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ABSTRACT. The AKLT spin chain is the prototypical example of a frustration-free quantum spin
system with a spectral gap above its ground state. Affleck, Kennedy, Lieb, and Tasaki also
conjectured that the two-dimensional version of their model on the hexagonal lattice exhibits a
spectral gap. In this paper, we introduce a family of variants of the two-dimensional AKLT model
depending on a positive integer n, which is defined by decorating the edges of the hexagonal lattice
with one-dimensional AKLT spin chains of length n. We prove that these decorated models are
gapped for all n > 3.

1. Introduction

A central question concerning a quantum spin system is whether it is gapped or gapless. (We
say a system is gapped if its Hamiltonian exhibits a uniform spectral gap above the ground state.
Otherwise, it is gapless.) The existence of a spectral gap is known to have wide-ranging consequences
for the system’s low energy physics. For instance, the ground states of gapped Hamiltonians display
exponential clustering [21}, 5] and, in one dimension, they are known to satisfy various notions
of bounded complexity [3 [4, 120} [29]. Of particular interest are the spin liquid states conjectured
to describe a number of interesting two- and three-dimensional systems [26], [45], [13]. Moreover,
with the advent of Hastings’ spectral flow [19] (also called quasi-adiabatic evolution), it has become
possible to explore gapped ground state phases in considerable detail. Different gapped phases are
separated from each other by quantum phase transitions, which are accompanied by a closing of
the spectral gap [6l, 12]. Accordingly, numerous recent works are concerned with the stability of
the spectral gap under finite-range perturbations assuming local topological order [12], 31, [32], [36].
From these considerations, it would be desirable to have a multitude of gapped Hamiltonians that
one can use as starting points for further analysis. However, proving the existence of a spectral
gap is a non-trivial mathematical task and there exist only limited tools [15], [16] 22, 27, B0] and
only a few special models in which a spectral gap has been rigorously established [2, [5], [7], 9}, [10),
11], 27, 80], particularly in dimensions > 2. We also mention in passing that deciding whether a
general Hamilltonian is gapped or not is known to be undecidable in general, even for reasonable
(i.e., translation-invariant and local) Hamiltonians [8, [14]. See also [33].

The foundational work in the field was done by Affleck, Kennedy, Lieb and Tasaki (AKLT in
the following) in 1988 [Il, 2]. Motivated by a famous conjecture of Haldane [17, [I8] that predicts a
spectral gap for the one-dimensional integer-spin Heisenberg antiferromagnet, AKLT provided two
main contributions that proved seminal in the years to come:
1
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(1) They defined what is now called the one-dimensional AKLT chain: a spin-1, isotropic (i.e.,
SU(2)-invariant) antiferromagnet on a one-dimensional chain. They found that it has a
unique ground state in the thermodynamic limit and rigorously established a spectral gap.

(2) They defined analogous spin-z/2 AKLT models on any z-regular bipartite graph. They
focused on the hexagonal lattice case (so spin-3/2) and derived exponential decay of cor-
relations in the infinite-volume ground state. These facts led AKLT to conjecture that the
hexagonal model is also gapped.

We make two further remarks about the AKLT model: (a) The ground state of the hexagonal
AKLT model was proved to have a unique [24] thermodynamic limit when the limit is taken with
boundary conditions in a certain natural class. It is also known that the ground state in finite-
volume with periodic boundary conditions (a finite honeycomb lattice wrapped on a torus) is unique
[25]. Kennedy, Lieb, and Tasaki also proved exponential decay of spin-spin correlations, which is
significant because it shows that the AKLT antiferromagnet does not exhibit Néel order, in contrast
to its spin-3/2 Heisenberg analog, and that there very likely is a spectral gap above the ground
state. (b) Historically, the AKLT chain provided the first example of a Hamiltonian whose ground
states are matrix product states. This notion has been vastly generalized, starting with [15], to what
are now called tensor network states, and has developed into a central tenet of modern many-body
physics [37), [42].

The conjecture of AKLT that the hexagonal AKLT model (or any other AKLT model in di-
mension > 2) is gapped remains open to this day. This is insofar remarkable as all of the AKLT
models share a key feature that makes the spectral gap problem in principle more amenable: They
are frustration-free, meaning that the global ground state is also locally energy-minimizing.

In the present work, we introduce a novel family of AKLT models on ‘decorated’ hexagonal
lattices depending on an integer parameter n, and prove that these models are gapped for sufficiently
large values of n. We call these models the edge-decorated AKLT models (or decorated AKLT models
for short). The positive integer n will be called the decoration number, and we explain its role in
the next paragraph.

The decorated AKLT model is defined by replacing each edge of the hexagonal lattice with a
copy of the one-dimensional AKLT chain of length n. Notice that this means that there are two
types of vertices in the system: vertices of the hexagonal lattice which have degree 3 and spin 3/2,
and “internal vertices” of the decorated edges which have degree 2 and spin 1; see Figure The
heuristic behind this construction is that the decorated AKLT model incorporates features of the
one-dimensional AKLT chain, which is known to be gapped from the work of AKLT. While the
decorated model is a bit contrived, it is not unreasonable to expect its ground state(s) to belong
to the same gapped phase as those of the original AKLT model on the hexagonal lattice. It seems
likely that the same features that generated interest in two-dimensional AKLT models [38], [40], [43)]
are also present for the decorated AKLT model. In particular, we mention [44], where it was shown
that the valence-bond ground states of similarly decorated AKLT models can serve as a universal
resource for quantum computation. Going beyond AKLT-type models, an SU(3) spin liquid with
Z3 topological order has recently been proposed in [28]. It too is expected to be gapped.

The strategy that we use to derive the spectral gap of the decorated model follows two main
steps. We begin by taking the square of the Hamiltonian, as usual. Step 1 is to employ an inequality
due to Fannes, Nachtergaele, and Werner [15] which relates the anticommutator between interaction
terms to the angle between ground state projections via a duality argument. This inequality reduces
the claim to a sufficiently strong bound on the angle between two ground state projections that
overlap along one decorated edge (so mainly along a one-dimensional AKLT chain of length n).
Step 2 is to establish the desired angle bound by a computation with quasi-one-dimensional matrix
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FiGURE 1. The decorated hexagonal lattice for n = 2.

product states. With an eye toward possible future applications, we generalize the last computation
(of the angle between ground state projections overlapping on a chain) to other models with matrix
product ground states.

2. AKLT models on decorated two-dimensional lattices

For concreteness, we will first discuss in detail an AKLT model on a honeycomb lattice with
additional spins on the edges. It will then be straightforward to consider generalizations to which
the same arguments apply.

Let ' be the hexagonal lattice and n > 1. The standard AKLT model on I" [24] has a spin-3/2
degree of freedom at each vertex. For the ‘decorated’ models we introduce here, we add n spin 1’s
along each edge of T' and call the resulting ‘lattice’ (™). On this graph with both degree 2 and
degree 3 vertices (see Figure [I) we define the AKLT Hamiltonian as usual with nearest neighbor
interactions given by the orthogonal projection P(*(¢)/2) onto the space of total spin z(e)/2, where
for any edge e, z(e) is the sum of the degrees of its two vertices. For the AKLT model on ') all the
interaction terms are P®/2). For n > 2, the model also has interactions P(?) between neighboring
spin 1’s. This class of models is a special case of the general class of AKLT-type models studied
in [25]. There, it is shown that they are frustration-free and also that the ground state is non-
degenerate if the model is considered with periodic boundary conditions. The frustration-freeness
is easily proved in the same way as for the original AKLT models by using the Valence Bond Solid
construction of a non-zero vector in the kernel of the manifestly non-negative Hamiltonian.

Let A be a suitable finite subset of I' considered with periodic boundary conditions and denote
by A its decoration as above. Let £ () denote the set of edges of the decorated graph and consider
the Hamiltonian

(2.1) Hyo = S PO,

eeg/\(n)

We claim that for n large enough there is v, > 0 such that for all nice A the gap of Hy() is lower
bounded by 7,. In this context, ‘nice’ A, means that one can consider the decorated graph A(™
as a union of overlapping subgraphs isomorphic to the H-shaped graph shown in Figure For
concreteness, we will explicitly treat the case of periodic boundary conditions (a finite rectangle cut
out of the hexagonal lattice and wrapped around a torus). Other shapes can be considered without
any significant change in the arguments.

To prove the claim we consider a comparable model defined as follows. For each vertex v in A
and the three edges meeting in v, we consider the subsystem consisting of the spin 3/2 at v and the
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3n spin 1’s residing on the three edges. Let Y, denote the corresponding set of 3n + 1 vertices in
A™ and define h, to be the AKLT Hamiltonian on Y,. Then

(2.2) Hyey <3 hy < 2Hp.
vEA

To simplify things further, define P, to be the orthogonal projection onto ran h,. It is a straightfor-
ward calculation to check that ker P, = ker h,, is 8-dimensional for n = 1, and hence for all larger
values of n as well. We will estimate the gap of

(2.3) Hyoy = > Py,
vEA

which is also comparable to Hy):
1 - .
(2.4) §7yHA<n) < Hpm < th ||.HA(n)7

with vy > 0. This inequality implies that f{A(n) is also frustration-free since ker(f{A(n)) =ker(Hpm) #
{0}. Therefore, it suffices to study the gap of Hym).

We will obtain a lower bound for the gap of H ), by finding a constant v > 0 satisfying

(2.5) (Hyw)> =Hyoo + Y (PyPu+ PyPy) > yHyo).

{v,w}CAv#w
If v and w are not nearest neighbors, P, and P, commute and P, P, + P, P, > 0. Therefore, in the
second term we can drop all contributions from such pairs. For the nearest neighbor pairs (v, w),
instead of the combinatorial style argument in [27], which requires good estimates of a specific
finite-volume gap, we apply the following inequality for a pair orthogonal projections E and F (for
a proof see [15, Lemma 6.3]):

(2.6) EF+FE>—|EF—-EANF|(E+4+F).
Here, E'A F is the orthogonal projection onto ran £ Nran F. We need this for £ = P,, F = P,

with v, w nearest neighbors in A.

The norm in (2.6) remains unchanged if we replace £ and F by 1 — F and 1 — F, which,
in our application, are the corresponding ground state projections. All nearest neighbor pairs are
equivalent in this consideration and we denote 1— P, = P, 1— P, = P, and P, AP = P, .. Define

(2.7) en = ||P-P<— P].
Since every v € A has 3 nearest neighbors, we have shown
(28) (HA(”))Z Z (1 — 3€n)HA(n) .
Therefore,

1
(2.9) gap(Hpm)) > §'yy(1 —3en).

It remains to show that e, < 1/3.

PROPOSITION 2.1. Let

4
A = n 8(143-2n-1)
3 (1- 55

Then, for all n > 3, the quantity €, defined in satisfies

8(1 +3—2n—1 2
(2.10) en <A, + A2 (1 + M) <1/3.
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FI1GURE 2. The graph G for the decorated AKLT model.

The proof of this proposition is contained in the next two sections. As a consequence, we can
state the following theorem.

THEOREM 2.2. The spectral gap above the ground state of the AKLT model on the edge-decorated
honeycomb lattice with n > 3 has a strictly positive lower bound uniformly for all finite volumes with
periodic boundary conditions.

3. Ground state projections for subgraphs overlapping on a chain

To prove Proposition [2.1] we will formulate the quantity &, in terms of the ground state pro-
jections of quasi-one-dimensional Matrix Product States (MPS). A rather straightforward general-
ization of the arguments in [I5] to MPS systems with matrices that may vary from site to site and
are not necessarily square, will then yield the desired estimate. With an eye toward possible further
generalizations and applications, we will estimate €,, in a slightly more general setting, which we
now introduce. The role of the finite subgraph >~ of the decorated honeycomb lattice will be played
a finite graph G with a certain structure and we will make a number of assumptions on the ground
states of a frustration free Hamiltonian on G. In Section [ we will show that these assumptions are
satisfied for the AKLT model on the decorated honeycomb lattice.

3.1. Assumptions on the tensor network states for the local patch G. Consider a
finite graph G = (V, &) of the form G — C,, — Gg, meaning there are finite graphs G, and G,
Cp, = [v1,v,] is a chain of n vertices, and there exist v, € Gp,vgr € Gg such that V is the disjoint
union of the vertices of G, ), and G and £ consists of the edges of G, ), and Gy together with
(vr,v1) and (v, vR), see Figure We consider a frustration-free Hamiltonian on G of the following
form:

(3.1) Hg = HGL + ch + HGR + thﬂ,l + hvva,

where Hg, , Ha,,, and He, satisfy the following conditions. First, we assume H¢, has ground states
given by a translation invariant MPS with a primitive transfer matrix E. Let D denote the bond
dimension of this MPS and pick an orthonormal basis {|i) | 1 < i < d} for the physical degree of
freedom at each of the n sites of C),. In this case the transfer matrix E, in isometric form, is given
in terms of d D x D matrices V;:

d
(3.2) E(B) =Y _V;*BV;, B € Mp, with E(1) = 1.

i=1
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The primitivity assumption implies that there exists a non-singular density matrix p € Mp satisfying
E‘(p) = p, and constants C' > 0 and X € [0,1), such that

(3.3) a(n) = [E" — |I)pl]| < O™

For the spin-1 AKLT chain one has this estimate with C' = 1 and A = 1/3, and both constants are
sharp in that case.

We now turn to the assumptions we make on Hg, and Hg,. For § € {L, R}, let Hy be the
Hilbert space associated with the system on Gj. We assume that the ground states of Hg, are
given by a tensor T* as follows. We will consider 7% as a set of dim# D x Dy, matrices labeled
by an orthonormal basis {|r),} of Hy and T% as a set of dimHp Dr x D matrices labeled by an
orthonormal basis {|r)} of Hg. The physical Hilbert space for the system on G is Hg = Ha, ®
He, ® Hay, and the auxiliary space, which parametrizes the ground states, is Kg = CPr @ CPr,
which we identify with £(CP®, CP*) and equip with the standard inner product (-,-)x.. The map
T'c: Kg — He is then given by
(3.4) Te(B)= Y T[BTHV;, Vi, TF ) @lir,... in) @ 1), B € Ka.

L1 yeeyin,T
We assume that H¢ is frustration free, which means that all terms in are non-negative and

ker Hg # {0} and, in addition, we assume ker Hg = ranT'¢.

We also introduce the transfer matrices associated with G and Ggr, Er : Mp — Mp, and
Er: Mp, — Mp, as follows:

(3.5) EL(B) =Y (T})*BLF, Egr(B)=) (TF)*BLE,
l r

and define

(3.6) Qr=Er(1), Qr=Ek(p)

where EL(B) = 3" TEB(TF)*. We assume that @, and Qg are non-singular.

For A € {Gr,Cy,Gr,Gr — C,,,C,, — GR}, considered as subsets of G, let Hp and K, denote
the corresponding physical and auxiliary Hilbert spaces, respectively, and define the corresponding
maps I'y : Ky — Ha in the obvious way. These maps are of the same form as I'¢ in (3.4); if one
or both parts described by G, or Gr are absent, the absent degrees of freedom associated with Gy
correspond to taking Hg, = C, Hg, = 0, and TH=1.

We assume that the maps I'y are injective, meaning
(3.7 dimranT'y = dim Ky,

and ranI'y = ker H,.

3.2. General estimate of ¢,,. Let G5 denote ker Hy, and P, the orthogonal projection onto
Ga. Our next goal is to estimate &, = ||Pg,—c, Po,—cr — Pcll- It is easy to see that €, is explicitly
given by the following expression:

(¢, 9)]
[@Ill1]

(3.8) €n=SUD{ p€Ga,—c, ®Hagr, ¥ € Ha, ®Gc,-Gr, &,V L Ga, ¢,¢750}-

We will derive an estimate of the type of inner products that appear in (3.8)), but first recall
some basic properties of MPS.
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Since p is non-singular and positive, it defines an inner product on Mp by
(3.9) (A,B), =TrpA*B forall A,B € Mp,

and let || - ||, denote the corresponding norm. We will also let pmin denote the smallest eigenvalue of
p, which is positive by assumption. It follows that the norm ||- ||, is equivalent to the Hilbert-Schmidt
norm on Mp, which is given by || - ||2 = vVTrA*A. Explicitly:

1
(3.10) [All2 < F”A”pv AeMp.

min

The map I'c, : Mp — Hc,, is explicitly given by

(3.11) Tc,(B)= > Tx[BV, ---Villi1,....in), B € Mp.
i15ensin
LEMMA 3.1 ([15, Lemma 5.2]). For any B,C € Mp,
(3.12) (Cc, (B).Tc, (C) = (B,C),| < a(n)Tep™ | BI|,[IC]], -

ProOF. Using (3.11]) we can express the inner product as follows:

(P, (B),Te, (C) = > T[BV, - V,]TX[CV;, - V]
i15eensiin
(3.13) = Z Te[V; - Vi B[OV, - Vi, .
i15eensiin
By expanding the traces using any orthonormal basis {|1),...,|D)} for CP, we obtain

D
> Y (Vi Vi B a)BICV,, - Vi, |B)

a,B=11%1,...,ipn

<FC,L (3)7 Fcn (C)>

D
(3.14) = > (alE"(B*|aXBIC)|8) -
a,f=1
Now observe that
D
(3.15) (B,C), = > (al[1)p| (B*|a)BIC)|B) -
a,f=1

Combining these two expressions and using (3.3), we obtain

D
(L, (B),Te, (O) = (B,C),| < Y [{al (B" —[1)p]) (B*|a)BIC) |8) ]
a,B=1

(Z I1B* ) ||> ZIIC* 18) |

Now, pick for the orthonormal basis one that diagonalizes p, such that p|a) = p, |@). Then

D 2 D D
(Z | B* o) ||> <Z 1B o) 104 %P 2) <> palal BB a) Y pit = |IB|2Trp".
a=1

a=1 a=1

Together with the analogous estimate for the second factor, this proves the lemma. ]
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Note that one has the bound

D
Trp~! <
Pmin

which is often saturated in models with symmetry. It will be convenient to define

(3.16) b(n) = a(n)Trp~!

)

The following is an immediate corollary of Lemmam and shows that I'¢, is injective for sufficiently
large n.

COROLLARY 3.2. For any B € Mp, the bound

(3.17) [Bllpv/1=b(n) < [Tn(B)|| < [|Bllpv/1 4+ b(n)

holds for n sufficiently large so that b(n) < 1.

PRrROOF. The bound
(3.18) [ITe, (B)IZ = IBIZ| < b(n)|IBI

follows immediately from (3.12)). If B = 0, there is nothing to prove. Otherwise, this bound can be
re-written as

Lo, B |y

(3.19) —b(n) < 1B]2 <

from which the above claim readily follows. (]

Inner products of vectors of the form I'¢(B), B € K¢ can be estimated with a straightforward
generalization of Lemma To formulate the result, for each A € {G, G — C,,, C,, — Gr} we
define an inner product on Ky, denoted by (-, )a, via

(3.20) (B,C)s = T(QrB*QLC)
(3.21) <B7C>GL7CTL = Tr(pB*QLC)
(3.22) (B,C)c,—an = Tr(QrB"C)

That these are inner products follows from the positive-definiteness of Q7 and Qr. With respect to
these inner products we obtain the following analog of Lemma [3.1]

LEMmMA 3.3. Let A € {G, G, — Cy,, C,, — Gr}. Then for any B,C € K,

(3.23) [(TA(B),Ta(C)) — (B,C)al < a(n)D*Ca||B||C],
where
(3.24) Ce = |EL|IERl, Cc.-c, =|ELll, and Cc,-c, = |Er].

PROOF. We prove the bound in the case of A = G. All other cases follow from similar arguments.

Let B, C € K¢, and {|1), ..., D)} be an orthonormal bases of C”. Then, calculating similar to
(3.13) and (3.14), we find
(La(B),La(C) = > Vi Vi(TF) B (L) I(I CTRV;, - Vi
L,r
D
(3.25) = Y (a|E" oEg[B"EL(ja)B)C] |8) .

a,Bf=1
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where we have also use cyclicity of the trace in the first equality. Now consider (B,C)q. It can
easily be shown, e.g. by simplifying the RHS, that

D

(3.26) (B,C)a = Y (al [1)(pl o Er[B"EL(la}B])C] |5).

a,f=1

By substituting these (3.25) and (3.26) into (3.23)) and then using (3.3)), we estimate as follows:

D
(Le(B),Te(C)) = (B.C)el < Y [(al (E" — 1}pl) o Er[B EL(J)(8])C] |6)]

a,f=1
D
< a(n) Y [|Er[B EL(la)XBN)C] |
a,B=1
(3.27) < a(n)D?|[EL||Er[IBICII
This completes the claim. O

Note that the bound in Lemma [3.3]is expressed in terms of the operator norms ||B|| and ||C]].
This is just a common norm of reference. The natural norm to use is the one induced by the inner
product that appears on the left of (3.23), as in done in Lemma Since these norms are all
equivalent to the operator norm, the estimates from can be converted to the ‘natural’ norm
by multiplying by an appropriate constant as follows: Let g, (resp. ¢,) be the minimal eigenvalue

of @, (resp. Qr). Then,

1 1 1
(3.28) HBIIS\/MHBH& HBIISﬁHBlch—cn, HBIISEIIBHC,L—GR-

We can thus obtain a corollary to Lemma [3.3] similar to Corollary [3:2}

COROLLARY 3.4. Let A € {G, G, — Cy, C,, — Gr}. Then for any B € Ky,

(3.29) [Bllav/1—=ba(n) < [Ta(B)]| < [|Bllav/1 4 ba(n)

holds for n sufficiently large so that by(n) <1, where

a(n)D? a(n)D? a(n)D?
(3.30) ba(n) = ———IEL[|Erll, bc,-c,(n)=——"——|ELll, bc,-cr(n)= IER]-
4drLqr PminqdL dr

In order to simplify notation, we will write b, (n) for bg, ¢, (n) and br(n) for be, ¢, (n).

Ultimately, we will want a bound for the inner product in (3.8) in terms of the norms of the
vectors ¢ and ¢ defined below. Lemma [3.3] can also be used to show that this is once again
straightforward at the cost of another prefactor in the bound.

Since ', _¢, and I'c,, _¢, are assumed to be injective, there exist Dg Dy, x D matrices By(r),
and Dy D x Dp matrices By (1), uniquely determined by ¢ and 1, such that

(3.31) ¢ = D WBy(rVi, - VaTH, © v, in) @)

Lyit,enyin,T

(3.32) o= Y BTV, Vil @ lirse - in) ® [r) g

l,’il,‘..,in,’l‘



10 H. ABDUL-RAHMAN, M. LEMM, A. LUCIA, B. NACHTERGAELE, AND A. YOUNG

These expressions are simply expansions of

(3.33) ¢ = Y Ta-c.(Bs(r) @|r)g
(3.34) Y = ; 1), ® T, —crn(By (D).
It will be convenient to define Cy, Cy, € K¢ as follows:

(3.35) Cy = Y By(r)p(T[)
(3.36) Dy = Y (T)By(D).

l

Next, we consider inner products of the form (¢, ), with ¢ € Gg, ¢, ® Hg, and ¥ € Hg, ®
gcn_GR'

LEMMA 3.5. Suppose that n is large enough so that b(n) < 1. Then, for all ¢ € Gg,—c, @ Hap
and Y € Ha, ® Go,—ar, we have

b(n)
(3.37) [(¢,9) = (Cg, Dy)ke| < —=—====I¢lll¥l,
1-— bLR(’I’L)

where
(338) bLR(n) = bL(TL) + bR(n) — bL(n)bR(n),
and by, (n) and br(n) are defined in (3.30)).

Proor. Using the expansions and we find

(@) = > Te[By(r)Vi, - Vi, [ By(DTRV;, -+ V]

l,il ..... in,r

(3.39) = Y (Tc,(TFBy(r)),Te, (By(DTF))

lLr
Similarly, we observe that (Cyg, Dy)x can be expressed as a sum of inner products:

(Co, Dylka = TT(ZTTR/JBAT)*) (Z(TzL)*BN))

l
= D TepBy(r) (TF) By ()T
l,r

- Z(]}LB¢(T)7Bw(Z)TrR>p-

L,r

Now we apply Lemma [3.1] term by term to obtain, using Cauchy-Schwarz:

(0, 9) = (Cs. Dy)xal < D [(Te, (TFBy(r), Lo, (By (D)) — (T} By(r), By (DTT), |

Lr

b(n) Y ITF By (), - 1B (T,
l,r

b(n) ¢Z ITE Bo(r)]12 - \/Z | By (T2,
l,r Lr

IA

(3.40)

IN
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The quantity under the first square root can be bounded in terms of ||¢|| as follows:

ST B = S ToBo(r) (T T Bol)
= Z’I‘rpB¢( QLB¢ ZHB¢ ”GL

1_bL 5 3 I, -c, (Bulr)I

where we have used the definition of @7, Corollary and (3.33). The quantity under the second
square root is similarly estimated in terms of ||¢|:

(3.41) ZHBw Tl < 7= K

( )
Inserting these into ([3.40]) yields

b(n)
V(1 =bL(n))(1 = br(n))

(3.42) [{#,9) = (Cos Dy)ica| < el

O

Now, we are ready to estimate the quantity of interest in (3.8)), which is an inner product of the
form considered in Lemma with the additional information that ¢ and v are both orthogonal to
ga.

PROPOSITION 3.6. Under the assumptions stated in Section[3.1] and with the notations introduced
there, we have the following estimate for the quantity €, defined in (@

b(n) )\’
(3.43) en < N <\/1 e ) (L +bg(n)),
with
(3.44) b(n) = a(n)Trp_17 a(n) = [[E™ — [1)plll,

and bpr(n) and bg(n) are defined in and (3.38).

PROOF. Any & € Gg belongs to both Gg,—¢, ® Ha, and Hg, ® QC —Gpr- Therefore, there
are unique matrices Be(r) and Be(l) and correspondmg expressions and - ) for £. Since
¢ € Gg, there also exists X € K¢ such that £ = T'¢(X). By injectivity 1t follows that

(3.45) BE()=TFX, Bf(r)=XTFE.

Inserting the first relation above into the expression for Dy and the second into Cy4 we find the
following special form of these matrices for a ground state &:

(3.46) Ce = Y By(n)p(TH) =3 XTEp(TF) = XQr

(3.47) De = Y (TF)'By(l) =) (T')'T/'X = QrX.

l l
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We use this to extract information from the orthogonality of ¢ and ¢ to Gg. Using (¢, &) = (&,9) = 0,
from Lemma we have that for all X € CPr*Dr.

b
(3.49 (CouXhal < ol
(3.49 (XQu Pl 5 2l

Applying Corollary gives
€17 = [ITa(X)[? < (1 4 ba(n) [| X2
Using this with (3.48)) and (3.49) yields

(3.50) (Cs, QL X)kel < d(n)lollX|e

(3.51) (XQr, Dy)xel < d(n)[[¢]l[X]le,

where

b(n)
d(n) = ———=——==+/1+bg(n).
\/ 1-— bLR(n)

The LHS of these inequalities can be expressed in terms of the inner product (-, )¢ as follows:
(Co,QrX)ke = TCQLX = TrQrQE ChQLX = (CoQr', X)a
(XQRr,Dy)xe = TrQrX*Dy =TrQrX*QLQ; ' Dy = (X,Q7'Dy)c.

The estimates (3.50) now become: for all X

(3.52) (CsQR" X)a| < sm)glllX|le

(3.53) (X, Q. ' Dy)a| < sm)lv]lX|e,

which imply

(3.54) 1CsQ% le < d(n)ll¢]

(3.55) 1QL Dylle < d(n)ll¢].

Noting the identity
(Co, DyYie = TrQr(QR'C3)QL(QL ' Dy) = (C4Qr', QL' Dy)a,

we have

{Cy, Dy)ical < 11CsQR Q1 Dylla < 6(n)?||¢ll[|]]-
Moreover, it follows from (3.37) that

b(n)
V1 —="0brr(n)

Combining the last two inequalities we obtain the final estimate

1—mmm+< (m>ﬂ+%<4nmww

(3.56) (¢, ) < [(C, Dy)xal + [ @IHl<]-

(3.57) (o, )| < [ 1—bin

O

In the next section we verify the assumptions stated in this section for the AKLT model on the
decorated honeycomb lattice with n > 2 and apply Proposition [3.6] to show that for this model we
have e, < 1/3, for all n > 3.
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FiGURE 3. The VBS picture for the decorated AKLT model.

4. Gap of the decorated AKLT model

In this section we prove Proposition 2.1 and Theorem [2.2] by applying the results of Section [3]
to the decorated AKLT model discussed in Section [2] In this case, the graph G is given by Y, UY,,
for two adjacent sites v and w in I'. We decompose G as G = G, — C), — G, where C), =Y, NY,,,
G =Y,\C, and Gg =Y, \ C,. The VBS (Valence Bond Solid) or PEPS (Product of Entangled
Pairs) ground states on G are depicted in Figure [3 The corresponding Hilbert spaces are give by

Moy, = Hop = (CPRCHP" @ CY,  and He, = (CF)®n

For s € {1,3/2}, we use Bs = {|s), [s—1) ..., |—s)} to denote an orthonormal basis of C?**!
consisting of eigenvectors of the third component of spin associated to the spin-s irreducible repre-
sentation of SU(2). We begin by discussing the MPS T'¢, and its associated transfer operator E.
We then define the operator Ej, associated with G, and prove that I'¢, ¢, is injective for n > 2,
after which we prove the main results.

On C,, we have the one-dimensional AKLT spin chain, which has the bond dimension D = 2. For
this model, every physical spin-1 vertex is identified with the symmetric subspace of the virtual space
C?2® C2. We will denote by SX,SY, SZ the usual spin-1/2 operators, and by S* the corresponding
lowering and raising operators. To differentiate between the physical and virtual spins, we will
use [1),]l) € C? to denote the standard orthonormal eigenbasis of SZ rather than |+1/2). The
intertwiner Ps(ylr)n : C? ® C? — C? that maps between the virtual and physical space of a site v is
given by:

PO = 1]+ [0)w ] + |1,
where [¢F) = S5 (1) + [41)).

Recall that the symmetric subspace of C? ® C? can be encoded into the MPS matrices
P =1l P =v2sY, PO = [IXU.

The ground states of the one-dimensional AKLT model can then be described as a valence-bond
solid state obtained from projecting each (virtual) edge of the graph into the singlet states |¢)~) =
%(H@ — [41)); this is represented by the MPS matrix

(IT><¢| () = v2is”.

%\
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With these matrices, and with a convenient choice of normalization, the ground state space of the
one-dimensional AKLT matrix is given by

Te, (B) = > T[BV;, ... Vi,]li1 .. .in)
P10y in €{£1,0}

where V; = %K Pi(l). Explicitly,

2 2 2
4.1 = — Zg+t = — Z _ :\/> .
(4.1) Vi \/;S Vo \/ES V= 3°

Given the form of I'¢, , the choice of multiplying on the left by K in the definition of V; corresponds
to projecting the edge to the right of the associated site into the singlet state. This convention will
also be used to define the tensors T and T/. For more details on this and other MPS constructions,
see [41], 39, [37].

Noting that STBS~ + StBS~ = 2(SXBSX + SYBSY), the transfer operator E : My — M,

associated with I'c,, takes the form

4
(4.2) E(B)= > V'BV;= §(SXBSX + SYBSY + $4BS?),

ie{£1,0}

which can be easily diagonalized as

2
(4.3) E =1%ol - 3 > 159%sY),

Ue{X,y,Z}

where p = 1/2 is the maximally mixed state. This allows to easily compute

E"=|11><p\+2(_31)n > 1sYxsY,

: Ue{X,Y,Z}
from which (3.3) takes the explicit form
a(n) = [E* — [1)p[[ = 37",

and b(n) = Tr(p~Ya(n) = 4-37". By Corollary this implies that I'c, is injective when n > 2.
It can easily be shown that it is not injective for n = 1.

We now consider Gy, and Gg. For the decorated AKLT model, D;, = Dr = 4 and so Kg = M.
We first construct the operator Ep associated with G, and use this to prove I'q, _¢, is injective

of n > 2. The analogous operator Er for Gr and the injectivity of of I'c,, g, follow from similar
calculations.

We first note that G, can be written as [u},ul] x [u},u2] x {v}, where the sites u} correspond

to the 2n spin-1’s, and v is the spin-3/2. By grouping the sites u} and u? into a single site (u},u?),

(R ?

we can recognize the ground states of Hg, as a PEPS. We choose the product basis for H¢g, given
by

. . . . . 3 1
‘117]1>®'“®|Z7n]n> & ‘k> 5ty J15- 500 € {ilvo}v ke {i27:|:2}

For each element |I); = [i1, j1) ® -+ ® [in, jn) @ |k) of the basis, the 2 x 4 matrix T} is given by
TF =WV,

where the V; are as defined in (4.1]), and the Wl € £(C*,C?) are given by the PEPS representation
of the AKLT on the hexagonal lattice, which we now define. Analogous to the spin-1 case, the

®‘/jn-.-‘/il®‘/jl7
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virtual space of a spin-3/2 particle is the symmetric subspace of three spin-1/2 particles, and so the
intertwiner Ps(;rf) :C? @ C? ® C? — C* between the virtual and physical space is given by

PSID = [3/2)(M11] + [1/2X ™| + |—1/2)¢™ | + [=3/2)(44,

where
(4.4) [6%) = () + (1) + 1) = T [1) 111 + /2 1) ),
(4.5) [67) = () + [0 + (1) = 1 1) + /2 10 1)

By grouping two virtual edges to the left of v, see Figure [3] the virtual space can be represented by
the MPS matrices P(3/2) € Msy4 defined by

PO = itytl, PGP = T+ 2K
PER = 1 PR = SN+ 3wt

Once again projecting edges on the right of v into a singlet state (and choosing a convenient nor-
malization) we define Wl = /2K P,ES/ 2, Explicitly,

(4.6) Wi = =Xt Why = 5tk — /2],
(4.7) Whyyo = KL WE p = =X + /20

which satisfies Zle WE(WE)* = 21ce. For B € My, define E*(B) = Y, (WF)*BW[. While this
is a completely positive map from Ms to My, unlike the MPS case it is not unital, since

4 4 )
— L% L_ = B .
= OOV = ST+ LU+ 9707 = 14+ 35 -5,

where as usual S = (S%,5Y,5%)and S-S = S¥X ® SX + 5V @ SY + 5% ® SZ. By direct calculation,
we see that

(4.8) E)'(B)=cBp+ Y. cw(B)S,
Ue{X,Y,Z}

where
o(B) = S(CMIBIM + (LI BIL + (97 Bly™))

cx(B) = —ﬁR (T B + (L B[YT)]

cy(B) = —il [T 1B11) + (L BlyT)]

cz(B) = §(<¢¢|B|¢i> — (1T B[11)).
It can easily be checked that (E™)! o 7 = (E~)* where 7 : My — M), is the transposition operator
HA®B) =B® A
Combining this with allows us to verify that

) p@p) =p BV 08) =bvusp (E)(pos”)=(E)(S"©p) =15,

or equivalently

4 4
(4.9) B =[1® I)}pl + 3 S-8) (o] - 5 Yoo (|sYen+[1e8Y))(sY].
Ue{X,Y,Z}



16 H. ABDUL-RAHMAN, M. LEMM, A. LUCIA, B. NACHTERGAELE, AND A. YOUNG

To simplify notation we define
|Q7) =[SV @ 1) + |1e SY) YU € {X,Y, Z},

and notice that

3
I8-8le = 22, [0V, =va, and (8-8.0) —0

for all U. The transfer matrix for G, defined in (3.5)), is then given by E;, = (E" ® E") o E”, which
can be simplified to

Er

(|11>< R |SU><SU|> ® <|11><p| 20 SU><SU|> B

U U

(71)n+1
(4.10) = 1@ Wpl + 2575~ > 10Y)sY |+ gt 1S - S)el-
U
Using this decomposition to compute @, gives
4 1 1
(4.11) QL:]lJr32 758, = spec(Qr) = {132n,1+32n+1}.

Therefore, g, =1 — 32n, and moreover, since Ey, is a completely positive map,

1
|Ecl =llQcll =1+ PYrESE

Since @r, is invertible, the theory of Section [3| applies and we can use the above relations to prove
the following result.

LEMMA 4.1. T'q, ¢, is injective for n > 2.

n

PROOF. Let B € Mp and consider ', ¢, (B). Applying Corollary [3.4] gives
ITa,—c, (B)IIP > (1 =br(n)) |BlZ,—c

with bp(n) = domIELll By inserting the values of a(n), |EL|l, pmin, and ¢z, into this expression,

PmingdL
one finds that
8(1+ 3*2”*1)

3n(1—3-2n) "
This quantity is strictly positive for any n > 2 from which it follows that I'¢, _¢

17bL(77,):17

is injective. [

n

We now consider Gg. The operator Eg is obtained using a similar construction as Ey,. As with
G, we can once again can group the spin-1 particles into pairs and to construct an orthonormal
basis

. . . . . 3 1
|T> = |217]1>®"'® ‘2n7]n>®|k> Uyevslny J1s--05Jn € {:I:lao}a ke {:I:2a:l:2}7

for which the corresponding tensor is given by

(4'12) Vln ® Vﬁ e Vil ® le Wl??

where Vi, V and V_; are as before7 and Wt =2K ® K(P,EP’/Q))*. Explicitly,
(4.13) Wity = WML W, = B = /2l X
(4.14) WE = I, WE = 5 = /2l .

Similar to the case of EX, we have E¥ := E* o (E" @ E") where E* : My — M- is defined by
(4.15) E*(B) =Y (W) BW/ = Z WEB(WEY = (E7)Y(B).

%
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The final equality above follows from recognizing
(4.16) W;}Q = (Why,)', Wly=—(Wk )"
(4.17) WR3/2 = _(WsL/z)*v Wi/z = (WlL/Z)*

It follows from the analogous arguments as used in Lemma above that I'c, _g,, is also injective
for n > 2. We can now prove Proposition and Theorem

PRroOOF OF ProPOSITION 2.1] AND THEOREM 2.2 Since E = E?, from it follows that
Er = [(E"®E") o E"]" = (Ep)".
Therefore, ||Eg| = |EL|| and
(4.18) Qr = (Bn)'(p) = Ex(p) = Q1.
As a consequence,
dr = 54L = PminqL-

2
Using ([3.43) to estimate (3.8)), we find

4a(n) 4a(n) ’
(4.19) en < N + <\/1 = bLR(n)> (1+bg(n)).

From (3.30) and the values above, it is clear that by, (n) = br(n), and so
EPSIPRNG
—2n—1,2

(4.20) 1 +ba(n) = (1 + %) .

This establishes Proposition

Inserting these into (4.19), we find that ¢, < % whenever n > 3. By (2.9) this implies that the
decorated AKLT model has a positive spectral gap above the ground state energy for n > 3. This
completes the proof of Theorem [2.2] O

5. Discussion

We proved an explicit positive lower bound for the spectral gap above the ground state of the
AKLT model on the decorated honeycomb lattice for n > 3, where n is the number of vertices
inserted on each edge of the honeycomb lattice. It is natural to ask whether the approach of this
paper could be used to prove that the AKLT model on the honeycomb lattice itself (n = 0) is gapped
too, which is expected. It is clear to us, however, that significant changes to the arguments would
be necessary to achieve this. For example, a numerical calculation shows that ¢; ~ 478 > 1/3.
Therefore, our method does not work for n = 1. For the case n = 2, we do not have a good estimate
of €9, but it is conceivable that our approach could be extended to the case n = 2. For the model
with n = 3, however, we proved a positive lower bound. By using a numerically calculated value for
the gap for the small system on Y, which appears in , (vy ~ 0.2966), and the rigorous estimate
showing e3 < 0.2683 (Proposition , we found the following uniform lower bound for the gap:
~v > 0.0289.

About generalizations to frustration-free models on other decorated lattices on the other hand,
we can be rather optimistic. For example, we expect that similar arguments will work to study the
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spectral of AKLT models on decorated hypercubic lattices of any dimension. One could also try to
apply our approach to some of the more exotic hybrid valence bond models discussed in [44].

For physical reasons, one wants the spectral gap to be robust under small perturbations of the
interactions. It seems very likely that the AKLT models on the decorated honeycomb lattices (and
likely also on the honeycomb lattice itself) satisfy the Local Topological Quantum Order condition
introduced by Bravyi, Hastings, and Michalakis [12]. If so, the stability theorem of Michalakis
and Zwolak [3I] would apply to the AKLT models on decorated lattices and provide the desired
robustness of the spectral gap.
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