 ). In 

Figs. 8 and 12, the vertical axis enumerates points of S , and ε- 

values are listed on the horizontal axis. At ε1 = 0 , E(�ε1 ) = ∅ , and 
each point of S ⊂ R n forms a single connected component. There 

are | S | connected components, and hence the number of bars in 

the barcode at value 0 is equal to the number of data points in 

S corresponding to the “birth” of all connected components. With 

appropriate increments of ε new edges are added to the neighbor- 

hood graph and the connected components start joining each other 

forming larger clusters. The merging event of connected compo- 

nents is represented by a termination of all but one of the corre- 

sponding bars of the barcode. The choice of the bar that does not 

terminate in a merge of components is arbitrary, and we use the 

established convention (see Ghrist (2008b) ) where bars are ver- 

tically ordered by their length from the shortest at the bottom of 

the diagram to the longest on the top. 

The number of connected components of the graph �ε is the 

number of horizontal bars intersecting the vertical line at distance 

equal to ε. For instance, from Fig. 8 we deduce that the number 

of connected components in �ε( S ) is 2 for ε = 15 indicating two 

clusters at that distance. Typically, the filtration ends with a neigh- 

borhood graph that has a single connected component. That is, the 

sequence of ε values increase from 0 to the value that gives rise 

to a single component graph. In the case of data D for the set of 

global vectors and the point clouds S and S gl , the ε values range 

from 0 to 22 and 0 to 15 respectively. 

3.2. Tree diagrams representing merging components 

The merging events of connected components described in the 

persistence diagram can be encoded using a tree diagram called 

a dendrogram ( Murtagh, 1983 ). The bottom points of the tree dia- 

gram correspond to the points of S (resp. S gl ), that also correspond 

to the connected components of G 0 ( S ). The vertical direction of the 

tree diagram represents values of ε. 

At each level ε the connected components (clusters) are enu- 

merated and each vertex in the tree is labeled by ( i , ε) where i is 

an index that corresponds to the i th cluster of the graph at level ε. 

At each level ε, the number of nodes corresponds to the number of 

clusters of �ε( S ). For a node (vertex) v at level εk , the children of 

v correspond to the clusters at level εk −1 (i.e., the connected com- 

ponents pf graph �εk −1 (S) ) that have joined to a single connected 

component represented by v in �εk . 

For a large enough value of ε, �ε( S ) is connected, and it corre- 

sponds to the single node (root) of the tree. The dendrograms cor- 

responding to the persistent diagrams for S and S gl are shown in 

Figs. 9 and 13 in the supplementary documentation, respectively. 

3.3. Implementation 

The point cloud generated from the data D was com- 

puted using a custom Python script. The persistence diagrams 

were generated using Javaplex ( Tausz et al., 2014 ) and the 

dendrogram tree diagrams were generated using Mathematica 



M. Hajij, N. Jonoska and D. Kukushkin et al. / Journal of Theoretical Biology 494 (2020) 110215 7 

Fig. 8. The barcode diagram describing the birth and death of the connected components of the neighborhood graph of the dataset S . The horizontal axis represents 

increasing values of ε. Each horizontal bar represents a point in the point cloud. The horizontal line stops at the ε value when the corresponding point joins a connected 

component of �ε . The number of horizontal bars intersecting a vertical line at a given ε value indicate the number of components in �ε . The short bars at the bottom 

indicate that the corresponding points are merged into the same cluster at a small ( < 2) value of ε. The vertical line at ε = 15 intersects with two horizontal bars, 

indicating that there are two clusters at ε = 15 . 

Fig. 9. The dendrogram clustering tree of dataset S . 

( Wolfram Research, Inc., 2017 ). The sequence data, the graph 

data and the scripts are available at http://knot.math.usf.edu/data/ 

GeneSegmentInteractions/dna _ graph _ study/ . 

4. Results 

The analyzed data D consists of processed ( Burns et al., 2016 ) 

micronuclear contigs obtained after sequencing of O. trifallax 

( Chen et al., 2014 ) as used in Burns et al. (2016) . The directed 

graphs that correspond to the contigs in D can be found at http: 

//knot.math.usf.edu/data/Colored _ Graphs/index.html . 

As mentioned, the data D produced 273 distinct vectors corre- 

sponding to G = G D that raise to the same number of isomorphism 

classes of graphs ranging from 2 to 43 vertices. Each MIC contig 

corresponds to a vector in S = S D while the MAC contigs whose 

MDS segments do not have any of the types 1, 2 or 3 interac- 

tions with MDSs of other contigs represent isolated vertices in the 

graphs and are not taken in consideration for the construction of 

S D . 

We constructed filtration with ε increments of.5 in order to de- 

tect small neighborhood changes in the neighborhood graph, these 

sometimes are reflected by reorienting a directed edge. 

4.1. Output of hierarchal clustering 

The bar code diagram and the dendrogram for the filtration and 

clustering of the neighborhood graph of S are depicted in Fig. 8 and 

Fig. 9 . As expected by Lemma 3.3 , the neighborhood graph consists 

of isolated vertices for ε ≤ 1 and the first edges appear at ε = 1 . 5 

when there are 14 two point and 4 three point clusters. The two 

or three graphs joined at this distance differ from each other by 

small changes such as a single directed edge addition that does 

not change the cliques. 

At ε = 2 , as noted in Lemma 3.3 , most points remain distant 

from each other and only those representing graphs with small 

changes in their structure are joined by en edge. In addition two, 

three and in one instance four of the previously formed clusters 

join in (also with some additional points) to form new clusters, 

and there are 25 new small two or three point clusters. Most of 

the points in S remain as isolated vertices. At ε = 2 . 5 a dramatic 

change occurs and one large cluster of 155 elements is formed 

with a second cluster of 5 points, and several small (two or three 

point) clusters. All other points stay as isolated vertices. At this 

point the feature of the point-cloud becomes clear, it consists of 

a single large cluster, singletons, and some small two or three el- 
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Fig. 10. Graphs for contigs ctg7180 0 0 0 088928 and ctg7180 0 0 0 088096 (top) and graphs for contigs ctg7180 0 0 0 067742 and ctg7180 0 0 0 067187 (down). 

ement components. From Lemma 3.3 we can conclude that each 

graph in the 155 member cluster has a neighbor in the cluster that 

differs only by a vertex or an edge. 

At ε = 9 . 5 , there is one large cluster of 269 points while the 

second largest cluster is of 4 elements, and there are 10 isolated 

points. 

In the last 5 digits of contig numbers (see notation of the con- 

tigs in Chen et al. (2014) ), the second largest cluster consists of 

contigs 

88928 , 88096 , 67742 , 67187 . 

Fig. 10 shows the graphs that are contained in this cluster. 

All four of these graphs contain a ‘star’ vertex that is of high 

valency having multiple black (label (0,0,1)) outgoing edges. Such a 

‘star’ vertex represents a MAC contig whose MDSs interleave with 

MDSs of many other MDS contigs. We observed that for most of 

the ‘star’ vertices, one IES contains all (or most of) MDSs of other 

contigs. This feature was further investigated in Braun et al. (2018) , 

where the interleaving depth was considered. 

The isolated points belong to 10 contigs 

67761 , 87162 , 87484 , 67363 , 67280 , 67243 , 

67157 , 67223 , 67417 , 67411 . 

These are depicted in the corresponding figures in Supplemen- 

tary Material Section. We note that some of these graphs have 

multiple ‘star’ vertices, or the component that contains a ‘star’ ver- 

tex also has additional cycles and cliques. In particular, the two 

graphs with 6-cliques (contigs 67243 and 67223) and the one with 

a 5-clique (contig 67411) are part of these isolated points. Further- 

more, the graph with the longest path of 5 vertices (contig 87484) 

also featured in Braun et al. (2018) as one of the most in-depth 

embedding of genes within a single IES is also on this list. In all 

these cases we observe that the majority of the edges are black 

and purple, meaning that the prevailing inter-gene MDS organiza- 

tion is interleaving. 

As ε increases, the four-element cluster becomes part of the 

large cluster at ε = 10 . 5 and the isolated singleton points join the 

large cluster one or two at the time until ε = 14 . 5 when the two, 

most distant contigs 67517 and 67223 remain isolated until ε = 22 

and ε = 23 respectively. 

The pattern of clusters for S gl is similar to that of S . A large 

single cluster is formed at value ε = 1 . 5 , with 2 clusters of 5 ele- 

ments, 3 clusters of 2 elements, and 23 singleton clusters. 

At ε = 4 . 5 , the clusters consist of a large single cluster, the sec- 

ond largest of 9 elements, two clusters of two elements, and 5 

singleton clusters. The size two clusters are {67417, 67243} and 

{67187, 67228}. The elements of the former cluster appear as iso- 

lated points in the neighborhood ε = 9 . 5 of S , while 67187 of the 

latter cluster, appears in the 4-elements cluster of S , and 67228 is 

in the largest cluster of S . 

The isolated points for ε = 4 . 5 are 

67223, 67363, 67157, 67280, 87484. We note that all these con- 
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Fig. 11. A 2d multidimensional scaling projection for S as a visual depiction of the point cloud S . The points of S are colored according to clustering at ε = 9 . 5 . At this level 

we have 12 clusters, the largest cluster is colored red in the figure, the second largest cluster consists of 4 elements and is colored green and the singletons are all colored 

blue. To generate the 2d multidimensional scaling projection, we used the software implementation available in the Scikit-Learn Python Library ( Pedregosa et al., 2011 ). Here 

and in figure 14 in SI there are no particular interpretations of coordinate axes (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.). 

tigs also appear as isolated points of the neighborhood graph of S 

for ε = 9 . 5 . 

In the case of S gl , as in the case of S , the two most distant 

graphs correspond to the contigs 67517 and 67223 that join the 

large cluster at ε = 14 . 5 and ε = 18 . 5 respectfully. 

Figs. 11 and 14 represent the 2d multidimensional scaling 

(MDS) projections ( Kruskal and Wish, 1978 ) of the point clouds S 

and S gl , respectively. Multidimensional scaling projections are com- 

monly used to visualize a higher dimensional point cloud as points 

in the plane. The already developed technique (available in Math- 

Lab with toolbox cmdscale ) projects the points of the point cloud 

in a plane such that mutual distances between the points are more 

or less preserved. Since our point cloud S is in R 89 , we used 2d 

multidimensional scaling projections to produce Figs. 11 and 14. 

5. Discussion 

In this paper we initiated a mathematical method of represent- 

ing and analyzing inter-gene segment organization in a scrambled 

genome of Oxytricha trifallax . Although the whole genome was se- 

quenced, such genome wide study for inter-gene segment arrange- 

ment has not been done before. The segment arrangements are 

represented by graphs representing their mutual relationship, such 

as overlapping and interleaving sequences. We analyzed the graph 

data by converting these graphs to a point cloud in a higher di- 

mensional Euclidean space. In order to identify patterns in the 

graph structures, we applied hierarchical clustering methods bor- 

rowed from topological data analysis. 

The big majority of segment organization within a single MIC 

contig are represented with small graphs up to five vertices (corre- 

sponding to the large cluster at ε = 2 . 5 ) and one can ‘move’ from 

one graph to another by small vertex/edge changes. These small 

graphs constitute a major cluster. There are clusters consisting of 

singletons (represented by isolated points farther away from ma- 

jor clusters in Figs. 11 and 14) that correspond to MAC contigs 

with complex interaction patterns, and their patterns are often 

unique and rare. Most of inter-gene organizations involve only two 

or three MAC contigs, and interactions appear between two gene 

segments. 

The most prevalent multi-gene segment organization in the 

Oxytricha ’s genome are interleaving and often this appears as one 

gene interleaving with multiple other MAC contigs (as observed as 

the ‘star’ like vertices). For most of the ‘star’ vertices, one IES con- 

tains all (or most of) MDSs of other contigs. In the cluster con- 

sisting of four graphs, a single IES of the ‘star’ MAC contig inter- 

leaves with multiple MAC contigs. All star contigs are scrambled, 

which follows the analysis in Braun et al. (2018) where it was ob- 

served that contigs whose IESs interleave with other MAC contigs 

are mostly scrambled. 

The graph representation of the inter-gene segment relation- 

ship introduced here is novel. We hope that a similar approach 

can be used in studies of scrambled genomes of other species, 

in particular those somewhat closely related to O. trifallax , such 

as Tetmemena . Comparisons among orthologous genes in other 

species with scrambled genomes may reveal whether patterns in 

these graph structures are conserved or abolished over evolution- 

ary time. Furthermore, if genes with interleaved gene segments 

are co-expressed may indicate whether the rearrangement of these 

MAC segments are in parallel or sequential. We suggest that mod- 

els that study gene rearrangement should also focus on opera- 

tions that can be applied to these frequent interleaving gene seg- 

ments, which in some cases resemble the odd-even patterns de- 

tected within scrambled genes ( Burns et al., 2016 ). 

The representation of the graph data into a point cloud in this 

paper is by a vector whose entries are common graph invariant 

properties, such as the number of vertices, edges and cliques. We 

used two vectors, one that had more local vertex properties and 

the other in R 3 which included only the number of vertices, edges 

and the maximal clique. It is interesting that in both cases the iso- 

lated points are the same, and much distant from the rest of the 

points. The rearrangement process of the MIC contigs correspond- 

ing to these isolated points may indicate specific biological pro- 

cess that include multiple genes simultaneously. Studies that iso- 

late intermediate DNA produced during the rearrangement may re- 

veal the process in which they recombine. The graphs with large 

cliques (5 and 6) imply that segments of up to 5 or 6 genes mutu- 

ally interleave and we suggest further experimentation to analyze 

rearrangement processes for these situations. In our study we did 

not consider the length of overlapping segments, nor the number 

of interleaving gene segments. Further methods can include edge 

weights on the graphs indicating size of overlaps and number of 

interleaving segments to give more detailed analysis. 
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Although this paper is focused on analysis of a specific data of 

interleaving/overlapping gene segments, the method that we pro- 

pose for converting a graph data to a point cloud data is novel 

and general, and can be applied to analyze similarities in vari- 

ous graph data. We represented of graphs via a feature vectors 

in R n . Similar attempts in this direction have been made for de- 

tecting “graph similarities”. In Gibert et al. (2012) ; Riesen and 

Bunke (2010) ; Hajij et al. (2018) the focus is on undirected graphs 

and the local properties that we used here are not considered. 

There are other avenues for developing a similarity measure be- 

tween graphs ( Bunke and Riesen, 2011; Papadimitriou et al., 2010 ), 

or graph kernels ( Gärtner et al., 2003; Baur and Benkert, 2005 ), 

that we have not explored here. These methods often rely on the 

structural properties of the graph sometimes identified through 

topological methods. Such an approach may reveal other proper- 

ties in the genome. For example, such methods have been suc- 

cessfully applied in protein function prediction ( Borgwardt et al., 

2005 ). Comparison of such graph analysis methods is subject of 

another study. 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at doi: 10.1016/j.jtbi.2020.110215 . 
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