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We present a general prescription for determining the global Uð1Þ symmetries of six-dimensional
superconformal field theories. We use the quiverlike gauge theory description of the tensor branch to
identify candidateUð1Þ symmetries which can act on generalized matter. The condition that these candidate
Uð1Þ’s are free of Adler-Bell-Jackiw anomalies provides bottom-up constraints forUð1Þ’s. This agrees with
the answer obtained from symmetry breaking patterns induced by Higgs branch flows. We provide
numerous examples illustrating the details of this proposal. In the F-theory realization of these theories,
some of these symmetries originate from deformations of non-Abelian flavor symmetries localized on a
component of the discriminant, while others come from an additional generator of the Mordell-Weil group.
We also provide evidence that some of these global Uð1Þ’s do not arise from gauge symmetries, as would
happen in taking a decoupling limit of a model coupled to six-dimensional supergravity.
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I. INTRODUCTION

There is a striking interplay between stringy extra-
dimensional geometric structures and low energy effective
field theories. This is particularly manifest in the context
of F-theory compactifications, where intersecting seven-
branes are geometrized into elliptically fibered Calabi-Yau
spaces [1–3]. A prominent example illustrating the power
of such methods is the recent classification of six-
dimensional superconformal field theories (6D SCFTs)
via F-theory [4,5] (see also [6,7]). This provides a remark-
ably flexible approach to constructing 6D SCFTs which
encompasses essentially all other methods (see [8–21] for a
partial list of older references, Refs. [22–26] for recent
holographic examples, and [27] for a review).
With these results in place, it is natural to ask what

detailed features of 6D SCFTs can be extracted from the
associated geometries. One piece of information which is

readily available from an F-theory model is the tensor
branch of the 6D SCFT moduli space, as this is encoded
directly in terms of Kähler deformations of the base of an
F-theory model. Additionally, some global symmetries
correlate with the appearance of noncompact seven-branes
intersecting the localized region inhabited by a 6D SCFT.
This, in tandem with field theoretic techniques, has made it
possible to tightly constrain the structure of anomalies in
6D SCFTs [28–33].
Even so, there are a number of outstanding open issues

connected with determining the structure of global sym-
metries in a 6D SCFT. In what follows, we exclusively
focus on the case of continuous zero-form symmetries.
While in many cases, there is a close match between the
flavor symmetries expected from geometric and field
theoretic methods, there are notable examples where either
the F-theory model only captures a subset of possible flavor
symmetries, and conversely, where a “naïve” field theoretic
analysis might at first suggest a bigger flavor symmetry
than what can actually be realized. Some examples of this
sort in F-theory [5] and field theory [34,35] are collected in
the review article [27]. For the most part, these examples
concentrate on non-Abelian global symmetries since these
are more straightforward to identify both in geometry and
field theory.
Though only studied in a few references [36–38], global

Uð1Þ symmetries in 6D SCFTs are no less important. In the
context of 6D SCFTs, such symmetries are especially
interesting because, as opposed to non-Abelian global
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symmetries, it is not possible to have a Uð1Þ gauge
symmetry on the tensor branch of a 6D SCFT [20,31].
In the F-theory literature, some examples of Uð1Þ sym-
metries have also been tracked by determining the appear-
ance of an additional generator of the Mordell-Weil group
of the associated elliptic fibration [38]. By taking a suitable
decompactification limit in which gravity decouples, this
yields a global Uð1Þ symmetry.
These results also point to several open issues, both in

field theory and F-theory. First of all, it is important to
develop a systematic method to deduce the appearance of
Uð1Þ symmetries using purely field theoretic techniques.
Second, it is natural to ask whether Uð1Þ flavor symmetries
in an F-theory realization of a 6D SCFT always originate
from generators of the Mordell-Weil group.
In this paper, we present a general prescription for

determining Uð1Þ flavor symmetries in 6D SCFTs. Our
starting point is the observation of Ref. [39] that all 6D
SCFTs can be viewed as either “fission” or “fusion”
products obtained from a small list of progenitor theories.
Fission products are obtained by a combination of tensor
branch flows accompanied by Higgs branch deformations.
Fusion products are obtained by taking some collection of
fission products and gauging a common flavor symmetry
(accompanied by introducing an additional tensor multi-
plet). In the language of heterotic M-theory, these progen-
itor theories all arise from M5-branes probing an ADE
singularity wrapped by an E8 nine-brane. As it arises so
frequently, we shall also view the theory of M5-branes
probing an ADE singularity as another class of progenitor
theories.
We find that there are two ways in which a 6D SCFT can

inherit a Uð1Þ symmetry from a progenitor theory. First of
all, these symmetries can originate from a non-Abelian
flavor symmetry factor in the progenitor. A suitable Higgs
branch deformation of such a theory can produce Uð1Þ’s
from the Cartan subalgebra of this symmetry. Second of all,
there can also beUð1Þ symmetries present in the progenitor
theory itself. This turns out to only occur when the
progenitor has an A-type flavor symmetry and is closely
related to the fact that an A-type finite subgroup of SUð2Þ
has a Uð1Þ ⊂ SUð2Þ commutant group.
We also find that the resultingUð1Þ symmetries obtained

from this process of fission and fusion typically involve a
linear combination of Uð1Þ flavor symmetries and gauged
Uð1Þ’s coming from the Cartan of a non-Abelian gauge
group present on the tensor branch of moduli space. So,
while a purely group theoretic analysis of breaking patterns
allows us to calculate the symmetry group, it does not
directly tell us much about how this symmetry acts on the
Hilbert space. Indeed, mixing with gauge symmetries
complicates the calculation of anomaly polynomials based
on anomaly matching since the appearance of this Uð1Þ
flavor symmetry is only partially inherited from a Uð1Þ
global symmetry of the progenitor theory.

To rectify this issue, we develop a more bottom-up
prescription for how to directly read off the global Uð1Þ
symmetries of a given 6D SCFT obtained from the quiver-
like gauge theory arising on its tensor branch. For a set of N
hypermultiplets transforming in a complex representation
of a gauge group (or a single hypermultiplet transforming
in a pseudoreal representation) we get a candidate Uð1Þ
symmetry. Most of these Uð1Þ’s turn out to suffer from
Adler-Bell-Jackiw (ABJ) anomalies on the tensor branch
and thus do not constitute genuine global symmetries.
Some linear combinations, however, do not suffer from any
such anomalies and are thus valid candidate global sym-
metries. This prescription also allows us to fix the Uð1Þ
charge assignments for quiver gauge theories with classical
gauge groups. This turns out to be the biggest class of
examples where a Uð1Þ global symmetry arises, and we
present a general set of rules for how to read off the global
Uð1Þ symmetry in such situations, as well as in the more
general case of quiverlike gauge theories with general
gauge algebras and matter content. These rules agree with
the rules for Uð1Þ symmetries obtained from fission/fusion
operations on progenitor theories.
Our prescription also allows us to address the geometric

origin of Uð1Þ global symmetries in F-theory models
decoupled from gravity. Precisely because the Uð1Þ sym-
metries of a 6D SCFT are inherited from Uð1Þ’s in a
progenitor theory, we see first of all that many candidate
Uð1Þ symmetries are only indirectly associated with the
Mordell-Weil group of sections in an F-theory model. This
is best exemplified through the fact that the only progenitor
theories with a Uð1Þ symmetry are those with an A-type
global symmetry, and there are examples of 6D SCFTs
(which we discuss) with more than one Uð1Þ global
symmetry.
This begs the question as to whether we can determine

which Uð1Þ’s do originate from generators of the Mordell-
Weil group. Here we present evidence that in progenitor
theories with a Uð1Þ symmetry, if they arise from M5-
branes probing an ADE singularity (namely those with an
A-type non-Abelian flavor symmetry), the corresponding
Uð1Þ is associated in F-theory to the appearance of an
additional section. We exhibit the form of this additional
section and show that it is in standard “Morrison-Park”
form [40]. However, if the progenitor theories with a Uð1Þ
arise from M5-branes probing an A-type singularity which
is wrapped by an E8 nine-brane, we provide evidence that
this Uð1Þ is not associated to an additional section of the
fibration. One issue is that all “natural attempts” to find
such a section appear to fail. A second issue is that in the
dual heterotic description, this Uð1Þ arises from an isom-
etry of a noncompact K3 surface which is destroyed by
recoupling to gravity.
The rest of this paper is organized as follows. In Sec. II,

we briefly review the structure of progenitor theories and
the fact that all 6D SCFTs originate from a process of
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fission/fusion from this starting point. In Sec. III, we turn to a
general discussion of Uð1Þ symmetries obtained from
working with the tensor branch of a 6D SCFT. In particular,
we give a general prescription for how to identify candidate
Uð1Þ symmetries and extract the corresponding ’t Hooft
anomalies. Section IV presents a number of examples
illustrating our procedure. In Sec. V, we use this analysis
to track the behavior of Uð1Þ symmetries in a Higgs branch
flow from UV to IR. In Sec. VI, we turn to the geometric
realization of Uð1Þ symmetries in the A-type progenitor
theories. We present our conclusions in Sec. VII. In
Appendix A, we present some additional details on anoma-
lies with Uð1Þ symmetries. In Appendix B, we discuss how
global symmetries can be obtained via group theoretic
methods. In Appendix C, we provide details of the F-theory
construction of the 6D SCFT associated with heterotic E8

small instantons probing an A-type orbifold singularity.

II. FISSION, FUSION, AND
PROGENITOR THEORIES

In this section, we review how all 6D SCFTs can be
obtained from a small set of progenitor theories [39]. The
main idea is that starting from such progenitor theories, we
reach the vast majority of 6D SCFTs by a combination of a
tensor branch deformation followed by a Higgs branch
deformation (see Fig. 1). The few 6D SCFTs which cannot
be obtained in this way instead result from a process of
fusion where we add an additional tensor multiplet and
weakly gauge a common flavor symmetry of fission
products. For our present purposes, the main feature is
that in both fission and fusion products, there are a set of
symmetries which are directly inherited from the progenitor
theory.
Recall that in the F-theory approach to constructing 6D

SCFTs, we start with an elliptically fibered Calabi-Yau
threefold with a noncompact base. In the base, we seek out
configurations of curves which can all contract to zero size
simultaneously at finite distance in the moduli space of
Calabi-Yau metrics. This collapsing procedure results in a
6D SCFT. The tensor branch of moduli space refers to
instead considering Kähler deformations of this Calabi-Yau
in which curves of the base now have finite volume. The
Higgs branch of moduli space refers to switching on
operator vacuum expectation value (vevs) which break
the SUð2ÞR R-symmetry of the SCFT. Geometrically, these
are deformations in the complex structure/intermediate
Jacobian of the Calabi-Yau threefold. The results of
[4,5] (see also [41,42]) provide a general procedure for
constructing all known 6D SCFTs via F-theory compacti-
fication (see [27] for a review). Here, our main interest will
be in providing a more uniform characterization of possible
structures which can appear in such theories, in particular
flavor symmetries.
To track flavor symmetries in 6D SCFTs, we exploit the

recently discovered characterization of most 6D SCFTs as

obtained from either fission or fusion of a small set of
progenitor theories. In M-theory language, these progenitor
theories arise from M5-branes probing a heterotic nine-
brane which is in turn wrapped by an ADE singularity
C2=ΓADE, with ΓADE a finite order subgroup of SUð2Þ. In
the F-theory description, these theories have a partial tensor
branch description given by a configuration of curves of the
form

½E8�; 1
gADE

; 2
gADE

;…; 2
gADE|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

k

; ½GADE�; ð2:1Þ

for the F-theory description of k small instantons. Here, the

notation n
g
refers to a curve of self-intersection −n in the

base of the elliptic threefold with a singular elliptic
fibration over this curve resulting in a gauge symmetry
with algebra g. In stringy terms, this corresponds to a
seven-brane with gauge algebra g wrapped over this curve.
There are also pairwise intersections between the different
seven-branes which occur at a single point of normal
crossing in the base. Lastly, there are non-Abelian flavor
symmetries associated with an E8 symmetry on the left and
a flavor symmetry of ADE-type GADE on the right.
Another prominent class of progenitor theories is

obtained from M5-branes probing the singular point of
the geometry R⊥ × C2=ΓADE. The resulting theories can be
obtained by moving the stack of M5-branes in the small
instanton examples away from the E8 wall. In the F-theory
realization of these theories, we simply decompactify the
−1 curve in the theory of (2.1). Doing so, we reach a 6D
SCFT with partial tensor branch,

½GADE�; 2
gADE

;…; 2
gADE|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

k−1

; ½GADE�: ð2:2Þ

Starting from the theories of (2.1) and (2.2), we reach the
vast majority of 6D SCFTs by performing a tensor branch
deformation followed by a Higgs branch deformation.
There is an algebraic characterization of Higgs branch
deformations in terms of group theoretic data associated
with the flavor symmetry factors. In the case of the theories
in line (2.2), localized deformations come from nilpotent
orbits of the flavor symmetry algebra. In the case of the
deformations localized near the −1 curve of (2.1), these
deformations come from discrete group homomorphisms
HomðΓADE; E8Þ [5,43]. See Appendix B for additional
details on the interplay between group theory and 6D
SCFTs. Let us note that there are additional Higgs branch
deformations which come from more general seven-brane
recombination moves [44]. For our present purposes of
viewing all 6D SCFTs as fission and fusion products, this
additional class of flows will not play a role. See also
Refs. [45–47] for additional discussion of Higgs branch
deformations of theories with eight real supercharges.
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The class of 6D SCFTs which can be obtained in this
way are referred to as fission products. There are some
theories from the classification of Ref. [5] which cannot be
obtained in this way. They can, however, all be obtained
by gauging a common flavor symmetry of such fission
products and are thus referred to as fusion products. Putting
this together, we see that a flavor symmetry of a progenitor
theory can be mapped to a set of fission products as well as
possible fusions thereof.
In principle, there can also be flavor symmetries

which are not inherited from a progenitor theory. In the
case of fission products, these can appear due to emergent
symmetries deep in the infrared of an RG flow. In the
case of fusion products, the process of consistently
gauging a common flavor symmetry can also require
introducing additional matter fields (to cancel the corre-
sponding gauge anomalies which arise). These additional
flavors can in turn lead to the appearance of additional
flavor symmetries. For the most part, however, the
symmetries inherited from progenitor theories cover
the vast majority of flavor symmetries which arise in
6D SCFTs.

A. Generic flavor symmetries
of progenitor theories

Let us now turn to the flavor symmetries for the
progenitor theories. For the most part, there is a uniform
characterization of the expected flavor symmetries in such
theories. As the rank of the flavor symmetry and/or the
number of M5-branes decreases, however, there can be
additional “accidental” enhancements in the flavor sym-
metry at the fixed point. One of our tasks will be to develop
a systematic prescription for dealing with such situations
as well. Since it will require additional care to treat
such outlier cases, we defer a discussion of these cases
to subsequent sections.
Consider first the case of the heterotic E8 small instanton

probe theories. First of all, we have a 10D gauge theory
with E8 gauge group and with this, a corresponding E8

flavor symmetry for the 6D theory. Similarly, from the
ADE singularity, we get a 7D gauge theory with GADE
gauge group which again leads to a flavor symmetry in
the 6D theory. In addition to this, we observe that in
the absence of the singularity, there is a Spinð4Þ flavor
symmetry associated with rotations transverse to the probe
M5-branes but inside the nine-brane. Writing

Spinð4Þ ¼ SUð2ÞL × SUð2ÞR; ð2:3Þ

we embed our finite order ADE subgroup into SUð2ÞL
since this has a natural holomorphic action on C2. In this
case, SUð2ÞR corresponds to the R-symmetry of the 6D
SCFT, a feature which is manifest in the heterotic con-
struction but not directly visible in the F-theory geometry.
Now, in the case where we have a D- or an E-type finite

subgroup of SUð2ÞL, the commutant subgroup is trivial, so
this is the full set of global symmetries. Additional structure
appears in the A-type series. In the case where we have an
A-type subgroup ZN with N > 2, we preserve a Uð1Þ
subgroup, which is an additional flavor symmetry. In the
special case N ¼ 2, even more is true: here we preserve the
SOð4Þ ¼ ðSUð2ÞL × SUð2ÞRÞ=Z2 isometries, so there is
an additional suð2Þ flavor symmetry algebra [5,43]. In the
special case of a single probe M5-brane, additional flavor
symmetry enhancements arise. We will revisit the analysis
of flavor symmetries in these special cases in Secs. IV
and VI.
Turning next to the theories of (2.2), we clearly observe

a GL × GR flavor symmetry. In the case of an A-type
subgroupZN with N ≥ 2, there is an additionalUð1Þ flavor
group symmetry, and it is more appropriate to write the
flavor symmetry as SðUðNÞL ×UðNÞRÞ. In the case of an
A-type subgroup Z2, we have a similar enhancement in the
flavor symmetry, this time to SUð2Þ3. In the case of a single
M5-brane, there are additional accidental enhancements in
the flavor symmetries of the system.
To conclude this section, we note that here, we have

focused on the appearance of flavor symmetries which are
manifest in the M-theory realization of these systems. The
non-Abelian symmetries can also be extracted from the
F-theory realization of these 6D SCFTs, which is particu-
larly important in developing a uniform approach to
classifying such theories [4,5]. From the top-down per-
spective, however, the full flavor symmetry is not generi-
cally manifest in the complex structure moduli space of the
Calabi-Yau threefolds used to engineer the theories. In

FIG. 1. Depiction of fission and fusion for 6D SCFTs.
Progenitor theories arise from M5-brane probes of an ADE
singularity C2=ΓADE and can correspond to cases with an E8

nine-brane (heterotic E8 small instantons) as well as cases
without such a nine-brane. In both sets of progenitor theories,
there is a Uð1Þ global symmetry factor for Γ ¼ ZN; N ≥ 3,
whereas there is no Abelian symmetry factor for D- and E-type
singularities. For Γ ¼ Z2, theUð1Þ symmetry enhances to SUð2Þ.
Deformations of these progenitor theories lead to fission prod-
ucts. Fission products can also be “fused” by gauging a common
non-Abelian global symmetry factors and adding an additional
tensor multiplet.
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some cases, the full flavor symmetry can only be realized
geometrically at tuned points of the complex structure
moduli space. Indeed, the typical expectation is that these
top-down constructions can sometimes “underpredict”
possible flavor symmetry enhancements which occur at
the conformal fixed point. This is especially important in
the context of Uð1Þ symmetries since these factors may in
fact be generators in the Cartan of a single simple factor, for
example, the enhancement SðUðNÞ ×UðNÞÞ ⊂ SUð2NÞ.1
As a general rule of thumb, these sorts of accidental
enhancements in the flavor symmetry tend to appear
when the number of tensor multiplets on the tensor
branch is very low. For example, in the progenitor theories,
this occurs for a single small instanton of heterotic
theory next to an A-type singularity and occurs for two
M5-branes next to an A-type singularity. The procedure we
outline for extracting Uð1Þ symmetries will provide a
diagnostic for understanding when such enhancements
occur.2

III. Uð1Þ SYMMETRIES ON THE
TENSOR BRANCH

In this section, we turn to an analysis ofUð1Þ symmetries
using the tensor branch description of a 6D SCFT.3 From
the general results of [4,5,43], we already know that all 6D
SCFTs resemble, on a partial tensor branch, a 6D quiverlike
gauge theory, possibly with strongly coupled “conformal
matter” between neighboring gauge group factors. This fact
was heavily used in Refs. [29,30] (see also [31]) to extract
the anomaly polynomial for non-Abelian flavor symmetries
in 6D SCFTs. The main idea in this analysis is that when
the number of gauge group factors is equal to the number of
tensor multiplets (on the partial tensor branch), the Green-
Schwarz-West-Sagnotti (GSWS) mechanism for canceling
gauge theoretic anomalies [49–51] leads to a unique answer
for the flavor symmetry field strengths as well. The general
form of the anomaly polynomial thus obtained then takes
the form

Ifull ¼ I1-loop þ IGS; ð3:1Þ

where Ifull denotes a formal eight-form in the flavor
symmetry field strengths, R-symmetry field strength, and
background curvature, I1-loop denotes the one-loop contri-
butions from “generalized matter,” and IGS denotes the
contribution from Green-Schwarz terms of the form

LGS ⊃
Z
6D

μTGBðTÞ ∧ TrðFðGÞ ∧ FðGÞÞ; ð3:2Þ

where the index T runs over the tensor multiplets and G
runs over field strengths for both gauge and flavor
symmetries. The key point is that if we can find a
presentation where the number of gauge groups and tensor
multiplets is the same, then there is a unique way (up to
lattice automorphisms [52]) to adjust the μTG coefficients
such that we cancel all gauge anomalies. To date, this sort
of analysis has been primarily carried out for non-Abelian
symmetries. This includes global flavor symmetries as well
as R-symmetries and diffeomorphisms.
Our main aim in this section will be to understand in

general terms the structure of Uð1Þ Abelian symmetries.
First of all, there are no Uð1Þ gauge symmetries on the
tensor branch. This can be seen directly in the F-theory
realization of such models because these are always
associated with the existence of additional (rational)
sections to the elliptic fibration [3,53,54]. This in turn
requires the existence of a compact base, so in a limit where
gravity is decoupled, such Uð1Þ’s are also nondynamical.
Additionally, one can also show from purely field theoretic
considerations that no Uð1Þ vector multiplets are available
on the tensor branch [20,31].
A common way to generate examples of 6D SCFTs with

non-Abelian flavor symmetries is to first begin with a
theory that has a gauge symmetry on its tensor branch.
Taking a suitable decoupling limit then produces the
desired non-Abelian flavor symmetry. Such a procedure
is clearly unavailable for Abelian symmetries since there
are no Uð1Þ gauge symmetries available to begin with.
A related way to proceed is to consider constructing
the 6D SCFT as an emergent sector of a 6D supegravity
model. This method of analysis was used in [38] to argue
for the existence of Uð1Þ global symmetries coming
from the geometry of an F-theory model. While this is
definitely a way to build robust examples of global Uð1Þ
symmetries, there is the additional constraint that we couple
to 6D supegravity, which in turn places an upper bound on
the kinds of SCFTs we can realize. For example, the sorts
of singularities which can be supported in a compact
elliptic Calabi-Yau are bounded [55–57], thereby con-
straining the 6D SCFTs that can be coupled to gravity [58].
Our plan will be to sort out in bottom-up terms possible

couplings which could appear in our analysis of candidate
Uð1Þ symmetries and their anomalies. We can, of course,
consider including additional couplings to the antichiral
two-forms of a tensor multiplet, which we can summarize
by a general set of couplings such as

1See [38] for more examples of this phenomenon.
2While we can understand many such enhancements in

this way, there exists at least one enhancement (namely, the
Spinð4Þ → Spinð5Þ enhancement of the R-symmetry of (2,0)
6D SCFTs) that lies beyond the scope of our analysis, and we
cannot be sure that a similar enhancement does not occur
elsewhere.

3Note that we are interested in determining the flavor sym-
metries of the SCFT at the fixed point using the tensor branch
description, rather than in determining the flavor symmetries of
the tensor branch theory itself. These two flavor symmetries do
not always agree, as in the case of the SCFTwhose tensor branch
description consists of suð2Þ gauge theory with four hyper-
multiplets, which has a Spinð7Þ flavor symmetry at the conformal
fixed point that enhances to SOð8Þ on the tensor branch [35,48].
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LGS ⊃
Z
6D

μT;SB
ðTÞ
2-form ∧ XðSÞ

4-formðFglobalÞ; ð3:3Þ

where XðSÞ
4-formðFglobalÞ is a general four-form which depends

on the field strengths of the global and gauge symmetries.
However, more is possible with Abelian symmetries

since the first Chern class need not vanish for the associated
field strengths. In principle, then, we can also entertain
“generalized Green-Schwarz couplings” such as

LgGS ⊃
Z
6D

κl;aC
ðlÞ
ð0-formÞ ∧ XðaÞ

ð6-formÞðFglobalÞ

þ κ̃l;bC̃
ðlÞ
ð4-formÞ ∧ XðbÞ

ð2-formÞðFglobalÞ; ð3:4Þ

with XðaÞ
ð6-formÞðFglobalÞ a general six-form built from the

global symmetry field strengths, and XðbÞ
ð2-formÞðFglobalÞ a

two-form. Here, CðlÞ
ð0-formÞ denotes a set of zero-forms and

C̃ðlÞ
ð4-formÞ denotes their magnetic duals. Note that in both the

six-form and two-form X’s, at least one Abelian field
strength must participate. In principle, such terms might
appear in the study of Uð1Þ symmetries on the tensor
branch.
That being said, such terms never directly impact the

structure of anomalies in a 6D SCFT. To see why, observe
that to get a contribution to the anomaly polynomial, wemust
necessarily pair up one of the terms coming from the κ-terms
with one coming from the κ̃-terms. Otherwise, we cannot get
a contribution to the formal eight-form. However, if there is a
coupling to the four-form axion, then the associated Uð1Þ
symmetry appearing in XðbÞ

ð2-formÞðFglobalÞ will have already

been broken via the Stückelberg mechanism [59].
Consequently, for a genuine unbroken symmetry, such
couplings play no role in our analysis.
As a consequence, we conclude that to study the

structure of anomalies with Uð1Þ global symmetries, it is
enough to consider the standard GSWS anomaly cancela-
tion mechanism, as well as the resulting anomaly poly-
nomial. With this in mind, suppose that we have a candidate
Uð1Þ global symmetry which contributes to the anomaly
polynomial. A priori, there are two sorts of terms which
could be present,

FabelianF0
abelianTrðF2

gaugeÞ and FabelianTrðF3
gaugeÞ; ð3:5Þ

for some Abelian symmetries and gauge symmetries. The
first set of terms will in general be canceled off by the
GSWS mechanism. The second set of terms cannot be
canceled by the GSWS mechanism because the couplings
of (3.3) cannot produce terms of this form. This means that
such contributions are actually generated by just the one-
loop contributions to the anomaly polynomial.

Such terms are problematic, because they are of the
general ABJ type, namely, they mix a candidate global
Uð1Þ symmetry with a gauge symmetry. The presence of
such terms would allow us to convert globalUð1Þ charge to
excitations associated with the gauge symmetry, thus
violating current conservation. This would in turn mean
that the candidate Uð1Þ symmetry is not truly a symmetry.
We note that this is qualitatively different from ’t Hooft
anomalies involving just global symmetries.
From a bottom-up perspective, there are a number of

necessary (but possibly insufficient) conditions which must
be met to have a Uð1Þ symmetry in a 6D SCFT. First of all,
we must identify candidate Uð1Þ symmetries from the full
tensor branch description of the theory. Next, we must
provide a candidate set of charges for the matter fields of
the tensor branch theory. This includes weakly coupled
matter, but also strongly coupled generalizations such as
6D conformal matter (as occurs on the partial tensor
branch). If a candidate Uð1Þ symmetry and the proposed
charge assignments for matter generates an ABJ anomaly,
then we must discard this choice of charge assignment, and
if no nontrivial assignment is available, we must discard the
candidate Uð1Þ altogether. There are typically several
nontrivial arithmetic constraints which strongly limit the
existence of candidate Uð1Þ symmetries.
In practice, we shall often associate a Uð1Þ with each

bifundamental hypermultiplet. The overall Uð1Þ charge of
these fields is constrained by ABJ anomaly cancellation,
which limits us to rays of possible charge vectors. The
overall normalization of charge assignments can then be
fixed by appealing to the string theory realization of the
model and is also inherited from charge quantization in a
progenitor theory.
As an illustrative example, consider the theory of k M5-

branes probing a C2=ZN singularity. In the F-theory
realization of this theory, we have k − 1 curves of self-
intersection −2, each of which supports an IN fiber. The
resulting fiber types are given by

½IN �; 2
IN
;…; 2

IN|fflfflfflffl{zfflfflfflffl}
k−1

; ½IN �: ð3:6Þ

In F-theory, each IN fiber is associated with an suðNÞ
gauge symmetry algebra. One of the distinctions between
type IIB and F-theory is that the overall “center of mass”
Uð1Þ present in a stack of N D7-branes is typically absent
because this gauge field couples to an axion. Something
similar is at work in this configuration. Indeed, from our IN
fibers, we see k − 1 candidate Uð1Þ gauge symmetries and
two candidate Uð1Þ flavor symmetries. Of these, only one
linear combination turns out to be free of ABJ anomalies.
To figure out the anomalies associated with the Uð1Þ

symmetries, we first need to fix a convention for the
representations of our hypermultiplets. Throughout this
paper, our convention will be dictated by the topology of
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the associated quiver. Indexing the groups from i ¼ 0;…; k
from left to right, we have hypermultiplets which transform
in the bifundamental representation ðNi; N̄iþ1Þ of neigh-
boring gauge groups running from left to right. Note that in
this convention, we have an SUð2ÞR R-symmetry doublet
of scalars in the ðNi; N̄iþ1Þ representation and a fermionic
superpartner which also transforms in the ðNi; N̄iþ1Þ
representation. We assign a candidate Uð1Þ to act on each
hypermultiplet, which we take to have charge þ1.4 Note
that there is a sign convention here; we could equally well
have considered assigning multiplets to the conjugate
representation. This would not affect the calculation of
ABJ anomalies because in evaluating the contributions
from fermionic loops, we note that TrNF3 ¼ −TrN̄F3,
canceling out the minus sign from the opposite charge
under the candidate Uð1Þ.
This example illustrates a few general points. First, most

candidate Uð1Þ symmetries will turn out to be plagued by
ABJ anomalies and will need to be eliminated anyway.
Additionally, in the context of F-theory, the surviving Uð1Þ
is associated with the appearance of IN fibers. The Uð1Þ is
not really localized on any one component of the discrimi-
nant locus but is better thought of as being shared i.e.,
“delocalized” across multiple components of the discrimi-
nant. See Fig. 2 for a depiction.

This sort of reasoning suggests an alternative, but
entirely equivalent way to proceed in determining possible
Uð1Þ symmetry factors. Starting from the quiverlike gauge
theory description of a 6D SCFT on its partial tensor
branch, we can first consider each individual gauge group
factor in isolation by taking a decoupling limit on the tensor
branch. In this limit, we have a set of global symmetries for
each such gauge theory. The process of incorporating
additional gauge group factors amounts to weakly gauging
a subalgebra of the flavor symmetries and introducing an
additional tensor multiplet to “pair” with this gauge
symmetry. Returning to the example of (3.6), each indi-
vidual −2 curve defines a 6D SCFT,

½IN �; 2
IN
; ½IN �: ð3:7Þ

This example is well known to have an suð2NÞ flavor
symmetry, as opposed to the suðNÞ × suðNÞ × uð1Þ
global symmetry expected from the M-theory construction
of the model. Observe, however, that we can gauge the
subalgebra suðNÞL and thus obtain the quiver,

½IN �; 2
IN
; 2
IN
; ½IN �: ð3:8Þ

The commutant of suðNÞL inside of suð2NÞ is
suðNÞ×uð1Þ, which provides us with a candidate Uð1Þ
global symmetry.

We summarize these two complementary procedures as
follows:

(i) Candidate Uð1Þ’s (method 1): Simply write down
all candidate Uð1Þ symmetries as well as all
possible charge assignments for matter fields. The
only surviving charge assignments andUð1Þ charges
are those which are free of ABJ anomalies. The
overall normalization of charge assignments can be
fixed by appealing to Higgsing from a another fixed
point and/or by using the associated string con-
struction for Uð1Þ charge assignments.

(ii) Commutant symmetries (method 2): Start with a
single node of a quiverlike gauge theory and weakly
gauge the flavor symmetries of this theory. The
commutant provides a set of candidate flavor sym-
metries, some of which are Uð1Þ symmetries. We
must again ensure that ABJ anomalies cancel to have
a genuine flavor symmetry.

The two procedures provide an equivalent way of
generating the same information about Uð1Þ symmetries,
since any Uð1Þ obtained from the commutant procedure
will necessarily be a candidate Uð1Þ of the full 6D SCFT,
and any candidate Uð1Þ that is free of ABJ anomalies will
show up in the commutant after gauging a subgroup of
some flavor symmetry. There are merits to using either
procedure, and in practice it simply depends on the details
of the quiver to determine which method of extracting
Uð1Þ’s will be more efficient. In what follows, we
shall often emphasize that we are dealing with a flavor
symmetry by writing it in capital Latin text. That being
said, we will actually only discuss these symmetries
at the level of algebras, rather than groups. For this reason,
we will sometimes write UðNÞ interchangeably with
SUðNÞ × Uð1Þ, writing UðNÞ ∼ SUðNÞ ×Uð1Þ to empha-
size that even though the associated groups are strictly
speaking distinct, their algebras are isomorphic.
To proceed further, we now discuss in more detail the

process of extracting candidate Uð1Þ’s. In Sec. IV, we
present a number of examples illustrating our proposal. For

FIG. 2. Depiction of a delocalized Uð1Þ symmetry in the F-
theory model of line (3.6).

4The overall normalization turns out to also be fixed to be þ1.
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additional details on anomaly polynomials with global
Uð1Þ symmetries, see Appendix A.

A. Candidate Uð1Þ’s
Our first task is to provide a precise notion of “candidate

Uð1Þ’s” which could appear in the tensor branch descrip-
tion of a 6D SCFT. To this end, we first review some
additional elements of how all known 6D SCFTs are
constructed. The F-theory approach to realizing 6D
SCFTs proceeds in two steps. First, one specifies a choice
of base with some collection of contractible curves and then
one defines an elliptic fibration over a given base. In field
theory terms, the choice of base determines the Dirac
pairing for the tensor multiplets. The elliptic fibration tells
us the gauge groups and matter. In general, once the base is
specified the types of available elliptic fibrations are
severely restricted.
The main building blocks in 6D SCFTs are curves of

self-intersection −2 and the non-Higgsable clusters (NHCs)
of Ref. [60]. A general base is obtained either from a
collection of −2 curves intersecting according to the
Dynkin diagram of an ADE Lie algebra, or by taking
NHCs and “gluing them” via curves of self-intersection −1.
It is also possible to sometimes append a chain of−2 curves
in ADE configuration to a glued configuration of NHCs.
Consider first the flavor symmetries which come from

minimal fiber enhancements. The global symmetries for the
building blocks are rather limited. By definition, the NHCs
do not have a Higgs branch, and their corresponding flavor
symmetry is also trivial. The −2 curves with no singular
fibers produce the ADE N ¼ ð2; 0Þ theories, so when
viewed as N ¼ ð1; 0Þ theories we get an suð2ÞL ⊂
suð2ÞL × suð2ÞR ⊂ soð5ÞR-symm flavor symmetry from
the R-symmetry of the N ¼ ð2; 0Þ theory. When fiber
enhancements are present, this symmetry is typically
destroyed but in its place we get additional noncompact
flavor symmetry factors, a point we return to shortly. Last,
we have the −1 curve theory. This realizes the E-string
theory, namely, the theory of a single small instanton in
heterotic M-theory. As mentioned in Sec. II, this theory
comes with an e8 × suð2ÞL flavor symmetry. The former
comes from the E8 nine-brane, and the latter comes from
the spinð4Þ ⊃ suð2ÞL × suð2ÞR isometries preserved by
the small instanton in C2 ≃ R4. Let us note that the more
general theory of multiple small instantons

½E8�; 1; 2;…; 2 ð3:9Þ

enjoys the same e8 × suð2ÞL flavor symmetry.
We obtain more intricate 6D SCFTs with minimal

singularities in the fiber by gauging the e8 flavor symmetry
of the small instanton theory. This has two immediate
consequences. First of all, by gauging a flavor symmetry,
we typically break the suð2ÞL flavor symmetry. In heterotic

terms, this is because we have replaced the noncompact R4

by a compact space with smaller isometry group. Second of
all, we can sometimes arrange for a Uð1Þ global symmetry
to appear as the commutant in this gauging procedure. To
illustrate this point, suppose we gauge a product subalgebra
gL × gR ⊂ e8. In some cases, the commutant H of gL × gR
inside e8 will contain one or moreUð1Þ factors. This occurs
in the following cases:

(i) gL ¼ e6, gR ¼ suð2Þ, H ¼ Uð1Þ,
(ii) gL ¼ soð10Þ, gR ¼ suð2Þ, H ¼ SUð2Þ ×Uð1Þ,
(iii) gL ¼ soð7Þ, gR ¼ soð7Þ, H ¼ Uð1Þ,
(iv) gL ¼ soð8Þ, gR ¼ suð4Þ, H ¼ Uð1Þ.
(v) gL ¼ soð8Þ, gR ¼ suð3Þ, H ¼ Uð1Þ × Uð1Þ,

where in the above, we have deferred the case of g ¼ suð2Þ
gauging.
For theories with minimal singularity types over each

curve, this is the primary way in which flavor symmetries
(including Uð1Þ symmetries) can arise. Once we allow
further decorations in the fiber type over each curve
obtained on the tensor branch, additional possibilities
emerge. In field theory terms, these additional decorations
in the singularity type mean the gauge group paired with a
given tensor multiplet will have higher rank than the
generic NHC situation. This in turn leads to the presence
of additional hypermultiplets transforming in representa-
tions of the gauge groups as well as possible flavor
symmetries. In a 6D SCFT on its tensor branch, we can
have hypermultiplets which transform in a representation of
a single gauge group, or in a bifundamental representation.
In both cases, the determining factor for the flavor
symmetry acting upon the hypermultiplets is the number
of hypermultiplets. The flavor symmetry of a set of N
hypermultiplets transforming in some representation of a
gauge group depends on whether that representation is real,
pseudoreal, or complex. In particular,

(i) N hypermultiplets (equivalently, 2N half-
hypermultiplets) in a pseudoreal representation have
an SOð2NÞ flavor symmetry.

(ii) N hypermultiplets in a complex representation have
a UðNÞ ∼ SUðNÞ ×Uð1Þ flavor symmetry.

(iii) N hypermultiplets in a real representation have an
SpðNÞ flavor symmetry (here Spð1Þ ∼ SUð2Þ).

The same rules apply when the hypermultiplets
transform in a bifundamental representation. The
only issue is whether the tensor product of the
two representations ρ1 ⊗ ρ2 is complex, real, or
pseudoreal.5

5Recall that the reality conditions for tensor products of
representations ρ1 ⊗ ρ2 for the gauge group G1 × G2 for real
(R), pseudoreal (P), and complex (C) representations are as follows:

(i) R ⊗ R ¼ R,
(ii) P ⊗ R ¼ P,
(iii) P ⊗ P ¼ R;
(iv) C ⊗ Any ¼ C.
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Abelian flavor symmetries can arise from the above rules
in one of two ways: (1) any number of complex hyper-
multiplets will transform under a UðNÞ ∼ SUðNÞ ×Uð1Þ
flavor symmetry, or (2) a single full hypermultiplet in a
pseudoreal representation will transform under a SOð2Þ ∼
Uð1Þ flavor symmetry.
In 6D SCFTs, the first of these possibilities arises for the

following representations:
(i) N fundamentals of an suðn ≥ 3Þ gauge algebra,
(ii) N Λ2s of an suðn ≥ 5Þ gauge algebra,
(iii) N spinors of an soð10Þ gauge algebra,
(iv) N fundamentals of an e6 gauge algebra,
(v) A bifundamental of an suðn ≥ 3Þ × suðm ≥ 3Þ

gauge algebra,
(vi) A bifundamental of an suðn ≥ 3Þ × spðn ≥ 1Þ

gauge algebra,
(vii) A bifundamental of an suðn ≥ 3Þ × soðmÞ gauge

algebra.
In practice, this last case occurs only for 6D SCFTs in the
“frozen” phase of F-theory [41,42].
The second possibility of an SOð2Þ ∼Uð1Þ flavor

symmetry arises for the following representations:
(i) A fundamental (two half-hypermultiplets in the

fundamental) of an spðn ≥ 1Þ gauge algebra,
(ii) A fundamental of an e7 gauge algebra,
(iii) A spinor of an soð11Þ or soð12Þ gauge algebra.
More representations, and hence more opportunities for

Abelian flavor symmetries, arise in the case of little string
theories [61].
In the above, we have omitted the case of matter in an

suð2Þ gauge theory since this case has some additional
subtleties. For suð2Þ gauge theory paired with a tensor of
charge −2, anomaly cancelation considerations imply we
have eight half-hypermultiplets in the fundamental repre-
sentation. Though this might suggest the matter fields
transform in the vector representation of Spinð8Þ, the
F-theory realization of this model admits only a Spinð7Þ
flavor symmetry at the superconformal fixed point [5],
which is in fact confirmed by field theory considerations as
well [35,48]. So in this case, the matter fields transform as
half-hypermultiplets in the (2, 8) of suð2Þ × soð7Þ.
This distinction between Spinð7Þ and Spinð8Þ is impor-

tant because it impacts what symmetries can be gauged, and
consequently, the resulting commutant flavor symmetries.
Consider, for example, the effects of gauging an suð3Þ ⊂
soð7Þ subalgebra. We have the branching rules soð7Þ ⊃
soð6Þ ⊃ suð3Þ × uð1Þ and consequently a commutant of
uð1Þ. This is different from what we would have obtained if
we had incorrectly assumed the flavor symmetry is
soð8Þ ⊃ soð6Þ × uð1Þ ⊃ suð3Þ × uð1Þ × uð1Þ. Similarly,
when we gauge an suð4Þ ≃ soð6Þ subalgebra of soð7Þ,
the commutant does not have any residual uð1Þ’s.
On a related point, an suð2Þ gauge algebra paired with a

−2 tensor that meets an unpaired −2 tensor has a G2

global symmetry, under which seven half-hypermultiplets

transform as the 7 ofG2. If six of these half-hypermultiplets
transform as a bifundamental under an suð3Þ gauge
algebra, there is no Uð1Þ global symmetry remaining to
act on them.
Thus, in the presence of an suð2Þ gauge algebras paired

with a −2 tensor, there is just one more Uð1Þ possibility to
consider which is as follows:

(i) A bifundamental of an suð3Þ gauge algebra and an
suð2Þ gauge algebra, provided the −2 tensor paired
with the suð2Þ gauge algebra is not adjacent in the
6D SCFT quiver to an unpaired −2 tensor.

Note that we have not discussed the possibility of a
bifundamental of suð2Þ ≃ spð1Þ and suð2Þ ≃ spð1Þ.
Quivers with these bifundamentals often have additional,
delocalized SUð2Þ global symmetries. We will study
these quivers and work out their global symmetries later
in Sec. IV D.
So far, our discussion has focused on obtaining a set of

candidate global Uð1Þ’s. We now turn to the associated
ABJ anomalies coming from such symmetries. The ABJ
anomalies for a hypermultiplet of globalUð1Þ charge q in a
representation ρ of a non-Abelian gauge algebra g are given
by (see Appendix A)

IABJ ⊃
1

6
qFUð1ÞTrρF3

g; ð3:10Þ

where FUð1Þ and Fg are the field strengths for the Uð1Þ
global symmetry and the gauge algebra g, respectively, and
Trρ is the trace in the representation ρ. To avoid cluttering
later expressions, in what follows we shall often leave the
subscript for the choice of representation for the trace
implicit, but will instead indicate it as appropriate.
To get an ABJ anomaly, we must, by necessity, have a

gauge algebra which supports representations with a non-
vanishing cubic Casimir. For simple Lie algebras, this only
occurs in the case of g ¼ suðNÞ forN ≥ 3. Additionally, we
know the Uð1Þ charges for our hypermultiplets. This is
because each fundamental of SUðNÞ for N ≥ 3 carries
charge 1 under its associated candidateUð1Þ.More generally,
however,wemaydetermine the chargesof all hypermultiplets
under the ABJ anomaly-free Uð1Þ’s using the Lie algebra
branching rules explained above. Namely, we may decom-
pose the maximal flavor symmetry associated with a given
node of the quiver into a gauged part and a global part, the
latter ofwhichmay involveUð1Þ factors. The branching rules
for this decomposition allow us determine the Uð1Þ charges
for each component, up to overall normalization.
So, in all of these cases, we have a set of well-posed

constraints, as obtained from Eq. (3.10). Consequently, we
learn that of our candidate Uð1Þ’s, only the appearance of
an suðNÞ gauge algebra can impose a nontrivial constraint.
These are necessary conditions and also appear to be
sufficient. The total number of Uð1Þ’s in a 6D SCFT are
thus given by
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# Uð1Þ’s ¼ # candidate

Uð1Þ’s − # suðNÞ’s with N ≥ 3; ð3:11Þ

as computed on the full tensor branch of the 6D SCFT.6

Again, the candidate Uð1Þ’s are given by first specifying
the number of −1 curve theories as well as the flavor
symmetries which can act upon a set of weakly coupled
hypermultiplets, in accord with the discussion given above.
The # suðNÞ’s are simply all gauge group factors which
can introduce a nontrivial constraint, as per Eq. (3.10).
Moreover, the above procedure based on the branching of
representations fixes the overall Uð1Þ charge assignments
for all hypermultiplets appearing on the tensor branch.
As an instructive example for how these constraints

appear, consider the theory of kþ 1 M5-branes probing a
C2=ZN orbifold singularity with N ≥ 3. On the tensor
branch, we have a quiver gauge theory given by

2
suðNÞ1
½Nf¼N�

2
suðNÞ

… 2
suðNÞ

2
suðNÞk
½Nf¼N�

; ð3:12Þ

By the rules above, we expect that each set of N
fundamentals will transform in a UðNÞ ∼ SUðNÞ ×Uð1Þ
flavor symmetry, while each bifundamental will transform
under a Uð1Þ flavor symmetry. Altogether, this gives
1þ 1þ k − 1 ¼ kþ 1 candidate Uð1Þ flavor symmetries.
See Fig. 3 for a depiction of the quiver, including the
candidate Uð1Þ charge assignments.
However, some candidate symmetries will suffer from

ABJ anomalies,

IABJ ⊃
1

6

Xk
i¼1

Xk
J¼0

qi;JFJTrfundF3
i : ð3:13Þ

Here, the summation is over the gauge group factors
indexed by i ¼ 1;…; k and the candidate Uð1Þ symmetries
indexed by J ¼ 0;…; k. Each qi;J denotes the contribution
to the anomaly from summing over all hypermultiplets
charged under the ith gauge group suðNÞi and the Jth
candidate symmetry Uð1ÞJ. In the present example, where
we have hypermultiplets in bifundamental representations
of neighboring gauge groups of the quiver, qi;J ¼ −N if
J ¼ i − 1, qi;J ¼ þN if J ¼ i and qi;J ¼ 0 otherwise.
Observe that the sum over just the J index immediately
tells that the linear combination of Uð1Þ’s P

k
J¼0 qi;JFJ

suffers from an ABJ anomaly for i ¼ 1;…; k. Thus, in total,
k Uð1Þ’s will be anomalous, and only one of the kþ 1
candidate Uð1Þ’s is free of ABJ anomalies.
So far, we have left all of the Uð1Þ charges generic,

denoted as qi. For fundamentals of SUðN ≥ 3Þ, these
charges qi are readily determined: any fundamental of
SUðNÞ carries charge 1 under its associated candidate
Uð1Þ. More generally, however, we may determine the
charges of all hypermultiplets under the ABJ anomaly-free
Uð1Þ’s using Lie algebra branching rules. Namely, we may
decompose the maximal flavor symmetry associated with a
given node of the quiver into a gauged part and a global part,
the latter of which may involveUð1Þ factors. The branching
rules for this decomposition allow us determine the Uð1Þ
charges for each component, up to overall normalization.
This overall normalization cannot be fixed by ABJ

anomaly cancellation, but it can be determined from a
top-down perspective: in the string theory construction of
A-type progenitor theories, bifundamentals are associated
with strings between neighboring stacks of D6-branes,
which carry charge 1 under the Uð1Þ global symmetry of
the theory (as we will see in more detail in the following
section). In a more general theory, one may either appeal to
a similar string construction to normalize charges, or
alternatively, one can track the Uð1Þ charges from the
Higgsing of a progenitor theory.
Thus, we have two methods for determining the Uð1Þ

charges of hypermultiplets in a quiver, which were also
stated below (3.8). We reproduce them here for the ease of
the reader:

(i) CandidateUð1Þ’s (method 1): Simply write down all
candidate Uð1Þ symmetries as well as all possible
charge assignments for matter fields. The only
surviving charge assignments and Uð1Þ charges
are those which are free of ABJ anomalies. The
overall normalization of charge assignments can be
fixed by appealing to Higgsing from a another fixed
point and/or by using the associated string con-
struction for Uð1Þ charge assignments. See the
analysis of the theory in (4.9) below for an example.

FIG. 3. Depiction of the local quiver gauge theory associated
with the tensor branch of the 6D SCFT described by line (3.12).
We have also indicated the appearance of the candidate Uð1Þ
global symmetries which act on bifundamental hypermultiplets.

6This number is correctly reproduced in the AdS7 gravity
duals [22] of “holographic” SCFTs with only suðNiÞ algebras on
their tensor branch (with variable Ni) and a large number of such
gauge algebras. (Note that, because of the presence of D8-branes
in the Type IIA construction, these SCFTs are not engineered by
M5-brane probes, but do admit a dual F-theory engineering [43].)
The number of ABJ anomaly-free global Uð1Þ’s in field theory
matches the number of massless Abelian gauge bosons in the
supergravity reduction on AdS7 [62].
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(ii) Commutant symmetries (method 2): Start with a
single node of a quiverlike gauge theory and weakly
gauge the flavor symmetries of this theory. The
commutant provides a set of candidate flavor sym-
metries, some of which are Uð1Þ symmetries. We
must again ensure that ABJ anomalies cancel to have
a genuine flavor symmetry. See the analysis of the
theory in (4.33) below for an example.

In some cases, the first of these methods is easier to
implement, while in other cases the second method is
preferable. In what follows, we will see instances of each,
and we will demonstrate the equivalence of these two
methods in an illustrative example in the theory of line (4.24).

IV. EXAMPLES

In the previous section, we provided a general procedure
for determining the Uð1Þ global symmetries of a 6D SCFT.
This amounts to listing all Uð1Þ’s which can act on our
“matter fields” (including E-string theories), including the
associatedUð1Þ charges, as dictated by the branching of the
flavor symmetry after gauging a subalgebra. After this, we
can determine which Uð1Þ’s are compatible with the con-
straints of ABJ anomaly cancelation. Our plan in this section
will be to explain how these rules work in practice by
presenting some illustrative examples. In addition to deter-
mining the global Uð1Þ symmetries, we also work out the
associated anomaly polynomials for global symmetries in
these theories. These examples are not meant to be exhaus-
tive, but rather to exhibit the different possible phenomena
which can occur. As a point of terminology, we shall often
refer to the candidateUð1Þ associated with a bifundamental
between two gauge groups as a “baryonic Uð1Þ.”
In what follows, we shall make use of some earlier

results on the structure of global symmetries obtained in
Refs. [5,37]. In the context of heterotic E8 small instanton
probes of an ADE singularity, there is a tight correspon-
dence between Higgs branch deformations and discrete
group homomorphisms HomðΓADE; E8Þ. Given a homo-
morphism ρ ∈ HomðΓADE; E8Þ, the commutant of the
image ½ImðρÞ; E8� determines a flavor symmetry.
In the context of M5-brane probes of ADE singularities,

there is a close correspondence between certain Higgs
branch deformations of the field theory and nilpotent orbits
of the flavor symmetry algebra. We collect some of the
necessary information about the resulting global sym-
metries in Appendix B, to which we refer the interested
reader for additional details.
The rest of this section is organized as follows. We begin

by analyzing the progenitor theories with an A-type flavor
symmetry. Indeed, we have already argued using M-theory
and heterotic M-theory realizations of these theories that
they must possess a Uð1Þ global symmetry. Here, we
directly establish this using our proposal for reading off
Uð1Þ symmetries via the tensor branch description. The
defining feature of these examples is the appearance of

suðNÞ gauge algebras with complex representations. We
then turn to more elaborate examples with suðNÞ gauge
algebras, following this with the special case of theories
with primarily suð2Þ gauge algebras. With this in place, we
next analyze theories which do not have hypermultiplets in
a complex representation of suðNÞ, as will occur in
theories with 6D conformal matter and in the D- and
E-type progenitor theories. Finally, we also consider
theories involving frozen phases of F-theory featuring
adjacent SO-SU gauge groups.

A. A-type progenitor theories

We now turn to the A-type progenitor theories. Recall
that the tensor branch description for this class of theories is
of one of two types,

½SUðNÞ� 2
suðNÞ

2
suðNÞ

… 2
suðNÞ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
k

½SUðNÞ�; ð4:1Þ

½E8� 1
suðNÞ

2
suðNÞ

… 2
suðNÞ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
k

½SUðNÞ�: ð4:2Þ

In M-theory terms, the theories of (4.1) describe the partial
tensor branch of M5-branes probing a C2=ZN singularity
and the theories of (4.2) describe the partial tensor branch
of M5-branes probing a heterotic E8 nine-brane wrapping
the singularity C2=ZN. In this subsection, we shall assume
N ≥ 3 since there are some additional subtleties which arise
in the special case N ¼ 2.

A pleasant feature of the M-theory realization of these
SCFTs is that the Uð1Þ symmetry is directly visible as an
isometry of the geometry probed by the M5-branes. Here,
we would like to see how this comes about by directly
analyzing the partial tensor branch of the theory.
Since the analysis is somewhat simpler in the case of

M5-branes probing an A-type singularity, we start with the
theories of line (4.1) and then turn to the theories of line
(4.2). As a warm-up, consider first the theory of three
M5-branes probing a C2=ZN singularity, with N ≥ 3,

½SUðNÞL� 2
suðNÞ1

2
suðNÞ2½SUðNÞR�; N ≥ 3: ð4:3Þ

This theory has three candidateUð1Þ global symmetries: one
associated with the NL hypermultiplets charged under
suðNÞ1, one associatedwith theNR hypermultiplets charged
under suðNÞ2, and one baryonic Uð1Þ associated with the
bifundamental hypermultiplet ðN; N̄Þ of suðNÞ1 × suðNÞ2.
We denote these three Uð1Þ’s as Uð1ÞL, Uð1ÞR, and Uð1ÞB,
respectively. We then assign the bifundamental hypermul-
tiplets ðN; N̄ÞofSUðNÞL − suðNÞ1,suðNÞ1 − suðNÞ2, and
suðNÞ1 − SUðNÞR charges qL, qR, and qB under their
respective Uð1Þ symmetries. As we have already mentioned
in our discussion of the theory in line (3.12), we can, without
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loss of generality, set qL ¼ qR ¼ qB ¼ 1. Thus, the total
ABJ anomaly involving gauge symmetries can be written as

ItotABJ ¼
N
6
ð−FUð1ÞLTrðF3

suðNÞ1Þ þ FUð1ÞBTrðF3
suðNÞ1Þ

− FUð1ÞBTrðF3
suðNÞ2Þ þ FUð1ÞRTrðF3

suðNÞ2ÞÞ; ð4:4Þ

where TrF3 ≔ TrfundF3, in accordance with Table I. We see
that two linear combinations ofUð1Þ’s have ABJ anomalies,
one for each gauge algebra suðNÞ1 and suðNÞ2,

suðNÞ1∶ − FUð1ÞL þ FUð1ÞB
suðNÞ2∶ − FUð1ÞB þ FUð1ÞR : ð4:5Þ

Thus, there is one surviving Uð1Þ, whose generator can be
written as

Tsurvive ∝ tL þ tB þ tR: ð4:6Þ

The matter content of the theory, which transforms under
SUðNÞL×suðNÞ1×suðNÞ2×SUðNÞR×Uð1Þ, is given by

ðN; N̄; 1; 1Þ1 ⊕ ð1;N; N̄; 1Þ1 ⊕ ð1; 1;N; N̄Þ1: ð4:7Þ

More generally, for a theory of kþ 1M5-branes probing
a C2=ZN singularity, the tensor branch of this theory is
given by

½SUðNÞL� 2
suðNÞ1

… 2
suðNÞk½SUðNÞR�; N ≥ 3; ð4:8Þ

and the global symmetry is SUðNÞL × SUðNÞR ×Uð1Þ.
Here, each bifundamental ðN; N̄Þ has charge 1. The global
symmetry is as expected from the M-theory construction.
Let us turn to the other class of A-type progenitor

theories, which involve k M5-branes probing an E8 wall
and a C2=ZN singularity. Again, we shall assume N ≥ 3.
These theories take the form

½E8�1 2
suð1Þ

2
suð2Þ

� � � 2
suðNÞ1
½Nf¼1�

� � � 2
suðNÞk½SUðNÞ�: ð4:9Þ

In terms of the 6D SCFT/group theory correspondence
reviewed in Appendix B, these are associated with the
trivial homomorphism from ZN into E8.
Let us consider candidateUð1Þ symmetries as associated

with the bifundamentals between the different su factors.
To aid in this analysis, we split up our indexing of the gauge
algebras into those which are on the “ramp” of gauge
algebra factors with increasing rank and those which are on
the “plateau” of gauge algebra factors which all have the
same rank.
Starting at the very left of the ramp, we consider the

bifundamentals attached to the suð2Þ gauge algebra.
Observe that since we have fixed the location of two of
the eight half hypermultiplets (in the collision with the
suð1Þ factor), the only global symmetry available is suð3Þ,
all of which is gauged. We conclude that none of these
hypermultiplets can actually be charged under a candi-
date Uð1Þ.
Turning next to the gauge algebras suðiÞ of the ramp with

i > 2, we see that the bifundamental ði; iþ 1Þ of suðiÞ −
suðiþ 1Þ has an associated baryonicUð1Þ global symmetry.
Similarly, the bifundamental ðN − 1; N̄Þ between suðN − 1Þ
and suðNÞ1, as well as the bifundamentals ðNj; N̄jþ1Þ of
suðNÞj and suðNÞjþ1 all have candidate Uð1Þ’s. Hence,
there are (N − 3) candidateUð1Þ’s from the ramp, and k − 1
candidate Uð1Þ’s from the plateau, for a total of kþ N − 4
Uð1Þ’s associated with bifundamentals between gauge
algebras. In addition, there is a Uð1ÞM associated with the
“middle” antifundamental N̄ of suðNÞ1 and another Uð1ÞR
associated with the UðNÞR ∼ SUðNÞR ×Uð1ÞR flavor sym-
metry acting on theN fundamentals of suðNÞk. This gives a
total of N þ k − 2 candidate Uð1Þ’s.

By a similar analysis as Eq. (4.38), we know that the
suð2Þ − suð3Þ bifundamental is not charged under a
baryonic Uð1Þ symmetry. Therefore, as we will show
below, there is only one Uð1Þ surviving in the above
theory. More surprisingly, the ramp is not charged under the
Uð1Þ symmetry at all: only the plateau is charged under this
Uð1Þ. We will demonstrate this using the method of
candidate Uð1Þ’s (method 1).
Let us now turn to the total ABJ anomaly of this theory

(see Appendix A). We have already mentioned our index-
ing convention for the gauge algebras, as implicit in being
on the ramp or the plateau. To label the Uð1Þ’s, we shall
reference them as Uð1Þi;iþ1 to indicate that it acts on the
bifundamental between suðiÞ and suðiþ 1Þ on the ramp,
and similarly Uð1ÞNi;Niþ1

that it acts on the bifundamental
between suðNiÞ and suðNiþ1Þ. We indicate the two
additional Uð1Þ’s by Uð1ÞM and Uð1ÞR. The total ABJ
anomaly of this theory is then conveniently organized
according to contributions from gauge groups on the ramp
and those on the plateau (see also Appendix A),

IABJ ¼ Iramp þ Iplateau: ð4:10Þ

TABLE I. Group theory factors for cubic Casimirs of SUðNÞ
withN ≥ 3. Here, “fund” refers to the fundamental representation,
“adj” to the adjoint representation, S2 to the two-index symmetric
representation, andΛ2 andΛ3 to the two-index antisymmetric and
three-index antisymmetric representations. The parameter cρ is
defined by TrρF3 ≔ cρTrfundF3. The value of cρ̄ in a complex
conjugate representation ρ̄ is related as cρ ¼ −cρ̄.

Represe-
ntation

Funda-
mental Adjoint S2 Λ2 Λ3

cρ 1 0 N þ 4 N − 4 1
2
ðN2−9Nþ18Þ
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Here, there are contributions from gauge groups on the
ramp, as indicated by Iramp, as well as contributions from
gauge groups on the plateau, as indicated by Iplateau. For the
contributions on the ramp, the candidate Uð1Þ’s which
appear all act on bifundamentals between gauge algebras.
For the contributions on the plateau, the candidate Uð1Þ’s
include those which act on bifundamentals between gauge
algebras, as well as Uð1ÞM andUð1ÞR. Reading from left to
right across the quiver, the contributions to each term are

Iramp ¼
1

6
ð4FUð1Þ3;4TrðF3

suð3ÞÞÞ þ ð4:11Þ

þ 1

6

XN−1

j¼4

½−ðj − 1ÞFUð1Þj−1;jTrðF3
suðjÞÞ

þ ðjþ 1ÞFUð1Þj;jþ1
TrðF3

suðjÞÞ�; ð4:12Þ

Iplateau ¼
1

6
ð−FUð1ÞMTrðF3

suðNÞ1Þ
− ðN − 1ÞFUð1ÞN−1;N1

TrðF3
suðNÞ1Þ

þ NFUð1ÞN1 ;N2
TrðF3

suðNÞ1ÞÞ þ ð4:13Þ

þ 1

6

Xk−1
i¼2

½−NFUð1ÞNi−1 ;Ni
TrðF3

suðNÞiÞ

þ NFUð1ÞNi;Niþ1
TrðF3

suðNÞiÞ� þ ð4:14Þ

þ 1

6
ð−NFUð1ÞNk−1 ;Nk

TrðF3
suðNÞkÞ

þ NFUð1ÞRTrðF3
suðNÞkÞÞ: ð4:15Þ

Of course, the contribution from the plateau is absent when
k ¼ 0. As before, each gauge field strength in this expres-
sion removes one linear combination of Uð1Þ’s from the
theory. Thus, the Uð1Þ counting rules gives exactly one
ABJ anomaly-free Uð1Þ symmetry.

We now determine the charge of each hypermultiplet
under this Uð1Þ. To begin, as noted above, the bifunda-
mental of suð2Þ and suð3Þ cannot carry any Uð1Þ charge,
since suð3Þ ⊕ uð1Þ is not a subalgebra of g2. To satisfy
ABJ anomaly constraints, this means that the bifundamen-
tal of suð3Þ and suð4Þ must carry charge q3;4 ¼ 0. This
constraint propagates to the rest of the ramp via the ABJ
anomaly constraint equations,

Fsuð3Þ∶ 4q3;4 ¼ 0

FsuðjÞ∶ − ðj−1Þqj−1;jþðjþ1Þqj;jþ1¼ 0 ð4≤ j≤N−1Þ
FsuðNÞ1∶ − ðN−1ÞqN−1;N −qMþNqN1;N2

¼ 0

FsuðNÞj∶ −NqNj−1;Nj
þNqNj;Njþ1

¼ 0 ð2≤ j≤ k−1Þ
FsuðNÞk∶ −NqNk−1;Nk

þNqR ¼ 0: ð4:16Þ

Solving these equations give

qi;iþ1 ¼ 0 ð3 ≤ i ≤ N − 1Þ; qM ¼ N; qR ¼ þ1;

qNj;Njþ1
¼ 1 ð1 ≤ j ≤ k− 1Þ: ð4:17Þ

We see that, indeed, the entire ramp is uncharged under the
Uð1Þ global symmetry, and only the matter charged under
the plateau of suðNÞ gauge algebras carries Uð1Þ charge.

The above analysis depends on the assumption that
k > 1. For k ¼ 1, the theory has a ramp, but no plateau. Let
us take the example of N ¼ 5 and compare the k ¼ 2
theory with the k ¼ 1 theory,

½E8�1 2
suð1Þ

2
suð2Þ

2
suð3Þ

2
suð4Þ

2
suð5Þ1
½Nf¼1�

2
suð5Þ2½SUð5Þ�

½E8�1 2
suð1Þ

2
suð2Þ

2
suð3Þ

2
suð4Þ

2
suð5Þ

½SUð6Þ�: ð4:18Þ

The theory with k ¼ 2 falls in the category that we
have already analyzed above, for which we have a
single Uð1Þ. The second theory with k ¼ 1, however,
experiences an accidental flavor symmetry enhancement,
SUð5Þ × Uð1Þ → SUð6Þ, leaving us without an Abelian
flavor symmetry. Such symmetry enhancement occurs
frequently when dealing with “short SCFT quivers,” which
are characterized by the absence of a plateau of gauge
algebras [37,39,44].

B. Quivers with suðNÞ matter with N ≥ 3

In this subsection, we present a broader class of
examples in which the gauge groups on the tensor branch
are again suðNÞ gauge algebras, with hypermultiplets in
complex representations, which we refer to as “suðNÞ
matter.”We defer the discussion of the suð2Þ case to a later
subsection.
To begin, we consider the theory of a single −1 tensor

multiplet paired with an suðNÞ gauge algebra,

1
suðNÞ

½NΛ2¼1�
½SUðN þ 8Þ�; N ≥ 5: ð4:19Þ

The N ¼ 5 version of this theory was considered in detail
from both the field theory and F-theory perspectives in
[38]. The theory has N þ 8 fundamentals and one anti-
symmetric hypermultiplet charged under suðNÞ. The
former transforms under an SUðN þ 8Þ flavor symmetry.
Since both the fundamental and the antisymmetric repre-
sentations are complex for N ≥ 5, each of them gives a
candidate Uð1Þ global symmetry. We denote these Uð1Þ’s
as Uð1ÞF and Uð1ÞΛ2 , respectively.
Let us use the candidate Uð1Þ method (method 1) to

determine the Uð1Þ charges. The fundamentals of suðNÞ
carry charge qF under Uð1ÞF, whereas the antisymmetric
carries charge qΛ2 under Uð1ÞΛ2. We take both charges to
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be þ1, and determine, up to normalization, the linear
combinations free of ABJ anomalies. The overall normali-
zation can also be fixed by the lattice of charges obtained
from a progenitor theory. The theory has an ABJ anomaly
of the form

IABJ ¼
1

6
ððN þ 8ÞFUð1ÞFTrfundðF3

suðNÞÞ
þ 1FUð1ÞΛ2TrΛ2ðF3

suðNÞÞÞ: ð4:20Þ

Using Table I, we note that we may write TrΛ2F3
suðNÞ¼

ðN−4ÞTrfundF3
suðNÞ. Thus,we see that the linear combination

ðN þ 8ÞFUð1ÞF þ ðN − 4ÞFUð1ÞΛ2 ð4:21Þ

suffers from an ABJ anomaly, and it is not a good global
symmetry of the theory. OneUð1Þ remains a valid symmetry
of the theory, and it is generated by the linear combination

Tsurvive ∝ ðN − 4ÞtF − ðN þ 8ÞtΛ2 : ð4:22Þ

The full global symmetry of the theory is therefore
SUðN þ 8Þ ×Uð1Þ, and the matter content under
suðNÞ × SUðN þ 8Þ ×Uð1Þ is given by

ðN;Nþ 8ÞðN−4Þ ⊕ ððNðN − 1Þ=2; 1Þ−ðNþ8Þ: ð4:23Þ

Note that this analysis applies only for N ≥ 5. For
N ¼ 4, the antisymmetric is real rather than complex,
and the flavor symmetry enhances to SUð12Þ × Spð1Þ.
For N ¼ 3, the antisymmetric is simply an antifundamen-
tal, so we get another hypermultiplet in the fundamental
and the flavor symmetry enhances to SUð12Þ¼SUðNþ9Þ.
For N ¼ 2, the antisymmetric representation is trivial,
whereas the fundamental representation is pseudoreal,
and the flavor symmetry is given by SOð20Þ.

1. Comparison of Uð1Þ identification methods

Up to this point, we have presented some examples
which illustrate the merits of the two methods for deter-
mining two Uð1Þ’s. We now present an illustrative example
which shows how the two arrive at the same answer. With
this in mind, consider the theory

2
suð3Þ

½Nf¼2�
2

suð4Þ1
½Nf¼1�

2
suð4Þ2
½Nf¼4�

: ð4:24Þ

Our plan will be to first analyze candidateUð1Þ symmetries
by listing all possible global symmetries which could act on
matter fields (method 1). We will then compare this to the
Uð1Þ symmetries obtained by treating each quiver node in
isolation and computing the branching rules associated
with weakly gauging some of the flavor symmetries of
each node.

We begin with method 1, listing all possible global
symmetries which could act on matter fields. By inspection,
there is aUð2ÞL∼SUð2ÞL×Uð1ÞL flavor symmetry rotating
the two fundamentals of suð3Þ, a Uð4ÞR∼SUð4ÞR×Uð1ÞR
rotating the four fundamentals of suð4Þ2, a Uð1ÞM
acting on the fundamental of suð4Þ1, and two baryonic
Uð1Þ’s, which we denote Uð1ÞB;L and Uð1ÞB;R acting on
the bifundamentals.
The theory has ABJ anomalies of the form

IABJ ¼
1

6
ð−2FUð1ÞLTrðF3

suð3ÞÞ þ 4FUð1ÞB;LTrðF3
suð3ÞÞ

− 3FUð1ÞB;LTrðF3
suð4Þ1Þ − FUð1ÞMTrðF3

suð4Þ1Þ
þ 4FUð1ÞB;RTrðF3

suð4Þ1Þ − 4FUð1ÞB;RTrðF3
suð4Þ2Þ

þ 4FUð1ÞRTrðF3
suð4Þ2ÞÞ: ð4:25Þ

Let us denote a basis of the candidate Uð1Þ space as
ðFUð1ÞL ; FUð1ÞB;L ; FUð1ÞM ; FUð1ÞB;R ; FUð1ÞRÞ. The three gauge
groups each have an ABJ anomaly, which are associated
with the following linear combinations of Uð1Þ’s:

suð3Þ∶ ð−2; 4; 0; 0; 0Þ
suð4Þ1∶ ð0;−3;−1; 4; 0Þ
suð4Þ2∶ ð0; 0; 0;−4; 4Þ: ð4:26Þ

The subspace of ABJ anomaly-free Uð1Þ’s is the two-
dimensional null space of these three vectors7 and is
spanned by

Ta ∝ ð2; 1; 1; 1; 1Þ
Tb ∝ ð2; 1;−3; 0; 0Þ: ð4:27Þ

Next, we analyze the Abelian symmetries of the same
theory of line (4.24) using branching rules of symmetries
(method 2). Each −2 tensor carrying an suð4Þ gauge
algebra has an associated flavor symmetry SUð8Þ, under
which eight fundamentals of suð4Þ transform. For suð4Þ1,
this SUð8Þ is broken according to

SUð8Þ ⊃ SUð4Þ ×Uð1Þ × SUð4Þ
→ ðSUð3Þ × Uð1ÞÞ ×Uð1Þ × SUð4Þ

8 → ð4; 1Þ−1 þ ð1; 4Þ1
→ ð1; 3Þð0;−1Þ þ ð3; 1Þð1;1Þ þ ð1; 1Þð−3;1Þ: ð4:28Þ

Here, the SUð3Þ factor is identified with the suð3Þ gauge
symmetry, while the SUð4Þ factor is identified with the
suð4Þ2 gauge symmetry.

7That is to say, we consider the space of vectors which are
orthogonal to these three vectors inside our five-dimensional
space.
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Consider next the flavor symmetries associated with the
suð4Þ2 gauge algebra. In isolation from the other parts
of the quiver, there is again an SUð8Þ flavor symmetry.
Weakly gauging appropriate subalgebras leads to the
branching rules,

SUð8Þ ⊃ SUð4Þ ×Uð1Þ × SUð4Þ
8 → ð4; 1Þ1 þ ð1; 4Þ−1: ð4:29Þ

Note that the first SUð4Þ here is identified with the suð4Þ1
gauge symmetry, so a state of charge þ1 under the Uð1Þ of
line (4.29) will correspond to a state of charge (0, 1) under
the Uð1Þ × Uð1Þ symmetries appearing in line (4.28).

Finally, there are the global symmetries associated with
the suð3Þ gauge algebra on a −2 curve. In isolation, this
theory has an SUð6Þ global symmetry. We weakly gauge an
suð4Þ1 subalgebra to reach the theory of line (4.24). The
branching rules are

SUð6Þ ⊃ SUð2Þ ×Uð1Þ × SUð4Þ
6 → ð1; 4Þ−1 þ ð2; 1Þ2: ð4:30Þ

The SUð4Þ factor here is identified with the suð4Þ1
gauge symmetry, so the Uð1Þ charge −1 here is
identified with the Uð1Þ charge vector ð0;−1Þ in line

(4.28). Thus, the full matter content under the
ðSUð2Þ; suð3Þ; suð4ÞL; suð4ÞR; SUð4ÞÞðUð1Þa;Uð1ÞbÞ sym-
metry is given by

ð2; 3̄; 1; 1; 1Þð2;2Þ ⊕ ð1; 3; 4̄; 1; 1Þð1;1Þ ⊕ ð1; 1; 4̄; 1; 1Þð1;−3Þ
⊕ ð1; 1; 4; 4̄; 1Þð1;0Þ ⊕ ð1; 1; 1; 4; 4̄Þð1;0Þ:

ð4:31Þ

Note that we have added an additional minus sign relative
to the charges in the branchings (4.28)–(4.30) whenever
taking the complex conjugate.
Let us compare this result to that obtained using method

1 above. There, each of these five multiplets carries charge
1 under a different candidate Uð1Þ and charge 0 under the
other four candidate Uð1Þ’s. However, projecting the
charge vectors onto the basis vectors in (4.27), which span
the ABJ anomaly-free subspace of candidate Uð1Þ’s, we
find precisely the charges in (4.31), demonstrating agree-
ment between the two methods.
Having worked out the full matter content of the theory,

we may use the prescription of Appendix A to compute the
full anomaly polynomial of this theory, including the Uð1Þ
field strengths Fa, Fb corresponding to Uð1Þa; Uð1Þb,
respectively,

I8 ¼
395

12
c2ðRÞ2 −

35

48
c2ðRÞp1ðTÞ þ

181

5760
p1ðTÞ2 −

103

1440
p2ðTÞ

þ c2ðRÞ
�
−
21

16
ðTrF2

SUð2ÞÞ −
23

16
ðTrF2

SUð4ÞÞ −
169

2
F2
a − 63FaFb −

153

2
F2
b

�

þ 5

128
ðTrF2

SUð2ÞÞ2 þ
3

128
ðTrF2

SUð4ÞÞ2 þ
1

6
ðTrF4

SUð4ÞÞ þ
1

64
ðTrF2

SUð2ÞÞðTrF2
SUð4ÞÞ −

2

3
FaTrFSUð4Þ3

þ TrF2
SUð2Þ

�
27

8
F2
a þ

21

4
FaFb þ

27

8
F2
b

�
þ TrF2

SUð4Þ

�
17

8
F2
a þ

3

4
FaFb þ

9

8
F2
b

�

þ p1ðTÞ
�
1

32
ðTrF2

SUð2ÞÞ þ
1

24
ðTrF2

SUð4ÞÞ þ
3

2
F2
a þ FaFb þ

3

2
F2
b

�

þ 119

2
F4
a þ 106F3

aFb þ 189F2
aF2

b þ 90FaF3
b þ

135

2
F4
b: ð4:32Þ

C. Examples with suð2Þ gauge symmetry

As we have already mentioned, the appearance of suð2Þ
gauge algebras complicates the analysis because the flavor
symmetry of the associated SCFT is slightly smaller than
what might appear possible from a naive analysis of the
tensor branch description. To illustrate, consider the theory

2
suð2Þ

½Nf¼1�
2

suð3Þ
½SUð4Þ�: ð4:33Þ

The hypermultiplet of suð2Þ is pseudoreal, so it trans-
forms under SOð2Þ ∼ Uð1ÞL. The four fundamentals of

suð3Þ transform under Uð4ÞR ∼ SUð4Þ × Uð1ÞR. One
might have also expected a baryonic Uð1ÞB under which
the bifundamental of suð2Þ and suð3Þ transforms.
However, we recall that eight half-hypermultiplets in
the fundamental representation of suð2Þ transform as a
spinor of Spinð7Þ, rather than the naïvely expected vector
of SOð8Þ. Since Spinð7Þ decomposes as Spinð7Þ ⊃
SUð3Þ × Uð1Þ, it gives only a single Uð1Þ, rather than
the pair of Uð1Þ’s which would have been expected
from the decomposition SOð8Þ ⊃ SUð3Þ ×Uð1Þ2. As a
result, the SOð2Þ ∼ Uð1ÞL and the Uð1ÞB are condensed
into a single Uð1Þ, which in conjunction with Uð1ÞR gives
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two candidateUð1Þ flavor symmetries. However, the suð3Þ
gauge symmetry introduces an ABJ anomaly, which
removes one linear combination of Uð1Þ’s and ultimately
leaves a global symmetry of SUð4Þ × Uð1Þ.
The Uð1Þ charges of the various matter multiplets can be

determined by the branching rule method. The 8 of Spinð7Þ
decomposes under SUð3Þ ×Uð1Þ according to

8 → 31 ⊕ 3̄−1 ⊕ 1−3 ⊕ 13: ð4:34Þ

The 6 of SUð6Þ decomposes under SUð4Þ × SUð2Þ ×Uð1Þ
according to

6 → ð4; 1Þ−2 ⊕ ð1; 2Þ4: ð4:35Þ

Putting these together, we find that the full matter content
of the theory under suð2Þ × suð3Þ × SUð4Þ × Uð1Þ is

ð2; 3̄; 1Þ2 ⊕ ð2; 1; 1Þ−6 ⊕ ð1; 3; 4̄Þ1: ð4:36Þ

Note that with these charge assignments, theUð1Þ is indeed
free of any ABJ anomaly associated with the suð3Þ gauge
algebra.
Given the full matter content of the theory, we may again

use the prescription of Appendix A to compute the full
anomaly polynomial of this theory, including theUð1Þ field
strength, which we denote by F,

I8 ¼
143

24
c2ðRÞ2 −

3

16
c2ðRÞp1ðTÞ þ

109

5760
p1ðTÞ2

−
67

1440
p2ðTÞ þ c2ðRÞ

�
−72F2 −

2

3
TrF2

SUð4Þ

�

þ 1

8
TrF4

SUð4Þ þ
1

48
ðTrF2

SUð4ÞÞ2 −
1

2
FTrF3

SUð4Þ

þ 27

8
F2TrF2

SUð4Þ þ
729

2
F4

þ p1ðTÞ
�
9

4
F2 þ 1

32
TrF2

SUð4Þ

�
: ð4:37Þ

More generally, by a similar analysis, the theory

2
suð2Þ

½Nf¼1�
2

suð3Þ

½Nf¼1�
… 2

suð3Þ

½Nf¼3�
ð4:38Þ

will have a global symmetry of SUð3Þ ×Uð1Þ2, in agree-
ment with our general prescription for Uð1Þ counting. The
Uð1Þ charges of the hypermultiplets in the theory may
similarly be determined using the branching rules of SOð7Þ
and SUð6Þ.
Let us next consider the theory of line (4.33), but with an

unpaired −2 tensor added to the left of the quiver,

2 2
suð2Þ

2
suð3Þ

½SUð4Þ�; ð4:39Þ

where on the unpaired tensor there is formally an suð1Þ
gauge algebra, 2

suð1Þ
, meaning that there is an hypermultiplet

in the fundamental of suð2Þ of the neighbor −2 curve. In
what follows, every time an unpaired tensor is coupled this
will be implied. Once again, there is a Uð1ÞR from coming
from the four fundamentals of suð3Þ, which transform
under Uð4Þ ∼ SUð4Þ ×Uð1ÞR. However, this is the only
Uð1Þ that shows up: the unpaired −2 tensor effectively
reduces the flavor symmetry of the eight half-hypermul-
tiplets in the fundamental representation of suð2Þ to G2,
which decomposes as G2 → SUð3Þ: there is no Uð1Þ factor
under which the half-hypermultiplets in the fundamental of
suð2Þ (or the bifundamental of suð2Þ × suð3Þ) transform.
Thus, there is only a single candidateUð1Þ, namely,Uð1ÞR.
However, this Uð1Þ is removed by the suð3Þ ABJ anomaly,
leaving only an SUð4Þ global symmetry remaining.
More generally, by a similar analysis, the theory

2 2
suð2Þ

2
suð3Þ

½Nf¼1�
… 2

suð3Þ

½Nf¼3�
ð4:40Þ

will have a global symmetry of SUð3Þ ×Uð1Þ.
This theory also arises from Higgsing of the A-type

progenitor theory obtained from M5-branes probing a
C2=Z3 singularity. In that case, we label the resulting
theory by nilpotent orbits of suð3ÞL and suð3ÞR. These are
associated with associated partitions μL ¼ ½3�, μR ¼ ½13�,
which have commutants HL ¼ ∅, HR ¼ SUð3Þ. We thus
expect a global symmetry of SUð3Þ ×Uð1Þ, which indeed
matches our field theory analysis.
As another example, consider the theory

2
suð2Þ

2
suð4Þ

½Nf¼6�
: ð4:41Þ

There is a Uð1ÞR coming from the six fundamentals of
suð4Þ, which transform under Uð6Þ ∼ SUð6Þ × Uð1ÞR.
However, this is the only Uð1Þ that shows up: the flavor
symmetry SOð7Þ of the leftmost −2 tensor is gauged by
suð4Þ ≃ soð6Þ, but Uð1Þ × SUð4Þ is not a subgroup of
SOð7Þ. As a result, there is no Uð1Þ factor under which
bifundamental of suð2Þ × suð4Þ transforms. Thus, there is
only a single candidateUð1Þ, namely,Uð1ÞR, and thisUð1Þ
is removed by the suð4Þ ABJ anomaly, leaving only an
SUð6Þ global symmetry remaining.

More generally, by a similar analysis, the theory

2
suð2Þ

2
suð4Þ

½Nf¼2�
2

suð4Þ
… 2

suð4Þ

½Nf¼4�
ð4:42Þ

will have a global symmetry of SUð4Þ × SUð2Þ × Uð1Þ.
This theory corresponds to a Higgs branch flow obtained
from the A-type progenitor theory of M5-branes probing
the singularity C2=Z4. Higgsing of the flavor symmetries
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on the left and right is characterized by nilpotent orbits of
suð4ÞL and suð4ÞR associated with partitions μL ¼ ½22�,
μR ¼ ½14�, which have commutants HL ¼ SUð2Þ, HR ¼
SUð4Þ. From our discussion in Appendix B, line (B10), we
expect a global symmetry of SUð4Þ × SUð2Þ × Uð1Þ,
which indeed matches our field theory analysis.
Next, consider the theory

½SOð14Þ� 1
spð1Þ

2
suð3Þ

½SUð4Þ�: ð4:43Þ
This theory shows up as (part of) a quiver in Sec. 5.3 of
[63]. There is a Uð1ÞR coming from the four fundamentals
of suð3Þ, which transform under Uð4Þ ∼ SUð4Þ ×Uð1ÞR.
There is also a Uð1ÞB associated with the bifundamental
of spð1Þ and suð3Þ: the flavor symmetry SOð20Þ of
spð1Þ associated with the −1 tensor decomposes into
SOð14Þ × SOð6Þ, and this SOð6Þ further decomposes into
SUð3Þ × Uð1ÞB. The SUð3Þ factor is gauged, but Uð1ÞB
remains. Similarly, the Uð6Þ flavor symmetry of the six
fundamentals of suð3Þ decomposes into Uð4Þ × Uð2Þ,
which further decompose as Uð4Þ ∼ SUð4Þ ×Uð1ÞR and
Uð2Þ ∼ SUð2Þ ×Uð1ÞB. This SUð2Þ ≃ Spð1Þ is then
gauged. As a result, we have two candidate Uð1Þ’s:
Uð1ÞB and Uð1ÞR, but the ABJ anomaly associated
with suð3Þ eliminates one linear combination of them.
Therefore, in the final analysis, the flavor symmetry is
SOð14Þ × SUð4Þ ×Uð1Þ.

D. Examples with only suð2Þ gauge symmetries

Having discussed in great detail situations where we
have hypermultiplets in complex representations of suðNÞ,
we now turn to some cases where the gauge algebra
consists solely of suð2Þ on the tensor branch. These cases
are interesting because our methods predict that there are no
Uð1Þ symmetries in such situations. Additionally, we can

use our approach to also extract the non-Abelian sym-
metries from these cases.
As a first example, we begin with the theory

2
suð2Þ1
½Nf¼2�

2
suð2Þ2
½Nf¼2�

: ð4:44Þ

There is a bifundamental ð21; 22Þ of the two suð2Þ algebras
and there are two additional fundamentals for each of these
algebras. The fact that the eight half-hypermultiplets in the
fundamental representation of a given suð2Þ gauge algebra
transform as a spinor of SOð7Þ is crucial for determining
the global symmetry of this theory: namely, SOð7Þ decom-
poses as SOð7Þ → SUð2Þ3, and the spinor obeys the
branching rule

8 → ð2; 2; 1Þ ⊕ ð2; 1; 2Þ: ð4:45Þ
In the theory at hand, one of the SUð2Þ’s is gauged by the
other −2 tensor. As a result, the full matter content of the
theory is given by

1

2
ð21; 22; 1L; 2B; 1RÞ ⊕

1

2
ð21; 12; 2L; 2B; 1RÞ

⊕
1

2
ð11; 22; 1L; 2B; 2RÞ: ð4:46Þ

Here, the subscripts 1 and 2 represent the gauge algebras
suð2Þ1 and suð2Þ2, respectively, while the subscripts L, B,
R represent SUð2Þ global symmetries associated with the
two fundamentals of suð2Þ1, the bifundamental, and the
two fundamentals of suð2Þ2, respectively. We see that
the theory has an SUð2Þ3 global symmetry.
According to the matter content and its charge under the

global symmetry factors, we are able to compute the full
anomaly polynomial including the global symmetry field
strengths, denoted as FSUð2ÞL ; FSUð2ÞR , and FSUð2ÞB ,

I8 ¼
23

6
c2ðRÞ2 −

1

12
c2ðRÞp1ðTÞ þ

11

720
p1ðTÞ2 −

2

45
p2ðTÞ þ c2ðRÞ

�
−2TrF2

SUð2ÞB −
1

2
TrF2

SUð2ÞL −
1

2
TrF2

SUð2ÞR

�

þ 9

32
ðTrF2

SUð2ÞBÞ2 þ
1

32
ðTrF2

SUð2ÞLÞ2 þ
1

32
ðTrF2

SUð2ÞRÞ2 þ p1ðTÞ
�
1

48
TrF2

SUð2ÞL þ
1

48
TrF2

SUð2ÞR þ
1

16
TrF2

SUð2ÞB

�

þ 3

16
TrF2

SUð2ÞBTrF
2
SUð2ÞL þ

3

16
TrF2

SUð2ÞBTrF
2
SUð2ÞR þ

1

48
TrF2

SUð2ÞLTrF
2
SUð2ÞR : ð4:47Þ

Next, let us consider the theory of (4.44), but with an
unpaired−2 tensor added to the left-hand side.Now,we have

2 2
suð2Þ1
½Nf¼1�

2
suð2Þ2
½Nf¼2�

: ð4:48Þ

In this case, the global symmetry associated with the
middle −2 tensor is G2, which decomposes as
G2 → SUð2Þ2. The 7 of G2 obeys the branching rule

7 → ð2; 2Þ ⊕ ð1; 3Þ: ð4:49Þ
The first SUð2Þ factor here is gauged by the suð2Þ2 gauge
algebra. As a result, the full matter content of the theory is
given by

1

2
ð21; 22; 2B; 1RÞ ⊕

1

2
ð21; 12; 3B; 1RÞ ⊕

1

2
ð21; 12; 1B; 1RÞ

⊕
1

2
ð11; 22; 2B; 2RÞ: ð4:50Þ
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We see that relative to the previous example, the unpaired
−2 tensor has effectively combined the SUð2ÞL symmetry
and the SUð2ÞB symmetry, resulting in a total global
symmetry of SUð2Þ2. This is quite similar to what hap-
pened in the example in (4.39) above: the addition of the
unpaired −2 tensor in that case combined two Uð1Þ global
symmetries into one.
What happens if we add an unpaired tensor to the other

side of the quiver as well? We then have

2 2
suð2Þ1
½Nf¼1�

2
suð2Þ2
½Nf¼1�

2: ð4:51Þ

Now, using the G2 branching rule for both gauge algebras,
we find a total matter content of

1

2
ð21; 22; 2BÞ ⊕

1

2
ð21; 12; 3BÞ ⊕

1

2
ð21; 12; 1BÞ

⊕
1

2
ð11; 22; 3BÞ ⊕

1

2
ð11; 22; 1BÞ: ð4:52Þ

Now, the unpaired −2 tensor on the right-hand side has
combined the SUð2ÞR symmetry and the SUð2ÞB sym-
metry. The theory has only an SUð2Þ global symmetry.
More generally, a theory of the form

2
suð2Þ1
½Nf¼2�

2
suð2Þ2

… 2
suð2Þk
½Nf¼2�

ð4:53Þ

has an SUð2Þ3 global symmetry provided k ≥ 2 (for k ¼ 1
it has an SOð7Þ global symmetry). The reason why we find
only SUð2Þ3 rather than SUð2Þkþ3 is due to the branching
rule (4.45). Concentrating on eight half-hypermultiplets
charged under the ith gauge symmetry factor suð2Þi, we
find a decomposition

1

2
ð2i; 8Þ →

1

2
ð2i; 2B; 2i−1; 1Þ ⊕ ð2i; 2B; 1; 2iþ1Þ: ð4:54Þ

Crucially, the bifundamental ð2i−1; 2iÞ and the bifunda-
mental ð2i; 2iþ1Þ transform under the same SUð2ÞB bar-
yonic symmetry. This propagates down the entire quiver, so
there is only one baryonic SUð2ÞB in addition to the
SUð2ÞL and SUð2ÞR symmetries, rather than the kþ 1
baryonic symmetries we would have found if the flavor
symmetry of the eight half-hypermultiplets of each suð2Þi
were SOð8Þ rather than Spinð7Þ. Note that for k ¼ 2, this
theory actually shows up in the 6D SCFT-group theory
correspondence discussed in Appendix B as the E7 nilpo-
tent orbit of Bala-Carter label A2 þ 2A1 (see Appendix A.2
of [37]), and its global symmetry is indeed SUð2Þ3.
By a similar analysis, a theory of the form

2 2
suð2Þ1
½Nf¼1�

2
suð2Þ2

… 2
suð2Þk
½Nf¼1�

ð4:55Þ

has an SUð2Þ2 global symmetry provided k ≥ 2 (for k ¼ 1
it has a G2 global symmetry). For k ¼ 2, 3, this theory
shows up in the 6D SCFT-group theory correspondence
with the E8 nilpotent orbits of Bala-Carter labels D5ða1Þ þ
A1 and A4 þ A2, respectively (see Appendix A.3 of [37]).
For k ¼ 4, the theory shows up in the correspondence with
HomðSLð2; 5Þ; E8Þ (see Appendix B.5 of [64]). In all three
of these cases, its global symmetry is indeed SUð2Þ.
Additionally,

2 2
suð2Þ1
½Nf¼1�

2
suð2Þ2

… 2
suð2Þk
½Nf¼2�

2 ð4:56Þ

has an SUð2Þ global symmetry provided k ≥ 2 (for k ¼ 1 it
has an SUð3Þ global symmetry). For k ¼ 2, this theory
shows up in the 6D SCFT-group theory correspondence
with the E8 nilpotent orbit of Bala-Carter label A4þA2þA1

(see Appendix A.3 of [37]), and its global symmetry is
indeed SUð2Þ.
We can also consider D-type quivers, such as the theory

2 2
suð2Þ1

2

2
suð2Þ2

… 2
suð2Þk
½Nf¼2�

: ð4:57Þ

Now, since the tensor carrying suð2Þ1 meets two unpaired
−2 tensors, its flavor symmetry is reduced to SUð3Þ, of
which SUð2Þ is gauged by suð2Þ2. However, since
suð2Þ ⊕ suð2Þ is not a subalgebra of suð3Þ, there is no
additional SUð2ÞB global symmetry acting on the hyper-
multiplets charged under suð2Þ1. Thus, the full global
symmetry of the theory is simply SUð2ÞR, coming from the
two fundamental hypermultiplets of suð2Þk, in contrast
with the SUð2Þ2 we saw in (4.55).8 For k ¼ 2, the full
matter content is given by

ð21; 22; 1RÞ ⊕ 2ð21; 12; 1RÞ ⊕ ð11; 22; 2RÞ: ð4:58Þ

For k ¼ 3, it is given by

ð21; 22; 13; 1RÞ ⊕ 2ð21; 12; 13; 1RÞ ⊕ ð11; 22; 23; 1RÞ
⊕ ð11; 12; 23; 2RÞ: ð4:59Þ

8One might have thought that the symmetry would
be SUð2ÞR × Uð1ÞB rather than simply SUð2ÞR, since
SUð2Þ × Uð1Þ ⊂ SUð3Þ. However, the branching rule 3 → 21 ⊕
1−2 for SUð3Þ → SUð2Þ ×Uð1Þ associated with the flavor
symmetry of suð2Þ1 is incompatible with the rule 8→ð2;1Þ1⊕ð2;1Þ−1⊕ ð1;2Þ1⊕ð1;2Þ−1 of Spinð7Þ→SUð2Þ×SUð2Þ×Uð1Þ
for the flavor symmetry of suð2Þ2, indicating that a Uð1Þ global
symmetry cannot exist.
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By similar reasoning,

2 2
suð2Þ1

2

2
suð2Þ2

… 2
suð2Þk
½Nf¼1�

2 ð4:60Þ

has no global symmetry at all. For k ¼ 2, the full matter
content is given by

ð21; 22Þ ⊕ 2ð21; 12Þ ⊕ 2ð11; 22Þ: ð4:61Þ

E. An example with spðNÞ matter

Finally, let us consider the theory

1
spð1Þ1
½Nf¼8�

2
suð2Þ2
½Nf¼2�

: ð4:62Þ

The theory has an SOð16Þ × SUð2Þ × SUð2Þ global sym-
metry, and the matter content is

1

2
ð21; 12; 16; 1; 2Þ ⊕

1

2
ð21; 22; 1; 2; 1Þ ⊕

1

2
ð11; 22; 1; 2; 2Þ:

ð4:63Þ

More generally, a theory of the form

1
spð1Þ

½Nf¼8�
2

suð2Þ1
2

suð2Þ2
… 2

suð2Þk
½Nf¼2�

ð4:64Þ

has an SOð16Þ × SUð2Þ2 global symmetry. This theory
shows up in the 6D SCFT-group theory correspondence via
the homomorphism Z2 → E8 with Dynkin label 20, which
has a commutant of SOð16Þ.
Finally, we can consider a similar theory of the form

1
spðNÞ

2
suð2Nþ8Þ1
½Nf¼8�

2
suð2Nþ8Þ2

… 2
suð2Nþ8Þk½SUð2N þ 8Þ�: ð4:65Þ

Theories of this form are discussed at length in Sec. 5.4 of
[63]. There is a Uð1ÞR on the right coming from the 2N þ 8
fundamentals of suð2N þ 8Þk, which transform under
Uð2Nþ8Þ∼SUð2Nþ8Þ×Uð1ÞR. There are k − 1 baryonic
Uð1Þ’s associated with the bifundamentals of suð2N þ 8Þi
and suð2N þ 8Þiþ1, and there is another Uð1Þ associated
with the eight fundamentals of suð2N þ 8Þ1, which trans-
form under Uð8Þ ∼ SUð8Þ ×Uð1Þ. Finally, there is a bar-
yonic Uð1Þ associated with the bifundamental of spðNÞ and
suðN þ 8Þ1: the flavor symmetry SOð4N þ 16Þ of the −1
tensor decomposes intoUð2N þ 8Þ, of which suð2N þ 8Þ is
gauged, leaving behind a Uð1Þ flavor symmetry. Thus, in
total, there are kþ 2 candidateUð1Þ’s, k linear combinations
of which are eliminated by ABJ anomalies of suð2N þ 8Þi,

i ¼ 1;…; k. This leaves two Uð1Þ’s, for a final global
symmetry of SUð8Þ × SUð2N þ 8Þ ×Uð1Þ2.
A separate analysis is needed for the caseN ¼ 0. Now, the

−1 tensor is unpaired, and there is no bifundamental of
spðNÞ andsuð2N þ 8Þ1, hence nobaryonicUð1Þ associated
with this bifundamental. However, as emphasized in [63],
there are two choices for the embedding of the gauge
symmetry suð8Þ1 into the E8 symmetry of the −1
tensor, which have commutants SUð8Þ × SUð2Þ and
SUð8Þ × Uð1Þ, respectively (in field theory terms, these
are distinguished by a choice of discrete θ angle). As a
result, the flavor symmetry of these theories is given by
SUð8Þ2×SUð2Þ×Uð1Þ and SUð8Þ2 × Uð1Þ2, respectively.

F. Examples with no suðNÞ matter with N ≥ 3

Let us now consider examples of Uð1Þ global sym-
metries that do not involve hypermultiplets of suðNÞ gauge
symmetries with N ≥ 3. These examples are simpler in that
they do not involve any ABJ anomalies. We first consider
theories with classical SO and Sp gauge algebras, and then
turn to examples with more general exceptional gauge
algebras.
As a first example without suðNÞ matter, consider an

alternating so-sp quiver of the form

… 4
soðnLÞ

1
spðnÞ

½Nf¼2nþ8−ðnLþnRÞ=2�
4

soðnRÞ
…: ð4:66Þ

The spðnÞ gauge algebra here requires 2nþ8−ðnLþnRÞ=2
fundamental hypermultiplets to cancel gauge anomalies. The
fundamental representation of spðnÞ is pseudoreal, so we
should really think of 4nþ 16 − nL − nR half-hypermultip-
lets transforming under an soð4nþ 16 − nL − nRÞ global
symmetry. This does not generically produce a Uð1Þ global
symmetry, but for 4nþ 16 − nL − nR ¼ 2, we get an
soð2Þ ≃ uð1Þ global symmetry algebra. Thus, a single
fundamental hypermultiplet of spðnÞ is associated with a
Uð1Þ global symmetry at the superconformal fixed point.
Next, consider a quiver of the form

… n
e6

½Nf¼6−n�
…: ð4:67Þ

Here, n represents a curve of self-intersection −n, with
1 ≤ n ≤ 6. This theory has 6 − n fundamental hypermul-
tiplets charged under the e6 gauge algebra, which transform
under a UðnÞ ∼ SUðnÞ ×Uð1Þ global symmetry.

Similarly, for

… n
e7

½Nf¼ð8−nÞ=2�
…; ð4:68Þ

the theory has 8 − n half-hypermultiplets transforming in
the fundamental representation of the e7 gauge algebra,
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which also transform under a SOð8 − nÞ global symmetry.
For n ¼ 6, we get an SOð2Þ ∼ Uð1Þ global symmetry.

Another class of global Uð1Þ’s arise when the E8 global
symmetry of a curve of self-intersection −1 is partially
gauged, and a Uð1Þ factor is left over. Given a 6D SCFT
quiver of the form

…m
gL
1n
gR
…; ð4:69Þ

we must have gL × gR ⊂ e8, which is interpreted as weakly
gauging part of the E8 global symmetry. The commutant
subgroup of E8 left ungauged is a global symmetry of the
theory at the conformal fixed point.
One example of a Uð1Þ global symmetry of this type

occurs when gL ¼ e6, gR ¼ suð2Þ,

…6
e6

1
½Uð1Þ�

2
suð2Þ

…: ð4:70Þ

This follows from e6 × suð2Þ × uð1Þ ⊂ e6 × suð3Þ ⊂ e8.
One could also have a quiver of the form

2
suð4Þ

1
½Uð1Þ�

4
soð8Þ

…: ð4:71Þ

Here, soð8Þ× suð4Þ×uð1Þ≃ soð8Þ× soð6Þ× soð2Þ ⊂ e8,
so we indeed get a Uð1Þ global symmetry associated with
this gauging.
Finally, we note that one can construct theories with

multiple Uð1Þ’s by combining the above examples into a
single theory. For instance, one could consider a theory of
the form

5
e6

½Uð1Þ�
1

½Uð1Þ�
2

suð2Þ
3

soð7Þ
2

suð2Þ
1 6

e7

½Uð1Þ�
: ð4:72Þ

This theory has three Uð1Þ’s: one associated with the e6
gauge algebra on the −5 curve [as in line (4.67)], one
associated with the e7 gauge algebra on the −5 curve [as in
line (4.68)], and one associated with theUð1Þ left ungauged
on the leftmost −1 curve [as in line (4.70)].

G. Frozen SCFT examples

Let us now turn to some examples which arise from the
frozen phase of F-theory [41,42,61,65]. Recall that these
SCFTs still arise from an elliptically fibered Calabi-Yau
threefold, but in which the physical interpretation of
singular elliptic fibers is different from that which is
assigned in the geometric phase of F-theory.
In frozen SCFTs, we may see bifundamentals

of so and su gauge algebras, which introduce candidate
Uð1Þ global symmetries. We illustrate below with a pair of
examples.

To begin, consider the theory with soð20Þ ⊕ suð10Þ
gauge algebra and Dirac pairing,

Ω ¼
�−4 2

2 −2

�
: ð4:73Þ

The matter content of this theory is

2ð20; 1Þ ⊕ ð20; 10Þ: ð4:74Þ

The two fundamentals of soð20Þ transform under an Spð2Þ
global symmetry. There is also a baryonic Uð1Þ global
symmetry associated with the bifundamental of soð20Þ and
suð10Þ. This follows from the fact that the full Spð12Þ
symmetry associated with 12 fundamentals of soð20Þ
decomposes as Spð10Þ × Spð2Þ, the former which further
branches to Uð10Þ ∼ SUð10Þ ×Uð1Þ. This SUð10Þ is
gauged, leaving behind a Uð1Þ baryonic symmetry.
However, there is also an ABJ anomaly associated with
the suð10Þ gauge symmetry,

IABJ ⊃ −
10

3
FUð1ÞTrðF3

suð10ÞÞ: ð4:75Þ

As a result, theUð1Þ is removed from the spectrum, leaving
just an Spð2Þ global symmetry.
Next, we consider the theory with soð20Þ ⊕ suð12Þ

gauge algebra and Dirac pairing,

Ω ¼
�−4 2

2 −2

�
: ð4:76Þ

The matter content of this theory is

4ð1; 12Þ ⊕ ð20; 12Þ: ð4:77Þ

Here, the four fundamentals of suð12Þ transform under a
Uð4ÞR ∼ SUð4ÞR × Uð1ÞR global symmetry. There is also a
baryonic Uð1Þ global symmetry associated with the bifun-
damental of soð20Þ and suð12Þ, as above. However, there
is also an ABJ anomaly associated with the suð12Þ gauge
symmetry,

IABJ
1

6
ð−20FUð1ÞBTrðF3

suð12ÞÞ þ 4FUð1ÞRTrðF3
suð12ÞÞÞ:

ð4:78Þ

As a result, the linear combination −20FUð1ÞB þ 4FUð1ÞR is
removed from the spectrum, leaving an SUð4Þ ×Uð1Þ
global symmetry.

V. Uð1Þ’S AND RG FLOWS

In previous sections, we presented a general prescription
for how to read off the Uð1Þ global symmetries of a 6D
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SCFT from data associated with its tensor branch descrip-
tion. We have, in particular, explained how to read off these
symmetries for the A-type progenitor theories and implic-
itly argued that no other progenitor theories possess such
symmetries. Additionally, we have directly extracted the
Uð1Þ global symmetries and their associated anomalies in a
number of examples.
As we have already mentioned, one reason to focus on

the symmetries of the progenitor theories is that all known
6D SCFTs arise from a combination of fission and fusion
moves from this single uniform starting point. This in turn
motivates a more general question concerning the fate of
various Uð1Þ symmetries under deformations from one UV
fixed point to another fixed point in the IR.
As shown in Refs. [66–68], supersymmetric deforma-

tions of 6D SCFTs arise from vevs of operators, either
coming from tensor branch deformations or Higgs branch
deformations. The structure of such RG flows has been
analyzed, for example, in Refs. [30,31,37,39,69].
Tensor branch deformations are somewhat simpler in

that they preserve the global symmetries of the UV theory.
However, such a flow often introduces new, emergent
global symmetries to the IR SCFT, which result from
ungauging a symmetry of the (tensor branch description of
the) UV theory. Additional global symmetry enhancements
may also occur, as discussed above for progenitor theories
with a small number of M5-branes.
For Higgs branch flows, we expect that giving vevs to

hypermultiplets or their strongly coupled analogs (namely
6D conformal matter) will generically break both global
and gauge symmetries of the quiverlike gauge theory
obtained from the partial tensor branch of a 6D SCFT.
A nontrivial consequence of this observation is that a global
symmetry of an IR fixed point (obtained after a Higgs
branch deformation) could in fact originate from a linear
combination of gauge and global symmetries in the tensor
branch description of the UV parent theory.
To illustrate, consider a 6D SCFT with partial tensor

branch containing a product gauge group G1 ×G2 with
terms in the Lagrangian description on the tensor branch,

Lpartial tensor ⊃ ϕð1ÞTrFð1Þ ∧ �Fð1Þ
þ ϕð2ÞTrFð2Þ ∧ �Fð2Þ; ð5:1Þ

with ϕi the vevs for the tensor multiplet scalars. Suppose
we now consider a breaking patter for our matter (be it
hypermultiplets or conformal matter) which only retains a
diagonal symmetry Gdiag ⊂ G1 ×G2. The resulting kinetic
term for the gauge fields is

Lpartial tensor ⊃ ðϕð1Þ þ ϕð2ÞÞTrFdiag ∧ �Fdiag: ð5:2Þ

Of course, if we consider the limit where one of the ϕðiÞ’s
becomes infinite, we effectively convert one of the gauge
symmetries into a flavor symmetry. This in turn means that

the diagonal symmetry will also become a global sym-
metry. From the perspective of a 6D SCFT, the origin of the
diagonal symmetry may therefore seem “mysterious”
seeing as it originates from degrees of freedom which
are most apparent on the tensor branch. That being said, the
above considerations make it quite clear where these
symmetries originate from. In particular, they also show
that a naïve application of ’t Hooft anomaly matching
between the UVand the IR is simply inappropriate because
the original global symmetries of a 6D SCFT may in fact be
broken by a given Higgs branch deformation.
To illustrate this phenomenon, we examine the Higgs

branch flow between the following theories, working on the
tensor branch of each theory:

1
suð6Þ

½Nf¼14;NΛ2¼1�
→ 1

suð5Þ

½Nf¼13;NΛ2¼1�
: ð5:3Þ

The UV theory, consisting of suð6Þ on a −1 curve, has the
following matter content under suð6Þ × SUð14Þ ×Uð1Þ:

ð6; 14Þ1 þ ð15; 1Þ−7: ð5:4Þ

The −7 charge is necessary for ABJ anomaly cancelation,
using the fact (from Table I) that cρ ¼ 2 for the Λ2

representation of suð6Þ. The anomaly polynomial of the
UV theory is

IUV ¼ 199c2ðRÞ2
12

−
3

2
c2ðRÞTrF2

SUð14Þ − 630c2ðRÞF2

−
53c2ðRÞp1ðTÞ

24
þ 27F2TrF2

SUð14Þ

− FTrF3
SUð14Þ þ

1

8
p1ðTÞTrF2

SUð14Þ þ
1

4
TrF4

SUð14Þ

þ 1

32
ðTrF2

SUð14ÞÞ2 þ
56133F4

8

þ 693F2p1ðTÞ
16

þ 217p1ðTÞ2
1920

−
31p2ðTÞ
480

: ð5:5Þ

The suð6Þ × SUð14Þ ×Uð1Þ symmetry is broken to
suð5Þ × SUð12Þ ×Uð1Þ2 by giving vevs to the scalars
in two different hypermultiplets in the fundamental of
suð6Þ. Indeed, this follows because the triplet of D-term
constraints for the suð6Þ gauge symmetry cannot be
satisfied by giving a vev to a single hypermultiplet
(see e.g., [60,70]). Denoting the associated hypermultiplets
in the fundamental of suð6Þ × SUð14Þ as Qi ⊕ Q̃†

i for
i ¼ 1;…; 14, we give a vev to Q1 and Q̃†

2. This breaks the
non-Abelian flavor symmetry to SUð12Þ.
In addition, the antisymmetric tensor 15 decomposes

under suð6Þ → suð5Þ × uð1Þ as follows:

15 → 102 þ 5−4: ð5:6Þ
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So, in total, the matter in (5.4) decomposes as

ð6; 14Þ1 → ð5; 12Þð1;1;1Þ þ ð1; 12Þð−5;1;1Þ
þ 2ð5; 1Þð1;−6;1Þ þ 2ð1; 1Þð−5;−6;1Þ

ð15; 1Þ−7 → ð10; 1Þð2;0;−7Þ þ ð5; 1Þð−4;0;−7Þ; ð5:7Þ

where the three Uð1Þ charges correspond, respectively,
to the charges under the suð6Þ Cartan Hsuð6Þ ¼
diagð−5; 1; 1; 1; 1; 1Þ, the SUð14Þ Cartan HSUð14Þ ¼
diagð−6;−6; 1; 1;…; 1; 1Þ, and the UV Uð1Þ generator
HUV, respectively. One of the three Uð1Þ’s suffers from
an ABJ anomaly, which leaves an suð5Þ×SUð12Þ×Uð1Þ2
symmetry manifest. In the IR, however, the fundamental
from the antisymmetric tensor combines with the 12
fundamentals from the breaking of the suð6Þ × SUð14Þ
bifundamental, and the flavor symmetry enhances from
SUð12Þ ×Uð1Þ2 to SUð13Þ ×Uð1Þ.

From ABJ anomaly cancelation in the IR, we know
that the matter of the IR theory transforms under
suð5Þ × SUð13Þ ×Uð1Þ as

ð5; 13Þ1 þ ð10; 1Þ−13: ð5:8Þ

The anomaly polynomial of this theory is

IIR¼
277c2ðRÞ2

24
−1300c2ðRÞF2−

5

4
c2ðRÞTrF2

SUð13Þ

−
83c2ðRÞp1ðTÞ

48
þ365625F4

8
þ1625F2p1ðTÞ

16

þ525

8
F2TrF2

SUð13Þ þ
11

96
p1ðTÞTrF2

SUð13Þ þ
5

24
TrF4

SUð13Þ

−
5

6
FTrF3

SUð13Þ þ
1

32
ðTrF2

SUð13ÞÞ2þ
7p1ðTÞ2

72
−
p2ðTÞ
18

:

ð5:9Þ
The mismatch in gravitational anomalies is given by

ΔI ≔ IUV − IIR ¼ 91p1ðTÞ2
5760

−
13p2ðTÞ
1440

þ � � � ; ð5:10Þ

which implies that there are 13 additional, free hyper-
multiplets arising in the IR of the RG flow. Part of the
goal of our analysis is to determine the Uð1Þ charges of
these free hypermultiplets. Before we can do this, how-
ever, we must first address our main question of interest:
writing the IR Uð1Þ as a linear combination of Uð1Þ’s in
the UV.
To determine the coefficients of the appropriate linear

combination aHsuð6Þ þ bHSUð14Þ þ cHUV, we impose the
following constraints:
(1) The correct linear combination must not be broken

by Higgsing. From the specified vevs for Q1 and Q̃2

above, each of which carry charge 1 underHUV, this
gives

−5a − 6bþ c ¼ 0: ð5:11Þ

(2) The correct linear combination must assign charge 1
to the bifundamental of suð5Þ × SUð13Þ. Concen-
trating on a fundamental of suð5Þ that originates in
the fundamental of suð6Þ × SUð13Þ, this gives

aþ bþ c ¼ 1: ð5:12Þ

(3) Additionally, the correct linear combination must
assign charge 1 to the fundamental of suð5Þ that
originates in the antisymmetric tensor of suð6Þ. This
fundamental is not charged under SUð14Þ, but from
line (5.7) it carries charge −4 under Hsuð6Þ and
charge −7 under HUV. Thus,

−4a − 7c ¼ 1: ð5:13Þ

(4) Finally, the correct linear combination must assign
charge −13 to the antisymmetric tensor of suð5Þ.
This comes from the antisymmetric tensor of suð6Þ,
and from (5.7) it carries charge 2 under Hsuð6Þ, and
charge −7 under HUV. Thus,

2a − 7c ¼ −13: ð5:14Þ

Equations (5.11)–(5.14) represent four equations for three
unknowns, but is not overconstrained. Indeed, there is a
nontrivial solution,

a ¼ −
7

3
; b ¼ 15

7
; c ¼ 25

21
: ð5:15Þ

The appearance of rational numbers (rather than integers) is
inconsequential. What is important is that all physical states
have properly quantized charges. Indeed, the denominators
have been chosen so that the Uð1Þ charge of the bifunda-
mental ð5; 12Þ is normalized to 1.
The fact that a ≠ 0 here is of great importance: it shows

that the IR Uð1Þ is a linear combination of not only global
symmetries, but also gauge symmetries in the UV. This is a
perfectly sensible statement on the tensor branch, where the
suð6Þ and suð5Þ gauge theories are weakly coupled, but it
is not clear how one is supposed to interpret thisUð1Þ at the
SCFT fixed point. Furthermore, since the UV Uð1Þ
symmetry does not match the IR Uð1Þ symmetry, there
is no Uð1Þ symmetry preserved along the flow, so Uð1Þ
anomalies cannot be matched between the two theories in
any straightforward manner.
Let us now return to the 13 free hypermultiplets in the

IR of the RG flow. Goldstone bosons associated with
the two ð5; 1Þð1;−6;1Þ hypermultiplets as well as one of the
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ð1; 1Þ−5;−6;1 hypermultiplets are eaten due to the Higgsing of
suð6Þ → suð5Þ. From (5.7), we see that the 13 remaining
free hypermultiplets correspond to

ð1;12Þð−5;1;1Þþð1;1Þð−5;−6;1Þ→ð1;12Þ15þð1;1Þ0; ð5:16Þ

where on the right-hand side, we have plugged in the UV
charges to the linear combination of (5.15).We see that the IR
matter consists of a fundamental of SUð12Þ of charge 15 and
an uncharged singlet. Comparing (5.5) and (5.9), one sees
that the fundamental of SUð12Þ is actually necessary to
match the TrF4

SUð12Þ anomalies between the UVand the IR,

whichmust agree because theSUð12Þ symmetry is preserved
along the flow. Note, however, that these 13 free hyper-
multiplets do not carry the same Uð1Þ charge, so unlike the
13 hypermultiplets of suð5Þ, they do not assemble into an
enlarged SUð13Þ flavor symmetry. This is not a problem for
anomalymatching because, as we have seen, the full SUð13Þ
flavor symmetry is not preserved along the flow, but appears
only at the UV and IR fixed points.

VI. GEOMETRY OF GLOBAL
Uð1Þ’S IN F-THEORY

In this section, we turn to the geometric origin of Uð1Þ
global symmetries in F-theory realizations of 6D SCFTs.
For previous work on global Uð1Þ’s in F-theory in the
context of 6D SCFTs, see [38].9 Rather than analyzing the
corresponding Weierstrass model for each of the examples
presented in the previous sections, we shall instead analyze
the origin of Abelian symmetries in the progenitor theories.
Indeed, since the progenitor theories are a common starting
point for all 6D SCFTs, it is at some level enough to
understand the geometric origin of Uð1Þ symmetries in
these theories and then track their behavior under fission
and fusion moves.
Recall that the two general classes of progenitor theories

are given by a quiverlike partial tensor branch,

½GADE� 2
gADE

2
gADE

… 2
gADE|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

k

½GADE�; ð6:1Þ

½E8� 1
gADE

2
gADE

… 2
gADE|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

k

½GADE�: ð6:2Þ

The theories of (6.2) arise from M5-branes probing a
heterotic nine-brane wrapping an ADE singularity [18,43].
The theories of (6.1) arise fromM5-branes probing an ADE
singularity. Note that the theories of (6.1) can be viewed as

the result of a tensor branch deformation of the theories
of (6.2).
In the F-theory realization of these 6D SCFTs, we

specify a noncompact base B with contractible configura-
tions of curves and then supplement this by a suitable
elliptic fibration so that the total space is a noncompact
Calabi-Yau threefold. In the theories of (6.1), we work with
a singular base C2=Zk and a pair of seven-branes with
GADE flavor seven-branes which intersect transversely over
the orbifold fixed point. In the theories of (6.2), we instead
work with a base C2 and a transverse collision of a
noncompact E8 seven-brane with a GADE seven-brane.10

This is accompanied by a k-fold intersection of an I1 locus
of the discriminant. For the explicit presentations of the
associated Weierstrass models in these cases, see, for
example, [18,43,71], as well as the review article of
Ref. [27]. In each of these cases with a non-Abelian flavor
symmetry, we can see a potential origin for a Uð1Þ global
symmetry in a fission or fusion product, simply by
performing a suitable smoothing deformation of the sin-
gular Calabi-Yau geometry. In this sense, these cases
provide a uniform perspective on many candidate Uð1Þ
symmetries for 6D SCFTs.
There can also be additional Uð1Þ symmetries which

originate from the Mordell-Weil group of the elliptic
fibration. Indeed, in models with a compact base, namely,
those in which the 6D theory is coupled to gravity, there is a
well-defined procedure for extracting candidate Uð1Þ
gauge symmetries. One way to obtain global Uð1Þ sym-
metries is to now take a limit in which the base is
noncompact. This decouples gravity and also makes the
Uð1Þ into a global symmetry [38]. As we explain later,
however, not all global Uð1Þ symmetries need to originate
from such a procedure, though when available, it is clearly
a useful way to build possible examples.
To construct such examples, we begin with a generic

point of the base and ask whether the corresponding elliptic
curve has an additional generator in its Mordell-Weil group
(the group law for a given elliptic curve). This defines an
additional marked point on the elliptic curve and thus an
additional candidate section for the elliptic fibration. As we
move to different points of the base, the fate of this marked
point may either persist or disappear. If it persists, we have
a candidate for an extra section of the elliptic fibration. The
appearance of at least two candidate sections, say σ and σ0
means that we have two distinct divisors σ�ðBÞ and σ0�ðBÞ
in the Calabi-Yau threefold. In the M-theory reduction, this

9In the examples of [38], the F-theory base is compact, and
gravity is decoupled in a second step by taking a suitable
decoupling limit. On the contrary, in our examples below, we
work with noncompact, local bases from the start.

10Heterotic small instantons on C2 have a tensor branch
1; 2;…; 2. It is well-known that the F-theory realization of the
corresponding 6D SCFT does not generically exhibit an E8 flavor
symmetry or the additional SUð2ÞL flavor symmetry which are
both manifest in the heterotic description. These symmetries are
typically viewed as “emergent” at the fixed point. The E8 flavor
symmetry can be made manifest by a suitable tuning of complex
structure moduli.
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additional divisor provides a candidate Uð1Þ boson,
and consequently, there is a close interplay between the
Mordell-Weil group of the family of elliptic curves and
Uð1Þ gauge symmetries [3,53,54].11

Returning to the case of globalUð1Þ’s, it is natural to ask
whether some noncompact remnant of the Mordell-Weil
group will persist in these cases as well. In global F-theory
models, Abelian gauge symmetries act on charged matter
fields, which are localized at codimension-two singularities
of the Calabi-Yau threefold. However, even in compact
models, some of these Abelian factors may acquire a mass
and become nondynamical via a “geometric Stückelberg
mechanism.” Those that stay massless (dynamical) are
associated to singularities which admit a small Kähler
resolution [75,76]. This is clearly the case if the Weierstrass
model can be put into conifold form (i.e., ab ¼ cd, with a,
b, c, d polynomials in the base and fiber coordinates) [76],
or if it admits a “matrix factorization” of a certain form [93]
(see also [91] for the relevant terminology). We will see that
this construction carries over in certain noncompact
F-theory models as well.
We begin by first adopting a convenient parametrization

of elliptically fibered Calabi-Yau threefolds which is par-
ticularly amenable to the analysis of possible Uð1Þ sym-
metries. After this, we analyze the (infinite class of)
examples of (6.1) which in M-theory terms are given by
M5-brane probes of an A-type singularity. We then turn to
the theories of (6.2) which in heterotic terms are given by
small E8 instanton probes of an A-type singularity. Finally,
we will focus on cases where the non-Abelian global
symmetry contains an SUðNÞ factor for N ≥ 3 and a
sufficient number of collapsing curves in the base geometry.
We will comment on these special cases, as appropriate.

A. Geometric preliminaries

In this subsection, we state some of the geometric
preliminaries we will make use of to analyze the
Abelian symmetries of the A-type progenitor theories.
For our purposes, it will be helpful to describe the base
of the F-theory model in the limit where all the curves
participating in the 6D SCFT have collapsed to zero size. In
this case, we obtain the tensor branch by performing
blowups of the base.
For the heterotic small instanton probes of an A-type

singularity, the base is given by C2. For the M5-brane
probes of an A-type singularity, the base is given by C2=Zk
where the group action on the local base coordinates is
ðu; vÞ ↦ ðωu;ω−1vÞ with ω ¼ expð2πi=kÞ.
The local presentation of the elliptic fibration is cus-

tomarily written in general form as

y2 ¼ x3 þ fxz4 þ gz6; ð6:3Þ

where ½x∶y∶z� are weighted homogeneous coordinates of
P2
½2;3;1�. For the prescribed group actions (trivial or by Zk),

f and g are given by polynomials in the local coordinates
ðu; vÞ as

f ¼
X
i;j

fi;juivj; g ¼
X
i;j

gi;juivj: ð6:4Þ

See Refs. [27,96,97] for a discussion of Weierstrass models
over a base B with more general orbifold singularities. In
the case of the Zk group action, we need to ensure that each
monomial we retain is invariant under the group action.
This restricts us to the invariant terms ðuvÞ, uk, vk, and
products thereof. As standard, the components of the
discriminant locus Δ ¼ 4f3 þ 27g2 correspond to degen-
eration loci of the fibration, i.e., matter curves in the base.
Now, for the purposes of analyzing possible global

symmetries of the model, it will be convenient to para-
metrize our elliptic fibration as

y2 ¼ s3 þ b2s2z2 þ 2b4sz4 þ b6z6; ð6:5Þ

where the usual x fiber coordinate and the f, g coefficients
in (6.3) are recovered via

f ¼ −
1

3
ðb22 − 6b4Þ; g ¼ 1

27
ð2b32 − 18b2b4 þ 27b6Þ;

x ¼ sþ 1

3
b2z2: ð6:6Þ

We are interested in models which have an additional
generator of the Mordell-Weil group. In what follows, it
will suffice to consider the Morrison-Park (MP) construc-
tion [40] of additional sections. The MP construction
requires specific coefficients b2, b4, b6 in order to engineer
an extra section of the elliptic fibration.
In a compact model, this section would yield an extra

generator of the global Picard group of divisors of the
threefold which would then yield an extra Uð1Þ gauge
boson in the effective theory by the usual logic of reducing
the supergravity three-form along the Poincaré dual of the
new divisor [3].

In a noncompact model, additional care is needed
because Poincaré duality will not produce a dynamical
vector boson in this case. Note, however, that in any such
model which could be recoupled to gravity, obtaining a
local fibration in MP form would be a necessary condition
for this to extend to a global model.12

Our strategy should thus be clear: we will first seek out
necessary conditions to have an additional section in MP

11For an incomplete list of references on Uð1Þ gauge sym-
metries in F-theory, see e.g., [40,72–93]. See also the reviews
[94,95] for a more recent account on this vast subject.

12See Secs. 1.1 and 1.2 of Ref. [93] for a discussion on the
local versus global Picard group of divisors.
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form. When this condition is met, we can conceive of the
existence of a compact F-theory model defined on a
compact base which has an additional gauged Uð1Þ.13
On the other hand, since our progenitor theories fit into
infinite families (as specified by the number of collapsing
curves), the existence of even one globally consistent
model is enough to establish the pattern for all generic
members of the family. This will be the sense in which we
show that the progenitor theories of (6.1) do indeed have a
global Uð1Þ symmetry, namely, by establishing the exist-
ence of an additional section in MP form.
To reach a fibration in MP form, the b2, b4, b6

coefficients are restricted as follows:

bMP
2 ¼ c2; bMP

4 ¼ 1

2
ðc1c3 − b2c0Þ;

bMP
6 ¼ c0c23 − b2c0c2 þ

1

4
b2c21; ð6:7Þ

with b; c0;…; c3 base polynomials, i.e., sections of line
bundles (over the base) of prescribed degree. Over each
point of the base, the extra section generically cuts the fiber
at a point Q ∈ P2

½2;3;1� with fiber coordinates,

Q∶ ½s∶y∶z�¼
�
c23−b2c2∶−c33þb2c2c3−

1

2
b4c1∶b

�
: ð6:8Þ

The zero section, which always exists, sits at Z∶½s∶y∶z� ¼
½1∶1∶0�. The above restrictions enforce singularities in
codimension-two (in the threefold) where the matter
charged under the Uð1Þ symmetry is localized; in the
generic MP model, there are two such loci, which intersect
each other. (See [40,98,99] for details.)
Our plan will be to consider further tunings in the

Weierstrass models of the progenitor theories and thus
obtain the requisite additional section in MP form.

B. Warmup: Bifundamentals of SUðMÞ × SUðNÞ
Though our primary interest is in the case of interacting

SCFTs, we have also seen in Sec. III that, to a large extent,
the global symmetries of a bifundamental hypermultiplet
provide a helpful guide to the structure of global sym-
metries in interacting 6D SCFTs. As a warm-up to our
general question, we first analyze the behavior of an
additional MP section in this special case. We note that
this does not produce an interacting SCFT since we have no
collapsing curves in this case. Even so, the geometry still
contains most of the relevant features we will need in the
case of interacting SCFTs.
The local geometry for a hypermultiplet in the bifunda-

mental representation of SUðMÞ × SUðNÞ involves the

transverse collision of two components of the discriminant
with respective singularity types IM and IN on an F-theory
base B ¼ C2 with local coordinates ðu; vÞ. We let u ¼ 0
denote the IM locus and v ¼ 0 denote the IN locus. The
correspondingWeierstrass model can be obtained by taking

b2 ¼ 1þ uMvN; b4 ¼ uMvN; b6 ¼ uMvN ð6:9Þ

and has discriminant

Δ ¼ uMvNð4 − uMvNÞ: ð6:10Þ

This indeed yields the correct orders of vanishing of
ðf; g;ΔÞ over u ¼ 0 and v ¼ 0. There is an extra I1 locus
which does not carry any gauge algebra and does not
intersect any of the branes with a non-Abelian flavor group
(hence it is just a spectator).
The above presentation of (6.9) fits into a (nongeneric)

Morrison-Park model upon putting

b ¼ vN=2; c0 ¼ 0; c1 ¼ 2uM=2;

c2 ¼ 1þ uMvN; c3 ¼ uM=2vN: ð6:11Þ

Note that other choices are possible, e.g., c0 ∝ uM,
c1 ∝ uMvN=2, c3 ¼ 0 and the rest unchanged. The above
Ansatz is clearly valid forM andN even. In fact, away from
the locus u ¼ 0 (v ¼ 0), we can always expand around
some fixed value u ¼ ufixed (likewise for v) and obtain a
power series expansion for the parameter u (likewise for v).
Let us assume thatM, N are both even and comment on the
other possibilities later.
The extra rational point generically sits at Q∶ ½s∶y∶z� ¼

½−vN∶0∶vN=2� which is the same as ½−1∶0∶ − 1� acting
with the C� action of P2

½2;3;1�
14; this shows that Q is always

distinct from Z. As a further check, note that with the above
choices the MP fibration can be put into “conifold form”
(simply because bMP

6 turns into a perfect square for
c0 ¼ 0),15 corresponding to the tranverse collision of
AM−1 and AN−1 singularities, as expected from e.g., [97].
Given the criterion of [76], in a compact setting we would
interpret this fact as saying that the F-theory model has an
extra (massless) Uð1Þ gauge symmetry.
Indeed, in the z ≠ 0 patch of (6.5) (which does not

contain the zero section Z but contains Q), with the
coefficients on the right-hand side of (6.7) restricted as
in (6.11), we have

13Similarly, Ref. [38] provides necessary conditions (on local
bases) which come from anomaly constraints as well as con-
straints ensuring the existence of an extra section.

14That is, we work in a patch where v ≠ 0, (and where z ≠ 0),
which does not contain the zero section but contains the new
rational point Q.

15This situation is commonly referred to in the F-theory
literature as Uð1Þ restriction [72].
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y2 −
1

4
b2c21 ¼ sðs2 þ c2sþ c1c3Þ

ðy − uM=2vN=2Þðyþ uM=2vN=2Þ
¼ sðs2 þ ð1þ uMvNÞsþ 2uMvNÞ; ð6:12Þ

which can be put into standard form x̃ ỹ ¼ ũMṽN by
shifting back s ↦ x and applying an analytic change of
variables. The conifold form makes it easy to identify the
extra generator of the Mordell-Weil group (i.e., a new
rational section) [76,93]. Note also that in this new
presentation of the singularity, all appearance of “fractional
powers” such as M=2 has disappeared, as anticipated.
Taking stock of the above example, we see that in the

geometry there is a manifest SUðMÞ × SUðNÞ ×Uð1Þ
flavor symmetry. This is in accord with the general
unfolding of IMþN to a pair of colliding IM and IN
components of the discriminant. In group theory terms,
we also have the maximal subalgebra suðM þ NÞ ⊃
suðMÞ × suðNÞ × uð1Þ.
This also illustrates another general point that an F-theory

model only tends to makemanifest a subset of the full flavor
symmetries of the field theory. For example, the free
hypermultiplets in question clearly transform in the funda-
mental representation of UðM þ NÞ. The “off-diagonal”
terms of this symmetry are absent. Additionally, the overall
center of mass Uð1Þ is not present in our analysis. In
interacting 6D SCFTs, we expect this center of massUð1Þ to
decouple, but that the other Uð1Þ will persist.

Turning to the case where eitherM or N (or both) is odd,
we expect on physical grounds that the above analysis will
still hold. Namely, one should be able to find identifications
of the form (6.11) which do not involve any roots, thus
avoiding unwanted branch cuts in the local model over C2.
In fact, if one thinks of the A-type progenitors of (6.1) as an
infinite family as M, N grow large, the physics should not
distinguish between the M, N and M þ 1, N þ 1 repre-
sentatives. Starting from the case where M, N are both
even, it is reasonable to expect a global Uð1Þ symmetry to
be present in the odd case as well, with the would-be branch
cuts of uM=2, vN=2 simply appearing as an artifact of the
chosen presentation. This is in accord with the fact that in
the local conifold presentation of the singularity, we saw
that these branch cuts eventually disappeared.16

C. M5-branes at A-type singularities

Let us now turn to an F-theoretic analysis of the global
Uð1Þ symmetry for k M5-branes probing an A-type

singularity. We divide our discussion up into the generic
case with three or more M5-branes and the special case with
two M5-branes. The case of a single M5-brane has already
been covered in Sec. VI B.
In the case of k ≥ 2 M5-branes, the F-theory base is

C2=Zk, and there are k − 1 collapsing curves of self-
intersection −2. From our discussion of Weierstrass models
on a singular base and the transformation properties of f
and g under the Zk group action, we observe that each of
the coefficients bi appearing in the shifted Weierstrass
model must also be invariant under the group action (see
e.g., Sec. 4 of Ref. [100] for the details). This in turn
restricts the power series expansion for each term,

biðu; vÞ ¼
X
a;b

ðbiÞa;buavb; i ¼ 2; 4; 6; ð6:13Þ

namely, all terms are obtained from the Zk invariant
monomials uv, uk, and vk. From this, it follows at once
that Ansatz (6.9) corresponds to the tuned choice,

ðb2Þ0;0 ¼ 1; ðb2Þa;b ¼ δa;Mδb;N; ð6:14aÞ

ðb4Þ0;0 ¼ 0; ðb4Þa;b ¼ δa;Mδb;N; ð6:14bÞ

ðb6Þ0;0 ¼ 0; ðb6Þa;b ¼ δa;Mδb;N; ð6:14cÞ

for fixed M;N > 0, which is clearly compatible with the
constraints of the Zk group action. In particular, this means
that all statements regarding the extra section and Q carry
over unchanged.
Our analysis applies equally well to the case ofN ¼ 2, as

well as the case of k ¼ 2. In both limits, however, we have
already seen several indications from our field theory
analysis that additional enhancements in the flavor sym-
metries are to be expected. We interpret this to mean that
the F-theory geometry only makes manifest a subset of all
the symmetries.
For the case of k ¼ 2, we can actually anticipate what we

must do to produce this higher enhancement. In this case,
we have a single −2 curve which supports an IN fiber.
There are two marked points on this curve, indicating
collisions with two distinct IN components of the discrimi-
nant locus. If we consider the tuned limit where we move
these two points on top of each other, we observe that
the fiber type from the “flavor branes” enhances to I2N ,
anticipating an SUð2NÞ flavor symmetry, which is the
answer expected from our analysis of Sec. III. In the limit
where we collapse the −2 curve to zero size, we also see
that we no longer have a transverse intersection of two IN
components of the discriminant locus. This tuning is a
special feature of having a single −2 curve.
The case of N ¼ 2 is even more subtle in the corre-

sponding geometry. In this case, the tensor branch defor-
mation consists of only suð2Þ gauge algebras. There is in

16Alternatively, one may stick to the latter presentation and
work in the double cover of the base branched over u ¼ 0 and
v ¼ 0, by setting u ¼ U2 and v ¼ V2 (with a Z2 involution
acting as U ↦ −U and V ↦ −V). Pulling back from C½u; v� to
C½U;V�, one ends up with a representative of the extra rational
point Q over each copy of the base.
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this case an enhancement in the global symmetry beyond
SUð2Þ × SUð2Þ ×Uð1Þ, which is in accord with the fact
that the geometry only tends to see a subset of possible
flavor symmetries. That being said, we see that for generic
choices of N and k, the F-theory analysis correctly predicts
the global symmetries expected both from M-theory and
from field theory.

D. Small instanton probes of A-type singularities

We now turn to the other class of A-type progenitor
theories given by heterotic E8 small instanton probes of
A-type singularities. Again, we divide our discussion up
into the generic case where the A-type non-Abelian flavor
symmetry is SUðNÞ for N ≥ 3, and there are a sufficient
number of curves on the tensor branch and less generic
situations in which further enhancements in the flavor
symmetry are possible.
TheWeierstrass model for this case is defined over a base

B ¼ C2 with f, g, and Δ given by [18]

f ¼ −3u4ð1 − vNÞ; ð6:15Þ

g ¼ 2u5ðuþ vmÞ; ð6:16Þ

Δ¼ 108u10vNð3u2 − 3u2vN þ u2v2N þ 2uvm−N þ v2m−NÞ:
ð6:17Þ

It corresponds to the collision of an IN fiber located at
v ¼ 0 against a II� one at u ¼ 0 for generic positive m, N.
We assume m ≥ N ≥ 1. In heterotic language, the number
of mobile small E8 instantons is given by k≡m − N.
To produce an F-theory model with fibers on curves in

Kodaira-Tate form, we must perform successive blowups of
the base. This procedure is presented in Ref. [18] and is also
reviewed in Ref. [27]. The partial tensor branch is obtained
by performing k blowups in the base. Additional blowups
(N of them) are necessary because of the intersection of an
IN fiber type with a II� fiber type, which yields the full
tensor branch. There are three distinguished cases for the
number of small instantons: k ¼ 0, k ¼ 1, and k ≥ 2.
Additionally, N ≥ 3 provides a generic A-type singularity,
whereas N ¼ 2 leads to additional enhancements in the
flavor symmetry. From our field theory analysis, we expect
a Uð1Þ global symmetry to be there for generic N, k, but to
be absent for generic N and k ¼ 0, 1, as well as for N ¼ 2.
See Appendix C for some additional details.
An important point in this class of examples is that for

sufficiently low values of k, we can obtain these same 6D
SCFTs by starting with a global model in the E8 × E8

heterotic string and taking a suitable decoupling limit
[10,11,101]. Observe, however, that in the heterotic model
on a compact, singular K3 surface, there is no Uð1Þ
symmetry; it does not descend from the unbroken E8’s,
and there are no isometries of the K3 surface. This

illustrates that although the local A-type singularity may
possess such an isometry, coupling to gravity will remove
it. From this perspective, we ought not to expect our global
Uð1Þ symmetry to arise from taking a decoupling limit of a
gauged Uð1Þ symmetry in a 6D supergravity model. In this
sense, the analysis of our local model for (6.2) in MP
form need not work. We will see that this expectation is
borne out.
The local model can be engineered by taking

b2¼ 3u2; b4 ¼
3

2
u4vN; b6¼ 3u6vN þ2u5vm; ð6:18Þ

which reconstruct the f, g polynomials of (6.15). If we
insist on fitting this choice of b2, b4, b6 into a MP model,
we always encounter branch cuts. For example, one may
take

c0 ¼ 0; c1 ¼ u2; c2 ¼ 3u2; c3 ¼ 3u2vN; ð6:19Þ

which however requires the nonsingle-valued identification
b2 ¼ 4uð3uvN þ 2vmÞ. We have tried multiple polynomial
Ansätze for b; c0;…; c3 but all seem to involve an
unwanted branch cut in the local base.
Let us now turn to the special case where k ¼ 1. From

our field theory analysis, we expect that in this case there is
in fact an enhancement in the flavor symmetry factor
SUðNÞ × Uð1Þ to SUðN þ 1Þ. On the partial tensor branch
of this theory,

½E8� 1
suðNÞ

½SUðNÞ�; ð6:20Þ

we have a single −1 curve with IN fiber type. This curve is
met by three distinct collisions with the rest of the
discriminant. First, there is the E8 locus. Second, we have
a noncompact component with IN fiber type. Third, there is
another noncompact component with I1 fiber type. By a
suitable tuning of the Weierstrass model in this case, we
observe that the I1 and IN points can be merged to produce
a single noncompact INþ1 component of the discriminant.
Note that in doing so, we no longer have a transverse
intersection of these two components of the discriminant; it
is a special feature of the k ¼ 1 case. See Fig. 4 for a
depiction and Appendix C for a calculation, where this
becomes more manifest in the partial tensor branch
resolution.
Consider next the case of k ¼ 0, i.e., the case of

ðE8; SUðNÞÞ conformal matter. We have a full tensor
branch description given by

½E8�1 2
suð1Þ

2
suð2Þ

… 2
suðN−1Þ

½SUðNÞ�: ð6:21Þ

In this case, the additional I1 locus 2uþ u2ð3 − 3vN þ
v2NÞ þ vm ¼ 0 intersects the IN locus v ¼ 0 at two points,
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and the II� locus u ¼ 0 at the origin, generating a
decoupled “SUð1Þ × SUðNÞ” bifundamental hypermultip-
let (see Fig. 5). In Appendix C, we indeed show that in a
partial resolution of the base, the extra I1 locus intersects
only the IN locus. In other words, there is a global Uð1Þ
which acts trivially on the Hilbert space of the SCFT (since
no matter is charged under it); hence, the flavor symmetry
at the fixed point is just SUðNÞ, as expected from the field
theory analysis.
Last, consider the models obtained from taking N ¼ 2.

In this case, all of the tensor branch gauge algebras are
suð2Þ and a formal “suð1Þ” gauge algebra obtained from
an I1 fiber over a compact −2 curve. In these cases, the
expectation from field theory is that there is a generic
enhancement in the flavor symmetry, which is not visible in
the F-theory presentation of the model.
For completeness, let us briefly comment on some of the

D- and E-type progenitor theories, where we do not
generically expect any Uð1Þ factor in the flavor symmetry.
As an example, the local models for the theories of (6.1)

with oneM5-brane probing an E-type singularity have local
Weierstrass models [43,71],

ðE6; E6Þ∶ y2 ¼ x3 þ u4v4; ð6:22Þ

ðE7; E7Þ∶ y2 ¼ x3 þ u3v3x; ð6:23Þ

ðE8; E8Þ∶ y2 ¼ x3 þ u5v5: ð6:24Þ

In the first and third cases, we have f ¼ 0 identically,
which implies b4 ¼ 1

6
b22 and g ¼ − 1

27
b32 þ b6. In the

second case, we have g ¼ 0 identically, which implies b6 ¼
− 2

27
ðb32 − 9b2b4Þ and f ¼ − 1

3
b22 þ 2b4. The constraints on

b2, b4, b6 turn into constraints on b; c0;…; c3 given the
restrictions in (6.7). In either case, we find that any
simple Ansätze respecting these constraints would lead
to branch cuts.
For the D-type, the progenitor of (6.2), i.e.,

ðE8; SOð2N þ 8ÞÞ, reads [18]

f ¼ −3u4v2ð1 − vNÞ; ð6:25Þ

g ¼ 2u5v3ðuþ vmÞ; ð6:26Þ

Δ¼108u10v6þNð3u2−3u2vNþu2v2Nþ2uvm−Nþv2m−NÞ:
ð6:27Þ

Again, we find that any simple Ansätze respecting these
constraints would lead to branch cuts.

VII. CONCLUSIONS

One of the important features of a quantum field theory is
its flavor symmetries. In this paper, we have developed a
general set of methods for extracting the global Uð1Þ

FIG. 4. The k ¼ 1 case of the ðE8; SUðNÞÞ collision.

FIG. 5. The k ¼ 0 case of the ðE8; SUðNÞÞ collision, also
known as ðE8; SUðNÞÞ conformal matter.
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symmetries of a 6D SCFT. At a broad level, all of the
symmetries we have identified descend from a small set of
progenitor theories. Since all known 6D SCFTs originate
from “fission moves” on the progenitors followed by fusion
operations on the resulting fission products, by and large
these Uð1Þ symmetries have a common origin (excluding
emergent Uð1Þ’s). We have also presented a general
prescription for how to read off the Uð1Þ symmetries for
any 6D SCFT using just the data available from its tensor
branch. Last, we have shown that in the F-theory descrip-
tion of progenitor theories for 6D SCFTs, there are two
geometric origins for such symmetries. One is the non-
Abelian flavor symmetry of a seven-brane. The other is the
appearance of an additional section in a noncompact model,
as occurs in some progenitor theories with an A-type flavor
symmetry. In the remainder of this section, we discuss
some further avenues of investigation.
In this paper, we have presented a combination of

bottom-up and top-down techniques for extracting the
global symmetries of a 6D SCFT, demonstrating an agree-
ment between various different approaches. One interesting
outcome of this analysis is that of the progenitor theories,
only some of the theories with an A-type global symmetry
have an additional generator of the Mordell-Weil group.
What we have not undertaken here is a direct analysis of the
resulting elliptic threefolds obtained from fission and
fusion of the progenitors. In principle, the resulting Uð1Þ
symmetries we have identified via field theory may have a
geometric origin as additional generators of the Mordell-
Weil group in the corresponding F-theory models. It would
be quite interesting to see whether the identification
between Higgs branch deformations of a 6D SCFT and
complex structure deformations of a Calabi-Yau could be
used to establish a geometric origin of these symmetries
as well.
It would also be interesting to analyze the fate of these

Uð1Þ symmetries in compactifications to 5D SCFTs. If the
non-Abelian part of the 6D SCFT flavor symmetry is
known, by looking at triple intersection numbers among
surfaces in the associated resolved Calabi-Yau geometry,
one can compute the total rank of the flavor symmetry, thus
determining residual Abelian factors [102,103]. This would
provide a complementary approach compared with directly
analyzing the Mordell-Weil group of the associated F-
theory model.
Indeed, with our improved understanding of how to

determine Uð1Þ symmetries in 6D SCFTs, it is natural to
ask about the fate of these symmetries upon compactifica-
tion to lower-dimensional quantum field theories. This is
especially important in the context of 4D N ¼ 1 SCFTs
where the infrared R-symmetry is typically a linear combi-
nation of the UV R-symmetry and global Uð1Þ symmetries
[104]. It would be interesting to analyze this case, as well as
the sense in which compactification defines an RG flow
from six to four dimensions (see e.g., [105–108]).

The primary aim of this paper has been the analysis of
continuous Abelian global symmetries. Another important
question in the study of 6D SCFTs is to determine possible
discrete global symmetries. This data can in principle be
recovered by tracking the group theoretic data associated
with vevs triggering Higgs branch deformations. For
example, a large class of RG flows are triggered by
operators vevs which are nilpotent in the flavor symmetry
algebra. In the flavor symmetry group, these are associated
with unipotent elements. It would be interesting to see
whether a more refined analysis is capable of tracking these
discrete data.
Along the same lines, it is natural to ask whether this

information is encoded in the structure of the tensor branch
of a 6D SCFT. Doing so would likely also require a better
understanding of the gauge groups present there, rather
than just the associated gauge algebras. It also be instruc-
tive to track the geometric origin of such symmetries in the
associated F-theory model.
Finally, we have also discussed at a broad level the sense

in which the symmetries of a 6D SCFT are inherited from
data of a progenitor theory. Given this, it is natural to ask
about the fate of other symmetries such as the R-symmetry
of a 6D SCFT. This is broken along the trajectory of an RG
flow, but is recovered at an IR fixed point. It would be
interesting to see whether the techniques developed here
could be adapted to this class of questions.
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APPENDIX A: ANOMALY POLYNOMIALS
AND Uð1Þ FLAVOR SYMMETRIES

In this Appendix, we discuss some additional aspects of
how Abelian flavor symmetries can contribute to the
anomaly polynomial of a 6D SCFT. Recall that the anoma-
lies of a 6D SCFTare encoded in an anomaly eight-form I8.
As discussed in [29], this anomaly polynomial can be
divided into two parts: a one-loop contribution (which
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can be computed on the tensor branch) and aGreen-Schwarz
contribution,

Itot ¼ I1-loop þ IGS: ðA1Þ

The one-loop contribution is simply a sum of contributions
from free tensor multiplets, vector multiplets, hyper-
multiplets, and E-strings. These contributions are, respec-
tively [29],17

Itensor ¼
c2ðRÞ2
24

þ c2ðRÞp1ðTÞ
48

þ 23p1ðTÞ2 − 116p2ðTÞ
5760

;

ðA2Þ

Ivector ¼ −
TradjF4 þ 6c2ðRÞTradjF2 þ dGc2ðRÞ2

24

−
TradjF2 þ dGc2ðRÞp1ðTÞ

48

þ −dG
7p1ðTÞ2 − 4p2ðTÞ

5760
; ðA3Þ

Ihyper ¼
TrρF4

24
þ TradjF2p1ðTÞ

48
þ dρ

7p1ðTÞ2 − 4p2ðTÞ
5760

;

ðA4Þ

Ið1ÞE-string ¼
13

24
c2ðRÞ2 −

11

48
c2ðRÞp1ðTÞ þ

203

5760
p1ðTÞ2

−
29

1440
p2ðTÞ −

1

4
c2ðRÞTrF2

E8

þ 1

16
p1ðTÞTrF2

E8
þ 1

32
ðTrF2

E8
Þ2: ðA5Þ

Here, Trρ is the trace in the representation ρ, dρ is the
dimensionof the representation ρ, anddG is the dimensionof
the group G. In computing the anomaly polynomial, one
should express the traces over arbitrary representations in
terms of the trace in a defining representation. For a given
simple Lie algebra g, we can write

TrρF4 ¼ xρTrF4 þ yρðTrF2Þ2; ðA6Þ

TrρF3 ¼ cρTrF3; ðA7Þ

TrρF2 ¼ IndρTrF2; ðA8Þ

with xρ, yρ, cρ, and Indρ known group theory constants. cρ
here is defined as in Table I, and throughout this paper the

values of xρ, yρ, and Indρ agree with the conventions
of [26,27,29].18

The one-loop contributions to the anomaly polynomial
generalize straightforwardly to the case of a Uð1Þ sym-
metry, whether gauge or global. For a gauge symmetry, we
have the contribution from a single vector multiplet with
dG ¼ 1. The vector multiplet does not contribute to the
gauge anomaly for the Uð1Þ because, as opposed to the
case of a non-Abelian gauge group, there are no W-bosons
charged under the Cartan of a Uð1Þ. Thus, we have

IUð1Þ
vector¼−

c2ðRÞ2
24

−
c2ðRÞp1ðTÞ

48
−
7p1ðTÞ2−4p2ðTÞ

5760
: ðA9Þ

The case of a hypermultiplet is likewise analogous to the
previous case. Consider a hypermultiplet in a representa-
tion R of some semisimple, non-Abelian lie algebra g
(which could be trivial, or a direct sum of simple lie
algebras) with field strength P, which is also charged under
some combination of Uð1Þ’s with field strengths Fi and
associated charges qi. Then, in (A4), we have

TrρF4 ¼ TrRP4 þ 4TrRP3qiFi þ 6TrRP2qiqjFiFj

þ qiqjqkqlFiFjFkFl; ðA10Þ

TrρF2 ¼ TrRF2 þ qiqjFiFj: ðA11Þ

Here, the sum over repeated indices is implied, qiFi ≔P
i qiFi. Note that we have not included a TrRP term, as

this necessarily vanishes for a semisimple Lie algebra.
To compute the Abelian contribution to the anomaly

from an E-string, we suppose that the E8 global symmetry
of the E-string has been decomposed into a product of
subgroups, which may be either gauge or global, Abelian,
or non-Abelian,

E8 ⊃ G1 ×… ×Gk: ðA12Þ

Then, we simply decompose terms in (A5) involving the E8

field strength into a sum over the field strengths of the
subgroups,

TrF2
E8

→
Xk
i¼1

TrF2
Gk
: ðA13Þ

Anomalies present at one-loop can be canceled via the
Green-Schwarz mechanism. Note that not every type of
anomaly presents a problem for a 6D SCFT, however. We
can sort the terms in the anomaly polynomial according to
the number of gauge currents/global currents appearing in
them. Terms of the form F4

gauge, with purely gauge

17Here, we present only the formula for a rank-1 E-string. The
formula for a more general rank-k E-string can be found in [29].

18In particular, note that Indfund ¼ 1=2 for the fundamental of
SUðNÞ.
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anomalies, lead to a sickness andmust be canceled. Terms of
the form F3

gaugeFglobal represent an ABJ anomaly, which
leads to a divergence in the global anomaly current and thus
violates the putative global symmetry. Terms of the form
F2
gaugeF2

global and FgaugeF3
global are also forbidden in 6D

SCFTs but for a different reason: there is no multiplet in
the 6D superconformal algebra that would give rise to such
terms [68,109]. Finally, F4

global terms represent ’t Hooft
anomalies, which are benign and do not need to be canceled.
There is a unique Green-Schwarz mechanism available

for canceling non-Abelian gauge anomalies in six dimen-
sions, which was introduced in [50]. The Green-Schwarz
contribution to the anomaly polynomial takes the form

IGS ¼
1

2
ΩαβIαIβ ¼

1

2
ΩαβIαIβ: ðA14Þ

Here, Ωαβ is the Dirac pairing on the string charge lattice,
and indices are raised via the inverse Ωαβ ¼ ðΩ−1Þαβ. This
comes from a term in the action of the form

ΩαβBα ∧ Iβ; ðA15Þ

with Bα a two-form and Iβ a four-form, whose non-Abelian
part was given in [52]

Iα ¼ h∨Gα
c2ðRÞ þ

nα − 2

4
p1ðTÞ þ

nα
4
TrF2

α −
1

4

X
β∈nn

TrF2
β:

ðA16Þ

Here, Gα is the gauge group associated with the αth tensor
multiplet, Fα is its field strength, h∨Gα

is its dual Coxeter
number, and nα ≔ −Ωαα (indices not summed) is the αth
string charge. The expression “nn” refers to nearest neigh-
bors in the corresponding intersection pairing of curves.
For Uð1Þ anomalies, the above anomaly cancelation

mechanism is still valid, but there is an additional Green-
Schwarz mechanism available [59]: we may include in the
action a term of the form

C ∧ X6; ðA17Þ
with X6 a six-form and C a Stückelburg zero-form that
couples to a Uð1Þ gauge boson Ai

μ with a coupling of the
form

ð∂μC − AμÞ2: ðA18Þ
This leads to an anomaly polynomial contribution of the
form

F ∧ X6; ðA19Þ
which can be used to cancel any remaining Abelian gauge
anomalies. However, this comes at a price: the Stückelburg

mechanism gives a mass to the Uð1Þ vector boson, thereby
removing the associated gauge symmetry [59]. Note that
the anomaly involving the cube of a non-Abelian gauge
field strength and the first power of an Abelian field
strength can only be canceled by this latter Green-
Schwarz mechanism. Such anomalies plague all would-
be Uð1Þ gauge groups in 6D SCFTs, and as a result all
Abelian gauge groups are removed from the low-energy
theory on the tensor branch.

APPENDIX B: Uð1Þ’S FROM GROUP THEORY

In this Appendix, we review the analysis of Uð1Þ
symmetries expected from symmetry breaking patterns
and their associated group theoretic structures.
Two very large classes of 6D SCFTs are in one-to-one

correspondence with two particular classes of homomor-
phisms: namely, HomðΓ; E8Þ and Homðsuð2Þ; gÞ, where Γ
is a discrete subgroup of SUð2Þ and g is a simple Lie
algebra.
The relationship between 6D SCFTs and homomor-

phisms follows from their M/F-theory constructions.
Consider the progenitor theory of k M5-branes probing
a C2=Γ orbifold singularity as well as an E8 wall. This
theory is labeled by k and Γ as well as a flat connection of
E8 at the infinity of C2=Γ ≃ S3=Γ. These flat connections,
and hence this class of 6D SCFTs, are in one-to-one
correspondence with HomðΓ; E8Þ.
Given a particular homomorphism ρ ∈ HomðΓ; E8Þ, we

may consider the image ρðΓÞ in E8. The elements of E8 that
commute with ρðΓÞ form a group H known as the
commutant of the homomorphism ρ. This commutant
subgroup H ⊂ E8 translates in field theory terms to the
global symmetry of the associated 6D SCFT.
More precisely, for Γ of D/E-type, the full global

symmetry of the theory is given by

Gglobal ¼ H × GΓ; ðB1Þ

withGΓ the D/E-type Lie group associated with the discrete
group Γ via the McKay correspondence.
For Γ ¼ ZN; N ≠ 2, we instead have

Gglobal ¼ H × SUðNÞ ×Uð1Þ: ðB2Þ

The extra Uð1Þ factor is inherited from the progenitor
theory, which is associated with the isometry of the C2=Γ
orbifold singularity, as discussed in Sec. II.
For Γ ¼ Z2, the isometry enhances, and there is a further

enhancement Uð1Þ → SUð2Þ,

Gglobal ¼ H × SUð2Þ × SUð2Þ: ðB3Þ

Unfortunately, within the mathematics literature, the full
set of homomorphisms and their allowed commutants is
only known for Γ ¼ ZN [110] and Γ ¼ SLð2; 5Þ [64,111].
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While the classification of the latter is very involved, the
former can be labeled in a simple combinatorial fashion in
terms of the extended Dynkin diagram of E8. Namely, if we
label the nodes of this diagram as follows:

ðB4Þ

then homomorphisms ZN → E8 are in one-to-one corre-
spondence with lists of nodes such that the sum of the

numbers of these nodes equals N, where any given node
may be used multiple times. For instance, for N ¼ 4, we
have the following choices of nodes:

1þ 1þ 1þ 1; 1þ 1þ 2; 1þ 1þ 20; 1þ 3;

1þ 30; 2þ 2; 2þ 20; 20 þ 20; 4; 40: ðB5Þ

The commutant H of the homomorphism is then given
simply by the diagram remaining after deleting the corre-
sponding nodes from the affine E8 Dynkin diagram, with
additionalUð1Þ’s added as necessary to ensure that the rank
of the commutant is always 8. For instance, we have

In the remainder of the cases, GΓ ≠ SUðNÞ; E8, the
match with 6D SCFTs has been used previously to give the
first conjectured classification of HomðΓ; E8Þ [64]. While
this is an exciting application of M-theory to pure math-
ematics, the lack of mathematical literature on the topic
somewhat limits our ability to learn new properties of 6D
SCFTs from this correspondence.
Fortunately, the other class of homomorphisms,

Homðsuð2Þ; gÞ, is much more familiar to mathematicians,
as these homomorphisms are in one-to-one correspondence
with nilpotent orbits of g. This permits us to use the vast
body of mathematical literature on nilpotent orbits to
learn about global symmetries and RG flows of 6D
SCFTs [37,43,45,112].

While nilpotent orbits of all simple Lie algebras have
been classified, they are simplest to describe in the case of
the classical algebras, suðNÞ, soðNÞ, and spðNÞ. For
suðNÞ, nilpotent orbits are labeled simply by partitions
of N. For soðNÞ, they are labeled by partitions of N subject
to the constraint that each even number must appear an
even number of times. For spðNÞ, they are labeled by
partitions of 2N subject to the constraint that any odd
number must appear an even number of times. The

commutant subalgebra h ⊂ g left unbroken by the nilpotent
orbit is then given in terms of the partition. Given a partition
μ ¼ ½μd11 ; μd22 ; μd33 ;…� in which the entry μi has multiplicity
di, the commutant is given by

su∶ h ¼ sð⊕
i
uðdiÞÞ; ðB6Þ

so∶ h ¼ ⊕
i odd

soðdiÞ ⊕ ⊕
i even

spðdi=2Þ; ðB7Þ

sp∶ h ¼ ⊕
i even

soðdiÞ ⊕ ⊕
i odd

spðdi=2Þ; ðB8Þ

where in the above “i odd” or “i even” is shorthand for
indicating that μi is odd or even, respectively.
For instance, for g ¼ suð4Þ, there are five nilpotent

orbits, labeled by the partitions μ ¼ ½14�, ½2; 12�, ½22�, [3, 1],
and [4]. The associated commutator subalgebras are
given by suð4Þ, suð2Þ × uð1Þ, suð2Þ, uð1Þ, and the trivial
subalgebra, respectively.
In F-theory, these homomorphisms arise as “T-brane”

data for two intersecting stacks of seven-branes probing a
C2=ZN singularity (for a partial list of references to the
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T-brane literature, see Refs. [37,39,44,91,108,113–132]).
In particular, we can turn on T-brane data for either stack of
seven-branes, resulting in a theory labeled by a pair of
homomorphisms ρ1; ρ2 ∈ Homðsuð2Þ; gÞ.
Once again, the global symmetry of a given theory is

related to the commutantH of a given homomorphism inside
G. In this case, since a theory is labeled by two homomor-
phisms ρ1, ρ2, its global symmetry will be determined by the
respective commutants H1, H2. In particular, for g of D/E-
type, the global symmetry is given by

Gglobal ¼ H1 ×H2: ðB9Þ
For g ¼ suðNÞ, there is an additional Uð1Þ factor, inherited
from the isometry of the C2=ZN orbifold of the progenitor
theory (see Sec. II),

Gglobal ¼ H1 ×H2 ×Uð1Þ: ðB10Þ
For g ¼ suð2Þ, the isometry of the progenitor enhances, so
the global Uð1Þ enhances to SUð2Þ,

Gglobal ¼ H1 ×H2 × SUð2Þ: ðB11Þ

The tensor branch descriptions of 6D SCFTs correspond-
ing to HomðΓ; E8Þ have been studied in [5,39,43,45,63,64],
while the tensor branch descriptions of 6D SCFTs
corresponding to Homðsuð2Þ; gÞ have been studied in
[37,39,43,46,112]. From these descriptions, we can use
the match between 6D SCFTs and homomorphisms as a
sort of “Rosetta Stone”: Uð1Þ symmetries appearing in the

commutantH of a given homomorphism translate intoUð1Þ
symmetries of the SCFT quiver, which allows us to verify the
field theory rules for Uð1Þ symmetries in an SCFT quiver.

APPENDIX C: RESOLUTION OF A-TYPE
PROGENITOR GEOMETRIES

In this Appendix, we determine the tensor branch
associated with heterotic E8 small instanton probes of
A-type singularities. In particular, we focus on the role of
the I1 component of the discriminant locus in the associated
F-theory model.
In order to understand the meaning of the additional I1

component of the discriminant (6.15), we need to resolve
the base. This introduces additional P1’s; in particular, we
review the results of [18] with particular focus on the I1; see
also [27,128] for similar computations. For convenience, let
us repeat the coefficients of the relevant Weierstrass model,

f ¼ −3u4ð1 − vNÞ; ðC1Þ

g ¼ 2u5ðuþ vmÞ; ðC2Þ

Δ¼ 108u10vNð3u2 − 3u2vN þ u2v2N þ 2uvm−N þ v2m−NÞ:
ðC3Þ

The resolution procedure is locally implemented by the
following shift:

Patch 1 : fu ↦ u; v ↦ ζu; y ↦ u3y; x ↦ u2x; f ↦ u4f; g ↦ u6gg;
Patch 2 : fu ↦ ηv; v ↦ v; y ↦ v3y; x ↦ v2x; f ↦ v4f; g ↦ v6gg; ðC4Þ

where ½ζ∶ η� are the homogeneous coordinates of the
resolution P1, such that

ζ ¼ 1

η
: ðC5Þ

As usual, x, y are fiber coordinates in the (local) Weierstrass
model.
In order to understand the fate of the I1 locus in the

discriminant of Eq. (C3),

I1∶ ð3u2 − 3u2vN þ u2v2N þ 2uvm−N þ v2m−NÞ; ðC6Þ

we look at some explicit examples. Let us start with
k ¼ m − N ¼ 0. We then apply (C4). The first blowup
of the model is

P1∶f1¼−3ð1−uNζN1 Þ; g1¼2ð1þuN−1ζN1 Þ;
Δ1¼108uN−1ζN1 ð2þ3uþuN−1ζN1 ð1−3u2þuNþ2ζN1 ÞÞ;

P2∶f2¼−3η41ð1−vNÞ; g2¼2η51ðη1þvN−1Þ;
Δ2¼108vN−1η101 ðvN−1þ2η1þη21vð3−3vNþv2NÞÞ;

ðC7Þ

where P1 and P2 denote the two patches. We note that
Δ1 ¼ 0 when ζ1 ¼ 0 and u ≠ 0, in agreement with
the interpretation that the extra I1 locus leads to a
decoupled SUðNÞ × SUð1Þ hypermultiplet in the k ¼ 0
case, which was proposed in Sec. VI D. Moreover, the I1
component also intersects the resolution at η1 ¼ v ¼ 0;
however, this locus needs to be blown up again since
ðf2; g2;Δ2Þ vanish with degree higher than (4, 6, 12)
(nonminimal singularity). If we perform a full blowup of
the base,
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P1∶ f1 ¼−3ð1−uNζN1 Þ; g1 ¼ 2ð1þuN−1ζN1 Þ;
Δ1 ¼ 108uN−1ζN1 ð2þ 3u

þuN−1ζN1 ð1− 3u2þuNþ2ζN1 ÞÞ;
Pðiþ 1Þ∶ fi ¼−3ð1− ζNiþ1ζ

N
i Þ; gi ¼ 2ð1þ ζN−i

iþ1 η
N−1−i
i Þ;

Δi ¼ 108ζN−i
iþ1 η

N−i−1
i ð2þ 3ζiiþ1η

iþ1
i − 3ζNþi

iþ1 η
Nþiþ1
i

þ ζN−i
iþ1 η

N−i−1
i þ ζ2Nþi

iþ1 η2Nþiþ1
i Þ

1≤ i≤N − 2;

PN∶ fN ¼−3η4Nð1−vNÞ; gN ¼ 2η5Nð1þ ηNÞ;
Δ2 ¼ 108η10N ð1þ 2ηN þ η2Nvð3− 3vN þ v2NÞÞ;

ðC8Þ

we notice that the only other intersection point of the I1
with the resolved base is on the “last” P1, which has self-
intersection (−1) and no gauge fiber enhancement; this
however does not lead to any additional charged matter.
Let us now analyze k ¼ 1, m ¼ nþ 1, case. The first

blowup follows from (C4), and it reads

P1∶ f1¼−3ð1−uNζN1 Þ; g1¼ 2ð1þuNζNþ1
1 Þ;

Δ1¼ 108uNζN1 ð2þ3ζ1þuNζN1 ð−3þζ21þuNζN1 ÞÞ;
P2∶ f2¼−3η41ð1−vNÞ; g2¼ 2η51ðη1þvNÞ;

Δ2¼ 108vNη101 ðvN þ2η1þη21ð3−3vN þv2NÞÞ: ðC9Þ

Δ1 ¼ 0 when u ¼ 0 and ζ1 ≠ 0. This implies that Δ2 in the
second patch is meaningful. We then blow up the non-
minimal singularity in P2, and we obtain

P2∶ f2¼−3ð1−ζN2 η
N
1 Þ; g2¼2ð1þζN2 η

N−1
1 Þ;

Δ2¼108ζN2 η
N−1
1 ð2þ3η1þζN2 η

N−1
1 ð1−3η21þζN2 η

Nþ2
1 ÞÞ;

P3∶ f3¼−3η42ð1−vNÞ; g3¼2η52ðη2þvN−1Þ;
Δ3¼108vN−1η102 ðvN−1þ2η2þη22vð3−3vNþv2NÞÞ:

ðC10Þ

We observe that Δ2 ¼ 0 if ζ2 ¼ 0 and η1 ¼ 1
ζ1
≠ 0.

Therefore, the I1 locus intersects the first resolution P1,
as stated in Sec. VI D. Again, we have seen that in order to
understand how the I1 locus interacts with the SCFT, we
needed to blow up twice. The I1 locus still contains
v ¼ η2 ¼ 0, but this point is still a nonminimal singularity.
For this reason, we need to apply sequentially the reso-
lution procedure of line (C4). We will show in (C12) that
the I1 will still meet the “last” self-intersection (−1) P1,
but this intersection does not carry any nontrivial extra
matter.
At last we analyze one more example, i.e., k > 1. For

simplicity, we consider k ¼ 2, but the argument will
straightforwardly generalize to higher k. We repeat the
previous strategy where we sequentially blow up the base.
In order to see how the I1 locus behaves, we have to blow
up kþ 1 times. In this case, we perform three blowups, and
we get

P1∶ f1¼−3ð1−uNζN1 Þ; g1¼2ð1þuNζNþ1
1 Þ;

Δ1¼108uNζN1 ð2þ3uζ21þuNζN1 ð−3þζ41u
2þuNζN1 ÞÞ;

P2∶ f2¼−3ð1−ζN2 η
N
1 Þ; g2¼2ð1þζNþ1

2 ηN1 Þ;
Δ2¼108ζN2 η

N
1 ð3þ2ζ2þζN2 η

N
1 ð−3þζ22η

N
1 þζN2 η

N
1 ÞÞ;

P3∶ f3¼−3ð1−ζN3 η
N
2 Þ; g3¼2ð1þζN3 η

N−1
1 Þ;

Δ3¼108ζN3 η
N−1
2 ð2þ3η2þζN3 η

N−1
2 ð1−3η22þζN3 η

Nþ2
2 ÞÞ;

P4∶ f4¼−3η43ð1−vNÞ; g4¼2η53ðη3þvN−1Þ;
Δ4¼108vN−1η103 ðvN−1þ2η3þη23vð3−3vNþv2NÞÞ:

ðC11Þ

The I1 locus intersects at η1 ¼ 0, ζ3 ¼ 0, η2 ¼ 1
ζ2
≠ 0,

which means that it meets the second resolution P1.
For generic k, the I1 locus intersects at the kth resolution

P1; see also [18, Fig. 7]. This becomes manifest when we
fully resolve the base for k > 0,

P1∶ f1 ¼ −3ð1− uNζN1 Þ; g1 ¼ 2ð1þ ukþN−1ζN1 Þ;
Δ1 ¼ 108uNζN1 ð3þ 2ζk1u

k−1 þ u2kþN−2ζ2kþN
1 − 3uNζN1 þ u2Nζ2N1 Þ;

Pðiþ 1Þ∶ fi ¼ −3ð1− ζNiþ1ζ
N
i Þ; gi ¼ 2ð1þ ζNþk−i

iþ1 ηNþk−1−i
i Þ;

Δi ¼ 108ζNiþ1η
N
i ð3þ 2ζk−iiþ1η

k−1−i
i þ ζ2kþN−2i

iþ1 η2kþN−2−2i
i þ ζNiþ1η

N
i ð−3þ ζNiþ1η

N
i ÞÞ 1 ≤ i ≤ k− 2;

Pðkþ iþ 1Þ∶ fkþi ¼ −3ð1− ζNkþiþ1ζ
N
kþiÞ; gi ¼ 2ð1þ ζN−i

kþiþ1η
N−1−i
kþi Þ;

Δi ¼ 108ζN−i
kþiþ1η

N−i−1
kþi ð2þ 3ζikþiþ1η

iþ1
kþi − 3ζNþi

kþiþ1η
Nþiþ1
kþi þ ζN−i

kþiþ1η
N−i−1
kþi þ ζ2Nþi

kþiþ1η
2Nþiþ1
kþi Þ 1 ≤ i ≤ N − 2;

PðNþ kÞ∶ fkþN ¼ −3η4kþNð1− vNÞ; gkþN ¼ 2η5kþNð1þ ηkþNÞ;
ΔkþN ¼ 108η10kþNð1þ 2ηkþN þ η2kþNvð3− 3vN þ v2NÞÞ: ðC12Þ
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Similarly to k ¼ 0, I1 meets the (self-intersection −1) curve, but this does not add any matter to the SCFT spectrum.
What we have seen admits a dual interpretation in the Type IIA brane configurations of [20,21,23,25,26], namely, the

extra I1 corresponds to a single D8-brane intersecting N D6-branes.

[1] C. Vafa, Evidence for F theory, Nucl. Phys. B469, 403
(1996).

[2] D. R. Morrison and C. Vafa, Compactifications of F theory
on Calabi-Yau threefolds–I, Nucl. Phys. B473, 74 (1996).

[3] D. R. Morrison and C. Vafa, Compactifications of F theory
on Calabi-Yau threefolds–II, Nucl. Phys. B476, 437
(1996).

[4] J. J. Heckman, D. R. Morrison, and C. Vafa, On the
classification of 6D SCFTs and generalized ADE orbi-
folds, J. High Energy Phys. 05 (2014) 028; Erratum, J.
High Energy Phys. 06 (2015) 017.

[5] J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa,
Atomic classification of 6D SCFTs, Fortschr. Phys. 63,
468 (2015).

[6] L. Bhardwaj, Classification of 6d N ¼ ð1; 0Þ gauge
theories, J. High Energy Phys. 11 (2015) 002.

[7] L. Bhardwaj, Revisiting the classifications of 6d SCFTs
and LSTs, arXiv:1903.10503.

[8] E. Witten, Some comments on string dynamics, in Future
Perspectives in String Theory. Proceedings, Conference,
Strings’95, Los Angeles, USA (World Scientific, Singa-
pore, 1995), pp. 501–523.

[9] A. Strominger, Open p-branes, Phys. Lett. B 383, 44
(1996).

[10] O. J. Ganor and A. Hanany, Small E8 instantons and
tensionless noncritical strings, Nucl. Phys. B474, 122
(1996).

[11] N. Seiberg and E. Witten, Comments on string dynamics in
six-dimensions, Nucl. Phys. B471, 121 (1996).

[12] E. Witten, Phase transitions in M theory and F theory,
Nucl. Phys. B471, 195 (1996).

[13] E. Witten, Physical interpretation of certain strong cou-
pling singularities, Mod. Phys. Lett. A 11, 2649 (1996).

[14] M. Bershadsky and A. Johansen, Colliding singularities in
F theory and phase transitions, Nucl. Phys. B489, 122
(1997).

[15] I. Brunner and A. Karch, Branes at orbifolds versus
Hanany Witten in six-dimensions, J. High Energy Phys.
03 (1998) 003.

[16] J. D. Blum and K. A. Intriligator, New phases of string
theory and 6-D RG fixed points via branes at orbifold
singularities, Nucl. Phys. B506, 199 (1997).

[17] J. D. Blum and K. A. Intriligator, Consistency conditions
for branes at orbifold singularities, Nucl. Phys. B506, 223
(1997).

[18] P. S. Aspinwall and D. R. Morrison, Point-like instantons
on K3 orbifolds, Nucl. Phys. B503, 533 (1997).

[19] K. A. Intriligator, New string theories in six-dimensions
via branes at orbifold singularities, Adv. Theor. Math.
Phys. 1, 271 (1997).

[20] A. Hanany and A. Zaffaroni, Branes and six-dimensional
supersymmetric theories, Nucl. Phys. B529, 180 (1998).

[21] I. Brunner and A. Karch, Branes and six-dimensional fixed
points, Phys. Lett. B 409, 109 (1997).

[22] F. Apruzzi, M. Fazzi, D. Rosa, and A. Tomasiello, All
AdS7 solutions of type II supergravity, J. High Energy
Phys. 04 (2014) 064.

[23] D. Gaiotto and A. Tomasiello, Holography for (1,0) theories
in six dimensions, J. High Energy Phys. 12 (2014) 003.

[24] S. Cremonesi and A. Tomasiello, 6d holographic anomaly
match as a continuum limit, J. High Energy Phys. 05
(2016) 031.

[25] I. Bah, A. Passias, and A. Tomasiello, AdS5 compactifi-
cations with punctures in massive IIA supergravity, J. High
Energy Phys. 11 (2017) 050.

[26] F. Apruzzi and M. Fazzi, AdS7=CFT6 with orientifolds,
J. High Energy Phys. 01 (2018) 124.

[27] J. J. Heckman and T. Rudelius, Top down approach to 6D
SCFTs, J. Phys. A 52, 093001 (2019).

[28] K. Ohmori, H. Shimizu, and Y. Tachikawa, Anomaly
polynomial of E-string theories, J. High Energy Phys.
08 (2014) 002.

[29] K. Ohmori, H. Shimizu, Y. Tachikawa, and K. Yonekura,
Anomaly polynomial of general 6d SCFTs, Prog. Theor.
Exp. Phys. 2014, 103B07 (2014).

[30] J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa,
Geometry of 6D RG flows, J. High Energy Phys. 09 (2015)
052.

[31] C.Cordova,T. T.Dumitrescu, andK. Intriligator,Anomalies,
renormalization group flows, and the a-theorem in six-
dimensional (1, 0) theories, J. High Energy Phys. 10
(2016) 080.

[32] H. Shimizu, Y. Tachikawa, and G. Zafrir, Anomaly
matching on the Higgs branch, J. High Energy Phys. 12
(2017) 127.

[33] C. Cordova, T. T. Dumitrescu, and K. Intriligator,
N ¼ ð1; 0Þ anomaly multiplet relations in six dimensions,
arXiv:1912.13475.

[34] K. Ohmori, H. Shimizu, Y. Tachikawa, and K. Yonekura,
6d N ¼ ð1; 0Þ theories on T2 and class S theories: Part I,
J. High Energy Phys. 07 (2015) 014.

[35] K. Ohmori, H. Shimizu, Y. Tachikawa, and K. Yonekura,
6d N ¼ ð1; 0Þ theories on S1=T2 and class S theories: Part
II, J. High Energy Phys. 12 (2015) 131.

[36] M. Bertolini, P. R. Merkx, and D. R. Morrison, On the
global symmetries of 6D superconformal field theories,
J. High Energy Phys. 07 (2016) 005.

[37] J. J. Heckman, T. Rudelius, and A. Tomasiello, 6D RG
flows and nilpotent hierarchies, J. High Energy Phys. 07
(2016) 082.

GENERAL PRESCRIPTION FOR GLOBAL Uð1Þ’S IN 6D … PHYS. REV. D 101, 086023 (2020)

086023-35

https://doi.org/10.1016/0550-3213(96)00172-1
https://doi.org/10.1016/0550-3213(96)00172-1
https://doi.org/10.1016/0550-3213(96)00242-8
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1007/JHEP05(2014)028
https://doi.org/10.1007/JHEP06(2015)017
https://doi.org/10.1007/JHEP06(2015)017
https://doi.org/10.1002/prop.201500024
https://doi.org/10.1002/prop.201500024
https://doi.org/10.1007/JHEP11(2015)002
https://arXiv.org/abs/1903.10503
https://doi.org/10.1016/0370-2693(96)00712-5
https://doi.org/10.1016/0370-2693(96)00712-5
https://doi.org/10.1016/0550-3213(96)00243-X
https://doi.org/10.1016/0550-3213(96)00243-X
https://doi.org/10.1016/0550-3213(96)00189-7
https://doi.org/10.1016/0550-3213(96)00212-X
https://doi.org/10.1142/S0217732396002642
https://doi.org/10.1016/S0550-3213(97)00027-8
https://doi.org/10.1016/S0550-3213(97)00027-8
https://doi.org/10.1088/1126-6708/1998/03/003
https://doi.org/10.1088/1126-6708/1998/03/003
https://doi.org/10.1016/S0550-3213(97)00449-5
https://doi.org/10.1016/S0550-3213(97)00450-1
https://doi.org/10.1016/S0550-3213(97)00450-1
https://doi.org/10.1016/S0550-3213(97)00516-6
https://doi.org/10.4310/ATMP.1997.v1.n2.a5
https://doi.org/10.4310/ATMP.1997.v1.n2.a5
https://doi.org/10.1016/S0550-3213(98)00355-1
https://doi.org/10.1016/S0370-2693(97)00935-0
https://doi.org/10.1007/JHEP04(2014)064
https://doi.org/10.1007/JHEP04(2014)064
https://doi.org/10.1007/JHEP12(2014)003
https://doi.org/10.1007/JHEP05(2016)031
https://doi.org/10.1007/JHEP05(2016)031
https://doi.org/10.1007/JHEP11(2017)050
https://doi.org/10.1007/JHEP11(2017)050
https://doi.org/10.1007/JHEP01(2018)124
https://doi.org/10.1088/1751-8121/aafc81
https://doi.org/10.1007/JHEP08(2014)002
https://doi.org/10.1007/JHEP08(2014)002
https://doi.org/10.1093/ptep/ptu140
https://doi.org/10.1093/ptep/ptu140
https://doi.org/10.1007/JHEP09(2015)052
https://doi.org/10.1007/JHEP09(2015)052
https://doi.org/10.1007/JHEP10(2016)080
https://doi.org/10.1007/JHEP10(2016)080
https://doi.org/10.1007/JHEP12(2017)127
https://doi.org/10.1007/JHEP12(2017)127
https://arXiv.org/abs/1912.13475
https://doi.org/10.1007/JHEP07(2015)014
https://doi.org/10.1007/JHEP07(2016)005
https://doi.org/10.1007/JHEP07(2016)082
https://doi.org/10.1007/JHEP07(2016)082


[38] S.-J. Lee, D. Regalado, and T. Weigand, 6d SCFTs and
U(1) flavour symmetries, J. High Energy Phys. 11 (2018)
147.

[39] J. J. Heckman, T. Rudelius, and A. Tomasiello, Fission,
fusion, and 6D RG flows, J. High Energy Phys. 02 (2019)
167.

[40] D. R. Morrison and D. S. Park, F-theory and the Mordell-
Weil group of elliptically-fibered Calabi-Yau threefolds,
J. High Energy Phys. 10 (2012) 128.

[41] Y. Tachikawa, Frozen singularities in M and F theory,
J. High Energy Phys. 06 (2016) 128.

[42] L. Bhardwaj, D. R. Morrison, Y. Tachikawa, and A.
Tomasiello, The frozen phase of F-theory, J. High Energy
Phys. 08 (2018) 138.

[43] M. Del Zotto, J. J. Heckman, A. Tomasiello, and C. Vafa,
6d conformal matter, J. High Energy Phys. 02 (2015)
054.

[44] F. Hassler, J. J. Heckman, T. B. Rochais, T. Rudelius, and
H. Y. Zhang, T-branes, string junctions, and 6D SCFTs,
arXiv:1907.11230.

[45] S. Cabrera, A. Hanany, and M. Sperling, Magnetic quivers,
Higgs branches, and 6d N ¼ ð1; 0Þ theories, J. High
Energy Phys. 06 (2019) 071; Erratum, J. High Energy
Phys. 07 (2019) 137.

[46] A. Bourget, S. Cabrera, J. F. Grimminger, A. Hanany, M.
Sperling, A. Zajac, and Z. Zhong, The Higgs mechanism—
Hasse diagrams for symplectic singularities, J. High
Energy Phys. 01 (2020) 157.

[47] S. Cabrera, A. Hanany, and M. Sperling, Magnetic quivers,
Higgs branches, and 6d N=(1,0) theories—Orthogonal and
symplectic gauge groups. J. High Energy Phys. 02 (2020)
184.

[48] A. Hanany and G. Zafrir, Discrete gauging in six dimen-
sions, J. High Energy Phys. 07 (2018) 168.

[49] M. B. Green and J. H. Schwarz, Anomaly cancellation in
supersymmetric D ¼ 10 gauge theory and superstring
theory, Phys. Lett. 149B, 117 (1984).

[50] M. B. Green, J. H. Schwarz, and P. C. West, Anomaly free
chiral theories in six-dimensions, Nucl. Phys. B254, 327
(1985).

[51] A. Sagnotti, A note on the Green-Schwarz mechanism in
open string theories, Phys. Lett. B 294, 196 (1992).

[52] F. Apruzzi, J. J. Heckman, and T. Rudelius, Green-
Schwarz automorphisms and 6D SCFTs, J. High Energy
Phys. 02 (2018) 157.

[53] P. S. Aspinwall, S. H. Katz, and D. R. Morrison, Lie
groups, Calabi-Yau threefolds, and F theory, Adv. Theor.
Math. Phys. 4, 95 (2000).

[54] P. S. Aspinwall and D. R. Morrison, Non-simply-
connected gauge groups and rational points on elliptic
curves, J. High Energy Phys. 07 (1998) 012.

[55] A. Grassi, On minimal models of elliptic threefolds, Math.
Ann. 290, 287 (1991).

[56] M. Gross, A finiteness theorem for elliptic Calabi-Yau
threefolds, arXiv:alg-geom/9305002.

[57] V. Kumar, D. R. Morrison, and W. Taylor, Global aspects
of the space of 6D N ¼ 1 supergravities, J. High Energy
Phys. 11 (2010) 118.

[58] J. J. Heckman and C. Vafa, Fine tuning, sequestering, and
the Swampland, Phys. Lett. B 798, 135004 (2019).

[59] D. S. Park and W. Taylor, Constraints on 6D supergravity
theories with Abelian gauge symmetry, J. High Energy
Phys. 01 (2012) 141.

[60] D. R. Morrison and W. Taylor, Classifying bases for 6D
F-theory models, Central Eur. J. Phys. 10, 1072 (2012).

[61] L. Bhardwaj, M. Del Zotto, J. J. Heckman, D. R. Morrison,
T. Rudelius, and C. Vafa, F-theory and the classification of
little strings, Phys. Rev. D 93, 086002 (2016); 100, 029901
(2019).

[62] O. Bergman, M. Fazzi, D. Rodrguez-Gmez, and A.
Tomasiello, Charges and holography in 6d (1,0) theories,
arXiv:2002.04036.

[63] N. Mekareeya, K. Ohmori, Y. Tachikawa, and G. Zafrir, E8

instantons on type-A ALE spaces and supersymmetric
field theories, J. High Energy Phys. 09 (2017) 144.

[64] D. D. Frey and T. Rudelius, 6D SCFTs and the classification
of homomorphisms ΓADE → E8, arXiv:1811.04921.

[65] J. McOrist, D. R. Morrison, and S. Sethi, Geometries, non-
geometries, and fluxes, Adv. Theor. Math. Phys. 14, 1515
(2010).

[66] J. Louis and S. Lst, Supersymmetric AdS7 backgrounds in
half-maximal supergravity and marginal operators of (1, 0)
SCFTs, J. High Energy Phys. 10 (2015) 120.

[67] C. Cordova, T. T. Dumitrescu, and K. Intriligator,
Deformations of superconformal theories, J. High Energy
Phys. 11 (2016) 135.

[68] C. Cordova, T. T. Dumitrescu, and K. Intriligator, Multip-
lets of superconformal symmetry in diverse dimensions,
arXiv:1612.00809.

[69] J. J. Heckman and T. Rudelius, Evidence for C-theorems in
6D SCFTs, J. High Energy Phys. 09 (2015) 218.

[70] U. H. Danielsson and P. Stjernberg, Notes on equivalences
and Higgs branches in N ¼ 2 supersymmetric Yang-Mills
theory, Phys. Lett. B 380, 68 (1996).

[71] J. J. Heckman, More on the matter of 6D SCFTs, Phys.
Lett. B 747, 73 (2015).

[72] T. W. Grimm and T. Weigand, On Abelian gauge sym-
metries and proton decay in Global F-theory GUTs, Phys.
Rev. D 82, 086009 (2010).

[73] S. Krause, C. Mayrhofer, and T. Weigand, G4 flux, chiral
matter and singularity resolution in F-theory compactifi-
cations, Nucl. Phys. B858, 1 (2012).

[74] A. P. Braun, A. Collinucci, and R. Valandro, G-flux in
F-theory and algebraic cycles, Nucl. Phys. B856, 129
(2012).

[75] T. W. Grimm, M. Kerstan, E. Palti, and T. Weigand,
Massive Abelian gauge symmetries and fluxes in F-theory,
J. High Energy Phys. 12 (2011) 004.

[76] A. P. Braun, A. Collinucci, and R. Valandro, The fate of
U(1)’s at strong coupling in F-theory, J. High Energy Phys.
07 (2014) 028.

[77] J. Borchmann, C. Mayrhofer, E. Palti, and T. Weigand,
Elliptic fibrations for SUð5Þ × Uð1Þ ×Uð1Þ F-theory va-
cua, Phys. Rev. D 88, 046005 (2013).

[78] M. Cvetic, D. Klevers, and H. Piragua, F-theory compac-
tifications with multiple U(1)-factors: Constructing elliptic
fibrations with rational sections, J. High Energy Phys. 06
(2013) 067.

[79] M. Cveti, A. Grassi, D. Klevers, and H. Piragua, Chiral
four-dimensional F-theory compactifications with SU(5)

APRUZZI, FAZZI, HECKMAN, RUDELIUS, and ZHANG PHYS. REV. D 101, 086023 (2020)

086023-36

https://doi.org/10.1007/JHEP11(2018)147
https://doi.org/10.1007/JHEP11(2018)147
https://doi.org/10.1007/JHEP02(2019)167
https://doi.org/10.1007/JHEP02(2019)167
https://doi.org/10.1007/JHEP10(2012)128
https://doi.org/10.1007/JHEP06(2016)128
https://doi.org/10.1007/JHEP08(2018)138
https://doi.org/10.1007/JHEP08(2018)138
https://doi.org/10.1007/JHEP02(2015)054
https://doi.org/10.1007/JHEP02(2015)054
https://arXiv.org/abs/1907.11230
https://doi.org/10.1007/JHEP06(2019)071
https://doi.org/10.1007/JHEP06(2019)071
https://doi.org/10.1007/JHEP07(2019)137
https://doi.org/10.1007/JHEP07(2019)137
https://doi.org/10.1007/JHEP01(2020)157
https://doi.org/10.1007/JHEP01(2020)157
https://doi.org/10.1007/JHEP02(2020)184
https://doi.org/10.1007/JHEP02(2020)184
https://doi.org/10.1007/JHEP07(2018)168
https://doi.org/10.1016/0370-2693(84)91565-X
https://doi.org/10.1016/0550-3213(85)90222-6
https://doi.org/10.1016/0550-3213(85)90222-6
https://doi.org/10.1016/0370-2693(92)90682-T
https://doi.org/10.1007/JHEP02(2018)157
https://doi.org/10.1007/JHEP02(2018)157
https://doi.org/10.4310/ATMP.2000.v4.n1.a2
https://doi.org/10.4310/ATMP.2000.v4.n1.a2
https://doi.org/10.1088/1126-6708/1998/07/012
https://doi.org/10.1007/BF01459246
https://doi.org/10.1007/BF01459246
https://arXiv.org/abs/alg-geom/9305002
https://doi.org/10.1007/JHEP11(2010)118
https://doi.org/10.1007/JHEP11(2010)118
https://doi.org/10.1016/j.physletb.2019.135004
https://doi.org/10.1007/JHEP01(2012)141
https://doi.org/10.1007/JHEP01(2012)141
https://doi.org/10.2478/s11534-012-0065-4
https://doi.org/10.1103/PhysRevD.93.086002
https://doi.org/10.1103/PhysRevD.100.029901
https://doi.org/10.1103/PhysRevD.100.029901
https://arXiv.org/abs/2002.04036
https://doi.org/10.1007/JHEP09(2017)144
https://arXiv.org/abs/1811.04921
https://doi.org/10.4310/ATMP.2010.v14.n5.a4
https://doi.org/10.4310/ATMP.2010.v14.n5.a4
https://doi.org/10.1007/JHEP10(2015)120
https://doi.org/10.1007/JHEP11(2016)135
https://doi.org/10.1007/JHEP11(2016)135
https://arXiv.org/abs/1612.00809
https://doi.org/10.1007/JHEP09(2015)218
https://doi.org/10.1016/0370-2693(96)00431-5
https://doi.org/10.1016/j.physletb.2015.05.046
https://doi.org/10.1016/j.physletb.2015.05.046
https://doi.org/10.1103/PhysRevD.82.086009
https://doi.org/10.1103/PhysRevD.82.086009
https://doi.org/10.1016/j.nuclphysb.2011.12.013
https://doi.org/10.1016/j.nuclphysb.2011.10.034
https://doi.org/10.1016/j.nuclphysb.2011.10.034
https://doi.org/10.1007/JHEP12(2011)004
https://doi.org/10.1007/JHEP07(2014)028
https://doi.org/10.1007/JHEP07(2014)028
https://doi.org/10.1103/PhysRevD.88.046005
https://doi.org/10.1007/JHEP06(2013)067
https://doi.org/10.1007/JHEP06(2013)067


and multiple U(1)-factors, J. High Energy Phys. 04 (2014)
010.

[80] J. Borchmann, C. Mayrhofer, E. Palti, and T. Weigand,
SU(5) Tops with multiple U(1)s in F-theory, Nucl. Phys.
B882, 1 (2014).

[81] M. Cvetic, D. Klevers, H. Piragua, and P. Song, Elliptic
fibrationswith rank threeMordell-Weil group: F-theorywith
Uð1Þ × Uð1Þ × Uð1Þ gauge symmetry, J. High Energy
Phys. 03 (2014) 021.

[82] D. Klevers and W. Taylor, Three-index symmetric matter
representations of SU(2) in F-theory from non-tate form
Weierstrass models, J. High Energy Phys. 06 (2016)
171.

[83] D. Klevers, D. R. Morrison, N. Raghuram, and W. Taylor,
Exotic matter on singular divisors in F-theory, J. High
Energy Phys. 11 (2017) 124.

[84] D. Klevers, D. K. Mayorga Pena, P.-K. Oehlmann, H.
Piragua, and J. Reuter, F-theory on all toric hypersurface
fibrations and its Higgs branches, J. High Energy Phys. 01
(2015) 142.

[85] M. Cveti, D. Klevers, H. Piragua, and W. Taylor, General
Uð1Þ × Uð1Þ F-theory compactifications and beyond:
Geometry of unHiggsings and novel matter structure,
J. High Energy Phys. 11 (2015) 204.

[86] M. Kuntzler and S. Schafer-Nameki, Tate trees for
elliptic fibrations with rank one Mordell-Weil group,
arXiv:1406.5174.

[87] C. Lawrie, S. Schafer-Nameki, and J.-M. Wong, F-theory
and all things rational: Surveying U(1) symmetries with
rational sections, J. High Energy Phys. 09 (2015) 144.

[88] M. J. Dolan, J. Marsano, N. Saulina, and S. Schafer-
Nameki, F-theory GUTs with U(1) symmetries: Gener-
alities and survey, Phys. Rev. D 84, 066008 (2011).

[89] J. Marsano, N. Saulina, and S. Schfer-Nameki, G-flux, M5
instantons, and U(1) symmetries in F-theory, Phys. Rev. D
87, 066007 (2013).

[90] N. Raghuram, Abelian F-theory models with charge-3 and
charge-4 matter, J. High Energy Phys. 05 (2018) 050.

[91] A. Collinucci, M. Fazzi, and R. Valandro, Geometric
engineering on flops of length two, J. High Energy Phys.
04 (2018) 090.

[92] Y. Kimura, F-theory models on K3 surfaces with various
Mordell-Weil ranks constructions that use quadratic base
change of rational elliptic surfaces, J. High Energy Phys.
05 (2018) 048.

[93] A. Collinucci, M. Fazzi, D. R. Morrison, and R. Valandro,
High electric charges in M-theory from quiver varieties,
J. High Energy Phys. 11 (2019) 111.

[94] M. Cveti and L. Lin, TASI lectures on Abelian and discrete
symmetries in F-theory, Proc. Sci., TASI2017 (2018) 020
[arXiv:1809.00012].

[95] T. Weigand, F-theory, Proc. Sci., TASI2017 (2018) 016
[arXiv:1806.01854].

[96] D. R. Morrison and C. Vafa, F-theory andN ¼ 1 SCFTs in
four dimensions, J. High Energy Phys. 08 (2016) 070.

[97] M. Del Zotto, J. J. Heckman, D. R. Morrison, and
D. S. Park, 6D SCFTs and gravity, J. High Energy Phys.
06 (2015) 158.

[98] D. R. Morrison and W. Taylor, Sections, multisections, and
U(1) fields in F-theory, arXiv:1404.1527.

[99] C. Mayrhofer, E. Palti, O. Till, and T. Weigand, On discrete
symmetries and torsion homology in F-theory, J. High
Energy Phys. 06 (2015) 029.

[100] M. Del Zotto, J. J. Heckman, and D. R. Morrison, 6D
SCFTs and phases of 5D theories, J. High Energy Phys. 09
(2017) 147.

[101] E. Witten, Small instantons in string theory, Nucl. Phys.
B460, 541 (1996).

[102] F. Apruzzi, L. Lin, and C. Mayrhofer, Phases of 5d SCFTs
from M-/F-theory on non-flat fibrations, J. High Energy
Phys. 05 (2019) 187.

[103] F. Apruzzi, C. Lawrie, L. Lin, S. Schfer-Nameki, and Y.-N.
Wang, Fibers add flavor, Part I: Classification of 5d
SCFTs, flavor symmetries and BPS states, J. High Energy
Phys. 11 (2019) 068.

[104] K. A. Intriligator and B. Wecht, The exact superconformal
R symmetry maximizes a, Nucl. Phys. B667, 183 (2003).

[105] S. S. Razamat, C. Vafa, and G. Zafrir, 4d N ¼ 1 from
6d (1, 0), J. High Energy Phys. 04 (2017) 064.

[106] F. Apruzzi, J. J. Heckman, D. R. Morrison, and L. Tizzano,
4D gauge theories with conformal matter, J. High Energy
Phys. 09 (2018) 088.

[107] H.-C. Kim, S. S. Razamat, C. Vafa, and G. Zafrir, Com-
pactifications of ADE conformal matter on a torus, J. High
Energy Phys. 09 (2018) 110.

[108] F. Apruzzi, F. Hassler, J. J. Heckman, and T. B. Rochais,
Nilpotent networks and 4D RG flows, J. High Energy
Phys. 05 (2019) 074.

[109] C. Córdova, T. T. Dumitrescu, and K. Intriligator, Explor-
ing 2-group global symmetries, J. High Energy Phys. 02
(2019) 184.

[110] V. G. Kac, Infinite-dimensional Lie Algebras: An Intro-
duction, Progress in Mathematics Vol. 44 (Birkhäuser
Boston Inc., Basel, 1983).

[111] D. D. Frey, Conjugacy of Alt5 and SLð2; 5Þ-subgroups of
E8ðCÞ, Mem. Am. Math. Soc. 634, 133 (1998).

[112] N. Mekareeya, T. Rudelius, and A. Tomasiello, T-branes,
Aaomalies and Moduli spaces in 6D SCFTs, J. High
Energy Phys. 10 (2017) 158.

[113] P. S. Aspinwall and R. Y. Donagi, The heterotic string, the
tangent bundle, and derived categories, Adv. Theor. Math.
Phys. 2, 1041 (1998).

[114] R. Donagi, S. Katz, and E. Sharpe, Spectra of D-branes
with higgs vevs, Adv. Theor. Math. Phys. 8, 813 (2004).

[115] S. Cecotti, M. C. N. Cheng, J. J. Heckman, and C. Vafa,
Yukawa couplings in F-theory and non-commutative
geometry, arXiv:0910.0477.

[116] S.Cecotti, C.Cordova, J. J.Heckman, andC.Vafa, T-Branes
and monodromy, J. High Energy Phys. 07 (2011) 030.

[117] R. Donagi and M. Wijnholt, Gluing branes, I, J. High
Energy Phys. 05 (2013) 068.

[118] L. B. Anderson, J. J. Heckman, and S. Katz, T-branes and
geometry, J. High Energy Phys. 05 (2014) 080.

[119] A. Collinucci and R. Savelli, T-branes as branes within
branes, J. High Energy Phys. 09 (2015) 161.

[120] M. Cicoli, F. Quevedo, and R. Valandro, De Sitter from
T-branes, J. High Energy Phys. 03 (2016) 141.

[121] A. Collinucci, S. Giacomelli, R. Savelli, and R. Valandro,
T-branes through 3d mirror symmetry, J. High Energy
Phys. 07 (2016) 093.

GENERAL PRESCRIPTION FOR GLOBAL Uð1Þ’S IN 6D … PHYS. REV. D 101, 086023 (2020)

086023-37

https://doi.org/10.1007/JHEP04(2014)010
https://doi.org/10.1007/JHEP04(2014)010
https://doi.org/10.1016/j.nuclphysb.2014.02.006
https://doi.org/10.1016/j.nuclphysb.2014.02.006
https://doi.org/10.1007/JHEP03(2014)021
https://doi.org/10.1007/JHEP03(2014)021
https://doi.org/10.1007/JHEP06(2016)171
https://doi.org/10.1007/JHEP06(2016)171
https://doi.org/10.1007/JHEP11(2017)124
https://doi.org/10.1007/JHEP11(2017)124
https://doi.org/10.1007/JHEP01(2015)142
https://doi.org/10.1007/JHEP01(2015)142
https://doi.org/10.1007/JHEP11(2015)204
https://arXiv.org/abs/1406.5174
https://doi.org/10.1007/JHEP09(2015)144
https://doi.org/10.1103/PhysRevD.84.066008
https://doi.org/10.1103/PhysRevD.87.066007
https://doi.org/10.1103/PhysRevD.87.066007
https://doi.org/10.1007/JHEP05(2018)050
https://doi.org/10.1007/JHEP04(2018)090
https://doi.org/10.1007/JHEP04(2018)090
https://doi.org/10.1007/JHEP05(2018)048
https://doi.org/10.1007/JHEP05(2018)048
https://doi.org/10.1007/JHEP11(2019)111
https://arXiv.org/abs/1809.00012
https://arXiv.org/abs/1806.01854
https://doi.org/10.1007/JHEP08(2016)070
https://doi.org/10.1007/JHEP06(2015)158
https://doi.org/10.1007/JHEP06(2015)158
https://arXiv.org/abs/1404.1527
https://doi.org/10.1007/JHEP06(2015)029
https://doi.org/10.1007/JHEP06(2015)029
https://doi.org/10.1007/JHEP09(2017)147
https://doi.org/10.1007/JHEP09(2017)147
https://doi.org/10.1016/0550-3213(95)00625-7
https://doi.org/10.1016/0550-3213(95)00625-7
https://doi.org/10.1007/JHEP05(2019)187
https://doi.org/10.1007/JHEP05(2019)187
https://doi.org/10.1007/JHEP11(2019)068
https://doi.org/10.1007/JHEP11(2019)068
https://doi.org/10.1016/S0550-3213(03)00459-0
https://doi.org/10.1007/JHEP04(2017)064
https://doi.org/10.1007/JHEP09(2018)088
https://doi.org/10.1007/JHEP09(2018)088
https://doi.org/10.1007/JHEP09(2018)110
https://doi.org/10.1007/JHEP09(2018)110
https://doi.org/10.1007/JHEP05(2019)074
https://doi.org/10.1007/JHEP05(2019)074
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1007/JHEP10(2017)158
https://doi.org/10.1007/JHEP10(2017)158
https://doi.org/10.4310/ATMP.1998.v2.n5.a4
https://doi.org/10.4310/ATMP.1998.v2.n5.a4
https://doi.org/10.4310/ATMP.2004.v8.n5.a3
https://arXiv.org/abs/0910.0477
https://doi.org/10.1007/JHEP07(2011)030
https://doi.org/10.1007/JHEP05(2013)068
https://doi.org/10.1007/JHEP05(2013)068
https://doi.org/10.1007/JHEP05(2014)080
https://doi.org/10.1007/JHEP09(2015)161
https://doi.org/10.1007/JHEP03(2016)141
https://doi.org/10.1007/JHEP07(2016)093
https://doi.org/10.1007/JHEP07(2016)093


[122] I. Bena, J. Blaback, R. Minasian, and R. Savelli, There and
back again: A T-brane’s tale, J. High Energy Phys. 11
(2016) 179.

[123] F.MarchesanoandS.Schwieger,T-branes andα0-corrections,
J. High Energy Phys. 11 (2016) 123.

[124] L. B.Anderson, J. J.Heckman,S.Katz, andL. P. Schaposnik,
T-branes at the limits of geometry, J. High Energy Phys. 10
(2017) 058.

[125] A. Collinucci, S. Giacomelli, and R. Valandro, T-branes,
monopoles and S-duality, J. High Energy Phys. 10 (2017)
113.

[126] M. Cicoli, I. Garca-Etxebarria, C. Mayrhofer, F. Quevedo,
P. Shukla, and R. Valandro, Global orientifolded quivers
with inflation, J. High Energy Phys. 11 (2017) 134.

[127] F. Marchesano, R. Savelli, and S. Schwieger, Compact
T-branes, J. High Energy Phys. 09 (2017) 132.

[128] M. Cvetic, J. J. Heckman, and L. Lin, Towards exotic
matter and discrete non-Abelian symmetries in F-theory,
J. High Energy Phys. 11 (2018) 001.

[129] F. Carta, S. Giacomelli, and R. Savelli, SUSYenhancement
from T-branes, J. High Energy Phys. 12 (2018) 127.

[130] F. Marchesano, R. Savelli, and S. Schwieger, T-branes and
defects, J. High Energy Phys. 04 (2019) 110.

[131] I. Bena, J. Blaback, R. Savelli, and G. Zoccarato, The two
faces of T-branes, J. High Energy Phys. 10 (2019) 150.

[132] R. Barbosa, M. Cvetic, J. J. Heckman, C. Lawrie, E. Torres,
and G. Zoccarato, T-branes and G2 backgrounds, Phys.
Rev. D 101, 026015 (2020).

APRUZZI, FAZZI, HECKMAN, RUDELIUS, and ZHANG PHYS. REV. D 101, 086023 (2020)

086023-38

https://doi.org/10.1007/JHEP11(2016)179
https://doi.org/10.1007/JHEP11(2016)179
https://doi.org/10.1007/JHEP11(2016)123
https://doi.org/10.1007/JHEP10(2017)058
https://doi.org/10.1007/JHEP10(2017)058
https://doi.org/10.1007/JHEP10(2017)113
https://doi.org/10.1007/JHEP10(2017)113
https://doi.org/10.1007/JHEP11(2017)134
https://doi.org/10.1007/JHEP09(2017)132
https://doi.org/10.1007/JHEP11(2018)001
https://doi.org/10.1007/JHEP12(2018)127
https://doi.org/10.1007/JHEP04(2019)110
https://doi.org/10.1007/JHEP10(2019)150
https://doi.org/10.1103/PhysRevD.101.026015
https://doi.org/10.1103/PhysRevD.101.026015

