
Consensus Equilibrium Framework for Super-Resolution and
Extreme-Scale CT Reconstruction

Xiao Wang
Harvard Medical School

Boston Children’s Hospital

Venkatesh Sridhar
Purdue University

Zahra Ronaghi
NVIDIA Corporation

Rollin Thomas
Jack Deslippe

Dilworth Parkinson
Lawrence Berkeley Laboratory

Gregery T. Buzzard
Samuel P. Midkiff
Charles A. Bouman

Purdue University

Simon K. Warfield
Harvard Medical School

Boston Children’s Hospital

ABSTRACT
Computed tomography (CT) image reconstruction is a crucial tech-
nique for many imaging applications. Among various reconstruc-
tion methods, Model-Based Iterative Reconstruction (MBIR) en-
ables super-resolution with superior image quality. MBIR, however,
has a high memory requirement that limits the achievable image
resolution, and the parallelization for MBIR suffers from limited
scalability. In this paper, we propose Asynchronous Consensus
MBIR (AC-MBIR) that uses Consensus Equilibrium (CE) to provide
a super-resolution algorithm with a small memory footprint, low
communication overhead and a high scalability. Super-resolution
experiments show that AC-MBIR has a 6.8 times smaller mem-
ory footprint and 16 times more scalability, compared with the
state-of-the-art MBIR implementation, and maintains a 100% strong
scaling efficiency at 146880 cores. In addition, AC-MBIR achieves
an average bandwidth of 3.5 petabytes per second at 587520 cores.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
Image processing;

ACM Reference format:
XiaoWang, Venkatesh Sridhar, Zahra Ronaghi, Rollin Thomas, JackDeslippe,
Dilworth Parkinson, Gregery T. Buzzard, Samuel P. Midkiff, Charles A.
Bouman, and Simon K. Warfield. 2019. Consensus Equilibrium Framework
for Super-Resolution and Extreme-Scale CT Reconstruction. In Proceedings
of The International Conference for High Performance Computing, Network-
ing, Storage, and Analysis, Denver, CO, USA, November 17–22, 2019 (SC ’19),
13 pages.
https://doi.org/10.1145/3295500.3356142

1 INTRODUCTION
A computed tomography (CT) system is an imaging modality to
produce a 3D reconstruction of a scanned object. As one of the most

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’19, November 17–22, 2019, Denver, CO, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356142

popular imaging systems, CT is heavily used for medical imaging,
with 72 million scans per year in the US alone, and is also widely
used in security imaging [12], scientific imaging [18, 24, 25, 27, 28],
and industrial imaging for inspecting manufacturing parts [19].

An important goal for CT imaging is super-resolution, namely
to improve image resolution beyond the limit of detector resolu-
tion. CT super-resolution is not only used to detect early-stage
cancers [13], but is also used to study microscopic structure, such
as brain neurons and synthetic material micro-structures [8]. To ac-
complish super-resolution, interpolationmethods produce a Filtered-
back Projection (FBP) image through an inverse radon transform,
and then interpolate the FBP image to super-resolution. Interpolation-
based methods, however, fail to provide more image detail than
the uninterpolated FBP images [17]. Example-based methods, such
as deep learning and dictionary learning [11], are another popular
choice for super-resolution. They extract image details from similar
example images and apply these details to new images. In many
cases, unfortunately, example-based methods require an unattain-
ably large training database. More importantly in the presence of
unusual image outliers such as metal, image details learned from
example images are not always consistent with the object’s taken
X-ray measurements and example-based methods fail to truthfully
reconstruct.

In contrast, Model-Based Iterative Reconstruction (MBIR) [23,
29] is a Bayesian based method that not only achieves good super-
resolution quality consistent with X-ray measurements [9, 21], but
also reduces the radiation doses by up to 80% for certain applica-
tions [14]. At a high level, MBIR has better image quality because it
incorporates complex mathematical models to preserve X-ray acqui-
sition information, while estimating image details and suppressing
noise from image spatial property.

Despite of the benefits described above, the realistic but complex
models for MBIR have a very large memory requirement to store a
physics-related geometry system matrix, whose size grows linearly
with image size. Any naive way to shrink or distribute the models
among distributed nodes corrupts the CT physics-geometry system
matrix. Therefore, the highmemory requirement restricts the image
resolution that MBIR can achieve, as such geometry system matrix
information has to be broadcast to and stored on all nodes.

In addition to an excessive memory requirement, the parallel
scalability of MBIR is another performance bottleneck. With its
complex models, MBIR often has much longer reconstruction times
and is computationally much more expensive than other methods

1

https://doi.org/10.1145/3295500.3356142
https://doi.org/10.1145/3295500.3356142

SC ’19, November 17–22, 2019, Denver, CO, USA X. Wang et al.

Detector

voxels

(e)

𝑥1
𝑥2

𝑥3 𝑥4

𝑦1
𝑦2

𝑥1

𝑥6

𝐴
2

,5

𝐴
2

,6

𝑥5

X
-r

ay
s

X-ray Source
 (f)

row
s

𝑥1

𝑥6 𝑥2

(g)

ch
an

ne
ls

(h)

𝑦4
𝑥1 𝑥7

𝐴4,2 𝐴4,7
𝑥2

X-rays

X
-r

ay

So
ur

ce

rows

45° 90° 135° 180°

Detector

Sample Object

Rotation
Axis

slice
voxel 𝑥1

(a)

X-ray
Source

Detector

X
-r

ay
s

(b)

𝑥1

(c)

𝑥1

X-ray
Source

D
et

ec
to

r

(d)

𝑥1

45° 90° 135° 180°

Sinogram

ch
an

ne
ls

view angels
45° 90° 135° 180°

(i)

𝑦1 𝑦2

𝑦3

𝑦4

Sinogram

ch
an

ne
ls

view angels
(j)

intersection

voxel 𝑥1’s
sinusoidal trace

Figure 1: (a) A CT system at 45° view angle with a slice in yellow and a voxel x1 in red. (b), (c) and (d) CT system rotates to 90°,
135° and 180° respectively. (e) An X-ray at 45° view angle passes through x1 and its neighbor voxels and hits the detector with
a measurement y1. The intersection between the X-ray and each voxel is shown as a line segment with a different color for
each. (f), (g) and (h) X-rays pass through x1 at 90°, 135° and 180° respectively. (i) Shows the sinusoidal memory layout for x1 in
Sinogram. (j) Demonstrate an intersection between two voxel traces.

by several orders of magnitude. Therefore, four parallelization levels
have been proposed to reduce computation times: (1) parallelizing
SIMD operations for a voxel update [27], where a voxel is a three-
dimensional pixel in the reconstruction volume; (2) parallelizing
across voxels [6, 31]; (3) parallelizing across super-voxels (SVs),
where an SV is a group of spatially-close voxels in the shape of a
rectangular cuboid [26, 27]; and (4) parallelizing across slices [3,
7, 18], where a slice is defined as a cross-section of the scanned
object with a fixed thickness. Unfortunately, these four levels of
parallelization are insufficient to fully utilize a large supercomputer.
With all four parallelization levels, the scalability for the state-of-
the-art MBIR implementation is still limited to a small portion of a
supercomputer [27].

This paper proposes the Asynchronous Consensus MBIR Algo-
rithm (AC-MBIR) that significantly reduces MBIR’s memory foot-
print and achieves better scalability. Without AC-MBIR, MBIR has
a limited super-resolution and cannot scale to a large supercom-
puter. AC-MBIR allows each node to perform an individual recon-
struction using a subset of measurements, and then uses a lossless
Consensus Equilibrium Method (CE) to merge the individual recon-
structions asynchronously into a consensus solution. But unlike
the previous work on CE that has no memory footprint reduction
or distributed node implementation [4, 22], AC-MBIR uses a new
technique, grouped-view partition, to optimize memory footprint re-
duction. Furthermore, parallelism for AC-MBIR is not only achieved
by dividing a reconstruction volume into slices and SVs, but also
by dividing models and measurements into data subsets without

corrupting their information, and performing parallel individual
reconstructions with a low communication overhead.

In summary, this paper makes three contributions: (1) propos-
ing a novel grouped-view partition technique to distribute the CT
geometry model and measurements among nodes, and optimizing
memory footprint reduction; (2) introducing the AC-MBIR algo-
rithm that enables parallel asynchronous consensus updates for
a high scalability on a supercomputer with a low communication
overhead; and (3) applying the CE Method to AC-MBIR to ensure a
convergence to the global optimum. Super-resolution experiments
show that AC-MBIR has a 6.8 times smaller memory footprint and
16 times more scalability, compared with the state-of-the-art MBIR
implementation [27], and maintains a 100% strong scaling efficiency
at 146880 cores. In addition, AC-MBIR achieves an average band-
width of 3.5 petabytes per second at 587520 cores.

2 BACKGROUND
2.1 CT System Setup
A CT system places the sample object in the center and the CT
system has a gantry that rotates around the sample object with an
x-ray source at one end of the gantry and an X-ray detector at the
other end. At each view angle of a rotation, the X-ray source emits X-
rays that pass through the sample object and project onto an X-ray
detector, whose horizontal sensor units are channels and vertical
sensor units are rows. Each received CT measurement on the X-ray
detector corresponds to the integral of radio density of the sample

2

Consensus Equilibrium for Super-Resolution and Extreme-Scale CT SC ’19, November 17–22, 2019, Denver, CO, USA

SV Buffer

(a)

sub−volume

Sinogram

Sinogram

(b)
SV Buffer

Ascending Address

Ascending Address

Ascending Address

SV

SV

Memory Layout For A Block

(c)

block

sub-volume

sample object

voxels

Figure 2: (a) Two nodes update two sub-volumes simultaneously and each core of a node updates a different SV in its assigned
sub-volume. (b) Two private SV buffers for efficient data operations and each SV buffer consists of blocks of measurements. (c)
Shows the memory layout for a block with completely regular access pattern.

object along the path of X-rays at the current view angle. Figure 1(a)
shows the CT system setup at view angle of 45° with a single slice
depicted in yellow and a voxel, x1, in that slice depicted in red. In
addition, detector channels and rows are represented as short dashes
in the detector. Figure 1(e) shows an X-ray that passes through voxel
x1, and x1’s neighbor voxels, x2, x3 and x4, at 45° view angle and
hits the right side of the detector with a CT measurement, y1. We
define the length of intersection between the X-ray in Figure 1(e)
and voxel x2 as A1,2, shown as a blue line segment. Similarly, the
lengths of intersection for the X-ray in Figure 1(e) and voxels x1, x3
and x4 are denoted as A1,1, A1,3 and A1,4 respectively. Since y1 is a
line integral of all voxels’ radio density on the path of the X-ray,
y1 can be written as y1 = A1,1x1 + A1,2x2 + A1,3x3 + A1,4x4 + e1,
where e1 is y1’s data error and represents the data corruption from
scanner noise and detector artifacts.

Figure 1(b), (c) and (d) are the CT system setup rotated to view
angles of 90°, 135° and 180° respectively, and Figure 1(f), (g) and (h)
show measurements, y2, y3 and y4 for the X-rays that pass through
voxel x1 at corresponding view angles. Note that the X-rays for
y2, y3 and y4 pass through a different set of voxels with different
lengths of intersections at each view angle. For example, A2,1 is
longer than A3,1 and A1,1. In addition, X-rays hit different detector
channels at different view angles. In this example, a right detec-
tor channel receives measurement y1 at 45° and a center detector
channel receives measurement y4 at 180°. If we use e2, e3 and e4 to
represent the data errors for y2, y3 and y4, then voxel x1 can then
be computed as the solution to the following linear equations:

y1 = A1,1x1 +A1,2x2 +A1,3x3 +A1,4x4 + e1 , (1)
y2 = A2,5x5 +A2,1x1 +A2,6x6 + e2 , (2)
y3 = A3,2x2 +A3,1x1 +A3,6x6 + e3 , (3)
y4 = A4,7x7 +A4,1x1 +A4,2x2 + e4 , (4)

If we generalize the above equations for all voxels, then we need
to compute the solution to the following linear system:

y = Ax + e , (5)

where reconstructionx is anNx×Ny×Nzmatrix (Nx×Ny voxels in
a slice andNz slices); measurementsy is anNr×Nc×Nv matrix, also
called Sinogram, with Nr detector rows, Nc detector channels, and
Nv view angles; A is a 6 dimensional geometry system matrix and

the size of A increases proportionally with the sizes of x and y. For
simplicity, all following equations in this paper vectorize x matrix
as an N dimensional vector, where N = Nx ×Ny ×Nz, y matrix as
an M dimensional vector, where M = Nr × Nc × Nv , and A as an
M×N systemmatrix. Each element ofAmatrix,Ai, j , represents the
length of intersection between the X-ray for measurement yi and
voxel x j . Ai, j is zero when x j is not on the path of the X-ray for yi .
To show how large A matrix is and why it leads to a large memory
footprint, consider an x and an y of size 1000× 1000× 1000 for both.
In addition, we assume that the A matrix is stored in memory in
floating point sparse matrix format with 0.1% non-zero elements.
In this example, the entire Amatrix then requires a memory size of
3638 terabytes!

In addition, if we trace out the memory locations of each voxel’s
measurements in Sinogram, the memory locations follow a sinu-
soidal trace in Sinogram as X-rays that pass through the same voxel
hit different detector channels at different views. To update each
voxel, cache lines must read and write data for the voxel following
the same sinusoidal trace in memory. Cache lines, however, has a
high cache miss rate as no cache lines can efficiently operate on
data following a sinusoidal path in memory. In addition, each voxel
has a unique trace in Sinogram and different voxel’s traces often
overlap at some intersections in Sinogram. Spatially close voxels
have highly overlapped traces and more intersections. Spatially
separated voxels have fewer overlapped traces with few or no inter-
sections. Figure 1(j) shows an intersection colored in white between
two voxel traces. To read and write data for voxel updates, locks or
atomic operations must be applied to data at the intersections.

2.2 MBIR Formulation
Unfortunately, the solution to Equation (5) cannot be directly com-
puted by taking a linear inverse, given that the data error e is
unknown and cannot be measured. In addition, the size of recon-
struction for super-resolution, N , is often much bigger than the
size of measurements, M , leading to undetermined solutions to
Equation (5). For example, Equations (1-4) have 4 measurements
but 7 voxels to be computed. Therefore, voxels are undetermined
with many possible solutions. For reconstruction x to be a deter-
mined solution, the size of measurements, M , must be at least as
large as the size of reconstruction, N . To have a largerM size, the

3

SC ’19, November 17–22, 2019, Denver, CO, USA X. Wang et al.

CT detector resolution must be higher asM is proportional to the
detector resolution.

To address the above problems without spending millions of
dollars on a scanner for a higher detector resolution, the super-
resolution MBIR is the solution to the following cost function:

x = argmin
x

{
1
2

y −Ax

2Λ + R(x)} (6)

where Λ is a diagonal weighting matrix that models the CT system
statistical noise.R(x) is a prior model to estimate image details when
measurements y are insufficient. In Equation (6), 12

y −Ax

2Λ is the
forward model to fit reconstruction x from measurements y. The
prior model, R(x), is to penalize irregular image spatial property,
suppress noise and estimate image details based on prior informa-
tion. In this paper, we use a strictly convex Generalized Markov
Random Field (GMRF) prior model to estimate each voxel’s image
details based on its neighboring voxels [23, 30] and Equation (6)
has a unique global optimum given that both the forward and the
prior models are strictly convex. Equation (6) can be viewed as a
supervised machine learning problem that trains on a high variance
dataset with limited size, whose forward model is the mean-square-
error (MSE) of a weighted linear regression model and the prior
model is a regularizer to prevent data over-fitting.

2.3 Related Work
To compute Equation (6) efficiently, there are two approaches: the
volume partition and measurement partition methods. The volume
partition methods include Grouped Coordinate Descent [6, 31],
Parallel Iterative Coordinate Descent [10, 16, 20], and the Non-
Uniform Parallel Super-Voxel (NU-PSV) algorithm [27]. To achieve
parallelism, the volume partition methods split the reconstruction
volume, x , into smaller voxel groups and assign each core with a
voxel group to be updated in parallel. The scalability in such meth-
ods, however, is limited by the number of voxels in a reconstruction.
In addition, the volume partition methods often have a high com-
munication overhead with little speedup [6, 31]. Furthermore, the
volume partition method cannot reduce the memory footprint for
MBIR and the attainable image resolution is therefore limited.

The measurement partition methods, such as Parallel Mini-Batch
Gradient Descent [15] and Ordered-Subset methods [1, 5], split
measurements, y, and the system matrix into subsets and distribute
them among cores. Each core reconstructs a private volume using
its assigned subset, and then the private reconstruction volumes
from all cores are merged into a consensus reconstruction. The mea-
surement partition methods, however, are approximation methods
and a convergence to the global optimum is not guaranteed. If mea-
surements y are uniformly sampled among subsets, the methods
converge close to the global optimum. If y are partitioned non-
uniformly, the converged solution is far from the global optimum.
In addition to the convergence issue, the amount of parallelism for
the measurement partition methods is very limited as the number
of parallel cores is at most the number of subsets, and subsets are
usually few (≤ 40) as too many subsets slow down convergence [1].

Recently, the Consensus Equilibrium Method (CE) shows that it
can partition measurements in any order and always converge to
the global optimum with a proof in [4]. The paper in [4], however,

(a) (b)

Figure 3: (a) An LR image with significant noise recon-
structed from 1/4 of the uniformly sampled measurements.
(b) A consensus HR image with much less noise and clearer
details.

only discusses CEmathematical theory and does not have any appli-
cation to massive parallelism, memory footprint reduction or image
reconstruction. The Multi-Agent Consensus Equilibrium (MACE)
algorithm in [22] uses the CE Method for CT image reconstruc-
tion and partitions measurements into uniform sparse-view subsets,
which are subsets of interleaved view angles. Taking Figure 1 as
an example with 2 uniform sparse-view subsets, measurements for
Figure 1(a) and (c) are in a subset, and measurements for Figure 1(b)
and (d) are in the other subset. The MACE algorithm, however, is
for single slice 2D reconstruction, and does not have a distributed
node implementation or experiments to measure the reduction in
the memory footprint.

In comparison, AC-MBIR utilizes both volume partition and mea-
surement partition for a fully 3D reconstruction. AC-MBIR not only
scales to a large supercomputer with little communication over-
head, but also guarantees a convergence to the global optimum. In
addition, AC-MBIR proposes a new measurement partition method,
grouped-view partition, that optimizes memory footprint reduction
for super-resolution CT reconstruction.

2.4 The State of The Art Implementation
This paper compares AC-MBIR with the NU-PSV algorithm, which
is currently the fastest MBIR implementation and scales to hun-
dreds of thousands of cores, and was selected as a Gordon Bell
Prize finalist [27]. We do not compare AC-MBIR with Mini-Batch
Gradient Descent or Ordered-Subset (except convergence experi-
ments in Figure 7) because their reconstructions are approximated
and incomparable with AC-MBIR’s exact solution. AC-MBIR is not
compared with the MACE algorithm as MACE is for 2D single-slice
reconstruction but AC-MBIR is for fully 3D reconstruction.

NU-PSV achieves its scalability by dividing a full volume x into
sub-volumes, where a sub-volume is a consecutive group of slices.
Nodes update different sub-volumes simultaneously, and different
cores in a node update spatially separated super-voxels (SVs) in
a sub-volume in parallel. Figure 2(a) shows an example volume
divided into 2 sub-volumes and two SVs in a sub-volume, and each
SV is a group of neighboring voxels in the shape of a 3 × 2 × 2
rectangular cuboid. Since both spatially separated SVs and different

4

Consensus Equilibrium for Super-Resolution and Extreme-Scale CT SC ’19, November 17–22, 2019, Denver, CO, USA

sub-volumes have little shared data to access and update in Sino-
gram, as explained in Section 2.1, NU-PSV has a low communication
overhead by minimizing shared data among nodes and cores.

To achieve a high per-core performance, each core updates vox-
els in its assigned SV in sequence using the Coordinate Descent
method [26, 27]. Note that measurements for an SV are closely
grouped together in the shape of a sinusoidal band in the Sino-
gram, as shown in Figure 2(b), and each voxel in the SV follows a
sinusoidal trace within the band. Example voxels and their corre-
sponding traces in Sinogram are colored in red in Figure 2(a) and (b).
Different voxels in an SV follow different, but highly overlapped,
traces in the same band with many shared data in common. There-
fore, measurements for voxels in an SV are close in memory and
updating voxels in an SV in sequence is cache efficient with up to
187 times speedup on 20 cores [26].

Furthermore, NU-PSV reorganizes the sinusoidal memory layout
for an SV into blocks ofmemory, called super-voxel buffer (SV buffer),
that reads and writes data from memory in a completely regular
pattern. To reorganize the memory layout for a good hardware pre-
fetching and SIMD performance, NU-PSV introduces redundant
measurements to the SV buffers and pads zero-value elements to
the system Amatrix [20, 26, 27]. Figure 2(b) shows two private SV
buffers and outlines an example block in an SV buffer with a yellow
boundary. Figure 2(c) shows the memory layout for the example
block and features a completely regular access pattern, where red
cells in the figure are memory locations for a voxel’s measurements.

Although NU-PSV has the above benefits, its resolution is limited
by the memory footprint and its scalability is limited by the number
of slices. As each sub-volume must have at least 1 slice, the number
of parallel nodes is at most the same as the number of slices. NU-
PSV cannot increase its scalability further because it has depleted
all sources of parallelism from dividing reconstruction x .

3 METHODS
3.1 Reducing Memory Footprint and Ensuring

Convergence
To reduce the memory footprint, the system matrix A and measure-
ments y should be partitioned and stored in distributed memory
without corrupting their information. In this section, we will apply
the CE Method to super-resolution MBIR, so that the system matrix
and the measurements can be partitioned in any order, including
any non-uniform sampling, and the final reconstruction from a
partitioned system matrix and measurements is exactly the same as
the solution to unpartitioned measurements. With the CE Method,
the memory footprint for MBIR reduces significantly as a memory
only needs to hold data for a partitioned subset.

To use the CE Method, we first partition measurements y intoG
subsets in any order, and the ith measurement subset is denoted as
yi . Similarly, the system matrix A is partitioned in the same order,
and the system matrix rows related to yi is denoted as Ai . For each
subset yi , MBIR produces a low-resolution (LR) reconstruction,
denoted as vi . More precisely, an MBIR LR reconstruction from the
ith subset is the solution to a sub-problem, f i (vi), defined below:

vi ← argmin
v i

f i (vi) = argmin
v i

{
1
2

yi −Aivi

2
Λi
+
R(vi)

G

}
, (7)

where Equation (7) is the same as Equation (6), except that vi

is not a reconstruction from all measurements, but from the ith
subset. Then LR reconstructions from all subsets are merged into a
consensus high-resolution (HR) reconstruction. Figure 3(a) shows
an LR image reconstructed from 1/4 of the uniformly sampled
measurements. Figure 3(b) shows a consensus HR solution after
merging all LR reconstructions. Figure 3(a) has much image noise
and lacks image details while Figure 3(b) suppresses noise and
recovers image details.

A crucial question is how to merge LR reconstructions into a
consensus HR solution, x . A popular method is Parallel Mini-Batch
Gradient Descent with its pseudo-code in Algorithm 1 [15], where
α is a fixed learning rate and ∇f i is the gradient of f i with respect
to vi . In step 4, vi is updated along the direction of ∇f i . After
all LR reconstructions are updated, the consensus solution, x , is
updated in step 6 by averaging all LR reconstructions. In step 8,
the averaged LR reconstruction is used as the input to update vi in
the next iteration. If each subset only holds a single measurement,
then Algorithm 1 is the Parallel Stochastic Gradient Descent [32]. If
the learning rate, α , is replaced with a relaxed learning rate that di-
minishes across iterations, then Algorithm 1 is the Ordered-Subset
algorithm [1]. To converge to an approximated solution close to the
global optimum, Mini-Batch Gradient Descent requires that mea-
surements and the system matrix are partitioned uniformly and the
gradient, ∇f i , needs to be approximately the same across different
subsets. Otherwise, Mini-Batch Gradient Descent converges to a
solution far from the actual global optimum.

Algorithm 1 Parallel Mini-Batch Gradient Descent Algorithm
INPUT: Uniformly partitioned measurements y and matrix A.
LOCAL: G: the number of subsets. α : A fixed learning rate. ∇f i :

A gradient of f i . vi : the ith LR reconstruction.
OUTPUT: x : the consensus HR solution.
1: Initialize x , vi
2: while Not Converged do
3: for each measurement subset i from 1 toG do in parallel
4: vi ← vi − α∇f i (vi)
5: end for
6: x ← Average(v1, · · · ,vG)
7: for each measurement subset i from 1 to G do in parallel
8: vi ← x
9: end for
10: end while

To ensure a convergence to the global optimum of Equation (6)
and enable non-uniform subsets, we introduce the CE Method’s
proximal function to MBIR, denoted as Fi (x), whose goal is to find
a balance between an LR reconstruction, vi , and the consensus HR
solution, x :

vi ← argmin
v i

F i (x) = argmin
v i

 f
i (vi) +

vi − x

2
2σ 2

 , (8)

where the proximal map function input is x and output is vi . The
goal of f i (vi) is to findvi that fits the measurements for the subset,

5

SC ’19, November 17–22, 2019, Denver, CO, USA X. Wang et al.

SV’s sinusoidal band in Sinogram

(a)
block1 block2

block3
block4

block5
block6

block7
block8

SV buffer with all views

(b) view angles

channels

view angles channels

(c)

block1 block2

subset 1

block1 block2

subset 2

block1 block2

subset 4

block2

subset 3

block1 (d)

block1 block2

subset 1

block1 block2

subset 2

block1 block2

subset 4

block2

subset 3

block1

Figure 4: (a) A zoom-in on an SV’s sinusoidal band in Sinogram. (b) An SV buffer copied from the band in Sinogram and every
four columns is a block. Yellow cells in the SV buffer are redundant measurements. (c) 4 measurement subsets uniformly
sampled across view angles. The yellow cell redundant measurements are significantly more than those in (b). (d) 4 grouped-
view partitioned subsets. Notice that the redundant measurements are a lot fewer than (c).

and the goal of the penalizing term,

v i−x

2

2σ 2 , is to constrain vi to
be close to the consensus HR solution, x . σ is a constant scalar that
controls the strength of the penalizing term for fastest convergence.
The optimal value for σ is found through convergence experiments
and σ value increases when the number of subsets, G, increases.
In each iteration, every subset evaluates its proximal map func-
tion, F i , and produces an LR reconstruction. Then the consensus
solution, x , is updated by fusing all LR reconstructions, where the
fusing operation is more than a simple averaging, as we will discuss
below. Iterations repeat until x = vi for i = 1, 2, ...,N and the
final consensus solution x is exactly the same as the solution to
Equation (6).

Algorithm 2 Consensus Equilibrium MBIR
INPUT: Measurements y and matrix A partitioned in any order.
LOCAL: wi : a temporary copy for vi . ui : input change to prox-

imal map function, F i (x). Other variables are the same as in
Algorithm 1.

OUTPUT: x : the consensus HR solution.
1: Initialize x , vi ,wi , and ui
2: while x , vi , i = 1, 2, ...,G do
3: for each subset i from 1 to G do in parallel
4: vi ← argminv i F i (x + ui)
5: (w

′

)i ← wi

6: wi ← (2vi − x − ui)
7: wi ← ρwi +

(
1 − ρ

)
(w
′

)i , 0 ≤ ρ ≤ 1
8: end for
9: x ← Average(w1, · · · ,wG)

10: for each subset i from 1 to G do in parallel
11: ui ← x −wi

12: end for
13: end while

Algorithm 2 summarizes how to apply the CE Method to MBIR
and what the fusing operation does. For each subset, step 4 adds
the proximal function input with ui and produces an LR recon-
struction. Step 6 adjusts the LR reconstruction and stores the new
value in wi . Step 7 damps the adjustment in step 6, where ρ is a
constant scalar between 0 and 1 to control the degree of damping
for fast convergence. The optimal value for ρ is chosen through
convergence experiments and in general, more parallelism requires
a smaller ρ for fastest convergence. Step 9 updates the consensus
solution, x , by averagingwi across all subsets. If x , vi , the proxi-
mal function input change,ui , is updated and iterations repeat until
a convergence is reached, and a convergence proof is provided in
Appendix A.

Note that Algorithm 2 allows the measurements and the sys-
tem matrix to be partitioned in any order. In the special case of
a uniform sparse-view partition, Algorithm 2 is the same as the
MACE algorithm [22]. To show convergence rate comparison be-
tween Algorithm 1 and Algorithm 2, experiments in Figure 7 show
that AC-MBIR has a much faster convergence than Mini-Batch
Gradient Descent for both the uniform sparse-view and the non-
uniform partitions. In addition, Mini-Batch Gradient Descent with
few sparse-view subsets converges closer to the global optimum
than the same algorithm with non-uniform partition. In contrast,
AC-MBIR always converges to the global optimum for both the
uniform and non-uniform partitions.

3.2 More Memory Footprint Reduction
The uniform sparse-view partition is widely used but does not
optimize memory reduction. This section proposes a non-uniform
grouped-view partition that further reduces memory footprint.

Figure 4(a) zooms in on an SV’s 3D sinusoidal band in Sinogram
and the band curves up and down in Sinogram, as explained in
Section 2.1, with a varying width at different view angles [27]. In
addition, neighboring view angles have similar widths and distant

6

Consensus Equilibrium for Super-Resolution and Extreme-Scale CT SC ’19, November 17–22, 2019, Denver, CO, USA

view angles have dissimilar widths. Figure 4(b) copies data from
the sinusoidal band to an SV buffer column by column (in channel
direction) and every 4 view angles is a block. Each block is padded
with redundant data to make the block a rectangular cuboid. For
each redundant data, its corresponding system matrix row is also
padded with zeros so that computations on the redundant data do
not change the final reconstruction. In the example of Figure 4(b),
redundant data are colored in yellow and the essential data for
reconstruction are colored in blue. In addition, Figure 4(b) has 8
blocks and neighboring blocks are separated by short vertical dash
lines. Columns in the same block have a constant width, although
the width varies across different blocks. To have a good data vector-
ization, cache lines operate on data in the SV buffer block by block
with a completely regular data access pattern.

Figure 4(c) uniformly partitions the SV buffer into 4 subsets
across view-angles. Subset 1, for example, takes the first column of
each block in the SV buffer and groups these columns into 2 new
blocks in the shape of rectangular cuboids. Subset 2 takes the second
column of each block in the SV buffer and group columns into 2
new blocks. Note that Figure 4(c) has 31%more redundant data than
in the SV buffer. This phenomenon is due to the fact that uniformly
partitioned subsets consist of data from distant view angles and have
widely varying widths in each block. Therefore, significant amounts
of redundant data are needed to pad each block into rectangular
cuboids and the benefit of memory footprint reduction diminishes.
To make matters even worse, the uniform sparse-view partition has
more redundant data with more subsets.

To reduce redundant data, Figure 4(d) partitions the SV buffer
into 4 grouped-view subsets. Each block in a subset consists of data
from neighboring view angles, and different blocks in the same
subset consist of data from distant view angles. In the example of
Figure 4(d), subset 1 consists of SV buffer’s first and fifth blocks.
Subset 2 consists of SV buffer’s second and sixth blocks. With the
grouped-view partition design, Figure 4(d) has the same amount
of redundant data as the unpartitioned SV buffer in Figure 4(b),
and significantly fewer redundant data than the uniform sparse-
view partition in Figure 4(c). Synchrotron imaging experiments
in Table 1 shows that the redundant data for 16 uniform sparse-
view subsets increase the memory footprint and the computations
on data by 2.1 times, compared to the unpartitioned baseline. 16
grouped-view subsets, however, reduce the uniform sparse-view’s
memory footprint by 33% and the amount of computations by 38%.
Table 2 further shows that the grouped-view partition has a 3.9
times speedup over the uniform sparse-view partition at 8640 nodes
(587520 cores).

3.3 Improving Scalability
The CE Method has a unique source of parallelism across measure-
ment subsets as different LR reconstructions can be updated in
parallel. To improve scalability, the AC-MBIR algorithm is a new
implementation that improves on the NU-PSV algorithm with an
orthogonal level of parallelism across subsets, and can scale to the
entire supercomputer even for a dataset with few slices.

The AC-MBIR algorithm divides the consensus HR solution, x ,
into sub-volumes with a unique color for each sub-volume. Ex-
ample Figure 5(a) shows a consensus solution with 4 different

sub-volume
sub-volume
sub-volume

sub-volume

sub-volume

sub-volume
sub-volume

sub-volume𝑃(1,1)

LR reconstruction, 𝑣1 LR reconstruction, 𝑣2

𝑃(1,4)

𝑃(1,3)

𝑃(1,2)

𝑃(2,1)

𝑃(2,4)

𝑃(2,3)

𝑃(2,2)(b)

sub-volume

sub-volume

sub-volume

sub-volume
consensus
solution, 𝑥

𝑃(1,2) and 𝑃(2,2)

𝑃(1,1) and 𝑃(2,1)

𝑃(1,4) and 𝑃(2,4)

𝑃(1,3) and 𝑃(2,3)
(a)

Figure 5: (a) Shows a consensus HR solution with 4 sub-
volumes. (b) Shows 2 LR reconstructionswith 4 sub-volumes.
Nodes in the same cabinet update the same color sub-
volumes in v1 and v2 as well as the same color sub-volume
in the consensus solution.

color sub-volumes. Similarly, each LR reconstruction (2 subsets)
in Figure 5(b) is also divided into 4 sub-volumes, with different
sub-volumes across subsets colored the same if they merge to the
same color sub-volume in the consensus HR solution. Then the
AC-MBIR algorithm divides nodes in a supercomputer into clusters
and cabinets, where the number of clusters equals to the number
of measurement subsets and the number of cabinets is equal to
the number of sub-volumes. Each node, denoted as P(i, j), has dual
identities with i as the conceptual cluster it belongs to and j as
the conceptual cabinet it belongs to. Example Figure 5(b) shows 8
nodes divided into 2 clusters with P(1, 1), P(1, 2), P(1, 3), P(1, 4) in
a cluster. At the same time, nodes are also divided into 4 cabinets
with P(1, 1) and P(2, 1) in a cabinet.

To map the node configuration with computations for image
reconstruction, AC-MBIR lets each node P(i, j) update the jth sub-
volume of the ith LR reconstruction, and nodes in the same cluster
share measurements and system matrix rows from the same subset,
but update different color sub-volumes simultaneously. Nodes in
the same cabinet have different measurements and system matrix
rows, but update and merge the same color sub-volumes simulta-
neously across different subsets. After merging, nodes in the same
cabinet broadcast the merged sub-volume in x to the same color
sub-volumes in the LR reconstructions. To fully utilize parallel cores
and SIMD computations, cores of a node are mapped to compu-
tations for a SV update in a sub-volume, and SIMD vectors are
mapped to computations for a voxel update in a manner similar
to the NU-PSV algorithm. See the pseudo code in Algorithm 3 for
details. The fusing operation across subsets is achieved through
MPI all reduce operations among nodes in the same cabinet. In
step 14, neighboring sub-volumes exchange sub-volumes’ bound-
ary voxels and use the boundary voxels in evaluating the prior
model in Equation (7).

7

SC ’19, November 17–22, 2019, Denver, CO, USA X. Wang et al.

(a)

(a)

(b)

(b)

Figure 6: (a) A zoom-in image of a slice reconstructed by AC-MBIR with a 4.9 times super-resolution. (b) The same slice recon-
structed by interpolation method with more noise and artifacts.

Algorithm 3 AC-MBIR
INPUT: The partitioned CT measurements and system matrix.
LOCAL: G: the number of subsets. vi : the ith LR reconstruction.
[vi]j : the jth sub-volume of vi . [vi]j,k : the k th SV of [vi]j .
Similar notations apply towi , ui .

OUTPUT: x : the consensus HR solution.
1: Initialize x , vi ,wi , and ui
2: while x , vi , i = 1, 2, ...,G do
3: for each subset i do in parallel across clusters
4: for each sub-volume [vi]j ∈ vi , do in parallel across

nodes
5: for each SV [vi]j,k ∈ [vi]j , do in parallel across

cores
6: [vi]j,k ← argmin[v i]j,k F

i ([x]j,k + [ui]j,k)

7: [(w
′

)i]j,k ← [wi]j,k

8: [wi]j,k ← (2[vi]j,k − [x]j,k − [ui]j,k)
9: [wi]j,k ← ρ[wi]j,k +

(
1 − ρ

)
[(w

′

)i]j,k

10: [x]j,k ← Average([w1]j,k , · · · , [wG]j,k),
through MPI all reduce among nodes in a cabinet

11: [ui]j,k ← [x]j,k − [wi]j,k

12: end for
13: end for
14: Neighboring sub-volumes exchange boundary voxels

through MPI send/receive operations.
15: end for
16: end while

Note that AC-MBIR is a unique asynchronous consensus opti-
mization for reducing communication overhead. The common ap-
proach for consensus optimization selects a master node to update
the consensus solution while the remaining worker nodes update
LR reconstructions [30]. This approach, however, has a large global
communication overhead as worker nodes’ updates are bounded by
how fast the master node updates and vice versa. AC-MBIR, how-
ever, has asynchronous updates and much smaller communication
overhead because each node is a worker node and the master node
at the same time. For example in Figure 5(b), P(1, 1) and P(2, 1)
are in the same cabinet updating the blue sub-volumes of the LR
reconstructions, but also update, merge and broadcast the blue sub-
volume in the consensus solution. Therefore, AC-MBIR reduces
communication overhead by restricting inter-node communications
to nodes in the same cabinet and avoids global communications.
Experimental results in Section 4.1 show that the asynchronous
updates keep AC-MBIR’s communication overhead at a low level,
with 16% of its runtime spent on communication overhead at 272
nodes (18496 cores) and 13% of its runtime spent on communication
overhead at 1080 nodes (73440 cores).

4 RESULTS
All performance numbers are evaluated on two datasets, a Ceramic
Matrix Composite (CMC) dataset, imaged under synchrotron at
Lawrence Berkeley National Laboratory, and an Iron Hydroxide
(FeOOH) dataset, imaged under X-ray microscope at Air Force Re-
search Lab. The CMC is a compositematerial for the next-generation

8

Consensus Equilibrium for Super-Resolution and Extreme-Scale CT SC ’19, November 17–22, 2019, Denver, CO, USA

Grouped-view subsets G = 1
(NU-PSV) 2 4 8 16

Nodes 108 216 432 864 1728
Memory footprint

per node (Gigabytes) 58.0 31.4 18.3 11.2 8.5

Memory footprint
reduction 1.0x 1.8x 3.2x 5.2x 6.8x

Run time (secs) 1681.0 779.8 342.6 258.4 215.7
Computation increase 1.0x 1.0x 1.0x 1.1x 1.3x

Strong scaling
efficiency 100% 108% 123% 89% 63%

Bandwidth
(petabytes/sec) <0.1 <0.1 <0.1 <0.1 <0.1

(a) AC-MBIR with grouped-view subsets

Uniform-view subsets G = 1
(NU-PSV) 2 4 8 16

Nodes 108 216 432 864 1728
Memory footprint

per node (Gigabytes) 58.0 33.4 21.3 15.0 11.4

Memory footprint
reduction 1.0x 1.7x 2.7x 3.9x 5.1x

Run time (secs) 1681.0 807.1 385.7 347.1 347.5
Computation increase 1.0x 1.0x 1.2x 1.5x 2.1x

Strong scaling
efficiency 100% 104% 131% 91% 63%

Bandwidth
(petabytes/sec) <0.1 <0.1 <0.1 <0.1 <0.1

(b) AC-MBIR with uniform sparse-view subsets

Table 1: CMC dataset experiments for AC-MBIR with 108 sub-volumes but with different numbers of subsets,G. The left table
is for grouped-view subsets and the right table is for uniform sparse-view subsets. More subsets lead to a rapidly decreasing
memory footprint per node and an increased number of operations. Note that the grouped-view partition with all numbers
of subsets has less memory footprint, shorter runtimes, and fewer computations than the uniform sparse-view partition.

aviation turbine-engine blades and space shuttles engine compo-
nents [2]. The FeOOH is amaterial under development for nanorods.

The computing platform is the Cori Knights Landing supercom-
puter at the National Energy Research Scientific Computing Center
(NERSC) with 68 cores per node. More information on the hardware
can be found in the artifact description appendix. All data are stored
and loaded into memory as single-precision floating point except
for the system matrix. The system matrix is pre-computed as single-
precision floating point, but stored in the NERSC data filesystem in
a sparse matrix format and quantized as 4-bit unsigned characters
for minimal memory footprint. When performing reconstructions,
the quantized system matrix is loaded into memory and converted
back to single-precision floating point [3, 20].

All runtimes are based on the entire program execution minus
the IO time, and are measured at least three times with the average
taken. The memory footprint is measured as the allocated memory
for the program. Communication overhead is measured through
NERSC IPM tool. Both the peak computing speed in petaflops
and the average bandwidth in petabytes per second are measured
through Intel SDE tool. To compute the peak performance and the
average bandwidth, we count the number of FLOPS (72% single
precision, 28% double) as well as the total bytes read and written
on 4 nodes, and then extrapolate the performance to 8640 nodes.

For fastest convergence, we determine the optimal values for ρ
and σ empirically. We use σ = 10 for 2 subsets, σ = 20 for 4 subsets,
σ = 45 for 8 subsets, and ρ = 0.8 for all experiments. To decouple
the convergence rate from runtimes, all programs in tables 1, 2,
and 3 are run with 16 full iterations, where a full iteration is a
cycle through N voxel updates. We pick 16 full iterations because
the Normalized Root Mean Square Error (NRMSE) at 16 iterations
is measured to be less than 2%, compared with a fully converged
reconstruction.

4.1 Ceramic Matrix Composite (CMC) Dataset
The CMC dataset has a measurement sizeM of 2560 × 2160 × 1024
(2560 channels, 2160 slices, and 1024 view angles), and the highest

image resolution limited by the CT detector is 16092 voxels per
slice. To demonstrate AC-MBIR’s super-resolution performance,
we reconstruct at an image resolution 4.9 times higher than the
hardware limit, with 36002 voxels per slice and 2160 slices. A zoom-
in picture of an example reconstruction is shown in Figure 6. The left
image is a region reconstructed by AC-MBIR, and the right image
is the same region reconstructed by the FBP interpolation method,
whose reconstruction has more image noise and artifacts than AC-
MBIR’s. For example, the upper left corner of the FBP interpolation
image has many braiding artifacts, while AC-MBIR image has no
braiding artifacts. Therefore, material scientists can use AC-MBIR
to better examine the micro-structure at super-resolution.

Table 1 summarizes AC-MBIR and NU-PSV’s performance with
different numbers of subsets, G, but with the same number of sub-
volumes (108 sub-volumes). The left table is for grouped-view sub-
sets and the right table is for uniform sparse-view subsets. Nodes
are configured such that the number of clusters equals to the num-
ber of subsets G, and the number of cabinets equals to 108. Row
1 of the tables shows different numbers of subsets and AC-MBIR
with G = 1 is identical to the NU-PSV algorithm.

Row 2 is the number of nodes (68 cores per node), computed
as the number of cabinets multiplied by the number of clusters,
and AC-MBIR with 16 subsets has 16 times more scalability than
NU-PSV. Row 3 is the memory footprint per node and row 4 is
AC-MBIR’s memory footprint reduction over NU-PSV. Both the
grouped-view and the uniform sparse-view partitions significantly
reduce the memory footprint by 6.8 times and 5.1 times respectively,
although the grouped-view partition has 25% more memory foot-
print reduction. In addition, both the grouped-view and the uniform
sparse-view partitions reduce the memory footprint non-linearly
with more subsets, as the number of redundant data in the subsets
increases non-linearly with more subsets.

Row 5 is the program runtimes and NU-PSV’s runtime is 1681
seconds. In contrast, the grouped-view partition with 16 subsets
has a smaller runtime of 215.7 seconds by reducing the memory
pressure. The uniform sparse-view partition also has amuch smaller

9

SC ’19, November 17–22, 2019, Denver, CO, USA X. Wang et al.

Number of
sub-volumes 68 135 270 540 1080 2160

Nodes 272 540 1080 2160 4320 8640
Memory footprint

per node (Gigabytes) 20.7 17.4 15.7 14.9 14.5 14.3

Memory footprint
reduction 2.8x 3.3x 3.7x 3.9x 4.0x 4.1x

Run time (secs) 558.0 271.7 147.2 84.4 51.4 40.0
Computation increase 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

Strong scaling
efficiency 120% 124% 114% 100% 82% 53%

Bandwidth
(petabytes/sec) <0.1 <0.1 0.1 0.4 1.4 3.5

(a) AC-MBIR with grouped-view subsets

Number of
sub-volumes 68 135 270 540 1080 2160

Nodes 272 540 1080 2160 4320 8640
Memory footprint

per node (Gigabytes) 23.7 20.4 18.7 17.9 17.5 17.3

Memory footprint
reduction 2.4x 2.8x 3.1x 3.2x 3.3x 3.4x

Run time (secs) 654.6 326.4 174.3 159.2 154.0 154.0
Computation increase 1.2x 1.2x 1.2x 1.2x 1.2x 1.2x

Strong scaling
efficiency 122% 124% 116% 63% 33% 16%

Bandwidth
(petabytes/sec) <0.1 <0.1 0.1 0.3 0.5 1.1

(b) AC-MBIR with uniform sparse-view subsets

Table 2: CMC dataset experiments for AC-MBIRwith 4 subsets but with different numbers of sub-volumes. The left table is for
grouped-view subsets and the right table is for uniform sparse-view subsets. With more sub-volumes, the memory footprint
per node decreases slowly and the number of operations stays the same. The grouped-view subsets with 1080 sub-volumes
have a 17% smaller memory footprint, a 3.9 times faster runtime, and a 3.3 times higher strong scaling efficiency than the
uniform sparse-view subsets.

runtime than NU-PSVwith 347.5 seconds at 16 subsets. The runtime
for the uniform sparse-view partition, however, is larger than that
for the grouped-view partition because the uniform sparse-view
partition has a larger memory footprint and more redundant data.

Row 6 is the increase in floating point operations, compared to
those for NU-PSV. Floating point operations increase non-linearly
with more subsets as more subsets incur more redundant data and
operations on the data. With 16 subsets, the grouped-view partition
has 38% less redundant data than the uniform sparse-view partition.
Row 7 is the parallel strong scaling efficiency compared to NU-PSV
(G = 1) and row 8 is the average bandwidth. The grouped-view and
the uniform sparse-view subsets have similar strong scaling efficien-
cies with a super-linear speedup up to 4 subsets. From the strong
scaling efficiency numbers, we can conclude that the grouped-view
partition does not have a better strong scaling efficiency over the
uniform sparse-view partition. The grouped-view partition, how-
ever, has smaller runtimes by reducing memory footprint and com-
putations.

Table 2 summarizes AC-MBIR’s performance with the same num-
ber of view-subsets (4 view-subsets) but with different numbers of
sub-volumes. With the same number of subsets, the memory alloca-
tion for the systemmatrix does not change across different numbers
of sub-volumes. However, more sub-volumes reduce the number of
slices and measurements per sub-volume. The memory footprint
in row 3 thereby decreases slowly with more sub-volumes. In row
4, the grouped-view partition reduces more memory footprint than
the sparse-view partition, as the former has fewer redundant data
than the latter. In addition, the number of operations does not in-
crease with more sub-volumes as the amount of redundant data
remains the same for the same number of subsets.

Row 5 shows the runtimes and the grouped-view partition with
2160 sub-volumes (90% of Cori supercomputer with 587520 cores)
has a 3.9 times speedup over the uniform sparse-view partition, a
46.5 times speedup over the NU-PSV algorithm, and has a measured
peak computing performance of 1.5 petaflops at 8640 nodes. If not

counting the MPI Allreduce overhead in step 10 of Algorithm 3,
the peak performance number is 5.6 petaflops. The strong scaling
efficiencies in row 7 show that the grouped-view partition has a
100% strong scaling efficiency at 2160 nodes, compared to NU-PSV.
AC-MBIR has a high strong scaling efficiency for two reasons: (1)
a smaller memory footprint leads to more data kept in cache, and
(2) a modest communication overhead. The IPM tool shows that
grouped-view subsets has a low communication overhead with
16% of its runtime spent on communication overhead at 272 nodes,
13% communication overhead at 1080 nodes, and an increased com-
munication overhead of 73% at 4320 nodes. Without AC-MBIR’s
asynchronous updates, the communication overhead is more than
50% at few numbers of nodes.

Row 8 is AC-MBIR’s average bandwidth and the grouped-view
partition achieves a bandwidth of 3.5 petabytes per second at 8640
nodes, which is more than 35 times higher than that for NU-PSV.
AC-MBIR has a good bandwidth because AC-MBIR’s runtimes are
bounded by memory and most of the runtimes are spent on reorga-
nizing sinusoidal data for high cache locality, regular data access
pattern, and a low memory footprint. In contrast, AC-MBIR’s float-
ing point operations are much fewer than its memory operations,
leading to an impressive bandwidth of 3.5 petabytes per second,
but a modest peak performance of 1.5 petaflops.

Convergence evaluations are another interesting topic. Figure 7
compares the convergence rate for the first 20 full iterations for AC-
MBIR, NU-PSV and Mini-Batch Gradient Descent on an example
CMC dataset sub-volume with 20 slices, with Figure 7(a) for the
grouped-view partition and Figure 7(b) for the uniform sparse-
view partition. For the grouped-view partition, the Mini-Batch
Gradient Descent never converges to the global optimum even with
more iterations, and converges to a solution far from the global
optimum, whereas AC-MBIR converges to the global optimum
rapidly both with 4 and 16 subsets. Compared to NU-PSV, AC-MBIR
has a similar convergence rate at 20 full iterations. In addition, we
can observe that all algorithms has a RMSE spike in early iterations

10

Consensus Equilibrium for Super-Resolution and Extreme-Scale CT SC ’19, November 17–22, 2019, Denver, CO, USA

0

0.4

0.8

1.2

1.6

0 5 10 15 20

R
M

SE
 (m

m
-1

)

Full Iterations

Mini-Batch (4 subsets)
Mini-Batch (16 subsets)
AC-MBIR (4 subsets)
AC-MBIR (16 subsets)
NU-PSV

(a) Convergence for grouped-view subsets.

0

0.4

0.8

1.2

1.6

0 5 10 15 20

R
M

SE
 (m

m
-1

)

Full Iterations

Mini-Batch (4 subsets)
Mini-Batch (16 subsets)
AC-MBIR (4 subsets)
AC-MBIR (16 subsets)

(b) Convergence for uniform sparse-view subsets.

Figure 7: (a) The CMC dataset convergence plot for Mini-
Batch Gradient Descent and AC-MBIR with 4 and 16
grouped-view subsets. (b) The convergence plot for the two
algorithms with 4 and 16 uniform sparse-view subsets.

from a convergence overshoot caused by the excessive updates. For
the uniform sparse-view partition, Mini-Batch Gradient Descent
with 4 subsets converges to a solution close to the global optimum,
although its convergence rate is still much slower than AC-MBIR.

4.2 Iron Hydroxide (FeOOH) Dataset
The FeOOH dataset is much smaller than the CMC dataset, with
a measurement size M of 1024 × 1024 × 900 (1024 channels, 1024
slices and 900 view angles). The highest image resolution limited
by the CT detector is 9602 voxels per slice. We reconstruct at an
image resolution 1.14 times higher than the hardware limit, with
10242 voxels per slice and 1024 slices. Table 3 summaries AC-MBIR
and NU-PSV’s performance. The second row is NU-PSV’s runtimes
and NU-PSV only scales to 1024 nodes, as each node needs to
operate on a sub-volume with at least 1 slice. The third row is
AC-MBIR’s runtimes with 4 grouped-view subsets and AC-MBIR
has a 4 times higher scalability than NU-PSV. The fourth row is
AC-MBIR’s speedup over NU-PSV with a 3.7 times speedup at 4096
nodes (278528 cores). Since NU-PSV cannot scale to 4096 nodes,
the speedup at 4096 nodes is AC-MBIR’s runtime compared with
NU-PSV’s best runtime at 1024 nodes. The fifth row is AC-MBIR’s

Nodes 16 64 256 1024 4096
NU-PSV runtimes (secs) 1776.4 457.5 110.8 33.1 NA
AC-MBIR runtimes (secs) 556.2 142.2 47.1 18.0 10.1

Speedup 3.2x 3.2x 2.4x 1.8x 3.3x
Memory footprint

reduction 0.9x 1.9x 3.0x 3.5x 3.7x

Table 3: Performance comparison for the FeOOH dataset be-
tween AC-MBIR (with 4 grouped-view subsets) and NU-PSV.

memory footprint reduction over NU-PSV and AC-MBIR’s memory
footprint at 4096 nodes is 3.7 times smaller than that for NU-PSV.

5 DISCUSSION
AC-MBIR has a significant memory footprint reduction, a smaller
runtime and more scalability over NU-PSV. Its parallelism across
data subsets and sub-volumes, however, has advantages and disad-
vantages. The data subsets parallelism has better memory footprint
reduction over the sub-volume parallelism, but has worse strong
scaling efficiency and a slower runtime. The sub-volume parallelism
has a better strong scaling efficiency and a faster runtime, but per-
forms worse for memory footprint reduction. To achieve the best
performance, node configurations between the two parallelisms
have to be determined empirically as there is no theory that can
accurately pre-determine the node configuration. One way for node
configuration is to follow the ablation studies in Table 1 to find the
number of subsets with best performance, while fixating on the
same number of sub-volumes. Then, nodes are configured by follow-
ing the studies in Table 2 to find the number of sub-volumes with
best performance, while fixating on the same number of subsets.

6 IMPLICATIONS
AC-MBIR can be applied to supervised machine learning problems
with the following form:

x = argmin
x

{
G(x) + R(x)

}
, (9)

where x is the output; G(x) is a statistical model that estimates x
from a limited size noisy training dataset, denoted as y, and R(x)
is a regularizer to prevent data over-fitting. If G(x) is a weighted
linear regression model, then Equation (9) has the same form as
Equation (6), where M is the dataset size; A is a sparse system
matrix; Λ is a weighting matrix; and R(x) is an L0 norm, L1 norm
or other regularizer.

If the output x is viewed as an image or a volume, then Equa-
tion (9) with a weighted linear regression training model is a cost
function for image reconstruction problems, such as CT, PET, MRI,
electron microscopy, synchrotron, neutron, proton, and ultrasound
imaging. If x is a matrix of measurements or an object under test,
then Equation (9) with a weighted linear regression training model
is a cost function for compressive sensing problems and predicts the
state of the physical world from noisy sensor measurements.Such
applications include autonomous navigation, depth sensors, digital
holography, geophysical sensing, radar, radio astronomy, crystal-
lography, machine learning techniques such as the least absolute
shrinkage and selection operator.

11

SC ’19, November 17–22, 2019, Denver, CO, USA X. Wang et al.

AC-MBIR partitions Equation (9) into sub-problems and merge
the sub-problem solutions into a consensus one with a guaranteed
convergence if Equation (9) is convex. This algorithm has two ben-
efits: (1) reducing memory pressure by distributing data among
sub-problems, and (2) mapping to a supercomputer for fast compu-
tations. To solve Equation (9), AC-MBIR non-uniformly partitions
the dataset y into G data subsets and data in the same subset are
highly similar and different subsets are least similar. Each subset has
a new training model, дi (x), such thatG(x) =

∑G
i=1 дi (x). Each sub-

set solves the proximal map function formulated in Equation (8) and
the individual solutions from all subsets are merged asynchronously
into the consensus solution by following Algorithm 3.

A MATHEMATICAL PROOF FOR
ALGORITHM 2

The consensus-equilibriumMethod [4, 22] provides a parallel method
to solve the following MBIR optimization problem:

x = argmin
x

{
1
2

y −Ax

2Λ + R(x)} = argmin

x

G∑
i=1

f i (x) , (10)

where f i has the same definition as in (7), and represents a sub-
problem for the ith measurement subset. G is the total number of
subsets. Theorem 1 of [4] shows that finding the global minimum
to Equation (10), x , is exactly the same as finding the average of
{w1, ...,wG }, denoted asw , for the following system of equations:

F 1(w1)
...

FN (wG)

 =
1
G


w1 +w2 + · · · +wG

...

w1 +w2 + · · · +wG

 =

w
...

w

 , (11)

where F i is the proximal map function for the ith measurement
subset, as defined before in Equation (8). Then, to prove that the
output of Algorithm 2 is the same as the solution to Equation (10),
we need to demonstrate that the output of Algorithm 2 equals tow .

If we let F represents the stacked function for [F 1, · · · , FG]T ,
w as the list, [w1, ...,wG]T , and function D stacks G copies of w ,
then we can rewrite Equation (11) with a more compact short-hand
notation:

F(w) = D(w) , (12)

After multiplying both sides of Equation (12) with a constant 2 and
subtract them with w, we get

(2F − I)w = (2D − I)w (13)

where I is the identity function. Note that for any w, applying
function D twice to w yields the same result as applying D only
once to w. So, D2w = Dw, and consequently, (2D − I)2w = w.
Based on this special property, we apply function (2D − I) to both
sides of equation (13) and we obtain

(2D − I)(2F − I)w = w (14)

To findw that satisfies Equation (14),w can be computed iteratively
by finding the fixed-point to Equation (14). In every iteration, w is
updated as below:

w← ρw + (1 − ρ)w
′

, (15)

where ρ is a convergence parameter chosen between 0 and 1 and
w
′

stores a copy of w from the previous iteration. Note that Equa-
tion (15) is exactly the same as step 7 in Algorithm 2. After updates
in Equation (15) are converged to a fixed-point vector, the final
output,w , is computed as the average for all elements inw, namely
{w1, ...,wG }.

ACKNOWLEDGMENTS
The authors would like to thank the National Energy Research Sci-
entific Computing Center (NERSC) for providing supercomputing
resources under contract No. DE-AC02-05CH11231. This research
was supported by the National Science Foundation (NSF) under
Award CCF-1763896. Additional support was provided by the DHS
ALERT Center for Excellence under Grant Award 2013-ST-061-
ED0001.

REFERENCES
[1] S. Ahn and J. A. Fessler. 2003. Globally Convergent Image Reconstruction for

Emission Tomography Using Relaxed Ordered Subsets Algorithms. IEEE Trans-
actions on Medical Imaging 22, 5 (May 2003), 613–626. https://doi.org/10.1109/
TMI.2003.812251

[2] GE Aviation. 2016. Space Age Ceramics Are Aviation’s New Cup Of Tea. https:
//www.ge.com/reports/space-age-cmcs-aviations-new-cup-of-tea/. (2016).

[3] T. Balke, S. Majee, G. T. Buzzard, S. Poveromo, P. Howard, M. A. Groeber, J.
McClure, and C. A. Bouman. 2018. Separable Models for cone-beam MBIR
Reconstruction. In Computational Imaging XVI, Burlingame, California, USA, 28
Jan 2018 - 1 Feb 2018.

[4] G. Buzzard, S. Chan, S. Sreehari, and C. Bouman. 2018. Plug-and-Play Unplugged:
Optimization-Free Reconstruction Using Consensus Equilibrium. SIAM Journal
on Imaging Sciences 11, 3 (2018), 2001–2020. https://doi.org/10.1137/17M1122451
arXiv:https://doi.org/10.1137/17M1122451

[5] H. Erdogan and J. Fessler. 1999. Ordered Subsets Algorithms for Transmission
Tomography. Physics in Medicine & Biology 44(11) (1999).

[6] J. A. Fessler, E. P. Ficaro, N. H. Clinthorne, and K. Lange. 1997. Grouped-
Coordinate Ascent Algorithms for Penalized-Likelihood Transmission Image
Reconstruction. IEEE Transactions on Medical Imaging 16(2) (1997).

[7] J. A. Fessler and D. Kim. 2011. Axial Block Coordinate Descent (ABCD) Algorithm
for X-ray CT Image Reconstruction. In 11th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine.

[8] M. C. Fonseca, B. H. S. Araujo, C. S. B. Dias, N. L. Archilha, D. P. A. Neto, E.
Cavalheiro, H. Westfahl, A. J. R. da Silva, and K. G. Franchini. 2018. High-
Resolution Synchrotron-Based X-ray Microtomography as A Tool to Unveil The
Three-Dimensional Neuronal Architecture of The Brain. Scientific Reports 8, 1
(Aug 2018), 12074.

[9] C. Fournier, F. Jolivet, L. Denis, N. Verrier, E. Thiebaut, C. Allier, and T. Fournel.
2017. Pixel Super-Resolution in Digital Holography by Regularized Reconstruc-
tion. Applied Optics 56, 1 (Jan 2017), 69–77. https://doi.org/10.1364/AO.56.000069

[10] S. Ha and K. Mueller. 2018. A GPU-Accelerated Multivoxel Update Scheme
for Iterative Coordinate Descent (ICD) Optimization in Statistical Iterative CT
Reconstruction (SIR). IEEE Transactions on Computational Imaging 4, 3 (Sep.
2018), 355–365. https://doi.org/10.1109/TCI.2018.2833622

[11] C. Jiang, Q. Zhang, R. Fan, and Z. Hu. 2018. Super-Resolution CT Image Recon-
struction Based on Dictionary Learning and Sparse Representation. Scientific
Reports 8(1) (2018).

[12] P. Jin, C. A. Bouman, and K. D. Sauer. 2013. A Method for Simultaneous Image
Reconstruction and Beam Hardening Correction. In 2013 IEEE Nuclear Science
Symposium and Medical Imaging Conference (NSS/MIC). 1–5.

[13] E. A. Kazerooni. 2001. High-resolution CT of the lungs. American Journal of
Roentgenology 177, 3 (Sep 2001), 501–519.

[14] A. Korn, M. Fenchel, B. Bender, S. Danz, T. K. Hauser, D. Ketelsen, T. Flohr,
C. D. Claussen, M. Heuschmid, U. Ernemann, and H. Brodoefel. 2012. Iterative
Reconstruction in Head CT: Image Quality of Routine and Low-Dose Protocols
in Comparison with Standard Filtered Back-Projection. American Journal of
Neuroradiology 33, 2 (Feb 2012), 218–224.

[15] M. Li, T. Zhang, Y. Chen, and A. J. Smola. 2014. Efficient Mini-batch Training for
Stochastic Optimization. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’14). ACM, New York,
NY, USA, 661–670. https://doi.org/10.1145/2623330.2623612

[16] X. Li, Y. Liang, W. Zhang, T. Liu, H. Li, G. Luo, and M. Jiang. 2018. cuMBIR: An
Efficient Framework for Low-dose X-ray CT Image Reconstruction on GPUs.

12

https://doi.org/10.1109/TMI.2003.812251
https://doi.org/10.1109/TMI.2003.812251
https://www.ge.com/reports/space-age-cmcs-aviations-new-cup-of-tea/
https://www.ge.com/reports/space-age-cmcs-aviations-new-cup-of-tea/
https://doi.org/10.1137/17M1122451
http://arxiv.org/abs/https://doi.org/10.1137/17M1122451
https://doi.org/10.1364/AO.56.000069
https://doi.org/10.1109/TCI.2018.2833622
https://doi.org/10.1145/2623330.2623612

Consensus Equilibrium for Super-Resolution and Extreme-Scale CT SC ’19, November 17–22, 2019, Denver, CO, USA

In Proceedings of the 2018 International Conference on Supercomputing (ICS ’18).
ACM, New York, NY, USA, 184–194. https://doi.org/10.1145/3205289.3205309

[17] P. Milanfar. 2010. Super-Resolution Imaging. CRC Press.
[18] K. A. Mohan, S. V. Venkatakrishnan, J. W. Gibbs, E. B. Gulsoy, X. Xiao, M. D.

Graef, P. W. Voorhees, and C. A. Bouman. 2015. TIMBER: A Method for Time-
Space Reconstruction from Interlaced Views. IEEE Transactions on Computational
Imaging 1, 2 (June 2015), 96–111.

[19] Z. Nadir, M. S. Brown, M. L. Comer, and C. A. Bouman. 2017. A Model-Based Iter-
ative Reconstruction Approach to Tunable Diode Laser Absorption Tomography.
IEEE Transactions on Computational Imaging 3, 4 (Dec 2017), 876–890.

[20] A. Sabne, X. Wang, S. J. Kisner, C. A. Bouman, A. Raghunathan, and S. P. Midkiff.
2017. Model-Based Iterative CT Image Reconstruction on GPUs. In Proceedings
of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’17). ACM, New York, NY, USA, 207–220. https://doi.org/
10.1145/3018743.3018765

[21] S. Sreehari, S. V. Venkatakrishnan, K. L. Bouman, J. P. Simmons, L. F. Drummy,
and C. A. Bouman. 2016. Multi-Resolution Data Fusion for Super-Resolution
Electron Microscopy. CoRR abs/1612.00874 (2016). arXiv:1612.00874 http://arxiv.
org/abs/1612.00874

[22] V. Sridhar, G. T. Buzzard, and C. A. Bouman. 2018. Distributed Framework for
Fast Iterative CT Reconstruction from View-subsets. In Computational Imaging
XVI, Burlingame, California, USA, 28 Jan 2018 - 1 Feb 2018.

[23] J. B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh. 2007. A Three-Dimensional
Statistical Approach to Improved Image Quality for Multi-Slice Helical CT. Medi-
cal Physics 34(11) (2007).

[24] S. V. Venkatakrishnan, L. F. Drummy, M. Jackson, M. D. Graef, J. Simmons, and
C. A. Bouman. 2013. High Angle Annular Dark Field- Scanning Transmission
Electron Microscope (HAADF-STEM) Tomography. IEEE Transactions on Image
Processing 22(1) (2013).

[25] X. Wang, K. A. Mohan, S. J. Kisner, C. A. Bouman, and S. P. Midkiff. 2016. Fast
Voxel Line Update for Time-Space Image Reconstruction. In The 41st IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing.

[26] X. Wang, A. Sabne, S. J. Kisner, A. Raghunathan, C. A. Bouman, and S. P. Midkiff.
2016. High Performance Model Based Image Reconstruction. SIGPLAN Notice 51,
8, Article 2 (Feb. 2016), 12 pages. https://doi.org/10.1145/3016078.2851163

[27] X. Wang, A. Sabne, P. Sakdhnagool, S. J. Kisner, C. A. Bouman, and S. P.
Midkiff. 2017. Massively Parallel 3D Image Reconstruction. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’17). ACM, New York, NY, USA, Article 3, 12 pages.
https://doi.org/10.1145/3126908.3126911

[28] R. Yan, S. V. Venkatakrishnan, J. Liu, C. A. Bouman, and W. Jiang. 2019. MBIR: A
Cryo-ET 3D Reconstruction Method that Effectively Minimizes Missing Wedge
Artifacts and Restores Missing Information. Journal of Structural Biology (Mar
2019).

[29] Z. Yu, J-B. Thibault, C. A. Bouman, K. D. Sauer, and J. Hsieh. 2011. Fast Model-
Based X-Ray CT Reconstruction using Spatially Nonhomogeneous ICD Optimiza-
tion. IEEE Transactions on Image Processing 20(1) (2011).

[30] R. Zhang and J. T. Kwok. 2014. Asynchronous Distributed ADMM for Consensus
Optimization. In Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32 (ICML’14). JMLR.org, II–1701–II–
1709.

[31] J. Zheng, S. S. Saquib, K. Sauer, and C. A. Bouman. 2000. Parallelizable Bayesian
Tomography Algorithms with Rapid, Guaranteed Convergence. IEEE Transactions
on Image Processing 9(10) (2000).

[32] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. 2010. Parallelized Sto-
chastic Gradient Descent. In Advances in Neural Information Processing
Systems 23. Curran Associates, Inc., 2595–2603. http://papers.nips.cc/paper/
4006-parallelized-stochastic-gradient-descent.pdf

13

https://doi.org/10.1145/3205289.3205309
https://doi.org/10.1145/3018743.3018765
https://doi.org/10.1145/3018743.3018765
http://arxiv.org/abs/1612.00874
http://arxiv.org/abs/1612.00874
http://arxiv.org/abs/1612.00874
https://doi.org/10.1145/3016078.2851163
https://doi.org/10.1145/3126908.3126911
http://papers.nips.cc/paper/4006-parallelized-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4006-parallelized-stochastic-gradient-descent.pdf

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We ran all experiments on the NERSC’s Cori Knights Land-
ing supercomputer (68 cores per node). The inter-node par-
allelism is implemented through Intel MPI 2018.up1. The
inter-core parallelism is implemented through Intel OpenMP.
The communication overhead is collected by the NERSC
IPM tool (https://www.nersc.gov/users/software/performance-and-
debugging-tools/ipm/). The average computing speed in petaflops
is computed by the number of floating point operations di-
vided by the runtime, where the floating point operations
are collected by the Intel SDE tool on a single node and
then extrapolated to 4320 nodes, and the runtimes are col-
lected by MPI timer. Information about the NERSC Intel SDE
tool can be found at https://www.nersc.gov/users/application-
performance/measuring-arithmetic-intensity/

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: All author-created hardware arti-
facts are maintained in a public repository under an OSI-approved
license.

Data Artifact Availability: Some author-created data artifacts
are NOT maintained in a public repository or are NOT available
under an OSI-approved license.

Proprietary Artifacts: There are associated proprietary artifacts
that are not created by the authors. Some author-created artifacts
are proprietary.

List of URLs and/or DOIs where artifacts are available:

High level summary of the NERSC Cori Knights Landing

(KNL) supercomputer configuration:↪→

https://www.nersc.gov/users/computational-systems/co ⌋

ri/configuration/cori-intel-xeon-phi-nodes/↪→

KNL supercomputer processor architecture for each

node:↪→

https://www.nersc.gov/users/computational-systems/co ⌋

ri/configuration/knl-processor-modes/↪→

KNL interconnect network topology:
https://www.nersc.gov/users/computational-systems/co ⌋

ri/configuration/interconnect/↪→

https://www.nersc.gov/users/computational-systems/co ⌋

ri/configuration/compute-nodes-topology/↪→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: NERSC Cori Knights Landing Super-
computer, 68 cores and 128 GB memory per node, each node con-
tains an Intel Xeon Phi Processor 7250 at 1.40GHz

Operating systems and versions: SuSE Linux Enterprise Server
version 12.3

Compilers and versions: Intel MPI 2018.up1

Applications and versions: Intel SDE 7.49.0, IPM 2.0.5

Key algorithms: AC-MBIR, NU-PSV, Mini-Batch Gradient De-
scent

Input datasets and versions: Berkeley Synchrotron Dataset: Ce-
ramic Matrix Composite. Air Force Research Lab Microscopy
Dataset: Iron Hydroxide

Paper Modifications: No modification to the hardware, compilers,
or performance measurement tools.

Output from scripts that gathers execution environment informa-
tion.
LESSKEY=/etc/lesskey.bin
MODULE_VERSION_STACK=3.2.10.6
KSH_AUTOLOAD=1
ZAP_LIBPATH=/opt/ovis/lib64/ovis-lib
MKLROOT=/opt/intel/compilers_and_libraries_2018.1.16 ⌋

3/linux/mkl↪→

PE_LIBSCI_VOLATILE_PRGENV=CRAY GNU INTEL
PE_SMA_DEFAULT_PKGCONFIG_VARIABLES=PE_SMA_COMPFLAG_@ ⌋

prgenv@↪→

PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_mic_knl=160
MANPATH=/opt/intel/compilers_and_libraries_2018.1.16 ⌋

3/linux/mpi/man:/usr/common/software/man:/usr/co ⌋

mmon/mss/man:/usr/common/nsg/man:/opt/cray/pe/mp ⌋

t/7.7.3/gni/man/mpich:/opt/cray/pe/atp/2.1.3/man ⌋

:/opt/cray/alps/6.6.43-6.0.7.0_26.4__ga796da3.ar ⌋

i/man:/opt/cray/job/2.2.3-6.0.7.0_44.1__g6c4e934 ⌋

.ari/man:/opt/cray/pe/pmi/5.0.14/man:/opt/cray/p ⌋

e/libsci/18.07.1/man:/opt/cray/pe/man/csmlversio ⌋

n:/opt/cray/pe/craype/2.5.15/man:/opt/intel/comp ⌋

ilers_and_libraries_2018.1.163/linux/man/common: ⌋

/usr/syscom/nsg/man:/opt/cray/pe/modules/3.2.10. ⌋

6/share/man:/usr/local/man:/usr/share/man:/opt/c ⌋

ray/share/man:/opt/cray/pe/man:/opt/cray/share/m ⌋

an

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

NNTPSERVER=news
PE_PAPI_DEFAULT_ACCEL_FAMILY_LIBS_nvidia=,-lcupti,-l ⌋

cudart,-lcuda↪→

PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_sandybridge=8.6
PE_PETSC_DEFAULT_GENCOMPS_CRAY_skylake=86
PE_TPSL_DEFAULT_GENCOMPS_INTEL_x86_skylake=160

Wang, et al.

PE_CXX_PKGCONFIG_LIBS=mpichcxx
DVS_MAXNODES=1__
XDG_SESSION_ID=102161
HOSTNAME=cori12
CRAY_UDREG_INCLUDE_OPTS=-I/opt/cray/udreg/2.3.2-6.0. ⌋

7.0_33.18__g5196236.ari/include↪→

PE_FFTW_DEFAULT_TARGET_mic_knl=mic_knl
PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_mic_knl=16.0
PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_interlagos=160
PE_TRILINOS_DEFAULT_GENCOMPS_CRAY_x86_64=87
XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB
CRAY_SITE_LIST_DIR=/etc/opt/cray/pe/modules
LIBRARYMODULES=acml:alps:cray-dwarf:cray-fftw:cray-g ⌋

a:cray-hdf5:cray-hdf5-parallel:cray-libsci:cray- ⌋

libsci_acc:cray-mpich:cray-mpich-abi:cray-mpich2 ⌋

:cray-netcdf:cray-netcdf-hdf5parallel:cray-paral ⌋

lel-netcdf:cray-petsc:cray-petsc-complex:cray-sh ⌋

mem:cray-tpsl:cray-trilinos:cudatoolkit:fftw:ga: ⌋

hdf5:hdf5-parallel:iobuf:libfast:netcdf:netcdf-h ⌋

df5parallel:ntk:onesided:papi:petsc:petsc-comple ⌋

x:pmi:tpsl:trilinos:xt-libsci:xt-mpich2:xt-mpt:x ⌋

t-papi

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_NETCDF_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/ ⌋

pe/netcdf/4.6.1.3/@PRGENV@/@PE_NETCDF_DEFAULT_GE ⌋

NCOMPS@/lib/pkgconfig
↪→

↪→

PE_PARALLEL_NETCDF_DEFAULT_VOLATILE_PKGCONFIG_PATH=/ ⌋

opt/cray/pe/parallel-netcdf/1.8.1.3/@PRGENV@/@PE ⌋

_PARALLEL_NETCDF_DEFAULT_GENCOMPS@/lib/pkgconfig
↪→

↪→

PE_SMA_DEFAULT_COMPFLAG_GNU=-fcray-pointer
PE_TRILINOS_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cra ⌋

y/pe/trilinos/12.12.1.1/@PRGENV@/@PE_TRILINOS_DE ⌋

FAULT_GENCOMPS@/@PE_TRILINOS_DEFAULT_TARGET@/lib ⌋

/pkgconfig

↪→

↪→

↪→

PE_ENV=INTEL
PE_HDF5_DEFAULT_GENCOMPILERS_GNU=8.2 7.1 6.1 5.3 4.9
PE_MPICH_ALTERNATE_LIBS_dpm=_dpm
PE_SMA_DEFAULT_COMPFLAG=
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6
INTEL_LICENSE_FILE=28518@crayintel.licenses.nersc.go ⌋

v:28518@intel.licenses.nersc.gov↪→

SHELL=/bin/bash
TERM=xterm-256color
HOST=cori12
PE_TPSL_DEFAULT_GENCOMPS_CRAY_x86_skylake=86
PKGCONFIG_ENABLED=1
HISTSIZE=1000
PROFILEREAD=true
INTEL_MINOR_VERSION=18
PE_PETSC_DEFAULT_GENCOMPS_CRAY_sandybridge=86
PE_TPSL_DEFAULT_GENCOMPILERS_GNU_x86_skylake=8.2 7.1

6.1↪→

I_MPI_FABRICS=ofi
SSH_CLIENT=134.174.21.2 5709 22
CRAYPE_DIR=/opt/cray/pe/craype/2.5.15
CRAY_UGNI_POST_LINK_OPTS=-L/opt/cray/ugni/6.0.14.0-6 ⌋

.0.7.0_23.1__gea11d3d.ari/lib64↪→

CRAY_XPMEM_POST_LINK_OPTS=-L/opt/cray/xpmem/2.2.15-6 ⌋

.0.7.1_5.11__g7549d06.ari/lib64↪→

PE_NETCDF_DEFAULT_VOLATILE_PRGENV=GNU
PE_PARALLEL_NETCDF_DEFAULT_VOLATILE_PRGENV=GNU
PE_PETSC_DEFAULT_GENCOMPS_GNU_haswell=71 53 49
PE_PETSC_DEFAULT_GENCOMPS_INTEL_haswell=160
PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_x86_skylake=160
PE_TPSL_DEFAULT_GENCOMPS_GNU_sandybridge=82 71 53 49
PE_TPSL_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_LIBSCI
PE_TRILINOS_DEFAULT_VOLATILE_PRGENV=CRAY GNU INTEL
TMPDIR=/tmp
LIBRARY_PATH=/opt/intel/compilers_and_libraries_2018 ⌋

.1.163/linux/compiler/lib/intel64:/opt/intel/com ⌋

pilers_and_libraries_2018.1.163/linux/mkl/lib/in ⌋

tel64

↪→

↪→

↪→

PE_FFTW_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe ⌋

/fftw/3.3.8.1/@PE_FFTW_DEFAULT_TARGET@/lib/pkgco ⌋

nfig
↪→

↪→

PE_HDF5_DEFAULT_VOLATILE_PRGENV=GNU
PE_HDF5_PARALLEL_DEFAULT_VOLATILE_PKGCONFIG_PATH=/op ⌋

t/cray/pe/hdf5-parallel/1.10.2.0/@PRGENV@/@PE_HD ⌋

F5_PARALLEL_DEFAULT_GENCOMPS@/lib/pkgconfig
↪→

↪→

PE_NETCDF_HDF5PARALLEL_DEFAULT_VOLATILE_PKGCONFIG_PA ⌋

TH=/opt/cray/pe/netcdf-hdf5parallel/4.6.1.3/@PRG ⌋

ENV@/@PE_NETCDF_HDF5PARALLEL_DEFAULT_GENCOMPS@/l ⌋

ib/pkgconfig

↪→

↪→

↪→

PE_PETSC_DEFAULT_GENCOMPS_CRAY_interlagos=86
CRAY_MPICH2_DIR=/opt/cray/pe/mpt/7.7.3/gni/mpich-int ⌋

el/16.0↪→

ALTD_SELECT_OFF_USERS=
ALT_LINKER=/usr/common/software/altd/2.0/bin/ld
SITE_MODULE_NAMES=darshan
INTEL_PATH=/opt/intel/compilers_and_libraries_2018.1 ⌋

.163↪→

PE_GA_DEFAULT_VOLATILE_PRGENV=GNU
PE_LIBSCI_DEFAULT_GENCOMPS_GNU_x86_64=71 61 51 49
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_interlagos=8.6
PE_TPSL_DEFAULT_GENCOMPS_CRAY_mic_knl=86
ALTD_SELECT_ON=0
MORE=-sl
FPATH=:/opt/cray/pe/modules/3.2.10.6/init/sh_funcs/n ⌋

o_redirect:/opt/cray/pe/modules/3.2.10.6/init/sh ⌋

_funcs/no_redirect
↪→

↪→

PE_MPICH_DEFAULT_GENCOMPILERS_GNU=7.1 5.1 4.9
PE_PKGCONFIG_PRODUCTS=PE_MPICH:PE_LIBSCI
PE_TPSL_DEFAULT_GENCOMPS_INTEL_x86_64=160
PE_MPICH_GENCOMPS_GNU=71 51 49
I_MPI_PMI_LIBRARY=/usr/lib64/slurmpmi/libpmi.so
PE_PAPI_DEFAULT_ACCEL_LIBS_nvidia35=,-lcupti,-lcudar ⌋

t,-lcuda↪→

PE_PETSC_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_LIBSC ⌋

I:PE_HDF5_PARALLEL:PE_TPSL↪→

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_haswell=86

Consensus Equilibrium Framework for Super-Resolution and Extreme-Scale CT Reconstruction

PE_TPSL_64_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray ⌋

/pe/tpsl/18.06.1/@PRGENV@64/@PE_TPSL_64_DEFAULT_ ⌋

GENCOMPS@/@PE_TPSL_64_DEFAULT_TARGET@/lib/pkgcon ⌋

fig

↪→

↪→

↪→

ALTD_VERBOSE=0
PE_CRAY_DEFAULT_FIXED_PKGCONFIG_PATH=/opt/cray/pe/pa ⌋

rallel-netcdf/1.8.1.3/CRAY/8.6/lib/pkgconfig:/op ⌋

t/cray/pe/netcdf-hdf5parallel/4.6.1.3/CRAY/8.6/l ⌋

ib/pkgconfig:/opt/cray/pe/netcdf/4.6.1.3/CRAY/8. ⌋

6/lib/pkgconfig:/opt/cray/pe/hdf5-parallel/1.10. ⌋

2.0/CRAY/8.6/lib/pkgconfig:/opt/cray/pe/hdf5/1.1 ⌋

0.2.0/CRAY/8.6/lib/pkgconfig:/opt/cray/pe/ga/5.3 ⌋

.0.8/CRAY/8.6/lib/pkgconfig

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_TRILINOS_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.7
SSH_TTY=/dev/pts/53
PE_LIBSCI_DEFAULT_OMP_REQUIRES_openmp=_mp
PE_PETSC_DEFAULT_GENCOMPS_CRAY_x86_64=86
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_sandybridge=8.6
PE_FORTRAN_PKGCONFIG_LIBS=mpichf90
PE_SMA_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/ ⌋

mpt/7.7.3/gni/sma@PE_SMA_DEFAULT_DIR_DEFAULT64@/ ⌋

lib64/pkgconfig
↪→

↪→

ALLINEA_QUEUE_DLL=/opt/cray/pe/mpt/7.7.3/gni/mpich-i ⌋

ntel/16.0/lib/libtvmpich.so.3.0.1↪→

PE_TRILINOS_DEFAULT_GENCOMPS_INTEL_x86_64=160
CRAY_MPICH_BASEDIR=/opt/cray/pe/mpt/7.7.3/gni
USER=USER
JRE_HOME=/usr/lib64/jvm/java/jre
PE_HDF5_PARALLEL_DEFAULT_GENCOMPILERS_GNU=8.2 7.1 6.1

5.3 4.9↪→

PE_NETCDF_HDF5PARALLEL_DEFAULT_GENCOMPILERS_GNU=8.2

7.1 6.1 5.3 4.9↪→

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_x86_skylake=86
PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_haswell=160
LD_LIBRARY_PATH=/opt/intel/compilers_and_libraries_2 ⌋

018.1.163/linux/mpi/intel64/lib:/opt/cray/job/2. ⌋

2.3-6.0.7.0_44.1__g6c4e934.ari/lib64:/opt/intel/ ⌋

compilers_and_libraries_2018.1.163/linux/compile ⌋

r/lib/intel64:/opt/intel/compilers_and_libraries ⌋

_2018.1.163/linux/mkl/lib/intel64:/usr/syscom/ns ⌋

g/lib

↪→

↪→

↪→

↪→

↪→

↪→

LS_COLORS=no=00:fi=00:di=01;34:ln=00;36:pi=40;33:so= ⌋

01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=41;33; ⌋

01:ex=00;32:*.cmd=00;32:*.exe=01;32:*.com=01;32: ⌋

.bat=01;32:.btm=01;32:*.dll=01;32:*.tar=00;31: ⌋

.tbz=00;31:.tgz=00;31:*.rpm=00;31:*.deb=00;31: ⌋

.arj=00;31:.taz=00;31:*.lzh=00;31:*.lzma=00;31 ⌋

:*.zip=00;31:*.zoo=00;31:*.z=00;31:*.Z=00;31:*.g ⌋

z=00;31:*.bz2=00;31:*.tb2=00;31:*.tz2=00;31:*.tb ⌋

z2=00;31:*.xz=00;31:*.avi=01;35:*.bmp=01;35:*.fl ⌋

i=01;35:*.gif=01;35:*.jpg=01;35:*.jpeg=01;35:*.m ⌋

ng=01;35:*.mov=01;35:*.mpg=01;35:*.pcx=01;35:*.p ⌋

bm=01;35:*.pgm=01;35:*.png=01;35:*.ppm=01;35:*.t ⌋

ga=01;35:*.tif=01;35:*.xbm=01;35:*.xpm=01;35:*.d ⌋

l=01;35:*.gl=01;35:*.wmv=01;35:*.aiff=00;32:*.au ⌋

=00;32:*.mid=00;32:*.mp3=00;32:*.ogg=00;32:*.voc ⌋

=00;32:*.wav=00;32:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_FFTW_DEFAULT_TARGET_interlagos=interlagos
PE_LIBSCI_DEFAULT_VOLATILE_PRGENV=CRAY GNU INTEL
PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_interlagos=16.0
PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_mic_knl=16.0
PE_TPSL_DEFAULT_GENCOMPS_CRAY_x86_64=86
PE_TRILINOS_DEFAULT_GENCOMPILERS_GNU_x86_64=8.2 7.3

5.1 4.9↪→

PE_TRILINOS_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0
CRAY_RCA_POST_LINK_OPTS=-L/opt/cray/rca/2.2.18-6.0.7 ⌋

.0_33.3__g2aa4f39.ari/lib64
-lrca

↪→

↪→

PE_LIBSCI_PKGCONFIG_VARIABLES=PE_LIBSCI_OMP_REQUIRES ⌋

_@openmp@:PE_SCI_EXT_LIBPATH:PE_SCI_EXT_LIBNAME↪→

PE_PETSC_DEFAULT_VOLATILE_PRGENV=CRAY CRAY64 GNU

GNU64 INTEL INTEL64↪→

PE_PKGCONFIG_LIBS=darshan-runtime:mpich:AtpSigHandle ⌋

r:cray-rca:libsci_mpi:libsci↪→

PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_sandybridge=8.2

7.1 5.3 4.9↪→

PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_haswell=16.0
PE_MPICH_FIXED_PRGENV=INTEL
CSHRCREAD=true
CSCRATCH=/global/cscratch1/sd/USER
XNLSPATH=/usr/share/X11/nls
PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_mic_knl=8.6
PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6
PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_skylake=16.0
PE_PETSC_DEFAULT_GENCOMPS_GNU_interlagos=71 53 49
PE_PETSC_DEFAULT_GENCOMPS_GNU_sandybridge=71 53 49
PE_PETSC_DEFAULT_GENCOMPS_INTEL_interlagos=160
PE_PETSC_DEFAULT_GENCOMPS_INTEL_sandybridge=160
PE_TPSL_DEFAULT_GENCOMPS_GNU_haswell=82 71 53 49
LDAPTLS_REQCERT=never
INTEL_VERSION=18.0.1.163
MPICH_ABORT_ON_ERROR=1
PE_LIBSCI_DEFAULT_GENCOMPS_CRAY_x86_64=86
PE_PAPI_DEFAULT_PKGCONFIG_VARIABLES=PE_PAPI_ACCEL_LI ⌋

BS_@accelerator@↪→

PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_haswell=8.6
PE_PETSC_DEFAULT_GENCOMPS_GNU_mic_knl=53

Wang, et al.

PE_PETSC_DEFAULT_GENCOMPS_INTEL_mic_knl=160
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_interlagos=8.2

7.1 5.3 4.9↪→

PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_sandybridge=160
MPICH_DIR=/opt/cray/pe/mpt/7.7.3/gni/mpich-intel/16.0
ALTD_ON=1
HOSTTYPE=x86_64
ATP_POST_LINK_OPTS=-Wl,-L/opt/cray/pe/atp/2.1.3/libA ⌋

pp/↪→

CPATH=/opt/intel/compilers_and_libraries_2018.1.163/ ⌋

linux/mkl/include↪→

PE_FFTW_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH
PE_FFTW_DEFAULT_TARGET_sandybridge=sandybridge
PE_HDF5_PARALLEL_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH
PE_NETCDF_HDF5PARALLEL_DEFAULT_REQUIRED_PRODUCTS=PE_ ⌋

HDF5_PARALLEL↪→

PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_sandybridge=16.0
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_haswell=8.6
PE_MPICH_FORTRAN_PKGCONFIG_LIBS=mpichf90
MPICH_MPIIO_DVS_MAXNODES=32
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_mic_knl=5.3
RCLOCAL_PRGENV=true
FROM_HEADER=
PE_LIBSCI_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0
PE_LIBSCI_GENCOMPS_INTEL_x86_64=160
PE_PRODUCT_LIST=CRAYPE_MIC-KNL:CRAY_RCA:CRAY_ALPS:DV ⌋

S:CRAY_XPMEM:CRAY_DMAPP:CRAY_PMI:CRAY_UGNI:CRAY_ ⌋

UDREG:CRAY_LIBSCI:CRAYPE:INTEL
↪→

↪→

PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6
PE_TPSL_DEFAULT_GENCOMPS_GNU_interlagos=82 71 53 49
PAGER=less
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_x86_64=7.1 5.3 4.9
PE_TPSL_DEFAULT_GENCOMPS_GNU_x86_skylake=82 71 61
CRAY_MPICH_ROOTDIR=/opt/cray/pe/mpt/7.7.3
CSHEDIT=emacs
PE_LIBSCI_GENCOMPILERS_GNU_x86_64=7.1 6.1 5.1 4.9
PE_PETSC_DEFAULT_GENCOMPS_GNU_skylake=61
PE_PETSC_DEFAULT_GENCOMPS_INTEL_skylake=160
PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0
PE_MPICH_GENCOMPILERS_CRAY=8.6
PE_MPICH_MODULE_NAME=cray-mpich
XDG_CONFIG_DIRS=/etc/xdg
INTEL_MAJOR_VERSION=18
PE_LIBSCI_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6
PE_LIBSCI_GENCOMPS_CRAY_x86_64=86
PE_MPICH_DEFAULT_VOLATILE_PRGENV=CRAY GNU
PE_MPICH_TARGET_VAR_nvidia20=-lcudart
PE_TPSL_64_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_LIB ⌋

SCI↪→

PE_TPSL_DEFAULT_GENCOMPS_CRAY_haswell=86
PE_TPSL_DEFAULT_GENCOMPS_CRAY_sandybridge=86
MINICOM=-c on
LIBGL_DEBUG=quiet

USERMODULES=PrgEnv-cray:PrgEnv-gnu:PrgEnv-intel:PrgE ⌋

nv-pathscale:PrgEnv-pgi:acml:alps:apprentice:app ⌋

rentice2:atp:blcr:cce:chapel:cray-ccdb:cray-fftw ⌋

:cray-ga:cray-hdf5:cray-hdf5-parallel:cray-lgdb: ⌋

cray-libsci:cray-libsci_acc:cray-mpich:cray-mpic ⌋

h-compat:cray-mpich2:cray-netcdf:cray-netcdf-hdf ⌋

5parallel:cray-parallel-netcdf:cray-petsc:cray-p ⌋

etsc-complex:cray-shmem:cray-snplauncher:cray-tp ⌋

sl:cray-trilinos:craypat:craype:craypkg-gen:cuda ⌋

toolkit:ddt:fftw:ga:gcc:hdf5:hdf5-parallel:intel ⌋

:iobuf:java:lgdb:libfast:libsci_acc:mpich1:netcd ⌋

f:netcdf-hdf5parallel:netcdf-nofsync:netcdf-nofs ⌋

ync-hdf5parallel:ntk:onesided:papi:parallel-netc ⌋

df:pathscale:perftools:perftools-lite:petsc:pets ⌋

c-complex:pgi:pmi:stat:totalview:tpsl:trilinos:x ⌋

t-asyncpe:xt-craypat:xt-lgdb:xt-libsci:xt-mpich2 ⌋

:xt-mpt:xt-papi:xt-shmem:xt-totalview

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

CRAY_DMAPP_INCLUDE_OPTS=-I/opt/cray/dmapp/7.1.1-6.0. ⌋

7.0_34.3__g5a674e0.ari/include
-I/opt/cray/gni-headers/5.0.12.0-6.0.7.0_24.1__g ⌋

3b1768f.ari/include

↪→

↪→

↪→

CRAY_LIBSCI_BASE_DIR=/opt/cray/pe/libsci/18.07.1
CRAY_LIBSCI_DIR=/opt/cray/pe/libsci/18.07.1
DVS_VERSION=0.9.0
NLSPATH=/opt/intel/compilers_and_libraries_2018.1.16 ⌋

3/linux/compiler/lib/intel64/locale/%l_%t/%N:/op ⌋

t/intel/compilers_and_libraries_2018.1.163/linux ⌋

/mkl/lib/intel64/locale/%l_%t/%N

↪→

↪→

↪→

PE_LIBSCI_PKGCONFIG_LIBS=libsci_mpi:libsci
PE_NETCDF_DEFAULT_GENCOMPS_GNU=
PE_PARALLEL_NETCDF_DEFAULT_GENCOMPS_GNU=51 49
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_mic_knl=71 53
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_x86_64=82 71 53 49
PATH=/opt/intel/compilers_and_libraries_2018.1.163/l ⌋

inux/mpi/intel64/bin:/usr/common/software/darsha ⌋

n/3.1.4/bin:/usr/common/software/altd/2.0/bin:/u ⌋

sr/common/software/bin:/usr/common/mss/bin:/usr/ ⌋

common/nsg/bin:/opt/cray/pe/mpt/7.7.3/gni/bin:/o ⌋

pt/cray/rca/2.2.18-6.0.7.0_33.3__g2aa4f39.ari/bi ⌋

n:/opt/cray/alps/6.6.43-6.0.7.0_26.4__ga796da3.a ⌋

ri/sbin:/opt/cray/job/2.2.3-6.0.7.0_44.1__g6c4e9 ⌋

34.ari/bin:/opt/cray/pe/craype/2.5.15/bin:/opt/i ⌋

ntel/compilers_and_libraries_2018.1.163/linux/bi ⌋

n/intel64:/opt/ovis/bin:/opt/ovis/sbin:/usr/sysc ⌋

om/nsg/sbin:/usr/syscom/nsg/bin:/opt/cray/pe/mod ⌋

ules/3.2.10.6/bin:/usr/local/bin:/usr/bin:/bin:/ ⌋

usr/bin/X11:/usr/games:/usr/lib/mit/bin:/usr/lib ⌋

/mit/sbin:/opt/cray/pe/bin

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

MAIL=/var/mail/USER
MODULE_VERSION=3.2.10.6
PE_HDF5_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe ⌋

/hdf5/1.10.2.0/@PRGENV@/@PE_HDF5_DEFAULT_GENCOMP ⌋

S@/lib/pkgconfig
↪→

↪→

PE_PKGCONFIG_DEFAULT_PRODUCTS=PE_TRILINOS:PE_TPSL_64 ⌋

:PE_TPSL:PE_PETSC:PE_PARALLEL_NETCDF:PE_NETCDF_H ⌋

DF5PARALLEL:PE_NETCDF:PE_MPICH:PE_LIBSCI:PE_HDF5 ⌋

_PARALLEL:PE_HDF5:PE_GA:PE_FFTW2:PE_FFTW

↪→

↪→

↪→

Consensus Equilibrium Framework for Super-Resolution and Extreme-Scale CT Reconstruction

PE_TPSL_DEFAULT_GENCOMPILERS_GNU_x86_64=8.2 7.1 5.3

4.9↪→

PE_TPSL_DEFAULT_GENCOMPS_CRAY_interlagos=86
PE_MPICH_GENCOMPILERS_GNU=7.1 5.1 4.9
LIBGL_ALWAYS_INDIRECT=1
I_MPI_OFI_LIBRARY=/global/common/software/m3169/ofi- ⌋

libfabric/1.6.2/lib/libfabric.so↪→

CPU=x86_64
XTPE_NETWORK_TARGET=aries
ATP_IGNORE_SIGTERM=1
PE_FFTW_DEFAULT_TARGET_abudhabi=abudhabi
PE_NETCDF_DEFAULT_GENCOMPILERS_GNU=8.2 7.1 6.1 5.3 4.9
PE_PARALLEL_NETCDF_DEFAULT_GENCOMPILERS_GNU=5.1 4.9
PE_PETSC_DEFAULT_GENCOMPS_CRAY_mic_knl=86
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_x86_skylake=8.2

7.1 6.1↪→

PE_TPSL_DEFAULT_GENCOMPILERS_GNU_haswell=8.2 7.1 5.3

4.9↪→

_=/usr/bin/env
JAVA_BINDIR=/usr/lib64/jvm/java/bin
LDMSD_PLUGIN_LIBPATH=/opt/ovis/lib64/ovis-ldms
PE_HDF5_PARALLEL_DEFAULT_FIXED_PRGENV=CRAY INTEL
PE_HDF5_PARALLEL_DEFAULT_GENCOMPS_GNU=
PE_NETCDF_HDF5PARALLEL_DEFAULT_FIXED_PRGENV=CRAY

INTEL↪→

PE_NETCDF_HDF5PARALLEL_DEFAULT_GENCOMPS_GNU=
PE_SMA_DEFAULT_DIR_CRAY_DEFAULT64=64
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_x86_skylake=8.6
CRAY_UDREG_POST_LINK_OPTS=-L/opt/cray/udreg/2.3.2-6. ⌋

0.7.0_33.18__g5196236.ari/lib64↪→

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_sandybridge=86
PE_TPSL_64_DEFAULT_VOLATILE_PRGENV=CRAY CRAY64 GNU

GNU64 INTEL INTEL64↪→

PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_mic_knl=8.6
PE_TPSL_DEFAULT_GENCOMPS_INTEL_interlagos=160
PWD=/global/homes/w/USER
INPUTRC=/etc/inputrc
CRAYPE_VERSION=2.5.15
CRAY_ALPS_POST_LINK_OPTS=-L/opt/cray/alps/6.6.43-6.0 ⌋

.7.0_26.4__ga796da3.ari/lib64↪→

PE_TPSL_DEFAULT_GENCOMPS_GNU_mic_knl=71 53
PE_MPICH_VOLATILE_PRGENV=CRAY GNU
I_MPI_FALLBACK=1
JAVA_HOME=/usr/lib64/jvm/java

TARGETMODULES=craype-abudhabi:craype-abudhabi-cu:cra ⌋

ype-accel-host:craype-accel-nvidia20:craype-acce ⌋

l-nvidia30:craype-accel-nvidia35:craype-barcelon ⌋

a:craype-broadwell:craype-haswell:craype-hugepag ⌋

es128K:craype-hugepages128M:craype-hugepages16M: ⌋

craype-hugepages256M:craype-hugepages2M:craype-h ⌋

ugepages32M:craype-hugepages4M:craype-hugepages5 ⌋

12K:craype-hugepages512M:craype-hugepages64M:cra ⌋

ype-hugepages8M:craype-intel-knc:craype-interlag ⌋

os:craype-interlagos-cu:craype-istanbul:craype-i ⌋

vybridge:craype-mc12:craype-mc8:craype-mic-knl:c ⌋

raype-network-aries:craype-network-gemini:craype ⌋

-network-infiniband:craype-network-none:craype-ne ⌋

twork-seastar:craype-sandybridge:craype-shanghai ⌋

:craype-target-compute_node:craype-target-local_ ⌋

host:craype-target-native:craype-xeon:xtpe-barce ⌋

lona:xtpe-interlagos:xtpe-interlagos-cu:xtpe-ist ⌋

anbul:xtpe-mc12:xtpe-mc8:xtpe-network-gemini:xtp ⌋

e-network-seastar:xtpe-shanghai:xtpe-target-nati ⌋

ve:xtpe-xeon

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

LMFILES=/opt/cray/pe/modulefiles/modules/3.2.10.6: ⌋

/usr/syscom/nsg/modulefiles/nsg/1.2.0:/opt/modul ⌋

efiles/intel/18.0.1.163:/opt/cray/pe/craype/2.5. ⌋

15/modulefiles/craype-network-aries:/opt/cray/pe ⌋

/modulefiles/craype/2.5.15:/opt/cray/pe/modulefi ⌋

les/cray-libsci/18.07.1:/opt/cray/ari/modulefile ⌋

s/udreg/2.3.2-6.0.7.0_33.18__g5196236.ari:/opt/c ⌋

ray/ari/modulefiles/ugni/6.0.14.0-6.0.7.0_23.1__ ⌋

gea11d3d.ari:/opt/cray/pe/modulefiles/pmi/5.0.14 ⌋

:/opt/cray/ari/modulefiles/dmapp/7.1.1-6.0.7.0_3 ⌋

4.3__g5a674e0.ari:/opt/cray/ari/modulefiles/gni- ⌋

headers/5.0.12.0-6.0.7.0_24.1__g3b1768f.ari:/opt ⌋

/cray/ari/modulefiles/xpmem/2.2.15-6.0.7.1_5.11_ ⌋

_g7549d06.ari:/opt/cray/ari/modulefiles/job/2.2. ⌋

3-6.0.7.0_44.1__g6c4e934.ari:/opt/cray/ari/modul ⌋

efiles/dvs/2.7_2.2.117-6.0.7.1_9.2__gf817677:/op ⌋

t/cray/ari/modulefiles/alps/6.6.43-6.0.7.0_26.4_ ⌋

_ga796da3.ari:/opt/cray/ari/modulefiles/rca/2.2. ⌋

18-6.0.7.0_33.3__g2aa4f39.ari:/opt/cray/pe/modul ⌋

efiles/atp/2.1.3:/opt/cray/pe/modulefiles/PrgEnv ⌋

-intel/6.0.4:/opt/cray/pe/craype/2.5.15/modulefil ⌋

es/craype-mic-knl:/opt/cray/pe/modulefiles/cray- ⌋

mpich/7.7.3:/usr/common/software/modulefiles/alt ⌋

d/2.0:/usr/common/software/modulefiles/darshan/3 ⌋

.1.4:/usr/common/software/modulefiles/impi/2018. ⌋

up1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_LIBSCI_DEFAULT_OMP_REQUIRES=
PE_MPICH_DEFAULT_GENCOMPS_CRAY=86
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_sandybridge=7.1

5.3 4.9↪→

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_haswell=16.0
PE_LIBSCI_MODULE_NAME=cray-libsci/18.07.1
PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_skylake=8.6
PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_interlagos=8.6
PE_TPSL_DEFAULT_GENCOMPILERS_GNU_mic_knl=7.1 5.3
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_x86_skylake=82 71 61

Wang, et al.

PE_INTEL_FIXED_PKGCONFIG_PATH=/opt/cray/pe/mpt/7.7.3 ⌋

/gni/mpich-intel/16.0/lib/pkgconfig↪→

MODULEPATH=/opt/cray/pe/craype/2.5.15/modulefiles:/o ⌋

pt/cray/pe/modulefiles:/opt/cray/modulefiles:/op ⌋

t/modulefiles:/usr/common/software/modulefiles:/ ⌋

usr/syscom/nsg/modulefiles:/usr/syscom/nsg/opt/m ⌋

odulefiles:/usr/common/das/modulefiles:/usr/comm ⌋

on/ftg/modulefiles:/opt/cray/craype/default/modu ⌋

lefiles:/opt/cray/ari/modulefiles

↪→

↪→

↪→

↪→

↪→

↪→

PYTHONSTARTUP=/etc/pythonstart
PE_LIBSCI_GENCOMPILERS_CRAY_x86_64=8.6
PE_MPICH_NV_LIBS_nvidia20=-lcudart
PE_MPICH_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/mpt/7. ⌋

7.3/gni/mpich-@PRGENV@@PE_MPICH_DIR_DEFAULT64@/@ ⌋

PE_MPICH_GENCOMPS@/lib/pkgconfig
↪→

↪→

SDK_HOME=/usr/lib64/jvm/java
TZ=US/Pacific
LOADEDMODULES=modules/3.2.10.6:nsg/1.2.0:intel/18.0. ⌋

1.163:craype-network-aries:craype/2.5.15:cray-li ⌋

bsci/18.07.1:udreg/2.3.2-6.0.7.0_33.18__g5196236 ⌋

.ari:ugni/6.0.14.0-6.0.7.0_23.1__gea11d3d.ari:pm ⌋

i/5.0.14:dmapp/7.1.1-6.0.7.0_34.3__g5a674e0.ari: ⌋

gni-headers/5.0.12.0-6.0.7.0_24.1__g3b1768f.ari: ⌋

xpmem/2.2.15-6.0.7.1_5.11__g7549d06.ari:job/2.2. ⌋

3-6.0.7.0_44.1__g6c4e934.ari:dvs/2.7_2.2.117-6.0 ⌋

.7.1_9.2__gf817677:alps/6.6.43-6.0.7.0_26.4__ga7 ⌋

96da3.ari:rca/2.2.18-6.0.7.0_33.3__g2aa4f39.ari: ⌋

atp/2.1.3:PrgEnv-intel/6.0.4:craype-mic-knl:cray ⌋

-mpich/7.7.3:altd/2.0:darshan/3.1.4:impi/2018.up1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

NSG_HOME=/usr/syscom/nsg
SHMEM_ABORT_ON_ERROR=1
MAN_POSIXLY_CORRECT=1
CRAY_DMAPP_POST_LINK_OPTS=-L/opt/cray/dmapp/7.1.1-6. ⌋

0.7.0_34.3__g5a674e0.ari/lib64↪→

PE_FFTW_DEFAULT_TARGET_ivybridge=ivybridge
PE_FFTW_DEFAULT_TARGET_share=share
PE_FFTW_DEFAULT_TARGET_x86_skylake=x86_skylake
PE_PKG_CONFIG_PATH=/opt/cray/pe/cti/1.0.7/lib/pkgcon ⌋

fig:/opt/cray/pe/cti/1.0.6/lib/pkgconfig↪→

PE_TPSL_64_DEFAULT_GENCOMPS_GNU_interlagos=82 71 53

49↪→

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_mic_knl=16.0
CRAY_RCA_INCLUDE_OPTS=-I/opt/cray/rca/2.2.18-6.0.7.0 ⌋

_33.3__g2aa4f39.ari/include
-I/opt/cray/krca/2.2.4-6.0.7.1_5.42__g8505b97.ar ⌋

i/include
-I/opt/cray-hss-devel/8.0.0/include

↪→

↪→

↪→

↪→

PE_LIBSCI_OMP_REQUIRES_openmp=_mp
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_skylake=6.1
PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_x86_skylake=8.6
PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_mic_knl=86
PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0
CRAY_MPICH_DIR=/opt/cray/pe/mpt/7.7.3/gni/mpich-inte ⌋

l/16.0↪→

PE_MPICH_CXX_PKGCONFIG_LIBS=mpichcxx
PE_LIBSCI_DEFAULT_GENCOMPS_INTEL_x86_64=160

PE_MPICH_PKGCONFIG_VARIABLES=PE_MPICH_NV_LIBS_@accel ⌋

erator@:PE_MPICH_ALTERNATE_LIBS_@multithreaded@: ⌋

PE_MPICH_ALTERNATE_LIBS_@dpm@
↪→

↪→

CRAY_PMI_POST_LINK_OPTS=-L/opt/cray/pe/pmi/5.0.14/li ⌋

b64↪→

PE_HDF5_DEFAULT_FIXED_PRGENV=CRAY INTEL
PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_mic_knl=8.6
PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_x86_skylake=16.0
PE_TPSL_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe ⌋

/tpsl/18.06.1/@PRGENV@/@PE_TPSL_DEFAULT_GENCOMPS ⌋

@/@PE_TPSL_DEFAULT_TARGET@/lib/pkgconfig
↪→

↪→

CRAY_MPICH2_VER=7.7.3
PE_MPICH_PKGCONFIG_LIBS=mpich
GPG_TTY=/dev/pts/53
PE_GA_DEFAULT_GENCOMPILERS_GNU=5.3 4.9
PE_LIBSCI_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/libsc ⌋

i/18.07.1/@PRGENV@/@PE_LIBSCI_GENCOMPS@/@PE_LIBS ⌋

CI_TARGET@/lib/pkgconfig
↪→

↪→

PE_MPICH_ALTERNATE_LIBS_multithreaded=_mt
PE_NETCDF_DEFAULT_FIXED_PRGENV=CRAY INTEL
PE_PARALLEL_NETCDF_DEFAULT_FIXED_PRGENV=CRAY INTEL
HOME=/global/homes/w/USER
SHLVL=2
JDK_HOME=/usr/lib64/jvm/java
QT_SYSTEM_DIR=/usr/share/desktop-data
CRAY_LIBSCI_VERSION=18.07.1
PE_HDF5_PARALLEL_DEFAULT_VOLATILE_PRGENV=GNU
PE_MPICH_TARGET_VAR_nvidia35=-lcudart
PE_NETCDF_HDF5PARALLEL_DEFAULT_VOLATILE_PRGENV=GNU
PE_PKGCONFIG_PRODUCTS_DEFAULT=PE_PAPI
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_haswell=82 71 53 49
OSTYPE=linux
LESS_ADVANCED_PREPROCESSOR=no
PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_interlagos=16.0
PE_MPICH_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/p ⌋

e/mpt/7.7.3/gni/mpich-@PRGENV@@PE_MPICH_DEFAULT_ ⌋

DIR_DEFAULT64@/@PE_MPICH_DEFAULT_GENCOMPS@/lib/p ⌋

kgconfig

↪→

↪→

↪→

PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_interlagos=8.6
PE_TPSL_DEFAULT_VOLATILE_PRGENV=CRAY CRAY64 GNU GNU64

INTEL INTEL64↪→

ALTD_PATH=/usr/common/software/altd/2.0
LS_OPTIONS=-N --color=none -T 0
CRAY_PMI_INCLUDE_OPTS=-I/opt/cray/pe/pmi/5.0.14/incl ⌋

ude↪→

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_interlagos=86
PE_TPSL_DEFAULT_GENCOMPS_INTEL_sandybridge=160
PRGENVMODULES=PrgEnv-cray:PrgEnv-gnu:PrgEnv-intel:Pr ⌋

gEnv-pathscale:PrgEnv-pgi↪→

WINDOWMANAGER=
CRAYPE_NETWORK_TARGET=aries
ATP_MRNET_COMM_PATH=/opt/cray/pe/atp/2.1.3/libexec/a ⌋

tp_mrnet_commnode_wrapper↪→

PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_haswell=8.6
PKG_CONFIG_PATH_DEFAULT=/opt/cray/pe/papi/5.6.0.3/li ⌋

b64/pkgconfig↪→

Consensus Equilibrium Framework for Super-Resolution and Extreme-Scale CT Reconstruction

PE_MPICH_DIR_CRAY_DEFAULT64=64
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_haswell=7.1 5.3 4.9
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_mic_knl=7.1 5.3
PE_TPSL_DEFAULT_GENCOMPILERS_GNU_interlagos=8.2 7.1

5.3 4.9↪→

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_sandybridge=16.0
BASH_ENV=/global/homes/w/USER/.bashrc
LOGNAME=USER
MACHTYPE=x86_64-suse-linux
LESS=-M -I -R
PYTHONPATH=/opt/ovis/lib/python2.7/site-packages
CRAY_GNI_HEADERS_INCLUDE_OPTS=-I/opt/cray/gni-header ⌋

s/5.0.12.0-6.0.7.0_24.1__g3b1768f.ari/include↪→

CRAY_LIBSCI_PREFIX_DIR=/opt/cray/pe/libsci/18.07.1/I ⌋

NTEL/16.0/x86_64↪→

PE_HDF5_DEFAULT_GENCOMPS_GNU=
PE_MPICH_NV_LIBS=
PE_NETCDF_DEFAULT_REQUIRED_PRODUCTS=PE_HDF5
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_haswell=8.2 7.1

5.3 4.9↪→

PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_sandybridge=16 ⌋

.0↪→

PE_TPSL_DEFAULT_GENCOMPS_GNU_x86_64=82 71 53 49
PE_TRILINOS_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_HD ⌋

F5_PARALLEL:PE_NETCDF_HDF5PARALLEL:PE_LIBSCI:PE_ ⌋

TPSL
↪→

↪→

ALTD_SELECT_USERS=
I_MPI_OFI_PROVIDER=gni
CVS_RSH=ssh
DMAPP_ABORT_ON_ERROR=1
PE_LIBSCI_OMP_REQUIRES=
PE_MPICH_DEFAULT_GENCOMPILERS_CRAY=8.6
PE_TRILINOS_DEFAULT_GENCOMPS_GNU_x86_64=82 73 51 49
PE_MPICH_GENCOMPS_CRAY=86
SSH_CONNECTION=134.174.21.2 5709 128.55.209.23 22
TOOLMODULES=apprentice:apprentice2:atp:chapel:cray-l ⌋

gdb:cray-snplauncher:craypat:craypkg-gen:ddt:gdb ⌋

:iobuf:papi:perftools:perftools-lite:stat:totalv ⌋

iew:xt-craypat:xt-lgdb:xt-papi:xt-totalview

↪→

↪→

↪→

XDG_DATA_DIRS=/usr/share
DVS_INCLUDE_OPTS=-I/opt/cray/dvs/2.7_2.2.117-6.0.7.1 ⌋

_9.2__gf817677/include↪→

PE_LIBSCI_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH
PE_MPICH_DEFAULT_FIXED_PRGENV=INTEL
PE_MPICH_DEFAULT_GENCOMPS_GNU=71 51 49
PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_interlagos=16.0
PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_sandybridge=8.6
MODULESHOME=/opt/cray/pe/modules/3.2.10.6
CRAY_PRGENVINTEL=loaded
PE_FFTW2_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH
PE_GA_DEFAULT_FIXED_PRGENV=CRAY INTEL
PE_LIBSCI_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/ ⌋

pe/libsci/18.07.1/@PRGENV@/@PE_LIBSCI_DEFAULT_GE ⌋

NCOMPS@/@PE_LIBSCI_DEFAULT_TARGET@/lib/pkgconfig
↪→

↪→

PE_TPSL_DEFAULT_GENCOMPILERS_GNU_sandybridge=8.2 7.1

5.3 4.9↪→

LESSOPEN=lessopen.sh %s
PE_MPICH_NV_LIBS_nvidia35=-lcudart
PE_PETSC_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/p ⌋

e/petsc/3.8.4.0/complex/@PRGENV@/@PE_PETSC_DEFAU ⌋

LT_GENCOMPS@/@PE_PETSC_DEFAULT_TARGET@/lib/pkgco ⌋

nfig

↪→

↪→

↪→

PKG_CONFIG_PATH=/usr/common/software/darshan/3.1.4/l ⌋

ib/pkgconfig:/opt/cray/rca/2.2.18-6.0.7.0_33.3__ ⌋

g2aa4f39.ari/lib64/pkgconfig:/opt/cray/alps/6.6. ⌋

43-6.0.7.0_26.4__ga796da3.ari/lib64/pkgconfig:/o ⌋

pt/cray/xpmem/2.2.15-6.0.7.1_5.11__g7549d06.ari/ ⌋

lib64/pkgconfig:/opt/cray/gni-headers/5.0.12.0-6 ⌋

.0.7.0_24.1__g3b1768f.ari/lib64/pkgconfig:/opt/c ⌋

ray/dmapp/7.1.1-6.0.7.0_34.3__g5a674e0.ari/lib64 ⌋

/pkgconfig:/opt/cray/pe/pmi/5.0.14/lib64/pkgconf ⌋

ig:/opt/cray/ugni/6.0.14.0-6.0.7.0_23.1__gea11d3 ⌋

d.ari/lib64/pkgconfig:/opt/cray/udreg/2.3.2-6.0. ⌋

7.0_33.18__g5196236.ari/lib64/pkgconfig:/opt/cra ⌋

y/pe/craype/2.5.15/pkg-config:/opt/cray/pe/iobuf ⌋

/2.0.8/lib/pkgconfig:/opt/cray/pe/fftw/2.1.5.9/l ⌋

ib/pkgconfig:/opt/cray/pe/atp/2.1.3/lib/pkgconfig

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PELOCAL_PRGENV=true
LIBSCI_BASE_DIR=/opt/cray/pe/libsci/18.07.1
PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_x86_64=160
LIBSCI_VERSION=18.07.1
PE_LIBSCI_DEFAULT_PKGCONFIG_VARIABLES=PE_LIBSCI_DEFA ⌋

ULT_OMP_REQUIRES_@openmp@:PE_SCI_EXT_LIBPATH:PE_ ⌋

SCI_EXT_LIBNAME
↪→

↪→

PE_MPICH_NV_LIBS_nvidia60=-lcudart
PE_TPSL_64_DEFAULT_GENCOMPS_GNU_sandybridge=82 71 53

49↪→

PE_TPSL_DEFAULT_GENCOMPS_INTEL_mic_knl=160
DISPLAY=cori12:16.0
XDG_RUNTIME_DIR=/run/user/71130
NERSC_HOST=cori
CRAY_PRE_COMPILE_OPTS=-hnetwork=aries
CRAY_ALPS_INCLUDE_OPTS=-I/opt/cray/alps/6.6.43-6.0.7 ⌋

.0_26.4__ga796da3.ari/include↪→

PE_FFTW_DEFAULT_TARGET_broadwell=broadwell
PE_LIBSCI_GENCOMPILERS_INTEL_x86_64=16.0
PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_x86_64=8.2 7.1

5.3 4.9↪→

CRAY_CPU_TARGET=mic-knl
CRAY_UGNI_INCLUDE_OPTS=-I/opt/cray/ugni/6.0.14.0-6.0 ⌋

.7.0_23.1__gea11d3d.ari/include↪→

CRAY_XPMEM_INCLUDE_OPTS=-I/opt/cray/xpmem/2.2.15-6.0 ⌋

.7.1_5.11__g7549d06.ari/include↪→

PE_LIBSCI_REQUIRED_PRODUCTS=PE_MPICH
PE_PAPI_DEFAULT_ACCELL_FAMILY_LIBS=
PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_x86_64=86
craype_already_loaded=0
PE_LIBSCI_DEFAULT_GENCOMPILERS_GNU_x86_64=7.1 6.1 5.1

4.9↪→

PE_LIBSCI_GENCOMPS_GNU_x86_64=71 61 51 49
PE_TPSL_DEFAULT_GENCOMPS_INTEL_haswell=160
LESSCLOSE=lessclose.sh %s %s

Wang, et al.

ATP_HOME=/opt/cray/pe/atp/2.1.3
PE_FFTW_DEFAULT_TARGET_x86_64=x86_64
PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0
SCRATCH=/global/cscratch1/sd/USER
G_BROKEN_FILENAMES=1
CRAY_LD_LIBRARY_PATH=/usr/common/software/darshan/3. ⌋

1.4/lib:/opt/cray/pe/mpt/7.7.3/gni/mpich-intel/1 ⌋

6.0/lib:/opt/cray/rca/2.2.18-6.0.7.0_33.3__g2aa4 ⌋

f39.ari/lib64:/opt/cray/alps/6.6.43-6.0.7.0_26.4 ⌋

__ga796da3.ari/lib64:/opt/cray/xpmem/2.2.15-6.0. ⌋

7.1_5.11__g7549d06.ari/lib64:/opt/cray/dmapp/7.1 ⌋

.1-6.0.7.0_34.3__g5a674e0.ari/lib64:/opt/cray/pe ⌋

/pmi/5.0.14/lib64:/opt/cray/ugni/6.0.14.0-6.0.7. ⌋

0_23.1__gea11d3d.ari/lib64:/opt/cray/udreg/2.3.2 ⌋

-6.0.7.0_33.18__g5196236.ari/lib64:/opt/cray/pe/l ⌋

ibsci/18.07.1/INTEL/16.0/x86_64/lib

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_FFTW_DEFAULT_TARGET_haswell=haswell
PE_GA_DEFAULT_GENCOMPS_GNU=53 49
PE_GA_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/g ⌋

a/5.3.0.8/@PRGENV@/@PE_GA_DEFAULT_GENCOMPS@/lib/ ⌋

pkgconfig
↪→

↪→

PE_INTEL_DEFAULT_FIXED_PKGCONFIG_PATH=/opt/cray/pe/p ⌋

arallel-netcdf/1.8.1.3/INTEL/16.0/lib/pkgconfig: ⌋

/opt/cray/pe/netcdf-hdf5parallel/4.6.1.3/INTEL/1 ⌋

6.0/lib/pkgconfig:/opt/cray/pe/netcdf/4.6.1.3/IN ⌋

TEL/16.0/lib/pkgconfig:/opt/cray/pe/mpt/7.7.3/gn ⌋

i/mpich-intel/16.0/lib/pkgconfig:/opt/cray/pe/hd ⌋

f5-parallel/1.10.2.0/INTEL/16.0/lib/pkgconfig:/o ⌋

pt/cray/pe/hdf5/1.10.2.0/INTEL/16.0/lib/pkgconfi ⌋

g:/opt/cray/pe/ga/5.3.0.8/INTEL/18.0/lib/pkgconf ⌋

ig

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_PAPI_DEFAULT_ACCEL_LIBS=
PE_PETSC_DEFAULT_GENCOMPILERS_GNU_interlagos=7.1 5.3

4.9↪→

PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_haswell=16.0
PE_SMA_DEFAULT_DIR_PGI_DEFAULT64=64
PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_x86_skylake=16 ⌋

.0↪→

ALTD_WORKDIR=/global/cscratch1/altd/logs
COLORTERM=1
JAVA_ROOT=/usr/lib64/jvm/java
PE_MPICH_DEFAULT_DIR_CRAY_DEFAULT64=64
PE_PETSC_DEFAULT_GENCOMPS_CRAY_haswell=86
PE_PETSC_DEFAULT_GENCOMPS_GNU_x86_64=71 53 49
PE_PETSC_DEFAULT_GENCOMPS_INTEL_x86_64=160
intel_already_loaded=0
I_MPI_ROOT=/opt/intel/compilers_and_libraries_2018.1 ⌋

.163/linux/mpi↪→

BASH_FUNC_module%%=() { eval
`/opt/cray/pe/modules/3.2.10.6/bin/modulecmd
bash $*`

↪→

↪→

}
+ lsb_release -a
LSB Version: n/a
Distributor ID: SUSE

Description: SUSE Linux Enterprise Server 12

SP3↪→

Release: 12.3
Codename: n/a
+ uname -a
Linux cori12 4.4.162-94.72-default #1 SMP Mon Nov 12

18:57:45 UTC 2018 (9de753f) x86_64 x86_64 x86_64
GNU/Linux

↪→

↪→

+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Model name: Intel(R) Xeon(R) CPU E5-2698 v3

@ 2.30GHz↪→

Stepping: 2
CPU MHz: 3114.459
CPU max MHz: 3600.0000
CPU min MHz: 1200.0000
BogoMIPS: 4599.54
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 40960K
NUMA node0 CPU(s):

0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34 ⌋

,36,38,40,42,44,46,48,50,52,54,56,58,60,62
↪→

↪→

NUMA node1 CPU(s):
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35 ⌋

,37,39,41,43,45,47,49,51,53,55,57,59,61,63
↪→

↪→

Flags: fpu vme de pse tsc msr pae mce
cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm ibrs flush_l1d constant_tsc
arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc aperfmperf eagerfpu pni pclmulqdq
dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg
fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic
movbe popcnt tsc_deadline_timer aes xsave avx
f16c rdrand lahf_lm abm ida arat epb
invpcid_single pln pts dtherm ssbd ibpb stibp
kaiser tpr_shadow vnmi flexpriority ept vpid
fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms
invpcid cqm xsaveopt cqm_llc cqm_occup_llc

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo
MemTotal: 527508144 kB
MemFree: 458551364 kB

Consensus Equilibrium Framework for Super-Resolution and Extreme-Scale CT Reconstruction

MemAvailable: 456521136 kB
Buffers: 3598880 kB
Cached: 18233820 kB
SwapCached: 71436 kB
Active: 14565564 kB
Inactive: 10904672 kB
Active(anon): 3599260 kB
Inactive(anon): 805088 kB
Active(file): 10966304 kB
Inactive(file): 10099584 kB
Unevictable: 8388688 kB
Mlocked: 8388688 kB
SwapTotal: 33554428 kB
SwapFree: 30743124 kB
Dirty: 1172 kB
Writeback: 0 kB
AnonPages: 11987040 kB
Mapped: 1503364 kB
Shmem: 766792 kB
Slab: 28110080 kB
SReclaimable: 6952468 kB
SUnreclaim: 21157612 kB
KernelStack: 51424 kB
PageTables: 115572 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 297308500 kB
Committed_AS: 22974896 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 9697280 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 58489596 kB
DirectMap2M: 464654336 kB
DirectMap1G: 15728640 kB
+ inxi -F -c0
./collect_environment.sh: line 14: inxi: command not

found↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 2.6G 0 loop
loop1 7:1 0 23.8G 0 loop

/var/opt/cray/imps-image-binding/PE_x86_64/squas ⌋

h_mounts/squashfs_756IR3_mount_point
↪→

↪→

loop2 7:2 0 1 loop
loop3 7:3 0 1 loop
loop4 7:4 0 1 loop
loop5 7:5 0 1 loop
loop6 7:6 0 1 loop

loop7 7:7 0 1 loop
loop8 7:8 0 1 loop
loop9 7:9 0 1 loop
loop10 7:10 0 1 loop
loop11 7:11 0 1 loop
loop12 7:12 0 1 loop
loop13 7:13 0 1 loop
loop14 7:14 0 1 loop
loop15 7:15 0 1 loop
loop16 7:16 0 1 loop
loop17 7:17 0 1 loop
sda 8:0 0 200G 0 disk
|-sda1 8:1 0 9M 0 part
|-sda2 8:2 0 2G 0 part /boot
|-sda3 8:3 0 32G 0 part
|-sda4 8:4 0 32G 0 part /tmp
|-sda5 8:5 0 32G 0 part [SWAP]
`-sda6 8:6 0 24G 0 part /var/crash
sdb 8:16 0 917.3G 0 disk
`-sdb1 8:17 0 917.3G 0 part

/var/opt/cray/persistent↪→

sr0 11:0 1 1024M 0 rom
+ lsscsi -s
[0:2:0:0] disk DELL PERC H730 Mini 4.25

/dev/sda 214GB↪→

[0:2:1:0] disk DELL PERC H730 Mini 4.25

/dev/sdb 984GB↪→

[10:0:0:0] cd/dvd PLDS DVD+-RW DS-8ABSH AD51

/dev/sr0 -↪→

+ module list
++ /opt/cray/pe/modules/3.2.10.6/bin/modulecmd bash

list↪→

Currently Loaded Modulefiles:
1) modules/3.2.10.6

13) job/2.2.3-6.0.7.0_44.1__g6c4e934.ari↪→

2) nsg/1.2.0

14) dvs/2.7_2.2.117-6.0.7.1_9.2__gf817677↪→

3) intel/18.0.1.163

15) alps/6.6.43-6.0.7.0_26.4__ga796da3.ari↪→

4) craype-network-aries

16) rca/2.2.18-6.0.7.0_33.3__g2aa4f39.ari↪→

5) craype/2.5.15

17) atp/2.1.3↪→

6) cray-libsci/18.07.1

18) PrgEnv-intel/6.0.4↪→

7) udreg/2.3.2-6.0.7.0_33.18__g5196236.ari

19) craype-mic-knl↪→

8) ugni/6.0.14.0-6.0.7.0_23.1__gea11d3d.ari

20) cray-mpich/7.7.3↪→

9) pmi/5.0.14

21) altd/2.0↪→

10) dmapp/7.1.1-6.0.7.0_34.3__g5a674e0.ari

22) darshan/3.1.4↪→

11) gni-headers/5.0.12.0-6.0.7.0_24.1__g3b1768f.ari

23) impi/2018.up1↪→

Wang, et al.

12) xpmem/2.2.15-6.0.7.1_5.11__g7549d06.ari
+ eval
+ nvidia-smi

ARTIFACT EVALUATION
Verification and validation studies: The quality of image recon-

struction is validated in two ways: (1) convergence comparison
with a fully converged gold standard reconstruction, and (2) subjec-
tive image quality evaluation by authors and imaging experts. The
normalized root-mean-square-error (NRMSE) of all reconstruction
results are compared with a fully converged gold standard recon-
struction, and all results reported in tables 1 and 2 have a NRMSE
less than 2%. Therefore, the computational results are trustworthy
in terms of NRMSE. In addition, reconstruction results are subjec-
tively evaluated by authors of this paper and other imaging experts.
The consensus among experts who judge our image quality is "good
image quality at super-resolution".

Accuracy and precision of timings: All timings reported in this
paper are the entire program runtime minus the IO time, and all
timings are measured three times with the average taken.

Quantified the sensitivity of results to initial conditions and/or pa-
rameters of the computational environment: Since the cost function
to be minimized in Eqn. (6) of this paper is a strictly convex func-
tion, the converged results are always the same, no matter what
the initial conditions are.

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. This
paper controls different variables that influence computational per-
formance. Table 1 controls the same number of sub-volumes, but
varies the number of data subsets. Table 2 controls the same number
of data subsets, but varies the number of sub-volumes. Memory
footprint reduction, runtimes, and strong scaling efficiencies are in-
dependently measured for tables 1 and 2. In addition, this paper uses
two datasets, one dataset from Berkeley National Lab and another
dataset from Air Force Research Lab, for performance evaluations.
The results from the two datasets are consistent.

	Abstract
	1 Introduction
	2 Background
	2.1 CT System Setup
	2.2 MBIR Formulation
	2.3 Related Work
	2.4 The State of The Art Implementation

	3 Methods
	3.1 Reducing Memory Footprint and Ensuring Convergence
	3.2 More Memory Footprint Reduction
	3.3 Improving Scalability

	4 Results
	4.1 Ceramic Matrix Composite (CMC) Dataset
	4.2 Iron Hydroxide (FeOOH) Dataset

	5 Discussion
	6 Implications
	A Mathematical Proof for Algorithm 2
	Acknowledgments
	References

