GENERALIZED ERGODIC PROBLEMS: EXISTENCE AND
UNIQUENESS STRUCTURES OF SOLUTIONS

WENJIA JING, HIROYOSHI MITAKE, AND HUNG V. TRAN

ABSTRACT. We study a generalized ergodic problem (E), which is a Hamilton-
Jacobi equation of contact type, in the flat n-dimensional torus. We first obtain
existence of solutions to this problem under quite general assumptions. Various
examples are presented and analyzed to show that (E) does not have unique
solutions in general. We then study uniqueness structures of solutions to (E) in
the convex setting by using the nonlinear adjoint method.

1. INTRODUCTION

In this paper, we focus on the following equation
(E) H(xz,u,Du) =c in T".

Here, T" = R"/Z" is the flat n-dimensional torus, and the Hamiltonian H =
H(z,r,p): T" x R x R" — R is a given continuous function. We seek for a pair of
unknowns (u,c) € C(T") x R that solves (E) in the viscosity sense. We use Du to
denote the spatial gradient of u. We are always concerned with viscosity solutions,
and the adjective “viscosity” is often omitted in the paper.

Our main goals in this paper are twofold. First of all, we obtain existence results
of solutions to (E) under quite general assumptions. Second, it is well-known in the
theory of viscosity solutions that if r — H(z,r, p) is not strictly monotone, then (E)
might not have unique solutions. But as far as the authors know, it seems that there
is no explicit examples to show non-uniqueness phenomena if Hamiltonian depends
on the unknown function u. Thus, we first present several nontrivial examples
(see Examples 4-7 in Section 3). Moreover, we investigate why this phenomenon
appears, and to describe uniqueness structures of solutions to (E).

We call (E) a generalized ergodic problem. In various other contexts, (E) is also
called a Hamilton-Jacobi equation of contact type (see [21, 22] for instance).

1.1. Assumptions. We list here the main assumptions on Hamiltonian H that are
used in the paper.
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(H1) H is uniformly Lipschitz in 7, that is, there exists a constant C; > 0 such
that

|H(z,r,p) — H(x,s,p)| < Cy|lr —s| forall (x,p) € T" xR", r,s € R.
(H2a) H is coercive in p, that is,
lim H(z,0,p) =400 uniformly for x € T".

|p|—o00
(H2b) H is superlinear in p, that is,

H(z,0
lim M = 400 uniformly for x € T".
plooo P
It is clear that (H2b) is stronger than (H2a). We will assume either (H2a) or (H2b)
in each of our results on existence of solutions to (E). To address the uniqueness

structure, we need to assume the following assumptions.
(H3) H € C*(T" x R x R"), and

1
lim (—H(a:, r,p)* + D.H(z,7,p) .p) = +oo uniformly for (z,r) € T" x R.

[p|—o0 2

(H4) The map r — H(x,r,p) is nondecreasing for all (x,p) € T" x R™.
(H5) The map (r,p) — H(x,r,p) is convex for all x € T™.

It is worth noting that (H3) and (H4) are quite standard assumptions. We only
require that H is nondecreasing in 7 in (H4), so it may fail to be strictly increasing.
Condition (H5) however is rather strong since convexity is imposed both in r and
p. In any case, nowhere in this paper do we require H to be uniformly convex in p.

1.2. Main results. We first state two existence results for solutions to (E). The
first one is a quite standard result in light of the classical Perron method.

Theorem 1.1. Assume (H1), (H2a). Assume further that there exist ¢ € R, and
W, @ € Lip (T™) such that ¥ < ¢, ¥ and ¢ are a viscosity subsolution and a viscosity
supersolution to (E), respectively. Then, (E) has a viscosity solution u € Lip (T")
with ¢ € R given by the assumptions.

This result is not new in the literature, and is just a variant of the classical results
in [9]. What is different here is that under assumptions (H1) and (H2a), we obtain
directly a Lipschitz viscosity solution v with known Lipschitz constant, which is not
written down explicitly in [9]. It is therefore of our interests to record it here.

Next is our second existence result for solutions to (E) without prior information
about the constant c.

Theorem 1.2. Assume (H1), (H2b). Then, (E) has a solution (v, c) € Lip (T™) xR.

As we do not assume the existence of a subsolution v and a supersolution ¢ with
1 < ¢ for some given ¢ € R as in Theorem 1.1, the existence of solutions to (E)
cannot be obtained by the standard Perron method. Existence result for (E) was
obtained in [21, Theorem 1.5] under an additional assumption that H is uniformly
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convex. See also [18]. Unlike [18, 21], we do not need any convexity of H here, and
we believe that Theorem 1.2 is new in the literature.

We emphasize here that, although the existence of (v,¢) € C(T") x R, solution
to (E), is guaranteed by Theorems 1.1-1.2, we do not have uniqueness of constant
c in general. See Examples 2, 4, and 5 below. Furthermore, for a fixed ¢ € R such
that (E) has a solution, (E) might have multiple solutions as described explicitly in
Section 3 (Examples 4-7). It is therefore extremely important to proceed further
to understand this phenomenon and investigate how such nonuniqueness appears.
In particular, we aim to find a uniqueness set of (E), that is a set (hopefully the
smallest) such that, if two solutions agree on it then they agree everywhere. Towards
this goal, a prototype class of Hamiltonian of the following form is studied carefully
in Section 4 .

(H6) Assume that
H(I,T,p)z |p|m—V(ZIZ’)—|—f(’f’) for (Z’,T,p) eT" xR xR"

Here, m > 1 is a given number, and V' € C(T") is the potential energy with
mint. V' = 0. The function f : R — R is convex, and

fry=0 for r <0,
f(r)y>0 for r > 0.

Of course, we see that f is not strictly increasing here, which makes the situation
more interesting. Here is our first result on the uniqueness property of (E) for the
Hamiltonians in the prototype class (H6) when ¢ > 0.

Proposition 1.3. Assume (H6). For ¢ > 0 fized, (E) admits a unique solution
(ue, ) € C(T™) x (0,00).

Next, we consider the case that ¢ = 0. By using Proposition 1.3, a priori estimates,
and Arzela-Ascoli’s theorem, we can easily show that under (H6), (E) has a solution
(u,0) € C(T™) x R (see the last part of the proof of Proposition 5.8 for a proof of
this fact).

As mint. V = 0, denote by

MV:{:):ET" : V(x):r%;nvzo}.
Here is our second result along this line.

Proposition 1.4. Assume (H6). Let ¢ = 0. Then, My is a uniqueness set for (E),
that is, if (u1,0), (ug,0) are two solutions to (E), and uy = us on My, then uy = us.

It is worth noting that Proposition 1.4 was first obtained in [17] when f = 0.

The uniqueness structure of solutions to (E), with Hamiltonians beyond the class
of (H6), is more involved. To study it in a systematic way, we apply the nonlinear
adjoint method and develop further the ideas in [16]. This is done in Section 5.
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We refer the readers to [5, 20, 1, 15, 16, 11] and the references therein for the
developments of the nonlinear adjoint method.

Under assumptions (H1), (H2b), (E) admits a solution (v,c) € C(T") x R. As
noted above, the constant ¢, that is the right hand side of (E), is not unique in
general. Therefore, to discuss the uniqueness structure of (E), we fix a ¢ € R such
that (E) has a solution v € C(T™). By a further normalization (setting H (z,r, p) =
H(z,r,p) —c for (z,r,p) € T" x R x R"), we may assume that ¢ = 0. We hence
study the uniqueness structure for the following problem

H(z,u,Du)=0 in T". (1.1)
Our main result on the uniqueness structure of (1.1) is as follows.

Theorem 1.5. Assume (H1), (H2b), (H3), (H4), (H5). Let M be the set of mea-
sures in Definition 1 of Section 5. Then, for any two solutions uy,us to (1.1), the
condition

/ () dv(a) < / Cun(a)dv(z)  for all v € M

implies uy < ug. In particular, M =], supp(v) is a uniqueness set for (1.1).

As described in Definition 1, M contains adjoint measures associated to solutions
of (1.1). The whole construction of these measures is done in Section 5. Theorem
1.5 is a generalized version of [16, Theorem 1.1]. See also a related work [19]. To
the best of our knowledge, Theorem 1.5 is new in the literature. In two specific
situations (see Subsections 5.3-5.4), we have clear understanding about this M. In
particular, we find a natural link between Theorem 1.5 and Proposition 1.4 above
(see Proposition 5.8).

Organization of the paper. The paper is organized as following. In Section
2, we give the proofs of Theorems 1.1-1.2. Besides, we give three examples of
Hamiltonians satisfying requirements of Theorem 1.1 in Subsection 2.2. In Section
3, we give various new examples to discuss nonuniqueness issues of solutions to (E).
Then, Section 4 is devoted to further analysis on a uniqueness set for a prototype
case that was discussed in Section 3. Finally, in Section 5, we use the nonlinear
adjoint method to study systematically the uniqueness structure of solutions to (E).
Various connections with classical results and with the prototype case in Section 4
are discussed in deep too.

2. EXISTENCE RESULTS FOR SOLUTIONS TO (E)
2.1. Proof of Theorem 1.1.

Proof of Theorem 1.1. The main idea is to use the Perron method to get the exis-
tence result.

Let M = ||¢||poc(rny + ||@||lpee(rny + 1. By assumptions (H1) and (H2a), there
exists Cy > 0 such that

H(z,r,p) <c forsome (z,r) € T" x [-M,M] = |p|] <C(C..
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Define, for x € T",
u(e) =sup {o(e) : & <v < g, [Doflpegn < G,
and v € Lip (T") is a viscosity subsolution to (E)}

Of course, u is well-defined as ) itself is an admissible subsolution in the above
formula. Furthermore, it is clear that u is Lipschitz in T", and || Du||pec(1ny < Co.
By the stability of viscosity subsolutions, we have that u is a subsolution to (E).

Hence, we only need to show that u is a supersolution to (E). Assume by contradic-
tion that this is not the case. Then, there exist a smooth test function ¢ € C*>°(T")
and a point xy € T" such that

{u(azo) = é(z0), u(z) > d(z) for all w € T*\ {z},
H (g, u(xo), Do(z0)) = H(xo, p(x0), DP(x0)) < c.

There are two cases to be considered here. The first case is when u(zg) = ¢(xg).
This means that ¢ touches ¢ from below at zy. By the definition of viscosity
supersolutions,

H (o, ¢(0), Do(x0)) > ¢,
which implies a contradiction immediately.

The second case is when u(zg) < ¢(xg). There exist r,e > 0 sufficiently small
such that

u(z) < p(x) —¢ for all x € B(xo, 1),
o(r) <u(z)—e¢ for all z € 0B(xo, 1),
H(z,¢(x), Dop(z)) < ¢ — Cie for all z € B(x, 1),
|Do(x)| < Cy for all x € B(xzo, 7).

Now, set

() = max{u(x),d(z) + ¢} for all x € B(xg,r),
u(z) for all z € T™ \ B(zo, 7).

It is quite clear that @ is a viscosity subsolution to (E) thanks to (H1), and
| D@|| oo (1ny < Co. This again leads to a contradiction. The proof is complete. [

2.2. Examples of Hamiltonians satisfying Theorem 1.1.

Example 1 (Classical setting with no r-dependence). If H(x,r,p) = H(x,p) with
H satisfies (H2a), that is,

lim H(z,p) = 400 uniformly for = € T".

|p|—o00

Then we use classical results (see [12] for example) to have the existence of a unique
constant ¢ € R such that

H(z,Dv)=c¢ inT"
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has a viscosity solution v € C'(T"). Then, we can simply choose ¥ = ¢ = v. In this
example, ¢ is unique.

Example 2 (Strictly monotone setting). Assume (H1), (H2a). If there exists a > 0
such that

H.(x,r,p) > a forall (z,r,p) € T" x R x R",

then, for each fixed ¢ € R, we can choose

1 1
V=== ([H(0,0) [z + [el) - and @ == ([[H(-,0,0)[oe(on) + |e]) -

Therefore, (E) has solutions for each ¢ € R. This is consistent with classical results
(see [3, 4] for example).

Example 3 (Non-monotone setting). Assume (H1), (H2b). Let us assume further
that
maxern H(x,0,0) = H(xo,0,0) for some xq € T", 2.1)
H(x0,0,0) < H(xg,0,p) for all p € R™, .
Note that the requirements of this example are stronger than those in Theorem
1.2 (as we only assume (H1) and (H2b) there). Nevertheless, this is a direct
application of Theorem 1.1, and hence, it is worth pointing it out here. Exam-
ples of Hamiltonians satisfying (H1), (H2b), and (2.1) are many. A typical one is
H(x,r,p) = |p|™+ f(r) + V(x) for (x,r,p) € T" x R x R™. Here, m > 1 is fixed,
V € C(T"), and f € Lip (R) with Lipschitz constant at most C;. Of course, there
is no requirement on convexity of H in p here.

In this setting, we choose first

¢ =max H(z,0,0) = H(z,0,0), and ¢ =0.

zeTn
We now construct ¢. Let Q(zo) = xo + [-1/2,1/2]™ be the unit cube centered at
xg. For s > 0 sufficiently large, set
o(z) = s|lx — x| for all x € Q(xo),

and extend ¢ to R" periodically. We claim that ¢ is a supersolution to (E).
It is clear that ¢ is not differentiable at xy and 0Q(xy). We do not have to
worry about 9Q(zo) as for any € 9Q(zo), D™ p(z) = 0. At x = x4, we have

D~ p(z9) = B(0,s). By the second line in assumption (2.1), we have that
H(x0,0,p) > H(10,0,0) =c for all p € B(0, s).

For other values of z, ¢ is smooth and |Dp(z)| = s. We use (H1) and (H2b), the
superlinearity of H, to get

H(z, p(x), Dp(x)) = H(z,0, Dp(x)) = Cis > ¢,

for s sufficiently large.
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2.3. Proof of Theorem 1.2. We always assume (H1), (H2b) in this subsection.
We first formulate Theorem 1.2 as a fixed point problem by adding a monotone
term to (E).

Fix A > C} + 1. For each u € C(T"), let v € Lip (T") be the unique viscosity
solution to

A+ H(z,u,Dv) —Au =0 in T" (2.2)

Note that we use the Perron method to get directly a solution v € Lip (T"). Then,
uniqueness of (2.2) follows immediately.
Denote by G(u) = w := v — min» v. It is clear that w = G(u) solves

Mw —u) + H(z,u, Dw) = —\ n%ilnv in T". (2.3)

Our aim now is to show that the map G : C(T") — C(T") has a fixed point by
using the Schauder fixed point theorem. We first show that G is continuous.

Lemma 2.1. For every uy,us € C(T"),
|G (u1) = Gua)||zoe(rmy < 4flur — ual|zoe ().
Proof. For i = 1,2, let v; € C(T™) be the unique viscosity solution to
Mv; + H(z,u;, Dv;)) — Au; =0 in T™.
We use (H1) to deduce that v; is a subsolution to
Avr + H(x,ug, Dvy) — Aug < (A4 Ch)|Jur — ug||poe(rmy  in T,

By the comparison principle ([3, 4]), we yield

Cy
(% 1+ 7 ||U1 - UQHLoo(Tn) S V3.

By the same argument, we obtain
&
||’Ul — ’UgHLoo(Tn) S 1+ 7 ||U1 - u2||Loo(Tn) S 2||U1 - u2||Loo(Tn).

Next, for ©+ = 1, 2, denote by
w; = G(u;) = v; — n%iln v; = v; —vi(x;)  for some x; € T".

Then, for any x € T",

< 2||v1 — va| poo ()

By a symmetric argument, the proof is complete. O
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Set Cy = maxgern |H(x,0,0)|. By (H2b), we pick a > 0 such that, if |p| > «,
then
H(z,0,p) > 3\(Co + a(1 +v/n)).

Denote by

K :={u e Lip(T") : u >0, ||lullpec(rn) + || Dul| oo (rny < (1 ++/n)}.
Clearly, K is a non-empty convex and compact subset of C'(T") due to the stability
of viscosity solutions.

Lemma 2.2. We have that G(K) C K, where G(K) := {G(v) : v € K}.

Proof. Fix u € K, and let v € Lip (T") be the viscosity solution to (2.2). First
of all, it is clear that Cy + 2a(1 + /n) and —Cy — (1 + /n) are, respectively, a
supersolution and a subsolution to (2.2). The comparison principle ([3, 4]) then
gives
—Co—a(l++vn) <v<Cyh+2a(l++n) inT"

Thus, for a.e. x € T",

H(z,0, Dv(z)) < Mu(z) —v(z)) + Ctl|ul| ey < 3A(Co + a(1 4 /n)),
which, together with the choice of «, yields || Dv|| gy < .

Hence, for w = v — ming» v, we have w € K. O

Proof of Theorem 1.2. By Lemmas 2.1-2.2, we are able to apply Schauder’s fixed
point theorem to imply the existence of u € K such that

G(u) = u.
This means that, for v € C(T") solves (2.2), u = v — min» v satisfies

H(z,u,Du) =c:= —\ n%ilnv in T".

3. SOME EXAMPLES ON NONUNIQUENESS OF SOLUTIONS TO (E)

In this section, we give several examples to illustrate the nonuniqueness of solu-
tions to (E). Our main guiding principle here is that, if » — H(x,r, p) is not strictly
monotone for each (z,p) € T" x R", then it is highly unlikely the case that (E) has
a unique solution.

Example 4. Assume that n = 1, and
H(z,r,p) =|p>+V(z) — A for (z,r,p) € T x R xR,

where A > 2 is given. Clearly, H,.(x,r,p) = —\ < 0. Here, the potential energy V'
is defined as

0 <

Y

V() =

8 8

+
= N
S~—
[N}

~—
[\v]

IN 8
8
A =
o

—N—

NN

—~

i A
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Extend V to R in a periodic way. It is worth noting that V is C! on the torus
except at 0, and V' is a viscosity solution to

V'IP-V =0 inT.
We use this fact to imply that

A VAZ—4 A—VA2—14
:#V and unglf

are two different viscosity solutions of the equation

M+ |WPP+V =0 inT.

Uy

In other words, (u1,0) and (ug,0) are two pairs of solutions to (E) with ¢ = 0 here.
It is also clear that (E) has at least two solutions for every ¢ € R. Indeed, for
each ¢ € R, and ¢ = 1, 2, define

Uje = Ui — N
Then (u;., c) is a solution to (E) for i = 1, 2.

See also [7, Section 1.4] for similar comments on the nonuniqueness of both ¢
and wu. Surely, one objection that one may have for the above example is that

H,(x,r,p) = —X < 0, which is too restrictive. Nevertheless, in the following exam-
ple, we will show that nonuniqueness appears even when H,.(z,r,p) > 0.

Example 5. Assume that
H(z,r,p)=|p| =V(z)+ f(r) for (z,r,p) € T" x R x R".
Here, f : R — R is defined as

0 for r <0,
T for r > 0.

And V € C(T") is the potential energy with ming. V' = 0. Let w € C(T") be the
viscosity solution to
w4+ |[Dw|—V =0 inT" (3.1)

As 0 is a subsolution to the above, w > 0. Besides, it is clear that w < V', which
gives us that {V = 0} C {w = 0}. In particular, f(w) = w always, and hence,
(w, 0) is a solution to (E). From this, it is also clear that (E) has a solution (w+e¢, ¢)
for every ¢ > 0.

Let us now proceed to describe more solutions to (E) with ¢ = 0. Consider the
usual ergodic (cell problem)

IDv| -V =0 inT" (3.2)
which is of eikonal type. For each solution v € C(T") of (3.2), take C > ||v|| oo (),

then v — C is still a solution to (3.2), and v — C' < 0. Thus, f(v — C) = 0, and
(v —C,0) is a solution to (E).
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Example 6. Let us analyze further Example 5. Basically, if we put more structural
condition on V, we are able to find more nontrivial solutions to (E) with ¢ = 0.
Below, we use the setting in Example 5 and present an example in which the solution
u has range in both branches of the f function.

We assume further that V' € C*(T"), and that for some r € (0, 1) we have

{VZO in T and {V =0} ={0}U0B(0,r), (3.3)

V(z) =V(|z]) forall |z] <r.

Here, V : [0,7] = Ris C', V >0, and {V =0} = {0, r}.
Let w be the solution to (3.1). Then clearly 0 < w <V, and

w(z) =0, and Dw(zr)=0 for each z € 9B(0,r).

Moreover, w is not constantly zero in T" \ B(0, ).
Next, we construct ¢ : [0,7] — R such that

{¢’(s) =V(s) forall0<s<r,
5(r) = 0.
Then define u : T" — R by
{¢(‘x|) for x € B(0,r),
u(x) =
w(x) for z € T\ B(0,r).

Clearly, u < 0 in B(0,7), and Du(x) = 0 on 0B(0,7). Besides, Du(0) = 0, and
therefore, u solves

|[Du(z)| = ¢/(Ja]) = V(jz|) = V(x) for z € B(0,r).
We conclude that (u,0) is a solution to (E).

Finally, let us consider the following example, where the Hamiltonian is of mag-
netic type.

Example 7. Assume that
H(ZE’,T’,p) = |p|2 —p- DSO("E) + f(T) for (I,T,p) €T" xR x R™
Here, f : R — R is defined as

0 for r <0,
T for r > 0.

And p € C'(T") is given. Let us now proceed to describe various solutions to (E)
with ¢ = 0. The corresponding equation reads

|Dul®* — Du- Dy + f(u) =0 in T™ (3.4)

It is clear that v = 0 is a trivial solution to the above.
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Now, take any solution v € C(T") of (3.4). We show that v < 0. Indeed, take
x1 € T™ so that u(z1) = maxp. u. By the viscosity subsolution test, we deduce that

flu(z)) <0 = wu(z) <O0.
Thus, u < 0, and u solves a usual ergodic (cell problem) without f as following
|Du|*> = Du-Dp =0 in T", (3.5)

which is quite an interesting phenomenon. It is clear that u; = C for any constant
C1 <0, and uy = ¢ + €, for any constant Co < —||¢||geo(rn) are solutions to (3.4)
and (3.5). Besides, by stability results for convex Hamiltonian, we have further that

uz = min{uy, us} = min{C1, p + Cy}
is also a solution to (3.4) and (3.5). See also [11, Example 6.2]. Note that we do
not claim here that we have described all solutions to (3.4).
4. FURTHER ANALYSIS ON A UNIQUENESS SET FOR A PROTOTYPE CASE

Let us now come back to Hamiltonians of type in Example 5 to do further analysis.
In this section, we always assume (H6). That is, we consider a general class of
Hamiltonian of the form

H(z,r,p)=|p|™ = V(z)+ f(r) for (z,r,p) € T" x R x R™.

Here, m > 1 is a given number, and V € C(T") is the potential energy with
ming» V' = 0. The function f: R — R is convex, and

f(r)y=20 for r <0,
flr)y>0 for r > 0.

It is clear that the Hamiltonian in Example 5 is a specific case of this class. Our
goal here is to analyze more about solutions of (E) for fixed ¢ > 0. We first show
that f is nondecreasing.

Lemma 4.1. Let f € C(R) be given as above. Then f is nondecreasing.

Proof. Take 0 < r < s. By the convexity of f, we have

0< f(r) < Zf(8) + (1= ) £(0) = f(s) < £(s).

We give a proof of our first uniqueness result when ¢ > 0.

Proof of Proposition 1.3. As we explain in Section 2, Example 5, for every ¢ > 0,
(E) has viscosity solutions. Let u € C(T™) be a solution to (E) with the given ¢ > 0
on the right hand side, that is,

|Du|™ = V(z) + f(u) =¢ in T". (4.1)
Then, f(u) <V + ¢, which means that u < C.
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Next, pick x; € T™ so that u(x1) = ming. u. By the viscosity supersolution test,
~V(z) + flul@))>c = flul@))>c>0 = wulx)>c=f"c)>0.

Therefore, ¢ < u < C. Since f is convex and increasing, we can find 0 < A < A
such that
A fi(r) <A forae relgC].

We now can apply classical theory of viscosity solution to imply the uniqueness of
solutions to (4.1). For convenience later on, denote by wu, this unique solution. [

One key feature we used in the above proof is that ¢ = 0 is a subsolution to (E)
for all ¢ > 0. In particular, for ¢ > 0, ¢ = 0 is a strict subsolution, and therefore,
we were able to get that u > 0.

On the other hand, for ¢ = 0, we have seen in Examples 5 and 6 that we do not
have uniqueness for (E). It turns out that My is a uniqueness set for (E) in this
case, which is exactly the content of the following proof.

Proof of Proposition 1.4. Assume that (ug,0), (uz,0) are two solutions to (E), and
uy = ug on My. If My = T", there is nothing to prove. Hence, we assume below
that T™ \ My is nonempty.

Assume by contradiction that there exists xo € T™ \ My such that

I%%X(ul — Ug) = Ul(l’o) — UQ(LU()) > 0.
Take A € (0,1), which is very close to 1, such that Auj(zg) > us(zg), and
>\U1(.§L’0) — UQ(SL’()) > )\Ul(l’) — UQ(SL’) = —(1 — )\)Ul(l’) for all x € Mv.

Then,
H%T%X(Aul —ug) = (Aug — ug)(xy) >0

for some z) € T"\ My.
Due to the convexity of r — f(r) and p — |p|™, denote by v = Au; = (1 — )0+
Auq. Then, v satisfies

|Dv|™ = AV + f(v) <0 in T".

We now perform the usual doubling variables technique. For € > 0, consider the
auxiliary function
& (2,9) = o(x) — usly) — 2L
2e
Then, ®° admits a maximum at (z.,y.), and by passing to a subsequence if needed,
(x2,y:) — (zx,x)) as € — 0. By the viscosity solution tests, we have

m

- )\V(:L’E) + f(U(SL’E)) S Ov

Te — Ye
€

and
m

— V(ye) + f(ua(ye)) > 0.

Te — Ye
€
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Combine the two inequalities above to yield

—AV () + f(v(2e)) < =V (ye) + f(ua(ye))-
Then, let ¢ — 0 to get further that

—AV(@2) + fo(zr) < =V(2a) + f(uz(2r)).

Since, v(xy) > us(xy), f(v(xy)) > f(us(zy)). Thus, we end up with a contradiction
as V(x,) > 0. The proof is complete. O

5. UNIQUENESS STRUCTURE OF SOLUTIONS TO (E)

In this section, we always assume (H1), (H2b), (H3), (H4), and (H5). Recall that
after normalization as explained in Introduction, we assume further that ¢ = 0, and
the ergodic problem becomes

H(z,u,Du)=0 in T".

In [22], the authors provided a necessary and sufficient condition for the existence
of viscosity solution of equation (E) with ¢ = 0 under assumption H,(x,r,p) > 0,
which is basically our (H4). See [22, Appendix B] for details. See [8, 2] for related
works.

We now use the nonlinear adjoint method to study (1.1).

5.1. Preliminaries. Here is a first preparatory lemma. Since this is elementary,
we omit the proof.

Lemma 5.1. Let u € Lip (T™) be a solution to (1.1). Let p € C>(R™,[0,00)) be a
standard mollifier. For § > 0, let p°(z) = 6 "p(6~*x) for all z € R™. Denote by
uw = p® xu. Then,
[0 = ul| oo (my < C6,
and
DU’ || Lo (zm) + 6| D*0 || oo pmy < C.

Let us consider the following Cauchy problems

ew + H(z,wf, D) ='hus i T x (0,1), (5.1)

we(x,0) = us' (x) on T", .
and

Egb%—l—H(l’, ¢87D¢€) :54A¢6 in T" x (071)7 (5 2)

¢ (2,0) = u(x) on T". |

Here, v is u® with ¢ = &*.
Lemma 5.2. We have

|w® — ¢%|| oo (o) < Ce™.
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Proof. Recall that ||us* — || poo(rny < Cet.
Let p(z,t) = w(xz,t) + Ce* for (z,t) € T" x [0,1], then ¢(z,0) > ¢°(z,0) for
x € T™. Besides, thanks to (H4),
e+ H(z, 0, Dp) — e'Ap
=cwi + H(x,w® + Ce*, Du®) — ' Aw® > ewt + H(x,w®, Duf) — e* Aw® = 0,
which means that ¢ is a supersolution of (5.2). By the usual comparison principle,
¢° < ¢, and thus,
¢ (x,t) < w'(z,t) + Ce*  for all (z,t) € T" x [0, 1].
By a symmetric argument, the proof is complete. O
The next result concerns gradient bound of w°®.
Lemma 5.3. There is a constant C' > 0 independent of € > 0 such that
ellwg || oo (rnxjo,1)) + | Dw® || oo (rnxjo,1yy) < C.
Proof. Denote by
C
o (z,t) = w(x,0) £ —t for all (z,t) € T" x [0, 1].
5
Then, =, @™ are, respectively, a subsolution, and a supersolution to (5.1), thanks
to (H4). Hence, by the comparison principle,
C
prsut <t = utls) — 0t (L0 <
Note next that both w® and w*(-,- + s) solve (5.1) with initial data w®(-,0) and
we(-, s), respectively. By the comparison principle,
Cs
lw(y -+ 8) = wlzee < JJw( ) = (- 0)|ze < — = eljwillpeen < C.
To prove the spatial gradient bound, we use the usual Bernstein method. Let

U(x,t) = %. Then ) satisfies

ety + D, H - Dy + 2H,4p + D, H - Duf = e*Ayp — e*| D*we .

Assume that maxpnjo1)9 = (20, o). If tg = 0, then we are done. If 5 > 0, then
by the maximum principle, noting that H, > 0,

D.H - Duw® + | D*w]* <0 at (zo,to).
For e < n~ !, we have

1
e | D*wf|* > (e*Awf)? = (ew§ + H(x,w®, Dw®))* > §H(:c,w€, Duwf)? — C.
Therefore,

1
§H(I,wE,D’wa)2 + D, H - -Dw* < C at (x,tp),

which, together with (H3), yields the desired result. O
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Lemma 5.4. We have
||w€ - UHLoo(Tnx[o,l}) + Hﬁbe - UHLOO(’]T”X[O,I]) < Ce.

The proof of this is similar to that of [11, Proposition 5.5]. Nevertheless, let us
present a simple proof here for completeness.

Proof. We only need to show that |[w® — u|[pec(mmxpo,)) < Ce. Let us first get an
upper bound for w® — u. Define an auxiliary function

2
€ r—Yy
(I)(.f(f,y,t) =w (I,t) —U(y> o | 9¢2 |

where K > 0 is to be chosen. Pick (z.,v.,t.) € T" x T™ x [0, 1] so that

— Ket  for (z,y,t) € T" x T" x [0, 1],

(e, Yo, te) = T"xr?Il‘lflli{[O 1] ¢

If ®(z.,y.,t.) <0, then we are done as
w(z,t) —u(x) = &(x,z,t) + Ket < Ke.

Therefore, we can assume ®(x.,y.,t.) > 0. This gives that w®(x.,t.) > u(ye).
Let us consider first the case that t. > 0. Since w® and wu are Lipschitz, by
comparing ®(z., y., t.) with ®(y., y., t.), we deduce first that

|Ia - ya| < 052-

By the viscosity subsolution and supersolution tests, we have

Te — n
Ke*+H (xaa wa(xa,ta), 682 y€) < 648_2 = 7’L62,

and

Te — Ye
H (e, 5% ) 20

Combine these two inequalities, and use (H3), (H4) to imply

K€2 < n€2 + H (ye’u(ye)’ xs(; ye) — H (xawe(xe,te), %)

Te — Te —
<ne’+Cly. — x|+ H (xa,u(ya), 552 ye) ~H (a:g,wa(xa,ta), 552 ye)
<ne? + Cly. — z.| < (C +n)e.

By picking K = C' 4+ n + 1, we conclude that t. cannot be positive. Thus, t. = 0,
and

(e, ey t2) < 0 (22) — uly.) < Ce* 4 Clae — ye| < Ce%
Then, for (z,t) € T" x [0, 1],

w(z,t) —u(z) = ®(z,x,t) + Ket < Ce? + Ke < Ce.
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To get the other bound, we need to get an upper bound of v — w®. This can be
done analogously to the above by carefully considering another auxiliary function

12
U(z,y,t) = u(z) — w(y, t) — 'x%f' — Ket  for (z,y,t) € T" x T" x [0,1],
where K > 0 is to be chosen. We omit the proof of this part here. O

5.2. Nonlinear adjoint method and adjoint measures. Let u € Lip (T") be
a solution to (1.1). Let w® be the solution to (5.1) with this fixed wu, that is,
w(z,0) = u (x) in T

The linearized operator of (5.1) about the solution w® is

Lf[¢] = epy + Ho(v,w®, Duw)¢p + D,y H(x,w®, Dw®) - Do — ' Ag.

The corresponding adjoint equation is

—eof + Hy(z,w®, Dw)o® — div(D,H (z,w®, Dw)o®) = e*Ac® in T" x (0, 1),

0% (x,1) = 0g,-

(5.3)

Here, 6., is the Dirac delta measure at zo € T". It is clear that 0° > 0 in T" x (0, 1).

Proposition 5.5. The following holds

1
— | o(x,t)de =- | H.(z,w", Dw")o"dxr >0,

OS/aa(z,t)dzgl forall 0<t<1.

Proof. For t € (0,1), integrate (5.3) on T" to yield

d
e o°dr = [ H.(x,w®, Dw®)o® — div (D,H (z,w*, Dw®)o®) — e*Ac® dx
T T
= H,(x,w*, Dw®)o®dx > 0,
’]Tn
which gives the first claim. The second claim follows immediately. U

For each o¢, there exist a nonnegative Radon measure v* € R(T") satisfying

/1 P(x)o(x,t)daedt = | p(x)dv(x) for all p € C(T").
o Jrn ™

In fact, for a Borel measurable set A C T",

VE(A) = /0 1 /A o (2, 1) dadl.

By Proposition 5.5, v*(T") < 1. We are able to pick a subsequence {¢;} — 0 such
that

Ny Y

as j — oo weakly in the sense of measures.
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Definition 1. We define the set M C R(T") as
M= {J )

u€ES, roeT™
{gj}—0

where S denotes the family of all viscosity solutions to (1.1). Here, we collect all
possible subsequential weak limits (in the sense of measure) of {v°} for all xy € T".

We call each measure v € M an adjoint measure of (1.1). We say that M is the
set of adjoint measures corresponding to (1.1).

Remark 1. It is important noting that the set M is defined implicitly as it depends
on all solutions to (1.1), which are not known a priori.

It turns out that the adjoint measures give us the uniqueness property of solu-
tions to (1.1) as stated in Theorem 1.5. Here is the proof of our main theorem on
uniqueness property.

Proof of Theorem 1.5. For i = 1,2, let w$ be the solution to (5.1) with initial data
u§4. By the convexity assumption (H5), we subtract the equations for w§ and w§ to
get

e(wi —w3)y + Hy(x, w3, Dws3)(wi — ws) + Dy H (z, w5, Dws) - D(w — w3)
< e*A(w§ —ws). (5.4)
Let 0° be the solution to
—eof + H,(z,ws, Dws)o® — div(D,H (z,w§, Dw§)o®) = ?Ac®  in T" x (0, 1),
{as(x, 1) = 0y,
for g € T™ fixed. Multiply (5.4) by o¢, integrate on T" to imply

d

7 Tn(w‘i —w3)o® dx < 0.

In particular,
1
(wf — ) (2, 1) < / / (wf — w)o* dudt
0 n

By letting ¢ — 0 (and passing to a subsequence if needed) and using Lemma 5.4,
we deduce that

(ug — ug)(xy) < /n (u; — ug) dv(z) <0,

for some v € M.

Thus, uy(xg) < us(xg) for every xy € T™. The proof is complete. O

Set

M = U supp(v).
veM
Then we have the following corollary, which is an immediate consequence of Theo-

rem 1.5.
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Corollary 5.6. Let uy,uy be two solutions to (1.1). Assume that u; < us on M.
Then, uy < us.

Remark 2. Of course, this uniqueness result tells us that it is extremely impor-
tant to have further understanding of the adjoint measures in M. In case that
H(z,r,p) = H(x,p) for all (x,7,p) € T" x R x R® with H satisfies appropriate
conditions, then these adjoint measures ¥ € M turn out to be projected Mather
measures (see [6, 16]).

In the general setting, one objection one might have is that M is defined in an
abstract way, which depends on the set of solutions of (1.1) itself, and it is not clear
how to analyze it. This is a fair point, and M should be studied much more in the
near future. In particular, one question of interests is whether M can be defined
without using S.

Nevertheless, in the following two interesting situations, we are able to provide
full characterization of M. These results are consistent with the classical literature
of viscosity solutions, and also with Proposition 1.4.

5.3. Adjoint measures in the strictly monotone case. We have the following
result, which is consistent with the classical literature of viscosity solutions [3, 4].

Proposition 5.7. Assume that
H.(z,r,p) >0 for all (x,r,p) € T" x R x R™.

Then,
M ={0}, and M =.

Proof. Let u be a solution of (1.1). Let w® be the solution to (5.1) with initial data
u”. Let Cy = ||ul|oo(rny + || Dul|goo(rny. Then, for & < 1, we can find C3 > 0 such
that ||w®|| Leo(mn) + || Dw®|| Lo (rny < C5. By our hypothesis, we are able to find a > 0
such that

H,.(x,w®, Dw®) >« for all x € T".
Use this in the adjoint equation to deduce
—e0f + ao® — div (D, H(z,w*, Dw®)o®) < e*Ac®,
which implies
—6(6_%0'5)t —div (D, H (z, w®, Dwa)e_a?tae) < E4A(6_%t0'e).
Integrate the above on T™ to obtain

d at
— (/ e <o° dz) >0 forall te(0,1).

Thus,

_a(l-t)

/ of(z,t)dr < e = for all t € (0,1),
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/Tn dv(x) = /01 /n o (z,t) dedt < 2(1 —e ).

Sending ¢ — 0 yields the conclusion. U

which gives

Basically, Proposition 5.7 says that in the strictly monotone setting, if uy, us are
solutions to (1.1), there is no need to compare u; and us anywhere, and we have
immediately u; = ug, which of course means that we have the unique viscosity
solution to (1.1). Thus, Theorem 1.5 and Proposition 5.7 give a new observation to
the classical comparison result in [4, 3].

5.4. Prototype example — Revisit. Let us now revisit our prototype example in
Section 4. Since we need smoothness of H, we consider

H(w,r,p) = |p|" = V(z) + f(r) for (z,r,p) € T" x R x R".

Here, m > 2 is a given number, and V € C?*(T") is the potential energy with
mint» V' = 0. The function f € C*(R) is convex, and

fr)y=0 for r <0,
{f(r)>0 for r > 0.
It is clear that f’(r) > 0 for r > 0, and f’ is nondecreasing. In particular,
f'(s)>f'(r)y>0 forall s>r>0. (5.5)

This observation will be used later on. An example of f € C%(R) satisfying the
above is f(r) = (max{r,0})3.

Proposition 5.8. Assume the setting in this subsection. Then, for each v € M,
supp(v) C My = {:c e : V(x)= r%nV = O} :

Proof. Let u be a solution of (1.1). Let w® be the solution to (5.1) with initial data
us'. The corresponding adjoint equation is
—eot + f'(w)o® — div (m|Dw®|" 2 Dwfo) = *Ac®.

Integrate this on T" to get that

e— | of(x,t)de= [ [f'(w®)o®dx.
dt Tn Tn

Next, integrate the above in ¢ on [0, 1] to deduce further that

1
/ I (w®)o® dxdt = ¢ <1 - / o°(z,0) dz) <e.
0 T n

Letting € = €; — 0 to yield, thanks to Lemma 5.4,

f'(u)dv = 0.

Tn
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Thus, by using (5.5), we arrive at the fact that supp(r) C {u < 0} for each u € S.
We plan to pick an appropriate solution u in S to conclude.

Now, for each ¢ > 0, let (u,,c) be the unique solution to (E). Note that u. > 0.
Of course, for ¢ € (0, 1], there exists C' > 0 independent of ¢ such that

[eell oo rmy + [[ Dl oo (amy < C-

By using the Arzela-Ascoli theorem, and passing to a subsequence if needed, u, — ug
uniformly in T" as ¢ — 0. By stability of viscosity solutions, ug is a solution of (1.1).
It is clear that ug > 0, and
flug) <V inT",
which gives that {V =0} C {ug = 0}.
Besides, for any z; € T" such that ug(x;) = 0 = ming ug, by the viscosity
supersolution test,

Thus, {V = 0} = {up = 0}, and hence, supp(v) C My = {V = 0}. O

This last proposition is consistent with the result of Proposition 1.4. It is clear
that we get M C My . Nevertheless, we do not get that M = My here, and it is
not clear if this holds in general. It would be very interesting if there is an example
where M C My, .
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