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We present a general prescription for determining the global U(1) symmetries of six-dimensional
superconformal field theories. We use the quiverlike gauge theory description of the tensor branch to
identify candidate U(1) symmetries which can act on generalized matter. The condition that these candidate
U(1)’s are free of Adler-Bell-Jackiw anomalies provides bottom-up constraints for U(1)’s. This agrees with
the answer obtained from symmetry breaking patterns induced by Higgs branch flows. We provide
numerous examples illustrating the details of this proposal. In the F-theory realization of these theories,
some of these symmetries originate from deformations of non-Abelian flavor symmetries localized on a
component of the discriminant, while others come from an additional generator of the Mordell-Weil group.
We also provide evidence that some of these global U(1)’s do not arise from gauge symmetries, as would
happen in taking a decoupling limit of a model coupled to six-dimensional supergravity.
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I. INTRODUCTION

There is a striking interplay between stringy extra-
dimensional geometric structures and low energy effective
field theories. This is particularly manifest in the context
of F-theory compactifications, where intersecting seven-
branes are geometrized into elliptically fibered Calabi-Yau
spaces [1-3]. A prominent example illustrating the power
of such methods is the recent classification of six-
dimensional superconformal field theories (6D SCFTs)
via F-theory [4,5] (see also [6,7]). This provides a remark-
ably flexible approach to constructing 6D SCFTs which
encompasses essentially all other methods (see [8§-21] for a
partial list of older references, Refs. [22-26] for recent
holographic examples, and [27] for a review).

With these results in place, it is natural to ask what
detailed features of 6D SCFTs can be extracted from the
associated geometries. One piece of information which is
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readily available from an F-theory model is the tensor
branch of the 6D SCFT moduli space, as this is encoded
directly in terms of Kihler deformations of the base of an
F-theory model. Additionally, some global symmetries
correlate with the appearance of noncompact seven-branes
intersecting the localized region inhabited by a 6D SCFT.
This, in tandem with field theoretic techniques, has made it
possible to tightly constrain the structure of anomalies in
6D SCFTs [28-33].

Even so, there are a number of outstanding open issues
connected with determining the structure of global sym-
metries in a 6D SCFT. In what follows, we exclusively
focus on the case of continuous zero-form symmetries.
While in many cases, there is a close match between the
flavor symmetries expected from geometric and field
theoretic methods, there are notable examples where either
the F-theory model only captures a subset of possible flavor
symmetries, and conversely, where a “naive” field theoretic
analysis might at first suggest a bigger flavor symmetry
than what can actually be realized. Some examples of this
sort in F-theory [5] and field theory [34,35] are collected in
the review article [27]. For the most part, these examples
concentrate on non-Abelian global symmetries since these
are more straightforward to identify both in geometry and
field theory.

Though only studied in a few references [36-38], global
U(1) symmetries in 6D SCFTs are no less important. In the
context of 6D SCFTs, such symmetries are especially
interesting because, as opposed to non-Abelian global
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symmetries, it is not possible to have a U(l) gauge
symmetry on the tensor branch of a 6D SCFT [20,31].
In the F-theory literature, some examples of U(1) sym-
metries have also been tracked by determining the appear-
ance of an additional generator of the Mordell-Weil group
of the associated elliptic fibration [38]. By taking a suitable
decompactification limit in which gravity decouples, this
yields a global U(1) symmetry.

These results also point to several open issues, both in
field theory and F-theory. First of all, it is important to
develop a systematic method to deduce the appearance of
U(1) symmetries using purely field theoretic techniques.
Second, it is natural to ask whether U(1) flavor symmetries
in an F-theory realization of a 6D SCFT always originate
from generators of the Mordell-Weil group.

In this paper, we present a general prescription for
determining U(1) flavor symmetries in 6D SCFTs. Our
starting point is the observation of Ref. [39] that all 6D
SCFTs can be viewed as either “fission” or “fusion”
products obtained from a small list of progenitor theories.
Fission products are obtained by a combination of tensor
branch flows accompanied by Higgs branch deformations.
Fusion products are obtained by taking some collection of
fission products and gauging a common flavor symmetry
(accompanied by introducing an additional tensor multi-
plet). In the language of heterotic M-theory, these progen-
itor theories all arise from MS5-branes probing an ADE
singularity wrapped by an Eg nine-brane. As it arises so
frequently, we shall also view the theory of MS5-branes
probing an ADE singularity as another class of progenitor
theories.

We find that there are two ways in which a 6D SCFT can
inherit a U(1) symmetry from a progenitor theory. First of
all, these symmetries can originate from a non-Abelian
flavor symmetry factor in the progenitor. A suitable Higgs
branch deformation of such a theory can produce U(1)’s
from the Cartan subalgebra of this symmetry. Second of all,
there can also be U(1) symmetries present in the progenitor
theory itself. This turns out to only occur when the
progenitor has an A-type flavor symmetry and is closely
related to the fact that an A-type finite subgroup of SU(2)
has a U(1) ¢ SU(2) commutant group.

We also find that the resulting U(1) symmetries obtained
from this process of fission and fusion typically involve a
linear combination of U(1) flavor symmetries and gauged
U(1)’s coming from the Cartan of a non-Abelian gauge
group present on the tensor branch of moduli space. So,
while a purely group theoretic analysis of breaking patterns
allows us to calculate the symmetry group, it does not
directly tell us much about how this symmetry acts on the
Hilbert space. Indeed, mixing with gauge symmetries
complicates the calculation of anomaly polynomials based
on anomaly matching since the appearance of this U(1)
flavor symmetry is only partially inherited from a U(1)
global symmetry of the progenitor theory.

To rectify this issue, we develop a more bottom-up
prescription for how to directly read off the global U(1)
symmetries of a given 6D SCFT obtained from the quiver-
like gauge theory arising on its tensor branch. For a set of N
hypermultiplets transforming in a complex representation
of a gauge group (or a single hypermultiplet transforming
in a pseudoreal representation) we get a candidate U(1)
symmetry. Most of these U(1)’s turn out to suffer from
Adler-Bell-Jackiw (ABJ) anomalies on the tensor branch
and thus do not constitute genuine global symmetries.
Some linear combinations, however, do not suffer from any
such anomalies and are thus valid candidate global sym-
metries. This prescription also allows us to fix the U(1)
charge assignments for quiver gauge theories with classical
gauge groups. This turns out to be the biggest class of
examples where a U(1) global symmetry arises, and we
present a general set of rules for how to read off the global
U(1) symmetry in such situations, as well as in the more
general case of quiverlike gauge theories with general
gauge algebras and matter content. These rules agree with
the rules for U(1) symmetries obtained from fission/fusion
operations on progenitor theories.

Our prescription also allows us to address the geometric
origin of U(1) global symmetries in F-theory models
decoupled from gravity. Precisely because the U(1) sym-
metries of a 6D SCFT are inherited from U(1)’s in a
progenitor theory, we see first of all that many candidate
U(1) symmetries are only indirectly associated with the
Mordell-Weil group of sections in an F-theory model. This
is best exemplified through the fact that the only progenitor
theories with a U(1) symmetry are those with an A-type
global symmetry, and there are examples of 6D SCFTs
(which we discuss) with more than one U(1) global
symmetry.

This begs the question as to whether we can determine
which U(1)’s do originate from generators of the Mordell-
Weil group. Here we present evidence that in progenitor
theories with a U(1) symmetry, if they arise from MS5-
branes probing an ADE singularity (namely those with an
A-type non-Abelian flavor symmetry), the corresponding
U(1) is associated in F-theory to the appearance of an
additional section. We exhibit the form of this additional
section and show that it is in standard “Morrison-Park”
form [40]. However, if the progenitor theories with a U(1)
arise from M5-branes probing an A-type singularity which
is wrapped by an Eg nine-brane, we provide evidence that
this U(1) is not associated to an additional section of the
fibration. One issue is that all “natural attempts” to find
such a section appear to fail. A second issue is that in the
dual heterotic description, this U(1) arises from an isom-
etry of a noncompact K3 surface which is destroyed by
recoupling to gravity.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the structure of progenitor theories and
the fact that all 6D SCFTs originate from a process of
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fission/fusion from this starting point. In Sec. III, we turn to a
general discussion of U(1) symmetries obtained from
working with the tensor branch of a 6D SCFT. In particular,
we give a general prescription for how to identify candidate
U(1) symmetries and extract the corresponding ’t Hooft
anomalies. Section IV presents a number of examples
illustrating our procedure. In Sec. V, we use this analysis
to track the behavior of U(1) symmetries in a Higgs branch
flow from UV to IR. In Sec. VI, we turn to the geometric
realization of U(1) symmetries in the A-type progenitor
theories. We present our conclusions in Sec. VII. In
Appendix A, we present some additional details on anoma-
lies with U(1) symmetries. In Appendix B, we discuss how
global symmetries can be obtained via group theoretic
methods. In Appendix C, we provide details of the F-theory
construction of the 6D SCFT associated with heterotic Eg
small instantons probing an A-type orbifold singularity.

I1. FISSION, FUSION, AND
PROGENITOR THEORIES

In this section, we review how all 6D SCFTs can be
obtained from a small set of progenitor theories [39]. The
main idea is that starting from such progenitor theories, we
reach the vast majority of 6D SCFTs by a combination of a
tensor branch deformation followed by a Higgs branch
deformation (see Fig. 1). The few 6D SCFTs which cannot
be obtained in this way instead result from a process of
fusion where we add an additional tensor multiplet and
weakly gauge a common flavor symmetry of fission
products. For our present purposes, the main feature is
that in both fission and fusion products, there are a set of
symmetries which are directly inherited from the progenitor
theory.

Recall that in the F-theory approach to constructing 6D
SCFTs, we start with an elliptically fibered Calabi-Yau
threefold with a noncompact base. In the base, we seek out
configurations of curves which can all contract to zero size
simultaneously at finite distance in the moduli space of
Calabi-Yau metrics. This collapsing procedure results in a
6D SCFT. The tensor branch of moduli space refers to
instead considering Kihler deformations of this Calabi-Yau
in which curves of the base now have finite volume. The
Higgs branch of moduli space refers to switching on
operator vacuum expectation value (vevs) which break
the SU(2) R-symmetry of the SCFT. Geometrically, these
are deformations in the complex structure/intermediate
Jacobian of the Calabi-Yau threefold. The results of
[4,5] (see also [41,42]) provide a general procedure for
constructing all known 6D SCFTs via F-theory compacti-
fication (see [27] for a review). Here, our main interest will
be in providing a more uniform characterization of possible
structures which can appear in such theories, in particular
flavor symmetries.

To track flavor symmetries in 6D SCFTs, we exploit the
recently discovered characterization of most 6D SCFTs as

obtained from either fission or fusion of a small set of
progenitor theories. In M-theory language, these progenitor
theories arise from MS5-branes probing a heterotic nine-
brane which is in turn wrapped by an ADE singularity
C? /T apg> With Txpg a finite order subgroup of SU(2). In
the F-theory description, these theories have a partial tensor
branch description given by a configuration of curves of the
form

9ADE SADE 9ADE

[Eg], 1,2 ,..., 2 ,[Gapg) (2.1)
k

for the F-theory description of k small instantons. Here, the

notation 7 refers to a curve of self-intersection —n in the
base of the elliptic threefold with a singular elliptic
fibration over this curve resulting in a gauge symmetry
with algebra g. In stringy terms, this corresponds to a
seven-brane with gauge algebra g wrapped over this curve.
There are also pairwise intersections between the different
seven-branes which occur at a single point of normal
crossing in the base. Lastly, there are non-Abelian flavor
symmetries associated with an Eg symmetry on the left and
a flavor symmetry of ADE-type Gpg on the right.

Another prominent class of progenitor theories is
obtained from MS5-branes probing the singular point of
the geometry R x C?/I"spg. The resulting theories can be
obtained by moving the stack of M5-branes in the small
instanton examples away from the Eg wall. In the F-theory
realization of these theories, we simply decompactify the
—1 curve in the theory of (2.1). Doing so, we reach a 6D
SCFT with partial tensor branch,

9ADE 9ADE

Gapgl, 2 ..... 2 ,|Gapgl- 2.2
[GapE] G ApE] (2.2)
k-1

Starting from the theories of (2.1) and (2.2), we reach the
vast majority of 6D SCFTs by performing a tensor branch
deformation followed by a Higgs branch deformation.
There is an algebraic characterization of Higgs branch
deformations in terms of group theoretic data associated
with the flavor symmetry factors. In the case of the theories
in line (2.2), localized deformations come from nilpotent
orbits of the flavor symmetry algebra. In the case of the
deformations localized near the —1 curve of (2.1), these
deformations come from discrete group homomorphisms
Hom(Tzpg, Eg) [5,43]. See Appendix B for additional
details on the interplay between group theory and 6D
SCFTs. Let us note that there are additional Higgs branch
deformations which come from more general seven-brane
recombination moves [44]. For our present purposes of
viewing all 6D SCFTs as fission and fusion products, this
additional class of flows will not play a role. See also
Refs. [45-47] for additional discussion of Higgs branch
deformations of theories with eight real supercharges.
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The class of 6D SCFTs which can be obtained in this
way are referred to as fission products. There are some
theories from the classification of Ref. [5] which cannot be
obtained in this way. They can, however, all be obtained
by gauging a common flavor symmetry of such fission
products and are thus referred to as fusion products. Putting
this together, we see that a flavor symmetry of a progenitor
theory can be mapped to a set of fission products as well as
possible fusions thereof.

In principle, there can also be flavor symmetries
which are not inherited from a progenitor theory. In the
case of fission products, these can appear due to emergent
symmetries deep in the infrared of an RG flow. In the
case of fusion products, the process of consistently
gauging a common flavor symmetry can also require
introducing additional matter fields (to cancel the corre-
sponding gauge anomalies which arise). These additional
flavors can in turn lead to the appearance of additional
flavor symmetries. For the most part, however, the
symmetries inherited from progenitor theories cover
the vast majority of flavor symmetries which arise in
6D SCFTs.

A. Generic flavor symmetries
of progenitor theories

Let us now turn to the flavor symmetries for the
progenitor theories. For the most part, there is a uniform
characterization of the expected flavor symmetries in such
theories. As the rank of the flavor symmetry and/or the
number of MS5-branes decreases, however, there can be
additional “accidental” enhancements in the flavor sym-
metry at the fixed point. One of our tasks will be to develop
a systematic prescription for dealing with such situations
as well. Since it will require additional care to treat
such outlier cases, we defer a discussion of these cases
to subsequent sections.

Consider first the case of the heterotic Eg small instanton
probe theories. First of all, we have a 10D gauge theory
with Eg gauge group and with this, a corresponding Ejy
flavor symmetry for the 6D theory. Similarly, from the
ADE singularity, we get a 7D gauge theory with Gapg
gauge group which again leads to a flavor symmetry in
the 6D theory. In addition to this, we observe that in
the absence of the singularity, there is a Spin(4) flavor
symmetry associated with rotations transverse to the probe
M5-branes but inside the nine-brane. Writing

Spin(4) = SU(2), x SU(2)%. (2.3)
we embed our finite order ADE subgroup into SU(2),
since this has a natural holomorphic action on C2. In this
case, SU(2)x corresponds to the R-symmetry of the 6D
SCFT, a feature which is manifest in the heterotic con-
struction but not directly visible in the F-theory geometry.
Now, in the case where we have a D- or an E-type finite

Progenitor Theories
A-type: one U(1)

D/E-types: no U(1)’s

FIG. 1. Depiction of fission and fusion for 6D SCFTs.
Progenitor theories arise from MS5-brane probes of an ADE
singularity C?>/T'spg and can correspond to cases with an Ejg
nine-brane (heterotic Eg small instantons) as well as cases
without such a nine-brane. In both sets of progenitor theories,
there is a U(1) global symmetry factor for I' = Zy,N > 3,
whereas there is no Abelian symmetry factor for D- and E-type
singularities. ForI" = Z,, the U(1) symmetry enhances to SU(2).
Deformations of these progenitor theories lead to fission prod-
ucts. Fission products can also be “fused” by gauging a common
non-Abelian global symmetry factors and adding an additional
tensor multiplet.

subgroup of SU(2) ., the commutant subgroup is trivial, so
this is the full set of global symmetries. Additional structure
appears in the A-type series. In the case where we have an
A-type subgroup Zy with N > 2, we preserve a U(1)
subgroup, which is an additional flavor symmetry. In the
special case N = 2, even more is true: here we preserve the
SO(4) = (SU(2), x SU(2)x)/Z, isometries, so there is
an additional 8u(2) flavor symmetry algebra [5,43]. In the
special case of a single probe M5-brane, additional flavor
symmetry enhancements arise. We will revisit the analysis
of flavor symmetries in these special cases in Secs. IV
and VL

Turning next to the theories of (2.2), we clearly observe
a Gy x Gp flavor symmetry. In the case of an A-type
subgroup Zy with N > 2, there is an additional U(1) flavor
group symmetry, and it iS more appropriate to write the
flavor symmetry as S(U(N), x U(N)g). In the case of an
A-type subgroup Z,, we have a similar enhancement in the
flavor symmetry, this time to SU(2)?. In the case of a single
M5-brane, there are additional accidental enhancements in
the flavor symmetries of the system.

To conclude this section, we note that here, we have
focused on the appearance of flavor symmetries which are
manifest in the M-theory realization of these systems. The
non-Abelian symmetries can also be extracted from the
F-theory realization of these 6D SCFTs, which is particu-
larly important in developing a uniform approach to
classifying such theories [4,5]. From the top-down per-
spective, however, the full flavor symmetry is not generi-
cally manifest in the complex structure moduli space of the
Calabi-Yau threefolds used to engineer the theories. In
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some cases, the full flavor symmetry can only be realized
geometrically at tuned points of the complex structure
moduli space. Indeed, the typical expectation is that these
top-down constructions can sometimes ‘‘underpredict”
possible flavor symmetry enhancements which occur at
the conformal fixed point. This is especially important in
the context of U(1) symmetries since these factors may in
fact be generators in the Cartan of a single simple factor, for
example, the enhancement S(U(N) x U(N)) c SU(2N)."
As a general rule of thumb, these sorts of accidental
enhancements in the flavor symmetry tend to appear
when the number of tensor multiplets on the tensor
branch is very low. For example, in the progenitor theories,
this occurs for a single small instanton of heterotic
theory next to an A-type singularity and occurs for two
M5-branes next to an A-type singularity. The procedure we
outline for extracting U(1) symmetries will provide a
diagn(;stic for understanding when such enhancements
occur.

III. U(1) SYMMETRIES ON THE
TENSOR BRANCH

In this section, we turn to an analysis of U(1) symmetries
using the tensor branch description of a 6D SCFT.? From
the general results of [4,5,43], we already know that all 6D
SCFTs resemble, on a partial tensor branch, a 6D quiverlike
gauge theory, possibly with strongly coupled “conformal
matter” between neighboring gauge group factors. This fact
was heavily used in Refs. [29,30] (see also [31]) to extract
the anomaly polynomial for non-Abelian flavor symmetries
in 6D SCFTs. The main idea in this analysis is that when
the number of gauge group factors is equal to the number of
tensor multiplets (on the partial tensor branch), the Green-
Schwarz-West-Sagnotti (GSWS) mechanism for canceling
gauge theoretic anomalies [49-51] leads to a unique answer
for the flavor symmetry field strengths as well. The general
form of the anomaly polynomial thus obtained then takes
the form

It = Lioop + Las» (3.1)

'See [38] for more examples of this phenomenon.

While we can understand many such enhancements in
this way, there exists at least one enhancement (namely, the
Spin(4) — Spin(5) enhancement of the R-symmetry of (2,0)
6D SCFTs) that lies beyond the scope of our analysis, and we
cannot be sure that a similar enhancement does not occur
elsewhere.

*Note that we are interested in determining the flavor sym-
metries of the SCFT at the fixed point using the tensor branch
description, rather than in determining the flavor symmetries of
the tensor branch theory itself. These two flavor symmetries do
not always agree, as in the case of the SCFT whose tensor branch
description consists of 8u(2) gauge theory with four hyper-
multiplets, which has a Spin(7) flavor symmetry at the conformal
fixed point that enhances to SO(8) on the tensor branch [35,48].

where Ig; denotes a formal eight-form in the flavor
symmetry field strengths, R-symmetry field strength, and
background curvature, 1} ,,, denotes the one-loop contri-
butions from “generalized matter,” and /g denotes the
contribution from Green-Schwarz terms of the form

Las o / 4rBT A TE(FO A FO),  (32)
6D

where the index T runs over the tensor multiplets and G
runs over field strengths for both gauge and flavor
symmetries. The key point is that if we can find a
presentation where the number of gauge groups and tensor
multiplets is the same, then there is a unique way (up to
lattice automorphisms [52]) to adjust the pys coefficients
such that we cancel all gauge anomalies. To date, this sort
of analysis has been primarily carried out for non-Abelian
symmetries. This includes global flavor symmetries as well
as R-symmetries and diffeomorphisms.

Our main aim in this section will be to understand in
general terms the structure of U(1) Abelian symmetries.
First of all, there are no U(1) gauge symmetries on the
tensor branch. This can be seen directly in the F-theory
realization of such models because these are always
associated with the existence of additional (rational)
sections to the elliptic fibration [3,53,54]. This in turn
requires the existence of a compact base, so in a limit where
gravity is decoupled, such U(1)’s are also nondynamical.
Additionally, one can also show from purely field theoretic
considerations that no U(1) vector multiplets are available
on the tensor branch [20,31].

A common way to generate examples of 6D SCFTs with
non-Abelian flavor symmetries is to first begin with a
theory that has a gauge symmetry on its tensor branch.
Taking a suitable decoupling limit then produces the
desired non-Abelian flavor symmetry. Such a procedure
is clearly unavailable for Abelian symmetries since there
are no U(1) gauge symmetries available to begin with.
A related way to proceed is to consider constructing
the 6D SCFT as an emergent sector of a 6D supegravity
model. This method of analysis was used in [38] to argue
for the existence of U(1) global symmetries coming
from the geometry of an F-theory model. While this is
definitely a way to build robust examples of global U(1)
symmetries, there is the additional constraint that we couple
to 6D supegravity, which in turn places an upper bound on
the kinds of SCFTs we can realize. For example, the sorts
of singularities which can be supported in a compact
elliptic Calabi-Yau are bounded [55-57], thereby con-
straining the 6D SCFTs that can be coupled to gravity [58].

Our plan will be to sort out in bottom-up terms possible
couplings which could appear in our analysis of candidate
U(1) symmetries and their anomalies. We can, of course,
consider including additional couplings to the antichiral
two-forms of a tensor multiplet, which we can summarize
by a general set of couplings such as
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Lgs D AD /lT.SBg.Tf)orm A Xz(gf)orm(Fgloba.l)v (3.3)

where Xff)om (F giobar) is a general four-form which depends
on the field strengths of the global and gauge symmetries.
However, more is possible with Abelian symmetries
since the first Chern class need not vanish for the associated
field strengths. In principle, then, we can also entertain
“generalized Green-Schwarz couplings™ such as

l a
LgGS ) L b Kl.acé())_fon-n) N X E6.>f0rm)(F global)

~ (1 b
+ Kl,bCE4)_f0rm) A XEQ_)form)(Fglobal)v (34)

with X Eg?fom)(F globat) @ general six-form built from the
(b

global symmetry field strengths, and X(2—)f0rm) (Fgtobat) @
(1)

two-form. Here, C (é_form)
CEQ—form)
six-form and two-form X’s, at least one Abelian field
strength must participate. In principle, such terms might
appear in the study of U(1) symmetries on the tensor
branch.

That being said, such terms never directly impact the
structure of anomalies in a 6D SCFT. To see why, observe
that to get a contribution to the anomaly polynomial, we must
necessarily pair up one of the terms coming from the x-terms
with one coming from the k-terms. Otherwise, we cannot get
a contribution to the formal eight-form. However, if there is a
coupling to the four-form axion, then the associated U(1)

denotes a set of zero-forms and

denotes their magnetic duals. Note that in both the

symmetry appearing in X g_)form)(F olobal) Will have already
been broken via the Stiickelberg mechanism [59].
Consequently, for a genuine unbroken symmetry, such
couplings play no role in our analysis.

As a consequence, we conclude that to study the
structure of anomalies with U(1) global symmetries, it is
enough to consider the standard GSWS anomaly cancela-
tion mechanism, as well as the resulting anomaly poly-
nomial. With this in mind, suppose that we have a candidate
U(1) global symmetry which contributes to the anomaly
polynomial. A priori, there are two sorts of terms which
could be present,

and FabelianTr(Féauge)7

FabelianngelianTr(Féauge) (35)

for some Abelian symmetries and gauge symmetries. The
first set of terms will in general be canceled off by the
GSWS mechanism. The second set of terms cannot be
canceled by the GSWS mechanism because the couplings
of (3.3) cannot produce terms of this form. This means that
such contributions are actually generated by just the one-
loop contributions to the anomaly polynomial.

Such terms are problematic, because they are of the
general ABJ type, namely, they mix a candidate global
U(1) symmetry with a gauge symmetry. The presence of
such terms would allow us to convert global U(1) charge to
excitations associated with the gauge symmetry, thus
violating current conservation. This would in turn mean
that the candidate U(1) symmetry is not truly a symmetry.
We note that this is qualitatively different from ’t Hooft
anomalies involving just global symmetries.

From a bottom-up perspective, there are a number of
necessary (but possibly insufficient) conditions which must
be met to have a U(1) symmetry in a 6D SCFT. First of all,
we must identify candidate U(1) symmetries from the full
tensor branch description of the theory. Next, we must
provide a candidate set of charges for the matter fields of
the tensor branch theory. This includes weakly coupled
matter, but also strongly coupled generalizations such as
6D conformal matter (as occurs on the partial tensor
branch). If a candidate U(1) symmetry and the proposed
charge assignments for matter generates an ABJ anomaly,
then we must discard this choice of charge assignment, and
if no nontrivial assignment is available, we must discard the
candidate U(1) altogether. There are typically several
nontrivial arithmetic constraints which strongly limit the
existence of candidate U(1) symmetries.

In practice, we shall often associate a U(1) with each
bifundamental hypermultiplet. The overall U(1) charge of
these fields is constrained by ABJ anomaly cancellation,
which limits us to rays of possible charge vectors. The
overall normalization of charge assignments can then be
fixed by appealing to the string theory realization of the
model and is also inherited from charge quantization in a
progenitor theory.

As an illustrative example, consider the theory of kK M5-
branes probing a C?/Zy singularity. In the F-theory
realization of this theory, we have k — 1 curves of self-
intersection —2, each of which supports an 7, fiber. The
resulting fiber types are given by

Iy Iy
Invl, 2,...,2,[Iy].
[In] [Iy]

k—1

(3.6)

In F-theory, each Iy fiber is associated with an $u(N)
gauge symmetry algebra. One of the distinctions between
type 1IB and F-theory is that the overall “center of mass”
U(1) present in a stack of N D7-branes is typically absent
because this gauge field couples to an axion. Something
similar is at work in this configuration. Indeed, from our 7
fibers, we see k — 1 candidate U(1) gauge symmetries and
two candidate U(1) flavor symmetries. Of these, only one
linear combination turns out to be free of ABJ anomalies.

To figure out the anomalies associated with the U(1)
symmetries, we first need to fix a convention for the
representations of our hypermultiplets. Throughout this
paper, our convention will be dictated by the topology of
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the associated quiver. Indexing the groups fromi =0, ..., k
from left to right, we have hypermultiplets which transform
in the bifundamental representation (Nj, Nj,;) of neigh-
boring gauge groups running from left to right. Note that in
this convention, we have an SU(2); R-symmetry doublet
of scalars in the (N;, N;, ) representation and a fermionic
superpartner which also transforms in the (Nj,Nj.)
representation. We assign a candidate U(1) to act on each
hypermultiplet, which we take to have charge +1.* Note
that there is a sign convention here; we could equally well
have considered assigning multiplets to the conjugate
representation. This would not affect the calculation of
ABJ anomalies because in evaluating the contributions
from fermionic loops, we note that TryF> = —TrgF>,
canceling out the minus sign from the opposite charge
under the candidate U(1).

This example illustrates a few general points. First, most
candidate U(1) symmetries will turn out to be plagued by
ABJ anomalies and will need to be eliminated anyway.
Additionally, in the context of F-theory, the surviving U(1)
is associated with the appearance of 7 fibers. The U(1) is
not really localized on any one component of the discrimi-
nant locus but is better thought of as being shared i.e.,
“delocalized” across multiple components of the discrimi-
nant. See Fig. 2 for a depiction.

This sort of reasoning suggests an alternative, but
entirely equivalent way to proceed in determining possible
U(1) symmetry factors. Starting from the quiverlike gauge
theory description of a 6D SCFT on its partial tensor
branch, we can first consider each individual gauge group
factor in isolation by taking a decoupling limit on the tensor
branch. In this limit, we have a set of global symmetries for
each such gauge theory. The process of incorporating
additional gauge group factors amounts to weakly gauging
a subalgebra of the flavor symmetries and introducing an
additional tensor multiplet to “pair” with this gauge
symmetry. Returning to the example of (3.6), each indi-
vidual —2 curve defines a 6D SCFT,

Iy

U], 2, [In]. (3.7)

This example is well known to have an 8u(2N) flavor
symmetry, as opposed to the 3u(N) x 8u(N) x u(1)
global symmetry expected from the M-theory construction
of the model. Observe, however, that we can gauge the
subalgebra 8u(N), and thus obtain the quiver,

Iy Iy

[In], 2,2, [Iy]- (3.8)

The commutant of 8u(N), inside of 8u(2N) is

8u(N)xu(l), which provides us with a candidate U(1)
global symmetry.

*The overall normalization turns out to also be fixed to be +1.

Delocalized U(1)

*
“

.
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FIG. 2. Depiction of a delocalized U(1) symmetry in the F-
theory model of line (3.6).

We summarize these two complementary procedures as
follows:

(i) Candidate U(1)’s (method 1): Simply write down
all candidate U(1) symmetries as well as all
possible charge assignments for matter fields. The
only surviving charge assignments and U(1) charges
are those which are free of ABJ anomalies. The
overall normalization of charge assignments can be
fixed by appealing to Higgsing from a another fixed
point and/or by using the associated string con-
struction for U(1) charge assignments.

(i1) Commutant symmetries (method 2): Start with a
single node of a quiverlike gauge theory and weakly
gauge the flavor symmetries of this theory. The
commutant provides a set of candidate flavor sym-
metries, some of which are U(1) symmetries. We
must again ensure that ABJ anomalies cancel to have
a genuine flavor symmetry.

The two procedures provide an equivalent way of
generating the same information about U(1) symmetries,
since any U(1) obtained from the commutant procedure
will necessarily be a candidate U(1) of the full 6D SCFT,
and any candidate U(1) that is free of ABJ anomalies will
show up in the commutant after gauging a subgroup of
some flavor symmetry. There are merits to using either
procedure, and in practice it simply depends on the details
of the quiver to determine which method of extracting
U(1)’s will be more efficient. In what follows, we
shall often emphasize that we are dealing with a flavor
symmetry by writing it in capital Latin text. That being
said, we will actually only discuss these symmetries
at the level of algebras, rather than groups. For this reason,
we will sometimes write U(N) interchangeably with
SU(N) x U(1), writing U(N) ~ SU(N) x U(1) to empha-
size that even though the associated groups are strictly
speaking distinct, their algebras are isomorphic.

To proceed further, we now discuss in more detail the
process of extracting candidate U(1)’s. In Sec. IV, we
present a number of examples illustrating our proposal. For
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additional details on anomaly polynomials with global
U(1) symmetries, see Appendix A.

A. Candidate U(1)’s

Our first task is to provide a precise notion of “candidate
U(1)’s” which could appear in the tensor branch descrip-
tion of a 6D SCFT. To this end, we first review some
additional elements of how all known 6D SCFTs are
constructed. The F-theory approach to realizing 6D
SCFTs proceeds in two steps. First, one specifies a choice
of base with some collection of contractible curves and then
one defines an elliptic fibration over a given base. In field
theory terms, the choice of base determines the Dirac
pairing for the tensor multiplets. The elliptic fibration tells
us the gauge groups and matter. In general, once the base is
specified the types of available elliptic fibrations are
severely restricted.

The main building blocks in 6D SCFTs are curves of
self-intersection —2 and the non-Higgsable clusters (NHCs)
of Ref. [60]. A general base is obtained either from a
collection of —2 curves intersecting according to the
Dynkin diagram of an ADE Lie algebra, or by taking
NHCs and “gluing them” via curves of self-intersection —1.
It is also possible to sometimes append a chain of —2 curves
in ADE configuration to a glued configuration of NHCs.

Consider first the flavor symmetries which come from
minimal fiber enhancements. The global symmetries for the
building blocks are rather limited. By definition, the NHCs
do not have a Higgs branch, and their corresponding flavor
symmetry is also trivial. The —2 curves with no singular
fibers produce the ADE N = (2,0) theories, so when
viewed as N = (1,0) theories we get an $u(2), C
3u(2), x 8u(2)g C 80(5)g yymm flavor symmetry from
the R-symmetry of the A" = (2,0) theory. When fiber
enhancements are present, this symmetry is typically
destroyed but in its place we get additional noncompact
flavor symmetry factors, a point we return to shortly. Last,
we have the —1 curve theory. This realizes the E-string
theory, namely, the theory of a single small instanton in
heterotic M-theory. As mentioned in Sec. II, this theory
comes with an eg x 3u(2), flavor symmetry. The former
comes from the Eg nine-brane, and the latter comes from
the 8pin(4) D 3u(2), x 3u(2), isometries preserved by
the small instanton in C? ~ R*. Let us note that the more
general theory of multiple small instantons

[Egl, 1,2,...,2 (3.9)
enjoys the same eg x 81(2), flavor symmetry.

We obtain more intricate 6D SCFTs with minimal
singularities in the fiber by gauging the eg flavor symmetry
of the small instanton theory. This has two immediate
consequences. First of all, by gauging a flavor symmetry,
we typically break the 81(2) - flavor symmetry. In heterotic

terms, this is because we have replaced the noncompact R*
by a compact space with smaller isometry group. Second of
all, we can sometimes arrange for a U(1) global symmetry
to appear as the commutant in this gauging procedure. To
illustrate this point, suppose we gauge a product subalgebra
g; X gg C eg. In some cases, the commutant H of g; X gg
inside eg will contain one or more U(1) factors. This occurs
in the following cases:

(i) g, = e, gg = 3u(2), H="U(1),

(ii) g; = 80(10), gr = 8u(2), H=SU(2) x U(1),

(i) g, = 80(7), gr = %0(7), H = U(1),

(iv) g1 = 80(8), g = 8u(4), H = U(1).

(v) g, =80(8), g = 8u(3), H = U(1) x U(1),
where in the above, we have deferred the case of ¢ = 31(2)
gauging.

For theories with minimal singularity types over each
curve, this is the primary way in which flavor symmetries
(including U(1) symmetries) can arise. Once we allow
further decorations in the fiber type over each curve
obtained on the tensor branch, additional possibilities
emerge. In field theory terms, these additional decorations
in the singularity type mean the gauge group paired with a
given tensor multiplet will have higher rank than the
generic NHC situation. This in turn leads to the presence
of additional hypermultiplets transforming in representa-
tions of the gauge groups as well as possible flavor
symmetries. In a 6D SCFT on its tensor branch, we can
have hypermultiplets which transform in a representation of
a single gauge group, or in a bifundamental representation.
In both cases, the determining factor for the flavor
symmetry acting upon the hypermultiplets is the number
of hypermultiplets. The flavor symmetry of a set of N
hypermultiplets transforming in some representation of a
gauge group depends on whether that representation is real,
pseudoreal, or complex. In particular,

(i) N hypermultiplets (equivalently, 2N half-
hypermultiplets) in a pseudoreal representation have
an SO(2N) flavor symmetry.

(i) N hypermultiplets in a complex representation have
a U(N) ~SU(N) x U(1) flavor symmetry.

(ii1) N hypermultiplets in a real representation have an
Sp(N) flavor symmetry (here Sp(1) ~ SU(2)).
The same rules apply when the hypermultiplets
transform in a bifundamental representation. The
only issue is whether the tensor product of the
two representations p; ® p, is complex, real, or
psemdoreal.5

*Recall that the reality conditions for tensor products of
representations p; ® p, for the gauge group G; x G, for real
(R), pseudoreal (P), and complex (C) representations are as follows:

(i R®R =R,

(i) P®R =P,

(iii) P® P =R,

(iv) C ® Any =C.
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Abelian flavor symmetries can arise from the above rules
in one of two ways: (1) any number of complex hyper-
multiplets will transform under a U(N) ~ SU(N) x U(1)
flavor symmetry, or (2) a single full hypermultiplet in a
pseudoreal representation will transform under a SO(2) ~
U(1) flavor symmetry.

In 6D SCFTs, the first of these possibilities arises for the
following representations:

(i) N fundamentals of an 31t(n > 3) gauge algebra,

(ii)) N A®s of an 8u(n > 5) gauge algebra,

(iii) N spinors of an 80(10) gauge algebra,

(iv) N fundamentals of an e gauge algebra,

(v) A bifundamental of an 8u(n >3)x 3u(m > 3)

gauge algebra,

(vi) A bifundamental of an 3u(n >3)x8p(n>1)

gauge algebra,
(vii) A bifundamental of an 8u(n > 3) x 8o(m) gauge
algebra.
In practice, this last case occurs only for 6D SCFTs in the
“frozen” phase of F-theory [41,42].

The second possibility of an SO(2) ~ U(1) flavor
symmetry arises for the following representations:

(i) A fundamental (two half-hypermultiplets in the

fundamental) of an 8p(n > 1) gauge algebra,

(i) A fundamental of an e; gauge algebra,

(iii) A spinor of an 80(11) or 80(12) gauge algebra.

More representations, and hence more opportunities for
Abelian flavor symmetries, arise in the case of little string
theories [61].

In the above, we have omitted the case of matter in an
3u(2) gauge theory since this case has some additional
subtleties. For 8u(2) gauge theory paired with a tensor of
charge —2, anomaly cancelation considerations imply we
have eight half-hypermultiplets in the fundamental repre-
sentation. Though this might suggest the matter fields
transform in the vector representation of Spin(8), the
F-theory realization of this model admits only a Spin(7)
flavor symmetry at the superconformal fixed point [5],
which is in fact confirmed by field theory considerations as
well [35,48]. So in this case, the matter fields transform as
half-hypermultiplets in the (2, 8) of 81(2) x 80(7).

This distinction between Spin(7) and Spin(8) is impor-
tant because it impacts what symmetries can be gauged, and
consequently, the resulting commutant flavor symmetries.
Consider, for example, the effects of gauging an 81(3) C
80(7) subalgebra. We have the branching rules 8o0(7) D
30(6) D 8u(3) x u(1) and consequently a commutant of
u(1). This is different from what we would have obtained if
we had incorrectly assumed the flavor symmetry is
80(8) D 80(6) x u(l) D 3u(3) x u(1l) x u(l). Similarly,
when we gauge an 81(4) ~ 80(6) subalgebra of 80(7),
the commutant does not have any residual u(1)’s.

On a related point, an 31 (2) gauge algebra paired with a
—2 tensor that meets an unpaired —2 tensor has a G,
global symmetry, under which seven half-hypermultiplets

transform as the 7 of G,. If six of these half-hypermultiplets
transform as a bifundamental under an 8u(3) gauge
algebra, there is no U(1) global symmetry remaining to
act on them.

Thus, in the presence of an 311(2) gauge algebras paired
with a —2 tensor, there is just one more U(1) possibility to
consider which is as follows:

(i) A bifundamental of an 81(3) gauge algebra and an
31(2) gauge algebra, provided the —2 tensor paired
with the 3u(2) gauge algebra is not adjacent in the
6D SCFT quiver to an unpaired —2 tensor.

Note that we have not discussed the possibility of a
bifundamental of 3u(2)~38p(1) and 3u(2)=3p(1).
Quivers with these bifundamentals often have additional,
delocalized SU(2) global symmetries. We will study
these quivers and work out their global symmetries later
in Sec. IV D.

So far, our discussion has focused on obtaining a set of
candidate global U(1)’s. We now turn to the associated
ABJ anomalies coming from such symmetries. The ABJ
anomalies for a hypermultiplet of global U(1) charge ¢ in a
representation p of a non-Abelian gauge algebra g are given
by (see Appendix A)

1
Ippy D gqFU(l)Trng,

(3.10)
where Fy () and Fy are the field strengths for the U(1)
global symmetry and the gauge algebra g, respectively, and
Tr, is the trace in the representation p. To avoid cluttering
later expressions, in what follows we shall often leave the
subscript for the choice of representation for the trace
implicit, but will instead indicate it as appropriate.

To get an ABJ anomaly, we must, by necessity, have a
gauge algebra which supports representations with a non-
vanishing cubic Casimir. For simple Lie algebras, this only
occurs in the case of ¢ = 8u(N) for N > 3. Additionally, we
know the U(1) charges for our hypermultiplets. This is
because each fundamental of SU(N) for N >3 carries
charge 1 under its associated candidate U(1). More generally,
however, we may determine the charges of all hypermultiplets
under the ABJ anomaly-free U(1)’s using the Lie algebra
branching rules explained above. Namely, we may decom-
pose the maximal flavor symmetry associated with a given
node of the quiver into a gauged part and a global part, the
latter of which may involve U/( 1) factors. The branching rules
for this decomposition allow us determine the U(1) charges
for each component, up to overall normalization.

So, in all of these cases, we have a set of well-posed
constraints, as obtained from Eq. (3.10). Consequently, we
learn that of our candidate U(1)’s, only the appearance of
an 8u(N) gauge algebra can impose a nontrivial constraint.
These are necessary conditions and also appear to be
sufficient. The total number of U(1)’s in a 6D SCFT are
thus given by
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# U(1)’s = # candidate

U(1)’s —# 8u(N)’s with N > 3, (3.11)
as computed on the full tensor branch of the 6D SCFT.?
Again, the candidate U(1)’s are given by first specifying
the number of —1 curve theories as well as the flavor
symmetries which can act upon a set of weakly coupled
hypermultiplets, in accord with the discussion given above.
The # 8u(N)’s are simply all gauge group factors which
can introduce a nontrivial constraint, as per Eq. (3.10).
Moreover, the above procedure based on the branching of
representations fixes the overall U(1) charge assignments
for all hypermultiplets appearing on the tensor branch.

As an instructive example for how these constraints
appear, consider the theory of k + 1 M5-branes probing a
C?/Z, orbifold singularity with N > 3. On the tensor
branch, we have a quiver gauge theory given by

3u(N), 3u(N)  3u(N) su(N),
2 ... 2 2,

3.12
[Ny=N] ( )

[Ny=N]

By the rules above, we expect that each set of N
fundamentals will transform in a U(N) ~ SU(N) x U(1)
flavor symmetry, while each bifundamental will transform
under a U(1) flavor symmetry. Altogether, this gives
1+1+4+k—1=k+ 1 candidate U(1) flavor symmetries.
See Fig. 3 for a depiction of the quiver, including the
candidate U(1) charge assignments.

However, some candidate symmetries will suffer from
ABJ anomalies,

Kk
gy D Z i F y Triuna - (3.13)
=1 =0

A=

1

Here, the summation is over the gauge group factors
indexed by i = 1, ..., k and the candidate U(1) symmetries
indexed by J = 0, ..., k. Each ¢; ; denotes the contribution
to the anomaly from summing over all hypermultiplets
charged under the ith gauge group 3u(N); and the Jth
candidate symmetry U(1),. In the present example, where
we have hypermultiplets in bifundamental representations
of neighboring gauge groups of the quiver, g, ; = —N if
J=i-1, g;y=+N if J=i and ¢g;; =0 otherwise.
Observe that the sum over just the J index immediately
tells that the linear combination of U(1)’s > %_ g, ,F;

®This number is correctly reproduced in the AdS; gravity
duals [22] of “holographic” SCFTs with only 8u(N;) algebras on
their tensor branch (with variable N;) and a large number of such
gauge algebras. (Note that, because of the presence of D8-branes
in the Type IIA construction, these SCFTs are not engineered by
MS5-brane probes, but do admit a dual F-theory engineering [43].)
The number of ABJ anomaly-free global U(1)’s in field theory
matches the number of massless Abelian gauge bosons in the
supergravity reduction on AdS; [62].

su(N);

—O

U(l)ginldidate U(l)ian(lidate U(l);tirididate

su(N)it1

()
—/

FIG. 3. Depiction of the local quiver gauge theory associated
with the tensor branch of the 6D SCFT described by line (3.12).
We have also indicated the appearance of the candidate U(1)
global symmetries which act on bifundamental hypermultiplets.

suffers from an ABJ anomaly fori = 1, ..., k. Thus, in total,
k U(1)’s will be anomalous, and only one of the k + 1
candidate U(1)’s is free of ABJ anomalies.

So far, we have left all of the U(1) charges generic,
denoted as ¢;. For fundamentals of SU(N > 3), these
charges ¢; are readily determined: any fundamental of
SU(N) carries charge 1 under its associated candidate
U(1). More generally, however, we may determine the
charges of all hypermultiplets under the ABJ anomaly-free
U(1)’s using Lie algebra branching rules. Namely, we may
decompose the maximal flavor symmetry associated with a
given node of the quiver into a gauged part and a global part,
the latter of which may involve U(1) factors. The branching
rules for this decomposition allow us determine the U(1)
charges for each component, up to overall normalization.

This overall normalization cannot be fixed by ABJ
anomaly cancellation, but it can be determined from a
top-down perspective: in the string theory construction of
A-type progenitor theories, bifundamentals are associated
with strings between neighboring stacks of D6-branes,
which carry charge 1 under the U(1) global symmetry of
the theory (as we will see in more detail in the following
section). In a more general theory, one may either appeal to
a similar string construction to normalize charges, or
alternatively, one can track the U(1) charges from the
Higgsing of a progenitor theory.

Thus, we have two methods for determining the U(1)
charges of hypermultiplets in a quiver, which were also
stated below (3.8). We reproduce them here for the ease of
the reader:

(i) Candidate U(1)’s (method 1): Simply write down all
candidate U(1) symmetries as well as all possible
charge assignments for matter fields. The only
surviving charge assignments and U(1) charges
are those which are free of ABJ anomalies. The
overall normalization of charge assignments can be
fixed by appealing to Higgsing from a another fixed
point and/or by using the associated string con-
struction for U(1) charge assignments. See the
analysis of the theory in (4.9) below for an example.
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(ii) Commutant symmetries (method 2): Start with a
single node of a quiverlike gauge theory and weakly
gauge the flavor symmetries of this theory. The
commutant provides a set of candidate flavor sym-
metries, some of which are U(1) symmetries. We
must again ensure that ABJ anomalies cancel to have
a genuine flavor symmetry. See the analysis of the
theory in (4.33) below for an example.

In some cases, the first of these methods is easier to
implement, while in other cases the second method is
preferable. In what follows, we will see instances of each,
and we will demonstrate the equivalence of these two
methods in an illustrative example in the theory of line (4.24).

IV. EXAMPLES

In the previous section, we provided a general procedure
for determining the U(1) global symmetries of a 6D SCFT.
This amounts to listing all U(1)’s which can act on our
“matter fields” (including E-string theories), including the
associated U(1) charges, as dictated by the branching of the
flavor symmetry after gauging a subalgebra. After this, we
can determine which U(1)’s are compatible with the con-
straints of ABJ anomaly cancelation. Our plan in this section
will be to explain how these rules work in practice by
presenting some illustrative examples. In addition to deter-
mining the global U(1) symmetries, we also work out the
associated anomaly polynomials for global symmetries in
these theories. These examples are not meant to be exhaus-
tive, but rather to exhibit the different possible phenomena
which can occur. As a point of terminology, we shall often
refer to the candidate U(1) associated with a bifundamental
between two gauge groups as a “baryonic U(1).”

In what follows, we shall make use of some earlier
results on the structure of global symmetries obtained in
Refs. [5,37]. In the context of heterotic Eg small instanton
probes of an ADE singularity, there is a tight correspon-
dence between Higgs branch deformations and discrete
group homomorphisms Hom(T zpg, Eg). Given a homo-
morphism p € Hom(I'zpg, Eg), the commutant of the
image [Im(p), Eg| determines a flavor symmetry.

In the context of M5-brane probes of ADE singularities,
there is a close correspondence between certain Higgs
branch deformations of the field theory and nilpotent orbits
of the flavor symmetry algebra. We collect some of the
necessary information about the resulting global sym-
metries in Appendix B, to which we refer the interested
reader for additional details.

The rest of this section is organized as follows. We begin
by analyzing the progenitor theories with an A-type flavor
symmetry. Indeed, we have already argued using M-theory
and heterotic M-theory realizations of these theories that
they must possess a U(1) global symmetry. Here, we
directly establish this using our proposal for reading off
U(1) symmetries via the tensor branch description. The
defining feature of these examples is the appearance of

31 (N) gauge algebras with complex representations. We
then turn to more elaborate examples with 8u(N) gauge
algebras, following this with the special case of theories
with primarily 81 (2) gauge algebras. With this in place, we
next analyze theories which do not have hypermultiplets in
a complex representation of 8u(N), as will occur in
theories with 6D conformal matter and in the D- and
E-type progenitor theories. Finally, we also consider
theories involving frozen phases of F-theory featuring
adjacent SO-SU gauge groups.

A. A-type progenitor theories
We now turn to the A-type progenitor theories. Recall
that the tensor branch description for this class of theories is
of one of two types,

3u(N) 8u(N)  3u(N)

SUN)]_ 2 2 .. 2 [SUN).,  (4.1)
3u(N)su(N)  3u(N)
Bl 1 2 ..2 [SUN). (4.2)

k

In M-theory terms, the theories of (4.1) describe the partial
tensor branch of M5-branes probing a C?/Z,, singularity
and the theories of (4.2) describe the partial tensor branch
of M5-branes probing a heterotic Eg nine-brane wrapping
the singularity C?/Z,. In this subsection, we shall assume
N > 3 since there are some additional subtleties which arise
in the special case N = 2.

A pleasant feature of the M-theory realization of these
SCFTs is that the U(1) symmetry is directly visible as an
isometry of the geometry probed by the M5-branes. Here,
we would like to see how this comes about by directly
analyzing the partial tensor branch of the theory.

Since the analysis is somewhat simpler in the case of
MS5-branes probing an A-type singularity, we start with the
theories of line (4.1) and then turn to the theories of line
(4.2). As a warm-up, consider first the theory of three
M5-branes probing a C?/Z singularity, with N > 3,

31(N), 8u(N),
[SUN),] 2 2 [SUN)g]. N=3. (43)
This theory has three candidate U(1) global symmetries: one
associated with the N; hypermultiplets charged under
31 (N),, one associated with the Nz hypermultiplets charged
under 81(N),, and one baryonic U(1) associated with the
bifundamental hypermultiplet (N, N) of 8u(N), x 8u(N),.
We denote these three U(1)’s as U(1),, U(1)g, and U(1),
respectively. We then assign the bifundamental hypermul-
tiplets (N, N) of SU(N), — 8u(N),,8u(N), — 3u(N),,and
8u(N), — SU(N)y charges ¢;, qg, and g under their
respective U(1) symmetries. As we have already mentioned
in our discussion of the theory in line (3.12), we can, without
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TABLE L. Group theory factors for cubic Casimirs of SU(N)
with N > 3. Here, “fund” refers to the fundamental representation,
“adj” to the adjoint representation, S to the two-index symmetric
representation, and A2 and A3 to the two-index antisymmetric and
three-index antisymmetric representations. The parameter ¢, is
defined by Tr,F? := ¢, Trg,qF>. The value of c; in a complex

conjugate representation p is related as ¢, = —c;.

Represe- Funda-

ntation  mental Adjoint = S? A? A3

¢, 1 0 N+4 N-4 LN2-9N+18)

loss of generality, set g; = ggr = gz = 1. Thus, the total
ABJ anomaly involving gauge symmetries can be written as

N
IRes = & (“Fu), Te(Foyn,) + Fu, Tr(Fy )

= Fy), Tr(Fi ) + Fu) Tt(Fiyp,)).  (4.4)

where TrF? := Try,qF>, in accordance with Table I. We see
that two linear combinations of U(1)’s have ABJ anomalies,
one for each gauge algebra 8u(N), and 8u(N),,
u(N),:
3u(N),:

— Fuay, + Fua,
— Fyq), T Fuqy,: (4.5)
Thus, there is one surviving U(1), whose generator can be
written as
Tsurvive &ty +1tp + tg. (46)
The matter content of the theory, which transforms under
SU(N),; x8u(N), x8u(N),xSU(N),xU(1), is given by
(N,N,1,1); @ (1,N,N,1); & (1,L1,N.N),. (4.7
More generally, for a theory of k + 1 M5-branes probing

a C?/Z singularity, the tensor branch of this theory is
given by

su(N),  8u(N),

[SUN),] 2 2 [SU(N)g], N =3, (4.8)
and the global symmetry is SU(N), x SU(N)z x U(1).
Here, each bifundamental (N, N) has charge 1. The global
symmetry is as expected from the M-theory construction.

Let us turn to the other class of A-type progenitor
theories, which involve k M5-branes probing an Eg wall
and a C?/Z,, singularity. Again, we shall assume N > 3.
These theories take the form

su(l)su(2)  su(N),  su(N),
[Eg]l 2 2 -~~[ 21] 2 [SU(N)]. (4.9)
Ny=

In terms of the 6D SCFT/group theory correspondence
reviewed in Appendix B, these are associated with the
trivial homomorphism from Zy into Eg.

Let us consider candidate U(1) symmetries as associated
with the bifundamentals between the different 3u factors.
To aid in this analysis, we split up our indexing of the gauge
algebras into those which are on the “ramp” of gauge
algebra factors with increasing rank and those which are on
the “plateau” of gauge algebra factors which all have the
same rank.

Starting at the very left of the ramp, we consider the
bifundamentals attached to the 8u(2) gauge algebra.
Observe that since we have fixed the location of two of
the eight half hypermultiplets (in the collision with the
3u(1) factor), the only global symmetry available is 81(3),
all of which is gauged. We conclude that none of these
hypermultiplets can actually be charged under a candi-
date U(1).

Turning next to the gauge algebras 81(i) of the ramp with
i > 2, we see that the bifundamental (i, i+ 1) of 8u(i) —
8u(i + 1) has an associated baryonic U(1) global symmetry.
Similarly, the bifundamental (N — 1, N) between 81 (N — 1)
and 8u(N);, as well as the bifundamentals (N;,N;,;) of
3u(N); and 8u(N);,, all have candidate U(1)’s. Hence,
there are (N — 3) candidate U(1)’s from the ramp, and k — 1
candidate U(1)’s from the plateau, for a total of k + N — 4
U(1)’s associated with bifundamentals between gauge
algebras. In addition, there is a U(1),, associated with the
“middle” antifundamental N of $u(N), and another U(1),
associated with the U(N)g ~ SU(N)g x U(1)g flavor sym-
metry acting on the N fundamentals of 8u(N),. This gives a
total of N + k — 2 candidate U(1)’s.

By a similar analysis as Eq. (4.38), we know that the
3u(2) — 3u(3) bifundamental is not charged under a
baryonic U(1) symmetry. Therefore, as we will show
below, there is only one U(1) surviving in the above
theory. More surprisingly, the ramp is not charged under the
U(1) symmetry at all: only the plateau is charged under this
U(1). We will demonstrate this using the method of
candidate U(1)’s (method 1).

Let us now turn to the total ABJ anomaly of this theory
(see Appendix A). We have already mentioned our index-
ing convention for the gauge algebras, as implicit in being
on the ramp or the plateau. To label the U(1)’s, we shall
reference them as U(1);;,; to indicate that it acts on the
bifundamental between 31 (i) and 81(i + 1) on the ramp,
and similarly U(1)y, v that it acts on the bifundamental
between 81(N;) and 8u(N,. ;). We indicate the two
additional U(1)’s by U(1),, and U(1)g. The total ABJ
anomaly of this theory is then conveniently organized
according to contributions from gauge groups on the ramp
and those on the plateau (see also Appendix A),

Lypy = Iramp + Iplateau' (410)
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Here, there are contributions from gauge groups on the
ramp, as indicated by Iy, as well as contributions from
gauge groups on the plateau, as indicated by /;jyicq,- For the
contributions on the ramp, the candidate U(1)’s which
appear all act on bifundamentals between gauge algebras.
For the contributions on the plateau, the candidate U(1)’s
include those which act on bifundamentals between gauge
algebras, as well as U(1),, and U(1),. Reading from left to
right across the quiver, the contributions to each term are

1
Leamp ::6(4F}K1%41Y(F§u@)ﬁ + (4.11)

1 N-1

+62;[_(] - 1)FU(I _ Tr(Fgu( ))

G+ D F g, T )L (4.12)

1 3

Iplateau = 6(_FU( m Tr(Fg,u( N), )

_( - I)FU IN-1N, Tr(Fgu(N)l)

+ NFU(I)N,,NZTr(Fgu(N)I)) + (413)
1 k—1

3

+8§; “NFyq, T Fauw),)

+ NFU(1>N[.NI-+| TI'(F;H(N>I)] + (414)
1 3

+ 6< NFU( )N 1Nk Tr(Féu(N)k)

+ NFy), Te(Ff ) (4.15)

Of course, the contribution from the plateau is absent when
k = 0. As before, each gauge field strength in this expres-
sion removes one linear combination of U(1)’s from the
theory. Thus, the U(1) counting rules gives exactly one
ABJ anomaly-free U(1) symmetry.

We now determine the charge of each hypermultiplet
under this U(1). To begin, as noted above, the bifunda-
mental of 8u(2) and 81(3) cannot carry any U(1) charge,
since 81(3) @ u(1) is not a subalgebra of g,. To satisfy
ABJ anomaly constraints, this means that the bifundamen-
tal of 8u(3) and $u(4) must carry charge g3, = 0. This
constraint propagates to the rest of the ramp via the ABJ
anomaly constraint equations,

Fauiz)i4934=0

Fauy: —(=1)qjo1j+(+1)g;j41=0 4<j<N-1)
Fayw),: =(N=1)gy_1n—qu+Ngy, N, =0

Fauw),? =Nan,_ v, +Nay,y,, =0 (2<j<k=1)
Faywik: —Ngn, N, +Ngr=0. (4.16)

Solving these equations give

=0 3<i<N-1),
(1<j<k-1).

QR - +17
(4.17)

qii+1 qu =N,

qN;N;,, = 1

We see that, indeed, the entire ramp is uncharged under the
U(1) global symmetry, and only the matter charged under
the plateau of 3u(N) gauge algebras carries U(1) charge.

The above analysis depends on the assumption that
k > 1. For k = 1, the theory has a ramp, but no plateau. Let
us take the example of N =5 and compare the k =2
theory with the k = 1 theory,

3u(l) 8u(2) 3u(3) su(4) su(5), su(s5),

EJ1 2 2 2 2 2 2 [SU®5)
[Ny=1]
3u(l) 8u(2) 3u(3) 3u(4) su(s)
[Egl 27 2 2 2 2 [SU(6). (4.18)

The theory with k=2 falls in the category that we
have already analyzed above, for which we have a
single U(1). The second theory with k = 1, however,
experiences an accidental flavor symmetry enhancement,
SU(5) x U(1) - SU(6), leaving us without an Abelian
flavor symmetry. Such symmetry enhancement occurs
frequently when dealing with “short SCFT quivers,” which
are characterized by the absence of a plateau of gauge
algebras [37,39,44].

B. Quivers with 31 (N) matter with N >3

In this subsection, we present a broader class of
examples in which the gauge groups on the tensor branch
are again 3u(N) gauge algebras, with hypermultiplets in
complex representations, which we refer to as “8u(N)
matter.” We defer the discussion of the 31(2) case to a later
subsection.

To begin, we consider the theory of a single —1 tensor
multiplet paired with an 8u(N) gauge algebra,

3u(N)
I [SUN +8))

N =1

N>5. (4.19)

The N = 5 version of this theory was considered in detail
from both the field theory and F-theory perspectives in
[38]. The theory has N + 8 fundamentals and one anti-
symmetric hypermultiplet charged under 8u(N). The
former transforms under an SU(N + 8) flavor symmetry.
Since both the fundamental and the antisymmetric repre-
sentations are complex for N > 5, each of them gives a
candidate U(1) global symmetry. We denote these U(1)’s
as U(1)y and U(1),, respectively.

Let us use the candidate U(1) method (method 1) to
determine the U(1) charges. The fundamentals of 8u(N)
carry charge g under U(1), whereas the antisymmetric
carries charge g, under U(1),.. We take both charges to
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be +1, and determine, up to normalization, the linear
combinations free of ABJ anomalies. The overall normali-
zation can also be fixed by the lattice of charges obtained
from a progenitor theory. The theory has an ABJ anomaly
of the form

N 6((N+8)FU Trfund(F )

=+ 1FU(1)A2TrA2 (Fgu(N))) (420)

Using Table I, we note that we may write Try2F> (V)=

(N=4)TrpnaF3, (- Thus, we see that the linear combination
suffers from an ABJ anomaly, and it is not a good global
symmetry of the theory. One U(1) remains a valid symmetry
of the theory, and it is generated by the linear combination

(N+8)t.  (422)

Tsurvive

The full global symmetry of the theory is therefore

SU(N+8)xU(1), and the matter content under
3u(N) x SU(N + 8) x U(1) is given by
(NNFB)y @ (NN-1/21) vy (423)

Note that this analysis applies only for N > 5. For
N =4, the antisymmetric is real rather than complex,
and the flavor symmetry enhances to SU(12) x Sp(1).
For N = 3, the antisymmetric is simply an antifundamen-
tal, so we get another hypermultiplet in the fundamental
and the flavor symmetry enhances to SU(12)=SU(N +9).
For N =2, the antisymmetric representation is trivial,
whereas the fundamental representation is pseudoreal,
and the flavor symmetry is given by SO(20).

1. Comparison of U(1) identification methods

Up to this point, we have presented some examples
which illustrate the merits of the two methods for deter-
mining two U(1)’s. We now present an illustrative example
which shows how the two arrive at the same answer. With
this in mind, consider the theory

su(3) 3u(4), su(4),

. (4.24)
[Ny=2] [Ny=1] [N;=4]

Our plan will be to first analyze candidate U(1) symmetries
by listing all possible global symmetries which could act on
matter fields (method 1). We will then compare this to the
U(1) symmetries obtained by treating each quiver node in
isolation and computing the branching rules associated
with weakly gauging some of the flavor symmetries of
each node.

We begin with method 1, listing all possible global
symmetries which could act on matter fields. By inspection,
thereisa U(2), ~SU(2), xU(1), flavor symmetry rotating
the two fundamentals of 3u(3), a U(4),~SU(4)xxU(1)g
rotating the four fundamentals of 3u(4),, a U(l)y
acting on the fundamental of 3u(4),, and two baryonic
U(1)’s, which we denote U(1)p; and U(1)py acting on
the bifundamentals.

The theory has ABJ anomalies of the form

Iypy = 6( 2Fy) Tr(F3 ) Fyqy, Tr(Fgu@))
= 3Fy),, Tr(F, ) = Fu, Tr(Fl, ) )
+4F ), TO(FL, 0 ) = 4F o, Tr(Fa,0,)
+4F ), Tr(F3, )) (4.25)

Let us denote a basis of the candidate U(1) space as
(Fuy, Fus, Fua)y: Fuy,e Fua,)- The three gauge
groups each have an ABJ anomaly, which are associated
with the following linear combinations of U(1)’s

3u(3): (=2.4,0,0,0)
su(4),: (0,-3,-1,4,0)

3u(4),: (0,0,0,—4,4). (4.26)

The subspace of ABJ anomaly-free U(1)’s is the two-
dimensional null space of these three vectors’ and is
spanned by

T, (2.1,1,1,1)

T, x(2,1,-3,0,0). (4.27)

Next, we analyze the Abelian symmetries of the same
theory of line (4.24) using branching rules of symmetries
(method 2). Each —2 tensor carrying an 3u(4) gauge
algebra has an associated flavor symmetry SU(8), under
which eight fundamentals of 31t(4) transform. For 81(4),,
this SU(8) is broken according to

SU(8) D SU(4) x U(1) x SU(4)
- (SUB)x U(1))x U(1) x SU(4)
8- (41)_,+(1,4),
= (1,3) -+ G Dy
Here, the SU(3) factor is identified with the 8u(3) gauge

symmetry, while the SU(4) factor is identified with the
3u(4), gauge symmetry.

+(L1) ). (4.28)

"That is to say, we consider the space of vectors which are
orthogonal to these three vectors inside our five-dimensional
space.
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Consider next the flavor symmetries associated with the
3u(4), gauge algebra. In isolation from the other parts
of the quiver, there is again an SU(8) flavor symmetry.
Weakly gauging appropriate subalgebras leads to the
branching rules,

SU(8) D SU(4) x U(1) x SU(4)

8- (4.1),+(1.4)_,. (4.29)
Note that the first SU(4) here is identified with the 3u(4),
gauge symmetry, so a state of charge +1 under the U(1) of
line (4.29) will correspond to a state of charge (0, 1) under
the U(1) x U(1) symmetries appearing in line (4.28).

Finally, there are the global symmetries associated with
the 8u(3) gauge algebra on a —2 curve. In isolation, this
theory has an SU(6) global symmetry. We weakly gauge an
3u(4), subalgebra to reach the theory of line (4.24). The
branching rules are

SU(6) D SU(2) x U(1) x SU(4)

6 (L4)_, +(2.1),. (4.30)
The SU(4) factor here is identified with the 3u(4),
gauge symmetry, so the U(1) charge —1 here is
identified with the U(1) charge vector (0,—1) in line

|

395 35 181 103

(4.28). Thus, the full matter content under the
(SU(2), 8u(3), 3u(4),, 3u(4)g, SU(4))(U(1),,.U(1)b) sym-
metry is given by

(2.3.1.1.1) 5 & (1.3.4.1.1); , ® (1.L1.4,1.1) 3

®(1.1.4.4.1), & (L1.1.4.9) .
(4.31)

Note that we have added an additional minus sign relative
to the charges in the branchings (4.28)—(4.30) whenever
taking the complex conjugate.

Let us compare this result to that obtained using method
1 above. There, each of these five multiplets carries charge
1 under a different candidate U(1) and charge O under the
other four candidate U(1)’s. However, projecting the
charge vectors onto the basis vectors in (4.27), which span
the ABJ anomaly-free subspace of candidate U(1)’s, we
find precisely the charges in (4.31), demonstrating agree-
ment between the two methods.

Having worked out the full matter content of the theory,
we may use the prescription of Appendix A to compute the
full anomaly polynomial of this theory, including the U(1)
field strengths F,, F;, corresponding to U(1),,U(1),,
respectively,

8= 1o c>(R) 4802( )i ( )+5760P1( ) —1440172( )
21 23 169 153
+CZ(R)<_E(TrF§U(2)) 16(T F2 ())_TF%Z_63FQFZ7_7F%>
5 (- o ) 2
128(TrF ()) 128(TrF )) +6(TrFSU(4)) 64(TrF ())(TrFSU(4))_gFaTrFSU(4)3
. (27, 21 27 . (17, 3 9 ,
+TeFy ) ( 5o+ 5 FaFo+ 5 F3 ) + TeFSy ) (5 P2+ FuFy + 5 F

1 1 3 3
+ pi(T) (3—2 (TrF3y ) + 5 (TrF3y ) + 5F5 + F,F,+ §F§>

119

+ TF4 + 106F3F;, + 189F2F; + 90F ,F; + —F4

C. Examples with 311(2) gauge symmetry

As we have already mentioned, the appearance of 811(2)
gauge algebras complicates the analysis because the flavor
symmetry of the associated SCFT is slightly smaller than
what might appear possible from a naive analysis of the
tensor branch description. To illustrate, consider the theory

3u(2) su(3)
22 [SU4). (4.33)
(Ny=1]

The hypermultiplet of 81(2) is pseudoreal, so it trans-
forms under SO(2) ~ U(1),. The four fundamentals of

(4.32)

|

8u(3) transform under U(4), ~SU(4) x U(1)g. One
might have also expected a baryonic U(1), under which
the bifundamental of 8u(2) and 8u(3) transforms.
However, we recall that eight half-hypermultiplets in
the fundamental representation of 8u(2) transform as a
spinor of Spin(7), rather than the naively expected vector
of SO(8). Since Spin(7) decomposes as Spin(7) D
SU(3) x U(1), it gives only a single U(1), rather than
the pair of U(1)’s which would have been expected
from the decomposition SO(8) D SU(3) x U(1)%. As a
result, the SO(2) ~ U(1), and the U(1), are condensed
into a single U(1), which in conjunction with U(1), gives
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two candidate U(1) flavor symmetries. However, the 311(3)
gauge symmetry introduces an ABJ anomaly, which
removes one linear combination of U(1)’s and ultimately
leaves a global symmetry of SU(4) x U(1).

The U(1) charges of the various matter multiplets can be
determined by the branching rule method. The 8 of Spin(7)
decomposes under SU(3) x U(1) according to

853,03 ,01:81,. (4.34)
The 6 of SU(6) decomposes under SU(4) x SU(2) x U(1)
according to
6 (4,1)_, @ (1,2),. (4.35)
Putting these together, we find that the full matter content
of the theory under 81(2) x 81(3) x SU(4) x U(1) is
(2,3,1), ® (2,1,1)_ @ (1,3,4),.  (4.36)
Note that with these charge assignments, the U(1) is indeed
free of any ABJ anomaly associated with the 81(3) gauge
algebra.

Given the full matter content of the theory, we may again

use the prescription of Appendix A to compute the full

anomaly polynomial of this theory, including the U(1) field
strength, which we denote by F,

143 3 109
ﬁcz(R)z ——c(R)p(T) + 5760

16
67 2
- mpz(T) + Cz(R) (—72F2 - gTI‘F%U@))

18:

(T)?

1 1 1
+ 2 TrFey ) + 5= (TrF oy ) =5 FTrFY,

8 48 2 “)
27 o s 729

9 1
+pi(T) (Z P+ 3—2TrF§U(4)> : (4.37)

More generally, by a similar analysis, the theory

3u(2) su(3) 3u(3)
2 2 ... 2
Ny=1][N;=1]  [N;=3]

(4.38)
will have a global symmetry of SU(3) x U(1)?, in agree-
ment with our general prescription for U(1) counting. The
U(1) charges of the hypermultiplets in the theory may
similarly be determined using the branching rules of SO(7)
and SU(6).

Let us next consider the theory of line (4.33), but with an
unpaired —2 tensor added to the left of the quiver,

3u(2) su(3)

22 2 [SU4). (4.39)

where on the unpaired tensor there is formally an 8u(1)
su(l
gauge algebra, 2( ), meaning that there is an hypermultiplet
in the fundamental of 3u(2) of the neighbor —2 curve. In
what follows, every time an unpaired tensor is coupled this
will be implied. Once again, there is a U(1), from coming
from the four fundamentals of 3u(3), which transform
under U(4) ~SU(4) x U(1)g. However, this is the only
U(1) that shows up: the unpaired —2 tensor effectively
reduces the flavor symmetry of the eight half-hypermul-
tiplets in the fundamental representation of 81(2) to G,
which decomposes as G, — SU(3): there is no U(1) factor
under which the half-hypermultiplets in the fundamental of
81(2) (or the bifundamental of 3u(2) x 81(3)) transform.
Thus, there is only a single candidate U(1), namely, U(1)g.
However, this U(1) is removed by the 31 (3) ABJ anomaly,
leaving only an SU(4) global symmetry remaining.
More generally, by a similar analysis, the theory

3u(2) 3u(3) 3u(3)
22 2 .2 (4.40)
(N=1]  [N;=3]

will have a global symmetry of SU(3) x U(1).

This theory also arises from Higgsing of the A-type
progenitor theory obtained from MS5-branes probing a
C?/Z5 singularity. In that case, we label the resulting
theory by nilpotent orbits of 811(3), and 81(3),. These are
associated with associated partitions y; = [3], pg = [1°],
which have commutants H; = @, Hr = SU(3). We thus
expect a global symmetry of SU(3) x U(1), which indeed
matches our field theory analysis.

As another example, consider the theory

3u(2) su(4)

. 4.41
[N;=6] ( )

There is a U(1); coming from the six fundamentals of
3u(4), which transform under U(6) ~ SU(6) x U(1)g.
However, this is the only U(1) that shows up: the flavor
symmetry SO(7) of the leftmost —2 tensor is gauged by
3u(4) ~80(6), but U(1) x SU(4) is not a subgroup of
SO(7). As a result, there is no U(1) factor under which
bifundamental of 81(2) x 81(4) transforms. Thus, there is
only a single candidate U(1), namely, U(1), and this U(1)
is removed by the 81(4) ABJ anomaly, leaving only an
SU(6) global symmetry remaining.
More generally, by a similar analysis, the theory

3u(2) su(4) 3u(4) 3u(4)
2 2 2 .. 2
[Ny=2] [Ny=4]

(4.42)
will have a global symmetry of SU(4) x SU(2) x U(1).
This theory corresponds to a Higgs branch flow obtained
from the A-type progenitor theory of MS5-branes probing
the singularity C?/Z,. Higgsing of the flavor symmetries
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on the left and right is characterized by nilpotent orbits of
3u(4), and 8u(4), associated with partitions y; = [27],
ug = [1%], which have commutants H; = SU(2), Hg =
SU(4). From our discussion in Appendix B, line (B10), we
expect a global symmetry of SU(4) x SU(2) x U(1),
which indeed matches our field theory analysis.

Next, consider the theory

3p(1) su(3

[50(14)]1< 2>[SU(4)]. (4.43)

This theory shows up as (part of) a quiver in Sec. 5.3 of
[63]. There is a U(1), coming from the four fundamentals
of 8u(3), which transform under U(4) ~ SU(4) x U(1).
There is also a U(1), associated with the bifundamental
of 8p(1) and 8u(3): the flavor symmetry SO(20) of
8p(1) associated with the —1 tensor decomposes into
SO(14) x SO(6), and this SO(6) further decomposes into
SU(3) x U(1)g. The SU(3) factor is gauged, but U(1),
remains. Similarly, the U(6) flavor symmetry of the six
fundamentals of 3u(3) decomposes into U(4) x U(2),
which further decompose as U(4) ~ SU(4) x U(1), and
U(2)~SU(2) x U(1). This SU(2)~Sp(1) is then
gauged. As a result, we have two candidate U(1)’s:
U(l)g and U(1l)g, but the ABJ anomaly associated
with 8u(3) eliminates one linear combination of them.
Therefore, in the final analysis, the flavor symmetry is
SO(14) x SU(4) x U(1).

D. Examples with only 81(2) gauge symmetries

Having discussed in great detail situations where we
have hypermultiplets in complex representations of 31 (N),
we now turn to some cases where the gauge algebra
consists solely of 81(2) on the tensor branch. These cases
are interesting because our methods predict that there are no
U(1) symmetries in such situations. Additionally, we can
|

23 1 11

3 CZ(R)2 ——(R)py(T) +

I. =
8 12

_ T)?
72071 )"~ 45

2
——p(T) + c2(R) <—2TrF§U(2)B

use our approach to also extract the non-Abelian sym-
metries from these cases.
As a first example, we begin with the theory

8u(2); 8u(2),
. (4.44)

[N=2] [N=2]
There is a bifundamental (2, 2,) of the two 81(2) algebras
and there are two additional fundamentals for each of these
algebras. The fact that the eight half-hypermultiplets in the
fundamental representation of a given 81(2) gauge algebra
transform as a spinor of SO(7) is crucial for determining
the global symmetry of this theory: namely, SO(7) decom-
poses as SO(7) — SU(2)3, and the spinor obeys the
branching rule

8- (2,2,1) & (2,1,2). (4.45)

In the theory at hand, one of the SU(2)’s is gauged by the
other —2 tensor. As a result, the full matter content of the
theory is given by

1
(2’1’22’ 1L’ZB’ lR) @ 5(217 12’2L72’Bv lR)

| =

@%(llvzblLvZszR)' (4.46)
Here, the subscripts 1 and 2 represent the gauge algebras
31(2), and 811(2),, respectively, while the subscripts L, B,
R represent SU(2) global symmetries associated with the
two fundamentals of 311(2),, the bifundamental, and the
two fundamentals of 3u(2),, respectively. We see that
the theory has an SU(2)? global symmetry.

According to the matter content and its charge under the
global symmetry factors, we are able to compute the full
anomaly polynomial including the global symmetry field
strengths, denoted as Fgy(2), . Fsy(2),> and Fsy(2),

1 2 1 2
- ETrFSU(Z)L - 2TrFSU(2)R>

9 1 1 1 1 1
+ 35 (TF5y),)* + 35 (Tt ), )* + 35 (T, )% + i (T) <E TrFSu), + 35 W su), + 1—6TrF§U(2)B>

3 2 2 3 2 2 1 2 2
+ 16TrF v2), sy, + 16TrF v, TF500), +48 TrFgy0), TtF 5y, (4.47)
[
Next, let us consider the theory of (4.44), but with an 7-(2,2)®(1,3). (4.49)

unpaired —2 tensor added to the left-hand side. Now, we have

su(2), su(2),
2 2 . (4.48)
[Ny=1] [Ns=2]

In this case, the global symmetry associated with the
middle -2 tensor is G,, which decomposes as
G, — SU(2)%. The 7 of G, obeys the branching rule

The first SU(2) factor here is gauged by the 3u(2), gauge
algebra. As a result, the full matter content of the theory is
given by

(217 127 le lR)

1 1 1
2 (21,2,.25. 1) @ 3 (21,1,.35. 1) @ 3

1
@5(1]12272372R)' (4'50)
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We see that relative to the previous example, the unpaired
—2 tensor has effectively combined the SU(2), symmetry
and the SU(2)p symmetry, resulting in a total global
symmetry of SU(2)?. This is quite similar to what hap-
pened in the example in (4.39) above: the addition of the
unpaired —2 tensor in that case combined two U(1) global
symmetries into one.

What happens if we add an unpaired tensor to the other
side of the quiver as well? We then have

3u(2); su(2),
2 2 2 2.

4.51
[Ny=1] [N;=1] ( )

Now, using the G, branching rule for both gauge algebras,
we find a total matter content of

1 1
(21522723) @ 5(21’ 12733) @ 5(21’ 12’ lB)

1 1
@ 5(11722,33) @ 5(11722, 1p).

N =

(4.52)

Now, the unpaired —2 tensor on the right-hand side has

combined the SU(2), symmetry and the SU(2), sym-

metry. The theory has only an SU(2) global symmetry.
More generally, a theory of the form

3u(2);
2 (4.53)

3u(2), su(2),
2 ..
[Ny=2]

[Ny=2]

has an SU(2)? global symmetry provided k > 2 (for k = 1
it has an SO(7) global symmetry). The reason why we find
only SU(2)? rather than SU(2)¥3 is due to the branching
rule (4.45). Concentrating on eight half-hypermultiplets
charged under the ith gauge symmetry factor 81(2),, we
find a decomposition

008 =2 (32200 @ (225, L20). (454)
Crucially, the bifundamental (2;_;,2;) and the bifunda-
mental (2;,2;,,) transform under the same SU(2) bar-
yonic symmetry. This propagates down the entire quiver, so
there is only one baryonic SU(2), in addition to the
SU(2);, and SU(2), symmetries, rather than the k + 1
baryonic symmetries we would have found if the flavor
symmetry of the eight half-hypermultiplets of each 3u(2);
were SO(8) rather than Spin(7). Note that for k = 2, this
theory actually shows up in the 6D SCFT-group theory
correspondence discussed in Appendix B as the E; nilpo-
tent orbit of Bala-Carter label A, 4+ 2A; (see Appendix A.2
of [37]), and its global symmetry is indeed SU(2).
By a similar analysis, a theory of the form

su(2), su(2),  8u(2);
2 2 2 ... 2

.. 4.55
[Ny=1] [Ny=1] ( )

has an SU(2)? global symmetry provided k > 2 (for k = 1
it has a G, global symmetry). For k = 2, 3, this theory
shows up in the 6D SCFT-group theory correspondence
with the Eg nilpotent orbits of Bala-Carter labels Ds(a;) +
A and A4 + A,, respectively (see Appendix A.3 of [37]).
For k = 4, the theory shows up in the correspondence with
Hom(SL(2,5), Eg) (see Appendix B.5 of [64]). In all three
of these cases, its global symmetry is indeed SU(2).
Additionally,

$u(2); 8u(2),
2 2 2
(Ny=1]

$1(2),
2 2

4.56
[Ny=2] ( )

has an SU(2) global symmetry provided k > 2 (for k = 1 it
has an SU(3) global symmetry). For k = 2, this theory
shows up in the 6D SCFT-group theory correspondence
with the Ey nilpotent orbit of Bala-Carter label A, +A,+A;
(see Appendix A.3 of [37]), and its global symmetry is
indeed SU(2).

We can also consider D-type quivers, such as the theory

61’.(22)I 3u(2), 3u(2),
2 2 2 .02 .
(N;=2]

(4.57)
Now, since the tensor carrying $11(2), meets two unpaired
—2 tensors, its flavor symmetry is reduced to SU(3), of
which SU(2) is gauged by 38u(2),. However, since
31(2) @ 3u(2) is not a subalgebra of 81(3), there is no
additional SU(2), global symmetry acting on the hyper-
multiplets charged under 81t(2),. Thus, the full global
symmetry of the theory is simply SU(2)g, coming from the
two fundamental hypermultiplets of 31(2),, in contrast
with the SU(2)? we saw in (4.55)." For k =2, the full
matter content is given by

(21522’ lR) 2] 2(21’ 129 IR) @ (1152212R)' (458)
For k = 3, it is given by
(21’227 13’ IR) @ 2(21’ 127 137 IR) 7] (117227237 1R)
@ (1171272372R)' (459)

*One might have thought that the symmetry would
be SU(2)p x U(l)y rather than simply SU(2)g, since
SU(2) x U(1) c SU(3). However, the branching rule 3 — 2, &
1., for SU(3) - SU(2) x U(1) associated with the flavor
symmetry of 8u(2), is incompatible with the rule 8 > (2,1), ®
(2.1)_,@(1.2),®(1.2)_, of Spin(7)—SU(2)xSU(2)xU(1)
for the flavor symmetry of 811(2),, indicating that a U(1) global
symmetry cannot exist.
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By similar reasoning,

éu(22)1 su(2),  3u(2),
22 2 ...22

4.60
Ny=1] (4.60)

has no global symmetry at all. For k = 2, the full matter
content is given by

(21,2,) ®2(2;,1,) & 2(1,2,). (4.61)
E. An example with 3p(N) matter
Finally, let us consider the theory
8p(1); 8u(2),
12 . (4.62)
[N,=8] [N,=2]

The theory has an SO(16) x SU(2) x SU(2) global sym-
metry, and the matter content is

1 1 1
5(21, 1,,16,1,2) @ 5(21,22, 1,2,1)® 5(11,22, 1,2,2).
(4.63)
More generally, a theory of the form
sp(1) su(2); 8u(2),  su(2),
1 2 2 .. (4.64)
[N=8] [N=2]

has an SO(16) x SU(2)* global symmetry. This theory
shows up in the 6D SCFT-group theory correspondence via
the homomorphism Z, — Eg with Dynkin label 2/, which
has a commutant of SO(16).

Finally, we can consider a similar theory of the form

3p(N) 8u(2N+8), 8u(2N+8),  8u(2N+8),
1 2

2 ... 2 [SUQ2N+8). (4.65)

[Ny=8]

Theories of this form are discussed at length in Sec. 5.4 of
[63]. There is a U(1)g on the right coming from the 2N + 8
fundamentals of 8u(2N + 8),, which transform under
U(2N+8)~SU(2N+8)x U(1)g. There are k — 1 baryonic
U(1)’s associated with the bifundamentals of 81 (2N + 8);
and 8u(2N +8),,,, and there is another U(1) associated
with the eight fundamentals of 81(2N + 8),, which trans-
form under U(8) ~ SU(8) x U(1). Finally, there is a bar-
yonic U(1) associated with the bifundamental of 8p(N) and
8u(N + 8),: the flavor symmetry SO(4N + 16) of the —1
tensor decomposes into U (2N + 8), of which $u(2N + 8) is
gauged, leaving behind a U(1) flavor symmetry. Thus, in
total, there are k + 2 candidate U(1)’s, k linear combinations
of which are eliminated by ABJ anomalies of 3u(2N + 8),,

i=1,...,k. This leaves two U(1)’s, for a final global
symmetry of SU(8) x SU(2N + 8) x U(1)>.

A separate analysis is needed for the case N = 0. Now, the
—1 tensor is unpaired, and there is no bifundamental of
8p(N) and 8u(2N + 8),, hence no baryonic U(1) associated
with this bifundamental. However, as emphasized in [63],
there are two choices for the embedding of the gauge
symmetry 3u(8), into the Eg symmetry of the —1
tensor, which have commutants SU(8) x SU(2) and
SU(8) x U(1), respectively (in field theory terms, these
are distinguished by a choice of discrete 6 angle). As a
result, the flavor symmetry of these theories is given by
SU(8)?xSU(2)xU(1) and SU(8)? x U(1)?, respectively.

F. Examples with no 8u(N) matter with N >3

Let us now consider examples of U(1) global sym-
metries that do not involve hypermultiplets of 3u(N) gauge
symmetries with N > 3. These examples are simpler in that
they do not involve any ABJ anomalies. We first consider
theories with classical SO and Sp gauge algebras, and then
turn to examples with more general exceptional gauge
algebras.

As a first example without 3u(N) matter, consider an
alternating 80-3p quiver of the form

80(n;) 8p(n) $o(ng)
4 1 4
[Ny=2n+8—(n;+ng)/2|

(4.66)
The 8p(n) gauge algebra here requires 2n+8—(n; +ng)/2
fundamental hypermultiplets to cancel gauge anomalies. The
fundamental representation of 8p(n) is pseudoreal, so we
should really think of 4n + 16 — n; — np half-hypermultip-
lets transforming under an 8o(4n + 16 — n; — ng) global
symmetry. This does not generically produce a U(1) global
symmetry, but for 4n+4 16 —n; —np =2, we get an
80(2) ~u(l) global symmetry algebra. Thus, a single
fundamental hypermultiplet of 8p(n) is associated with a
U(1) global symmetry at the superconformal fixed point.
Next, consider a quiver of the form

€6
[N y=6—n]

(4.67)

Here, n represents a curve of self-intersection —n, with

1 < n <6. This theory has 6 — n fundamental hypermul-

tiplets charged under the e gauge algebra, which transform

under a U(n) ~SU(n) x U(1) global symmetry.
Similarly, for

N (4.68)
[Ny=(8-n)/2]

the theory has 8 — n half-hypermultiplets transforming in
the fundamental representation of the e; gauge algebra,
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which also transform under a SO(8 — n) global symmetry.
For n = 6, we get an SO(2) ~ U(1) global symmetry.

Another class of global U(1)’s arise when the Eg global
symmetry of a curve of self-intersection —1 is partially
gauged, and a U(1) factor is left over. Given a 6D SCFT
quiver of the form

9L . 9r
..mln...,

(4.69)
we must have g; X gg C eg, which is interpreted as weakly
gauging part of the Eg global symmetry. The commutant
subgroup of Eg left ungauged is a global symmetry of the
theory at the conformal fixed point.

One example of a U(1) global symmetry of this type
occurs when g; = ¢4, gz = 81(2),

(4.70)

This follows from eq x 811(2) x 1t(1) C eg X 81(3) C eg.
One could also have a quiver of the form

(4.71)

Here, 30(8) x 81(4) x u(1) ~80(8) x 80(6) x 80(2) C e,
so we indeed get a U(1) global symmetry associated with
this gauging.

Finally, we note that one can construct theories with
multiple U(1)’s by combining the above examples into a
single theory. For instance, one could consider a theory of
the form

(4.72)

This theory has three U(1)’s: one associated with the e
gauge algebra on the —5 curve [as in line (4.67)], one
associated with the e; gauge algebra on the —5 curve [as in
line (4.68)], and one associated with the U(1) left ungauged
on the leftmost —1 curve [as in line (4.70)].

G. Frozen SCFT examples

Let us now turn to some examples which arise from the
frozen phase of F-theory [41,42,61,65]. Recall that these
SCFTs still arise from an elliptically fibered Calabi-Yau
threefold, but in which the physical interpretation of
singular elliptic fibers is different from that which is
assigned in the geometric phase of F-theory.

In frozen SCFTs, we may see bifundamentals
of 30 and 3u gauge algebras, which introduce candidate
U(1) global symmetries. We illustrate below with a pair of
examples.

To begin, consider the theory with 30(20) @ 3u(10)
gauge algebra and Dirac pairing,

-4 2
Q= < ) (4.73)
2 =2
The matter content of this theory is
2(20,1) & (20,10). (4.74)

The two fundamentals of 80(20) transform under an Sp(2)
global symmetry. There is also a baryonic U(1) global
symmetry associated with the bifundamental of 30(20) and
81(10). This follows from the fact that the full Sp(12)
symmetry associated with 12 fundamentals of 30(20)
decomposes as Sp(10) x Sp(2), the former which further
branches to U(10) ~SU(10) x U(1). This SU(10) is
gauged, leaving behind a U(1) baryonic symmetry.
However, there is also an ABJ anomaly associated with
the 8u(10) gauge symmetry,

10

Iap; D _?FU(I)TI(F3

gu<10>). (4.75)
As aresult, the U(1) is removed from the spectrum, leaving
just an Sp(2) global symmetry.

Next, we consider the theory with 80(20) @ 8u(12)
gauge algebra and Dirac pairing,

-4 2
Q= . (4.76)
2 2
The matter content of this theory is
4(1,12) @ (20,12). (4.77)

Here, the four fundamentals of 8u(12) transform under a
U(4)p ~SU(4)p x U(1)g global symmetry. There is also a
baryonic U(1) global symmetry associated with the bifun-
damental of 80(20) and 3u(12), as above. However, there
is also an ABJ anomaly associated with the 81(12) gauge
symmetry,

1
IABJE(_ZOFU(1>BTr(F§u(12)) +4FU(1)RTr(FgII(12)))'
(4.78)
As aresult, the linear combination —=20F (), +4F (), 18

removed from the spectrum, leaving an SU(4) x U(1)
global symmetry.

V. U(1)’S AND RG FLOWS

In previous sections, we presented a general prescription
for how to read off the U(1) global symmetries of a 6D
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SCFT from data associated with its tensor branch descrip-
tion. We have, in particular, explained how to read off these
symmetries for the A-type progenitor theories and implic-
itly argued that no other progenitor theories possess such
symmetries. Additionally, we have directly extracted the
U(1) global symmetries and their associated anomalies in a
number of examples.

As we have already mentioned, one reason to focus on
the symmetries of the progenitor theories is that all known
6D SCFTs arise from a combination of fission and fusion
moves from this single uniform starting point. This in turn
motivates a more general question concerning the fate of
various U(1) symmetries under deformations from one UV
fixed point to another fixed point in the IR.

As shown in Refs. [66—68], supersymmetric deforma-
tions of 6D SCFTs arise from vevs of operators, either
coming from tensor branch deformations or Higgs branch
deformations. The structure of such RG flows has been
analyzed, for example, in Refs. [30,31,37,39,69].

Tensor branch deformations are somewhat simpler in
that they preserve the global symmetries of the UV theory.
However, such a flow often introduces new, emergent
global symmetries to the IR SCFT, which result from
ungauging a symmetry of the (tensor branch description of
the) UV theory. Additional global symmetry enhancements
may also occur, as discussed above for progenitor theories
with a small number of M5-branes.

For Higgs branch flows, we expect that giving vevs to
hypermultiplets or their strongly coupled analogs (namely
6D conformal matter) will generically break both global
and gauge symmetries of the quiverlike gauge theory
obtained from the partial tensor branch of a 6D SCFT.
A nontrivial consequence of this observation is that a global
symmetry of an IR fixed point (obtained after a Higgs
branch deformation) could in fact originate from a linear
combination of gauge and global symmetries in the tensor
branch description of the UV parent theory.

To illustrate, consider a 6D SCFT with partial tensor
branch containing a product gauge group G; x G, with
terms in the Lagrangian description on the tensor branch,

‘Cpanial tensor = ¢(1)TI‘F(1) A *F(l)

+ ¢(2)TI'F(2) AN *F(z), (51)
with ¢; the vevs for the tensor multiplet scalars. Suppose
we now consider a breaking patter for our matter (be it
hypermultiplets or conformal matter) which only retains a
diagonal symmetry Ggj,e C G; X G,. The resulting kinetic
term for the gauge fields is

‘Cpartial tensor - (¢(1) + ¢(2))Teriag A >deiag‘ (52)
Of course, if we consider the limit where one of the ¢;)’s
becomes infinite, we effectively convert one of the gauge
symmetries into a flavor symmetry. This in turn means that

the diagonal symmetry will also become a global sym-
metry. From the perspective of a 6D SCFT, the origin of the
diagonal symmetry may therefore seem “mysterious”
seeing as it originates from degrees of freedom which
are most apparent on the tensor branch. That being said, the
above considerations make it quite clear where these
symmetries originate from. In particular, they also show
that a naive application of ’t Hooft anomaly matching
between the UV and the IR is simply inappropriate because
the original global symmetries of a 6D SCFT may in fact be
broken by a given Higgs branch deformation.

To illustrate this phenomenon, we examine the Higgs
branch flow between the following theories, working on the
tensor branch of each theory:

31(6) 3u(5)
1 -

53
[N/=14,N,,=1] (5:3)

[N/=13N ,=1]

The UV theory, consisting of 81(6) on a —1 curve, has the
following matter content under 8u(6) x SU(14) x U(1):

(6,14), + (15,1)_;. (5.4)

The —7 charge is necessary for ABJ anomaly cancelation,
using the fact (from Table I) that ¢, =2 for the A2
representation of 31(6). The anomaly polynomial of the
UV theory is

199¢,(R)*> 3
Iyy = % —5¢ (R)TngU(1 5= 630c,(R)F?
_53¢(R)py(T)

2 2
S H2IPTIEy,

(14)
FTrF3 ! T)TrF> 1T F4
—rlr SU(14)+§pl( )Tr SU(]4)+Z T su14)
1 56133F*
t 3 (WP + 5
693F2p,(T) _ 217p,(T) 31py(T)
16 1920 480

(5.5)

The 3u(6) x SU(14) x U(1) symmetry is broken to
3u(5) x SU(12) x U(1)* by giving vevs to the scalars
in two different hypermultiplets in the fundamental of
81u(6). Indeed, this follows because the triplet of D-term
constraints for the 81(6) gauge symmetry cannot be
satisfied by giving a vev to a single hypermultiplet
(see e.g., [60,70]). Denoting the associated hypermultiplets
in the fundamental of 8u(6) x SU(14) as Q; ® Q] for
i=1,...,14, we give a vev to Q; and Q; This breaks the
non-Abelian flavor symmetry to SU(12).

In addition, the antisymmetric tensor 15 decomposes
under 81(6) — 3u(5) x u(1) as follows:
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So, in total, the matter in (5.4) decomposes as

(6,14), — (S,E)(M’l) + (Lﬁ)(—s.l,l)
+ 2(5, 1)(1,—6.1) + 2(17 1)(—5,—6,1)

(15,1) 7 = (10,1) 59 7) + (5. 1) (_40-7) (5.7)
where the three U(1) charges correspond, respectively,
to the charges under the $u(6) Cartan Hgye) =
diag(—5,1,1,1,1,1), the SU(14) Cartan Hgy(s) =
diag(-6,—6,1,1,...,1,1), and the UV U(1) generator
Hyy, respectively. One of the three U(1)’s suffers from
an ABJ anomaly, which leaves an 81 (5) x SU(12) x U(1)?
symmetry manifest. In the IR, however, the fundamental
from the antisymmetric tensor combines with the 12
fundamentals from the breaking of the 3u(6) x SU(14)
bifundamental, and the flavor symmetry enhances from
SU(12) x U(1)? to SU(13) x U(1).

From ABJ anomaly cancelation in the IR, we know
that the matter of the IR theory transforms under
3u(5) x SU(13) x U(1) as

(5,13), + (10,1)_;. (5.8)
The anomaly polynomial of this theory is
277¢5(R)? 5
R 22—24— 1300¢,(R) F? —ZC2(R>TrF§U(13)
_83ca(R)p(T) | 365625F"  1625Fp, (T)
48 8 16
525 11 >
+?F2TrF§U(l3) +%P1(T)TTF§U(13)JFﬁTrFéU(lS)
5 1 7pi(T)* pa(T)
~6 T sus 35 (T Fsuas)* =2~ g
(5.9)

The mismatch in gravitational anomalies is given by

91p,(T)> 13p,(T
A= oy = e = s;éo) - 1425) o

(5.10)

which implies that there are 13 additional, free hyper-
multiplets arising in the IR of the RG flow. Part of the
goal of our analysis is to determine the U(1) charges of
these free hypermultiplets. Before we can do this, how-
ever, we must first address our main question of interest:
writing the IR U(1) as a linear combination of U(1)’s in
the UV.

To determine the coefficients of the appropriate linear
combination aH g, ) + bHgy(14) + cHyy, we impose the
following constraints:

(1) The correct linear combination must not be broken

by Higgsing. From the specified vevs for Q; and Q,

above, each of which carry charge 1 under Hyjy, this
gives
—5a—-6b+c=0. (5.11)
(2) The correct linear combination must assign charge 1
to the bifundamental of 3u(5) x SU(13). Concen-
trating on a fundamental of 31(5) that originates in
the fundamental of 81(6) x SU(13), this gives
a+b+c=1 (5.12)
(3) Additionally, the correct linear combination must
assign charge 1 to the fundamental of 8u(5) that
originates in the antisymmetric tensor of 3u(6). This
fundamental is not charged under SU(14), but from
line (5.7) it carries charge —4 under Hg, ;) and
charge —7 under Hyy. Thus,
—4a—-"Tc=1. (5.13)
(4) Finally, the correct linear combination must assign
charge —13 to the antisymmetric tensor of 3u(5).
This comes from the antisymmetric tensor of 31(6),
and from (5.7) it carries charge 2 under Hg,, ), and
charge —7 under Hyy. Thus,

2a —Tc =—13. (5.14)

Equations (5.11)—(5.14) represent four equations for three
unknowns, but is not overconstrained. Indeed, there is a
nontrivial solution,

7 15 25
a= 3 b—7, c—21. (5.15)
The appearance of rational numbers (rather than integers) is
inconsequential. What is important is that all physical states
have properly quantized charges. Indeed, the denominators
have been chosen so that the U(1) charge of the bifunda-
mental (5,12) is normalized to 1.

The fact that a # O here is of great importance: it shows
that the IR U(1) is a linear combination of not only global
symmetries, but also gauge symmetries in the UV. This is a
perfectly sensible statement on the tensor branch, where the
31(6) and 8u(5) gauge theories are weakly coupled, but it
is not clear how one is supposed to interpret this U(1) at the
SCFT fixed point. Furthermore, since the UV U(1)
symmetry does not match the IR U(1) symmetry, there
is no U(1) symmetry preserved along the flow, so U(1)
anomalies cannot be matched between the two theories in
any straightforward manner.

Let us now return to the 13 free hypermultiplets in the
IR of the RG flow. Goldstone bosons associated with
the two (5,1)(; _¢ ) hypermultiplets as well as one of the
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(1,1)_s_¢; hypermultiplets are eaten due to the Higgsing of
81(6) — 8u(5). From (5.7), we see that the 13 remaining
free hypermultiplets correspond to

(112) sy + (L) o5 —6 1) = (1,12)5+(1,1)y,  (5.16)
where on the right-hand side, we have plugged in the UV
charges to the linear combination of (5.15). We see that the IR
matter consists of a fundamental of SU(12) of charge 15 and
an uncharged singlet. Comparing (5.5) and (5.9), one sees
that the fundamental of SU(12) is actually necessary to
match the TrF éU(l2) anomalies between the UV and the IR,

which must agree because the SU(12) symmetry is preserved
along the flow. Note, however, that these 13 free hyper-
multiplets do not carry the same U(1) charge, so unlike the
13 hypermultiplets of 311(5), they do not assemble into an
enlarged SU(13) flavor symmetry. This is not a problem for
anomaly matching because, as we have seen, the full SU(13)
flavor symmetry is not preserved along the flow, but appears
only at the UV and IR fixed points.

VI. GEOMETRY OF GLOBAL
U(1)’S IN F-THEORY

In this section, we turn to the geometric origin of U(1)
global symmetries in F-theory realizations of 6D SCFTs.
For previous work on global U(1)’s in F-theory in the
context of 6D SCFTs, see [38].” Rather than analyzing the
corresponding Weierstrass model for each of the examples
presented in the previous sections, we shall instead analyze
the origin of Abelian symmetries in the progenitor theories.
Indeed, since the progenitor theories are a common starting
point for all 6D SCFTs, it is at some level enough to
understand the geometric origin of U(1) symmetries in
these theories and then track their behavior under fission
and fusion moves.

Recall that the two general classes of progenitor theories
are given by a quiverlike partial tensor branch,

9ADE SADE 9ADE

[GADE] 2 [GADE]v (61)
k
9ADE SADE 9ADE
(Eg] 1 2 ... 2 [Gapgl (6.2)

k

The theories of (6.2) arise from MS5-branes probing a
heterotic nine-brane wrapping an ADE singularity [18,43].
The theories of (6.1) arise from M5-branes probing an ADE
singularity. Note that the theories of (6.1) can be viewed as

’In the examples of [38], the F-theory base is compact, and
gravity is decoupled in a second step by taking a suitable
decoupling limit. On the contrary, in our examples below, we
work with noncompact, local bases from the start.

the result of a tensor branch deformation of the theories
of (6.2).

In the F-theory realization of these 6D SCFTs, we
specify a noncompact base B with contractible configura-
tions of curves and then supplement this by a suitable
elliptic fibration so that the total space is a noncompact
Calabi-Yau threefold. In the theories of (6.1), we work with
a singular base C?>/Z, and a pair of seven-branes with
G ApE flavor seven-branes which intersect transversely over
the orbifold fixed point. In the theories of (6.2), we instead
work with a base C? and a transverse collision of a
noncompact Eg seven-brane with a Gapg seven-brane.'’
This is accompanied by a k-fold intersection of an 7, locus
of the discriminant. For the explicit presentations of the
associated Welierstrass models in these cases, see, for
example, [18,43,71], as well as the review article of
Ref. [27]. In each of these cases with a non-Abelian flavor
symmetry, we can see a potential origin for a U(1) global
symmetry in a fission or fusion product, simply by
performing a suitable smoothing deformation of the sin-
gular Calabi-Yau geometry. In this sense, these cases
provide a uniform perspective on many candidate U(1)
symmetries for 6D SCFTs.

There can also be additional U(1) symmetries which
originate from the Mordell-Weil group of the elliptic
fibration. Indeed, in models with a compact base, namely,
those in which the 6D theory is coupled to gravity, there is a
well-defined procedure for extracting candidate U(1)
gauge symmetries. One way to obtain global U(1) sym-
metries is to now take a limit in which the base is
noncompact. This decouples gravity and also makes the
U(1) into a global symmetry [38]. As we explain later,
however, not all global U(1) symmetries need to originate
from such a procedure, though when available, it is clearly
a useful way to build possible examples.

To construct such examples, we begin with a generic
point of the base and ask whether the corresponding elliptic
curve has an additional generator in its Mordell-Weil group
(the group law for a given elliptic curve). This defines an
additional marked point on the elliptic curve and thus an
additional candidate section for the elliptic fibration. As we
move to different points of the base, the fate of this marked
point may either persist or disappear. If it persists, we have
a candidate for an extra section of the elliptic fibration. The
appearance of at least two candidate sections, say ¢ and ¢’
means that we have two distinct divisors o, (B) and ¢/, (B)
in the Calabi-Yau threefold. In the M-theory reduction, this

""Heterotic small instantons on C? have a tensor branch
1,2,...,2. It is well-known that the F-theory realization of the
corresponding 6D SCFT does not generically exhibit an Eg flavor
symmetry or the additional SU(2), flavor symmetry which are
both manifest in the heterotic description. These symmetries are
typically viewed as “emergent” at the fixed point. The Eg flavor
symmetry can be made manifest by a suitable tuning of complex
structure moduli.
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additional divisor provides a candidate U(1) boson,
and consequently, there is a close interplay between the
Mordell-Weil group of the family of elliptic curves and
U(1) gauge symmetries [3,53,54]."

Returning to the case of global U(1)’s, it is natural to ask
whether some noncompact remnant of the Mordell-Weil
group will persist in these cases as well. In global F-theory
models, Abelian gauge symmetries act on charged matter
fields, which are localized at codimension-two singularities
of the Calabi-Yau threefold. However, even in compact
models, some of these Abelian factors may acquire a mass
and become nondynamical via a “geometric Stiickelberg
mechanism.” Those that stay massless (dynamical) are
associated to singularities which admit a small Kihler
resolution [75,76]. This is clearly the case if the Weierstrass
model can be put into conifold form (i.e., ab = cd, with a,
b, ¢, d polynomials in the base and fiber coordinates) [76],
or if it admits a “matrix factorization” of a certain form [93]
(see also [91] for the relevant terminology). We will see that
this construction carries over in certain noncompact
F-theory models as well.

We begin by first adopting a convenient parametrization
of elliptically fibered Calabi-Yau threefolds which is par-
ticularly amenable to the analysis of possible U(1) sym-
metries. After this, we analyze the (infinite class of)
examples of (6.1) which in M-theory terms are given by
MS5-brane probes of an A-type singularity. We then turn to
the theories of (6.2) which in heterotic terms are given by
small Eg instanton probes of an A-type singularity. Finally,
we will focus on cases where the non-Abelian global
symmetry contains an SU(N) factor for N >3 and a
sufficient number of collapsing curves in the base geometry.
We will comment on these special cases, as appropriate.

A. Geometric preliminaries

In this subsection, we state some of the geometric
preliminaries we will make use of to analyze the
Abelian symmetries of the A-type progenitor theories.
For our purposes, it will be helpful to describe the base
of the F-theory model in the limit where all the curves
participating in the 6D SCFT have collapsed to zero size. In
this case, we obtain the tensor branch by performing
blowups of the base.

For the heterotic small instanton probes of an A-type
singularity, the base is given by C?. For the M5-brane
probes of an A-type singularity, the base is given by C?/Z,
where the group action on the local base coordinates is
(u,v) = (wu, 0~ 'v) with @ = exp(27xi/k).

The local presentation of the elliptic fibration is cus-
tomarily written in general form as

"For an incomplete list of references on U(1) gauge sym-
metries in F-theory, see e.g., [40,72-93]. See also the reviews
[94,95] for a more recent account on this vast subject.

y? = x3 + fxz* + g2°, (6.3)
where [x:y:z] are weighted homogeneous coordinates of

P[22,3, - For the prescribed group actions (trivial or by Z;),

f and g are given by polynomials in the local coordinates
(u,v) as

f=> fiuv, (6.4)
i.j

_ i
g= E gi ju'v’.
ij

See Refs. [27,96,97] for a discussion of Weierstrass models
over a base B with more general orbifold singularities. In
the case of the Z; group action, we need to ensure that each
monomial we retain is invariant under the group action.
This restricts us to the invariant terms (uv), u*, v¥, and
products thereof. As standard, the components of the
discriminant locus A = 4f3 + 274> correspond to degen-
eration loci of the fibration, i.e., matter curves in the base.
Now, for the purposes of analyzing possible global
symmetries of the model, it will be convenient to para-
metrize our elliptic fibration as
V2 =5 + bys?z? + 2byszt + b2l (6.5)
where the usual x fiber coordinate and the f, g coefficients
in (6.3) are recovered via

1

1
f= —g(b%—6b4), gzﬁ(%%— 18b,by + 27bg),

x=s+ %bzzz. (6.6)

We are interested in models which have an additional
generator of the Mordell-Weil group. In what follows, it
will suffice to consider the Morrison-Park (MP) construc-
tion [40] of additional sections. The MP construction
requires specific coefficients b,, by, bg in order to engineer
an extra section of the elliptic fibration.

In a compact model, this section would yield an extra
generator of the global Picard group of divisors of the
threefold which would then yield an extra U(1) gauge
boson in the effective theory by the usual logic of reducing
the supergravity three-form along the Poincaré dual of the
new divisor [3].

In a noncompact model, additional care is needed
because Poincaré duality will not produce a dynamical
vector boson in this case. Note, however, that in any such
model which could be recoupled to gravity, obtaining a
local fibration in MP form would be a necessary condition
for this to extend to a global model."

Our strategy should thus be clear: we will first seek out
necessary conditions to have an additional section in MP

2See Secs. 1.1 and 1.2 of Ref. [93] for a discussion on the
local versus global Picard group of divisors.
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form. When this condition is met, we can conceive of the
existence of a compact F-theory model defined on a
compact base which has an additional gauged U(1)."
On the other hand, since our progenitor theories fit into
infinite families (as specified by the number of collapsing
curves), the existence of even one globally consistent
model is enough to establish the pattern for all generic
members of the family. This will be the sense in which we
show that the progenitor theories of (6.1) do indeed have a
global U(1) symmetry, namely, by establishing the exist-
ence of an additional section in MP form.

To reach a fibration in MP form, the b,, by, bg
coefficients are restricted as follows:

1
bg/lp bi“’ == (cic3 —bzco),

= CZ’ 2

1
b¥P = ¢y — bPcoey + szc%, (6.7)
with b, ¢y, ..., c3 base polynomials, i.e., sections of line
bundles (over the base) of prescribed degree. Over each
point of the base, the extra section generically cuts the fiber
at a point Q € P[22,3,1] with fiber coordinates,

1
Q:[s:y:z]= C%—b2cz:—c§+b2c2c3—§b4cl:b . (6.8)

The zero section, which always exists, sits at Z:[s:y:z] =
[1:1:0]. The above restrictions enforce singularities in
codimension-two (in the threefold) where the matter
charged under the U(1) symmetry is localized; in the
generic MP model, there are two such loci, which intersect
each other. (See [40,98,99] for details.)

Our plan will be to consider further tunings in the
Weierstrass models of the progenitor theories and thus
obtain the requisite additional section in MP form.

B. Warmup: Bifundamentals of SU(M) x SU(N)

Though our primary interest is in the case of interacting
SCFTs, we have also seen in Sec. III that, to a large extent,
the global symmetries of a bifundamental hypermultiplet
provide a helpful guide to the structure of global sym-
metries in interacting 6D SCFTs. As a warm-up to our
general question, we first analyze the behavior of an
additional MP section in this special case. We note that
this does not produce an interacting SCFT since we have no
collapsing curves in this case. Even so, the geometry still
contains most of the relevant features we will need in the
case of interacting SCFTs.

The local geometry for a hypermultiplet in the bifunda-
mental representation of SU(M) x SU(N) involves the

BSimilarly, Ref. [38] provides necessary conditions (on local
bases) which come from anomaly constraints as well as con-
straints ensuring the existence of an extra section.

transverse collision of two components of the discriminant
with respective singularity types /,; and I on an F-theory
base B = C? with local coordinates (u,v). We let u = 0
denote the 7,; locus and v = 0 denote the I locus. The
corresponding Weierstrass model can be obtained by taking

M ,,N

by = uMyV, MyN

by =1+ uMyVN, be = uMy

(6.9)
and has discriminant

A = uMpN (4 — uMpN),

(6.10)

This indeed yields the correct orders of vanishing of
(f.g,A) over u =0 and v = 0. There is an extra I; locus
which does not carry any gauge algebra and does not
intersect any of the branes with a non-Abelian flavor group
(hence it is just a spectator).

The above presentation of (6.9) fits into a (nongeneric)
Morrison-Park model upon putting

b= N2, co=0, ¢y = 2uM/?,

cy =1+ uMyN, cy = uM/ZyN,

(6.11)

Note that other choices are possible, e.g., ¢y o« uM,

¢y « uMyN/2, c; =0 and the rest unchanged. The above
Ansatz is clearly valid for M and N even. In fact, away from
the locus u =0 (v = 0), we can always expand around
some fixed value u = ug,y (likewise for v) and obtain a
power series expansion for the parameter u (likewise for v).
Let us assume that M, N are both even and comment on the
other possibilities later.

The extra rational point generically sits at Q: [s:y:z] =
[—v™:0:9"/?] which is the same as [—1:0: — 1] acting
with the C* action of P[ZZ’SJ]M; this shows that Q is always
distinct from Z. As a further check, note that with the above
choices the MP fibration can be put into “conifold form”
(simply because bY? turns into a perfect square for
cop = 0)," corresponding to the tranverse collision of
Ay_1 and Ay_; singularities, as expected from e.g., [97].
Given the criterion of [76], in a compact setting we would
interpret this fact as saying that the F-theory model has an
extra (massless) U(1) gauge symmetry.

Indeed, in the z # 0 patch of (6.5) (which does not
contain the zero section Z but contains Q), with the
coefficients on the right-hand side of (6.7) restricted as
in (6.11), we have

“That is, we work in a patch where v # 0, (and where z # 0),
which does not contain the zero section but contains the new
rational point Q.

“This situation is commonly referred to in the F-theory
literature as U(1) restriction [72].
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1
N szc% = 5(s% 4+ c25 + ¢1c3)
(y = uM2gNI2) (y 4 yM/2N/2)

=s(s2 + (1 + uMoV)s +2uMN),  (6.12)
which can be put into standard form %% = M7V by
shifting back s+ x and applying an analytic change of
variables. The conifold form makes it easy to identify the
extra generator of the Mordell-Weil group (i.e., a new
rational section) [76,93]. Note also that in this new
presentation of the singularity, all appearance of “fractional
powers” such as M /2 has disappeared, as anticipated.

Taking stock of the above example, we see that in the
geometry there is a manifest SU(M) x SU(N) x U(1)
flavor symmetry. This is in accord with the general
unfolding of 7,y to a pair of colliding /), and Iy
components of the discriminant. In group theory terms,
we also have the maximal subalgebra 8u(M + N) D
u(M) x 8u(N) x u(1).

This also illustrates another general point that an F-theory
model only tends to make manifest a subset of the full flavor
symmetries of the field theory. For example, the free
hypermultiplets in question clearly transform in the funda-
mental representation of U(M + N). The “off-diagonal”
terms of this symmetry are absent. Additionally, the overall
center of mass U(1l) is not present in our analysis. In
interacting 6D SCFTs, we expect this center of mass U(1) to
decouple, but that the other U(1) will persist.

Turning to the case where either M or N (or both) is odd,
we expect on physical grounds that the above analysis will
still hold. Namely, one should be able to find identifications
of the form (6.11) which do not involve any roots, thus
avoiding unwanted branch cuts in the local model over C2.
In fact, if one thinks of the A-type progenitors of (6.1) as an
infinite family as M, N grow large, the physics should not
distinguish between the M, N and M + 1, N 4+ 1 repre-
sentatives. Starting from the case where M, N are both
even, it is reasonable to expect a global U(1) symmetry to
be present in the odd case as well, with the would-be branch
cuts of u™/2, vN/2 simply appearing as an artifact of the
chosen presentation. This is in accord with the fact that in
the local conifold presentation of the singularity, we saw
that these branch cuts eventually disappe::tred.16

C. M5-branes at A-type singularities

Let us now turn to an F-theoretic analysis of the global
U(1) symmetry for k M5-branes probing an A-type

lﬁAltematively, one may stick to the latter presentation and
work in the double cover of the base branched over u = 0 and
v =20, by setting u = U> and v = V> (with a Z, involution
acting as U — —U and V + —V). Pulling back from Clu, v] to
C[U, V], one ends up with a representative of the extra rational
point Q over each copy of the base.

singularity. We divide our discussion up into the generic
case with three or more M5-branes and the special case with
two M5-branes. The case of a single M5-brane has already
been covered in Sec. VIB.

In the case of k > 2 Mb5-branes, the F-theory base is
C?/Z,, and there are k—1 collapsing curves of self-
intersection —2. From our discussion of Weierstrass models
on a singular base and the transformation properties of f
and g under the Z; group action, we observe that each of
the coefficients b; appearing in the shifted Weierstrass
model must also be invariant under the group action (see
e.g., Sec. 4 of Ref. [100] for the details). This in turn
restricts the power series expansion for each term,

bi(u,v) = Z(bi)a,buavb’

a,b

i=24.6  (6.13)

namely, all terms are obtained from the Z; invariant
monomials uv, u¥, and v*. From this, it follows at once
that Ansatz (6.9) corresponds to the tuned choice,

(b2)o0 = 1, (02)ap = BamOb.n> (6.14a)
(b4)oo = 0, (b4) 4y = OamOb N> (6.14b)
(b6)oo =0, (b6)ap = OumOpn- (6.14c)

for fixed M, N > 0, which is clearly compatible with the
constraints of the Z; group action. In particular, this means
that all statements regarding the extra section and Q carry
over unchanged.

Our analysis applies equally well to the case of N = 2, as
well as the case of k = 2. In both limits, however, we have
already seen several indications from our field theory
analysis that additional enhancements in the flavor sym-
metries are to be expected. We interpret this to mean that
the F-theory geometry only makes manifest a subset of all
the symmetries.

For the case of kK = 2, we can actually anticipate what we
must do to produce this higher enhancement. In this case,
we have a single —2 curve which supports an [ fiber.
There are two marked points on this curve, indicating
collisions with two distinct 7y components of the discrimi-
nant locus. If we consider the tuned limit where we move
these two points on top of each other, we observe that
the fiber type from the “flavor branes” enhances to I,y,
anticipating an SU(2N) flavor symmetry, which is the
answer expected from our analysis of Sec. III. In the limit
where we collapse the —2 curve to zero size, we also see
that we no longer have a transverse intersection of two I
components of the discriminant locus. This tuning is a
special feature of having a single —2 curve.

The case of N =2 is even more subtle in the corre-
sponding geometry. In this case, the tensor branch defor-
mation consists of only 8u(2) gauge algebras. There is in
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this case an enhancement in the global symmetry beyond
SU(2) x SU(2) x U(1), which is in accord with the fact
that the geometry only tends to see a subset of possible
flavor symmetries. That being said, we see that for generic
choices of N and k, the F-theory analysis correctly predicts
the global symmetries expected both from M-theory and
from field theory.

D. Small instanton probes of A-type singularities

We now turn to the other class of A-type progenitor
theories given by heterotic Eg small instanton probes of
A-type singularities. Again, we divide our discussion up
into the generic case where the A-type non-Abelian flavor
symmetry is SU(N) for N > 3, and there are a sufficient
number of curves on the tensor branch and less generic
situations in which further enhancements in the flavor
symmetry are possible.

The Weierstrass model for this case is defined over a base
B = C? with f, g, and A given by [18]

f==3u*(1-"Y), (6.15)

g="2u’(u+ "), (6.16)

A =108u"vN (3u? — 3u?vN + u?v?N + 2uv™ N 4 2N,

(6.17)

It corresponds to the collision of an 7, fiber located at
v = 0 against a I7* one at u = 0 for generic positive m, N.
We assume m > N > 1. In heterotic language, the number
of mobile small Eg instantons is given by k = m — N.

To produce an F-theory model with fibers on curves in
Kodaira-Tate form, we must perform successive blowups of
the base. This procedure is presented in Ref. [18] and is also
reviewed in Ref. [27]. The partial tensor branch is obtained
by performing k& blowups in the base. Additional blowups
(N of them) are necessary because of the intersection of an
I fiber type with a IT* fiber type, which yields the full
tensor branch. There are three distinguished cases for the
number of small instantons: k=0, k=1, and k> 2.
Additionally, N > 3 provides a generic A-type singularity,
whereas N = 2 leads to additional enhancements in the
flavor symmetry. From our field theory analysis, we expect
a U(1) global symmetry to be there for generic N, k, but to
be absent for generic N and k = 0, 1, as well as for N = 2.
See Appendix C for some additional details.

An important point in this class of examples is that for
sufficiently low values of k, we can obtain these same 6D
SCFTs by starting with a global model in the Eg x Ey
heterotic string and taking a suitable decoupling limit
[10,11,101]. Observe, however, that in the heterotic model
on a compact, singular K3 surface, there is no U(1)
symmetry; it does not descend from the unbroken FEjg’s,
and there are no isometries of the K3 surface. This

illustrates that although the local A-type singularity may
possess such an isometry, coupling to gravity will remove
it. From this perspective, we ought not to expect our global
U(1) symmetry to arise from taking a decoupling limit of a
gauged U(1) symmetry in a 6D supergravity model. In this
sense, the analysis of our local model for (6.2) in MP
form need not work. We will see that this expectation is
borne out.
The local model can be engineered by taking

3
b,=3u?, b, :§u4vN, b =3ulvN +2uv™, (6.18)
which reconstruct the f, g polynomials of (6.15). If we
insist on fitting this choice of b,, by, bg into a MP model,
we always encounter branch cuts. For example, one may
take

Cq :uz,

co=0, c;=3u?, c3=3u*"N, (6.19)
which however requires the nonsingle-valued identification
b* = 4u(3uv™ 4 20v™). We have tried multiple polynomial
Ansdtze for b,cp,...,c3 but all seem to involve an
unwanted branch cut in the local base.

Let us now turn to the special case where k = 1. From
our field theory analysis, we expect that in this case there is
in fact an enhancement in the flavor symmetry factor
SU(N) x U(1) to SU(N + 1). On the partial tensor branch

of this theory,

3u(N)

[Es] 1 [SU(N)I. (6.20)
we have a single —1 curve with [ fiber type. This curve is
met by three distinct collisions with the rest of the
discriminant. First, there is the Eg locus. Second, we have
a noncompact component with 7 fiber type. Third, there is
another noncompact component with /; fiber type. By a
suitable tuning of the Weierstrass model in this case, we
observe that the /7, and I, points can be merged to produce
a single noncompact /. ; component of the discriminant.
Note that in doing so, we no longer have a transverse
intersection of these two components of the discriminant; it
is a special feature of the k =1 case. See Fig. 4 for a
depiction and Appendix C for a calculation, where this
becomes more manifest in the partial tensor branch
resolution.

Consider next the case of k=0, i.e., the case of
(Eg, SU(N)) conformal matter. We have a full tensor
branch description given by

su(l) su(2)  su(N-1)
[Eg]l 2 2 ... 2 [SU(N)]. (6.21)
In this case, the additional /; locus 2u + u2(3 -3V +

v?N) + v™ = 0 intersects the Iy locus v = 0 at two points,
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FIG. 4. The k = 1 case of the (Eg, SU(N)) collision.

and the I7* locus u =0 at the origin, generating a
decoupled “SU(1) x SU(N)” bifundamental hypermultip-
let (see Fig. 5). In Appendix C, we indeed show that in a
partial resolution of the base, the extra /, locus intersects
only the Iy locus. In other words, there is a global U(1)
which acts trivially on the Hilbert space of the SCFT (since
no matter is charged under it); hence, the flavor symmetry
at the fixed point is just SU(N), as expected from the field
theory analysis.

Last, consider the models obtained from taking N = 2.
In this case, all of the tensor branch gauge algebras are
81(2) and a formal “8u(1)” gauge algebra obtained from
an [, fiber over a compact —2 curve. In these cases, the
expectation from field theory is that there is a generic
enhancement in the flavor symmetry, which is not visible in
the F-theory presentation of the model.

For completeness, let us briefly comment on some of the
D- and E-type progenitor theories, where we do not
generically expect any U(1) factor in the flavor symmetry.
As an example, the local models for the theories of (6.1)

u:b:O
SCFT

\
=0

FIG. 5. The k=0 case of the (Eg,SU(N)) collision, also
known as (Eg, SU(N)) conformal matter.

with one M5-brane probing an E-type singularity have local
Weierstrass models [43,71],

(Eg.Eg): y* = x> + u*rv*, (6.22)
(E7,E;): y* = X3 + u?v’x, (6.23)
(Eg, Eg): y* = x> + uv°. (6.24)

In the first and third cases, we have f = 0 identically,
which implies by =$b} and g=—5b3 +bs. In the
second case, we have g = 0 identically, which implies by =
—55 (b3 —9byby) and f = —1 b3 + 2b,. The constraints on
by, by, bg turn into constraints on b, ¢, ..., c3 given the
restrictions in (6.7). In either case, we find that any
simple Ansdtze respecting these constraints would lead
to branch cuts.

For the D-type, the progenitor of (6.2), i.e.,
(Eg. SO(2N + 8)), reads [18]
f==3u*v*(1 =2"), (6.25)
g=2uv*(u+ ™), (6.26)

A=108u'05"N(3u? = 3uvN +u?v?N 4+ 2up™ N 4 p?m=N),

(6.27)
Again, we find that any simple Ansdtze respecting these
constraints would lead to branch cuts.

VII. CONCLUSIONS

One of the important features of a quantum field theory is
its flavor symmetries. In this paper, we have developed a
general set of methods for extracting the global U(1)
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symmetries of a 6D SCFT. At a broad level, all of the
symmetries we have identified descend from a small set of
progenitor theories. Since all known 6D SCFTs originate
from “fission moves” on the progenitors followed by fusion
operations on the resulting fission products, by and large
these U(1) symmetries have a common origin (excluding
emergent U(1)’s). We have also presented a general
prescription for how to read off the U(1) symmetries for
any 6D SCFT using just the data available from its tensor
branch. Last, we have shown that in the F-theory descrip-
tion of progenitor theories for 6D SCFTs, there are two
geometric origins for such symmetries. One is the non-
Abelian flavor symmetry of a seven-brane. The other is the
appearance of an additional section in a noncompact model,
as occurs in some progenitor theories with an A-type flavor
symmetry. In the remainder of this section, we discuss
some further avenues of investigation.

In this paper, we have presented a combination of
bottom-up and top-down techniques for extracting the
global symmetries of a 6D SCFT, demonstrating an agree-
ment between various different approaches. One interesting
outcome of this analysis is that of the progenitor theories,
only some of the theories with an A-type global symmetry
have an additional generator of the Mordell-Weil group.
What we have not undertaken here is a direct analysis of the
resulting elliptic threefolds obtained from fission and
fusion of the progenitors. In principle, the resulting U(1)
symmetries we have identified via field theory may have a
geometric origin as additional generators of the Mordell-
Weil group in the corresponding F-theory models. It would
be quite interesting to see whether the identification
between Higgs branch deformations of a 6D SCFT and
complex structure deformations of a Calabi-Yau could be
used to establish a geometric origin of these symmetries
as well.

It would also be interesting to analyze the fate of these
U(1) symmetries in compactifications to 5D SCFTs. If the
non-Abelian part of the 6D SCFT flavor symmetry is
known, by looking at triple intersection numbers among
surfaces in the associated resolved Calabi-Yau geometry,
one can compute the total rank of the flavor symmetry, thus
determining residual Abelian factors [102,103]. This would
provide a complementary approach compared with directly
analyzing the Mordell-Weil group of the associated F-
theory model.

Indeed, with our improved understanding of how to
determine U(1) symmetries in 6D SCFTs, it is natural to
ask about the fate of these symmetries upon compactifica-
tion to lower-dimensional quantum field theories. This is
especially important in the context of 4D N =1 SCFTs
where the infrared R-symmetry is typically a linear combi-
nation of the UV R-symmetry and global U(1) symmetries
[104]. It would be interesting to analyze this case, as well as
the sense in which compactification defines an RG flow
from six to four dimensions (see e.g., [105-108]).

The primary aim of this paper has been the analysis of
continuous Abelian global symmetries. Another important
question in the study of 6D SCFTs is to determine possible
discrete global symmetries. This data can in principle be
recovered by tracking the group theoretic data associated
with vevs triggering Higgs branch deformations. For
example, a large class of RG flows are triggered by
operators vevs which are nilpotent in the flavor symmetry
algebra. In the flavor symmetry group, these are associated
with unipotent elements. It would be interesting to see
whether a more refined analysis is capable of tracking these
discrete data.

Along the same lines, it is natural to ask whether this
information is encoded in the structure of the tensor branch
of a 6D SCFT. Doing so would likely also require a better
understanding of the gauge groups present there, rather
than just the associated gauge algebras. It also be instruc-
tive to track the geometric origin of such symmetries in the
associated F-theory model.

Finally, we have also discussed at a broad level the sense
in which the symmetries of a 6D SCFT are inherited from
data of a progenitor theory. Given this, it is natural to ask
about the fate of other symmetries such as the R-symmetry
of a 6D SCFT. This is broken along the trajectory of an RG
flow, but is recovered at an IR fixed point. It would be
interesting to see whether the techniques developed here
could be adapted to this class of questions.
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APPENDIX A: ANOMALY POLYNOMIALS
AND U(1) FLAVOR SYMMETRIES

In this Appendix, we discuss some additional aspects of
how Abelian flavor symmetries can contribute to the
anomaly polynomial of a 6D SCFT. Recall that the anoma-
lies of a 6D SCFT are encoded in an anomaly eight-form /5.
As discussed in [29], this anomaly polynomial can be
divided into two parts: a one-loop contribution (which
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can be computed on the tensor branch) and a Green-Schwarz
contribution,

Lo = Il—loop + Igs- (Al)
The one-loop contribution is simply a sum of contributions
from free tensor multiplets, vector multiplets, hyper-

multiplets, and E-strings. These contributions are, respec-
tively [291,"

I _ c2(R)?  cr(R)py(T) | 23p,(T)* — 116py(T)
tensor 24 48 5760 ’
(A2)
TrogiF* + 602 (R) Trygi F? + dgey(R)?
Ivector = -
24
B TrogiF? + dgea(R)pi(T)
48
Tp; (T)2 - 4P2(T)
- A
+=do 5760 ’ (A3)

I = Tr, F*  TrgiF?py(T) J Tpi(T)* = 4py(T)
hyper = 0 T 48 ’

5760 ’
(Ad)
(1) 13 , 11 203 )
I string = ﬁcz(R) —4—802(R)P1(T) +%P1(T)
29 1 )
- mpz(T) - ZCZ(R)TrFES
1 1
+1gh (T)TrFg, + ) (TrFg,)>. (AS)

Here, Tr, is the trace in the representation p, d, is the
dimension of the representation p, and d is the dimension of
the group G. In computing the anomaly polynomial, one
should express the traces over arbitrary representations in
terms of the trace in a defining representation. For a given
simple Lie algebra g, we can write

Tr,F* = x,TrF* + y,(TrF?)?, (A6)
Tr,F3 = ¢, TrF>, (A7)
Tr,F? = Ind,TrF?, (A8)

with x,, y,, ¢,, and Ind, known group theory constants. ¢,
here is defined as in Table I, and throughout this paper the

"Here, we present only the formula for a rank-1 E-string. The
formula for a more general rank-k E-string can be found in [29].

values of x,, y,, and Ind, agree with the conventions
of [26,27,29]."°

The one-loop contributions to the anomaly polynomial
generalize straightforwardly to the case of a U(1) sym-
metry, whether gauge or global. For a gauge symmetry, we
have the contribution from a single vector multiplet with
dg = 1. The vector multiplet does not contribute to the
gauge anomaly for the U(1) because, as opposed to the
case of a non-Abelian gauge group, there are no W-bosons
charged under the Cartan of a U(1). Thus, we have

v _ _Cz(R)2 _Cz(R)Pl (T) _1py (T)*=4p,(T)
vector 24 48 5760

(A9)

The case of a hypermultiplet is likewise analogous to the
previous case. Consider a hypermultiplet in a representa-
tion R of some semisimple, non-Abelian lie algebra g
(which could be trivial, or a direct sum of simple lie
algebras) with field strength P, which is also charged under
some combination of U(1)’s with field strengths F; and
associated charges ¢;. Then, in (A4), we have

Tr/,F4 = TI‘RP4 + 4TrRP3til‘ + 6TI‘RP2qlq]FlF]

+ 4999, FiF jFFy, (A10)

TrpF2 :TrRFZ—l—qlq]FlF] (All)
Here, the sum over repeated indices is implied, ¢;F; :=
> qiF;. Note that we have not included a TrgP term, as
this necessarily vanishes for a semisimple Lie algebra.

To compute the Abelian contribution to the anomaly
from an E-string, we suppose that the Eg global symmetry
of the E-string has been decomposed into a product of
subgroups, which may be either gauge or global, Abelian,
or non-Abelian,

ES D Gl X ... X Gk‘ (A12)

Then, we simply decompose terms in (A5) involving the Eg
field strength into a sum over the field strengths of the
subgroups,

k
TeF} — > TrF,.
i=1

(A13)

Anomalies present at one-loop can be canceled via the
Green-Schwarz mechanism. Note that not every type of
anomaly presents a problem for a 6D SCFT, however. We
can sort the terms in the anomaly polynomial according to
the number of gauge currents/global currents appearing in
them. Terms of the form F éaugm with purely gauge

®In particular, note that Indg,,q = 1/2 for the fundamental of
SU(N).
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anomalies, lead to a sickness and must be canceled. Terms of
the form F; éaugeF alobal Tepresent an ABJ anomaly, which
leads to a divergence in the global anomaly current and thus
violates the putative global symmetry. Terms of the form
FraugeFaihar @04 FyqugeFaiopa are also forbidden in 6D
SCFTs but for a different reason: there is no multiplet in
the 6D superconformal algebra that would give rise to such
terms [68,109]. Finally, F' global terms represent 't Hooft
anomalies, which are benign and do not need to be canceled.
There is a unique Green-Schwarz mechanism available
for canceling non-Abelian gauge anomalies in six dimen-
sions, which was introduced in [50]. The Green-Schwarz
contribution to the anomaly polynomial takes the form

1 1
IGS :_Qaﬁl Iﬁ :EQ ﬁlalﬁ

5 (Al4)

Here, Q,; is the Dirac pairing on the string charge lattice,
and indices are raised via the inverse Q¥ = (Q~1)%. This
comes from a term in the action of the form

Q7B A I, (A15)
with B,, a two-form and /4 a four-form, whose non-Abelian
part was given in [52]

-2
I = %, 2(R) + 2= p\(T) + - TeF -

4

ZTrFZ

ﬂEnn

(A16)

Here, G, is the gauge group associated with the ath tensor
multiplet, F, is its field strength, héa is its dual Coxeter
number, and n, = —Q,, (indices not summed) is the ath
string charge. The expression “nn” refers to nearest neigh-
bors in the corresponding intersection pairing of curves.

For U(1) anomalies, the above anomaly cancelation
mechanism is still valid, but there is an additional Green-
Schwarz mechanism available [59]: we may include in the
action a term of the form

C A X, (A17)

with X¢ a six-form and C a Stiickelburg zero-form that
couples to a U(1) gauge boson A!, with a coupling of the
form

(0,C—A,)~ (A18)

This leads to an anomaly polynomial contribution of the
form
F A X, (A19)

which can be used to cancel any remaining Abelian gauge
anomalies. However, this comes at a price: the Stiickelburg

mechanism gives a mass to the U(1) vector boson, thereby
removing the associated gauge symmetry [59]. Note that
the anomaly involving the cube of a non-Abelian gauge
field strength and the first power of an Abelian field
strength can only be canceled by this latter Green-
Schwarz mechanism. Such anomalies plague all would-
be U(1) gauge groups in 6D SCFTs, and as a result all
Abelian gauge groups are removed from the low-energy
theory on the tensor branch.

APPENDIX B: U(1)’S FROM GROUP THEORY

In this Appendix, we review the analysis of U(1)
symmetries expected from symmetry breaking patterns
and their associated group theoretic structures.

Two very large classes of 6D SCFTs are in one-to-one
correspondence with two particular classes of homomor-
phisms: namely, Hom(I', Eg) and Hom(81(2), g), where I
is a discrete subgroup of SU(2) and g is a simple Lie
algebra.

The relationship between 6D SCFTs and homomor-
phisms follows from their M/F-theory -constructions.
Consider the progenitor theory of £ MS5-branes probing
a C?/T orbifold singularity as well as an Eg wall. This
theory is labeled by k and I as well as a flat connection of
Ejg at the infinity of C?/T" ~ §®/T". These flat connections,
and hence this class of 6D SCFTs, are in one-to-one
correspondence with Hom(T', Eg).

Given a particular homomorphism p € Hom(T', Eg), we
may consider the image p(I") in Eg. The elements of Ey that
commute with p(I') form a group H known as the
commutant of the homomorphism p. This commutant
subgroup H C Eg translates in field theory terms to the
global symmetry of the associated 6D SCFT.

More precisely, for I" of D/E-type, the full global
symmetry of the theory is given by

Gglobal = H x Gr, (B])
with G the D/E-type Lie group associated with the discrete
group I" via the McKay correspondence.

For I' = Zy, N # 2, we instead have

Gg]obal:HXSU(N) X U(l) (BZ)
The extra U(1) factor is inherited from the progenitor
theory, which is associated with the isometry of the C?/T’
orbifold singularity, as discussed in Sec. II.

ForI' = Z,, the isometry enhances, and there is a further
enhancement U(1) — SU(2),

Gioba = H x SU(2) x SU(2). (B3)
Unfortunately, within the mathematics literature, the full

set of homomorphisms and their allowed commutants is
only known for ' = Z [110] and I" = SL(2,5) [64,111].
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While the classification of the latter is very involved, the
former can be labeled in a simple combinatorial fashion in
terms of the extended Dynkin diagram of Eg. Namely, if we
label the nodes of this diagram as follows:

o
3/
0—0—0—0—0—0—0—0
1 2 3 4 ) 6 4’ 2/
(B4)

then homomorphisms Zy — Eg are in one-to-one corre-
spondence with lists of nodes such that the sum of the
|

1+1+14+1 &

2 3 4

1+14+2 <

2 3 4

O
¥

5

1+3 < ©

4 5 6

In the remainder of the cases, Gr # SU(N), Eg, the
match with 6D SCFTs has been used previously to give the
first conjectured classification of Hom(T, Eg) [64]. While
this is an exciting application of M-theory to pure math-
ematics, the lack of mathematical literature on the topic
somewhat limits our ability to learn new properties of 6D
SCFTs from this correspondence.

Fortunately, the other class of homomorphisms,
Hom(8u(2), g), is much more familiar to mathematicians,
as these homomorphisms are in one-to-one correspondence
with nilpotent orbits of g. This permits us to use the vast
body of mathematical literature on nilpotent orbits to
learn about global symmetries and RG flows of 6D
SCFTs [37,43,45,112].

While nilpotent orbits of all simple Lie algebras have
been classified, they are simplest to describe in the case of
the classical algebras, 3u(N), 8o(N), and 8p(N). For
3u(N), nilpotent orbits are labeled simply by partitions
of N. For 80(N), they are labeled by partitions of N subject
to the constraint that each even number must appear an
even number of times. For 8p(N), they are labeled by
partitions of 2N subject to the constraint that any odd
number must appear an even number of times. The

4/

numbers of these nodes equals N, where any given node
may be used multiple times. For instance, for N = 4, we
have the following choices of nodes:

1+14+2,
242, 4,

I1+1+1+1,
1+3, 242,

1+142,
2+2

143,

4. (BS)
The commutant H of the homomorphism is then given
simply by the diagram remaining after deleting the corre-
sponding nodes from the affine Eg Dynkin diagram, with
additional U(1)’s added as necessary to ensure that the rank
of the commutant is always 8. For instance, we have

@)
| ¥
O—O0—0—0—0—0—0 ¢ H=F
5 6 4/ 2/
O

¥

0—0-—0-—0-—0-—0 ¢ H=[SO(14) x U(1)]

6 4

O—0—0-—0-—0 « H=F;x SU(2)xU(1)

2/

|

commutant subalgebra §) C g left unbroken by the nilpotent
orbit is then given in terms of the partition. Given a partition
n= ‘11‘ , /4‘212 , y?‘, ...] in which the entry y; has multiplicity
d;, the commutant is given by

u: )= 3(@u(d,)), (B6)
801 h= @ 20(d) ® @ 8p(d;/2).  (BY)
sp: h= @ 3%0(d;) @ ﬂzdgp(di/z)’ (B8)

where in the above “i odd” or “i even” is shorthand for
indicating that y; is odd or even, respectively.

For instance, for ¢ = 8u(4), there are five nilpotent
orbits, labeled by the partitions u = [14], [2, 1], [2%], [3, 1],
and [4]. The associated commutator subalgebras are
given by 3u(4), 81(2) x u(1), 81(2), u(1), and the trivial
subalgebra, respectively.

In F-theory, these homomorphisms arise as “T-brane”
data for two intersecting stacks of seven-branes probing a
C?/Zy singularity (for a partial list of references to the
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T-brane literature, see Refs. [37,39,44,91,108,113-132]).
In particular, we can turn on T-brane data for either stack of
seven-branes, resulting in a theory labeled by a pair of
homomorphisms py, p, € Hom(81(2), g).

Once again, the global symmetry of a given theory is
related to the commutant H of a given homomorphism inside
G. In this case, since a theory is labeled by two homomor-
phisms py, p,, its global symmetry will be determined by the
respective commutants H;, H,. In particular, for g of D/E-
type, the global symmetry is given by

Goiopa = Hy X H,. (B9)

For ¢ = 3u(N), there is an additional U(1) factor, inherited
from the isometry of the C?/Z, orbifold of the progenitor
theory (see Sec. II),

Gglobal:Hl XH2XU(1). (BIO)

For ¢ = 311(2), the isometry of the progenitor enhances, so
the global U(1) enhances to SU(2),
Gglobal:Hl XH2XSU<2) (Bll)
The tensor branch descriptions of 6D SCFTs correspond-
ing to Hom(T", Eg) have been studied in [5,39,43,45,63,64],
while the tensor branch descriptions of 6D SCFTs
corresponding to Hom(8u(2),g) have been studied in
[37,39,43,46,112]. From these descriptions, we can use
the match between 6D SCFTs and homomorphisms as a

sort of “Rosetta Stone”: U(1) symmetries appearing in the
|

commutant H of a given homomorphism translate into U(1)
symmetries of the SCFT quiver, which allows us to verify the
field theory rules for U(1) symmetries in an SCFT quiver.

APPENDIX C: RESOLUTION OF A-TYPE
PROGENITOR GEOMETRIES

In this Appendix, we determine the tensor branch
associated with heterotic Eg small instanton probes of
A-type singularities. In particular, we focus on the role of
the /; component of the discriminant locus in the associated
F-theory model.

In order to understand the meaning of the additional 7,
component of the discriminant (6.15), we need to resolve
the base. This introduces additional P!’s; in particular, we
review the results of [ 18] with particular focus on the /;; see
also [27,128] for similar computations. For convenience, let
us repeat the coefficients of the relevant Weierstrass model,

f==3u*(1-2o"), (C1)

g=2u’(u+ "), (C2)

A =108u"vN (3u? = 3u?vN + N + 2uv™ N 4 p?m=N),

(C3)

The resolution procedure is locally implemented by the
following shift:

Patch 1: {u > u, v fu,y = uly,x = u’x, f — u*f, g~ ug},

Patch 2 : {u > v, v > v,y > 3y, x > v%x, f > v*f, g > 1%g},

where [{: 5] are the homogeneous coordinates of the
resolution P!, such that

r=1 (C5)

As usual, x, y are fiber coordinates in the (local) Weierstrass
model.

In order to understand the fate of the 7, locus in the
discriminant of Eq. (C3),

Iz (3u® = 3u?o" + w0 4 2uv™ N 4 p?N) - (C6)

we look at some explicit examples. Let us start with
k=m—N =0. We then apply (C4). The first blowup
of the model is

|
Pl: fi==3(1-uM¢V), g =2(1+u""1V),
Ay =108uN 1N (24 3u+uN 1N (1-3u? +uN2EY)),
P2: fo==3ni{(1=o"), ga=2n;(n; +o"""),
Ay =108Vl (oN =1+ 20, +130(3 = 30N +02)),
(€7)

where P1 and P2 denote the two patches. We note that
A; =0 when {; =0 and u#0, in agreement with
the interpretation that the extra /; locus leads to a
decoupled SU(N) x SU(1) hypermultiplet in the k =0
case, which was proposed in Sec. VID. Moreover, the [,
component also intersects the resolution at #; = v = 0;
however, this locus needs to be blown up again since
(f2,92,A>) vanish with degree higher than (4, 6, 12)
(nonminimal singularity). If we perform a full blowup of
the base,
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Pl: fi==3(1-u"gY), g =2(1+u""'CY),
Ay =108uM=1¢N (24 3u
+uN eV (1 =3u? + uMNT2EN)),
P(i+1): fi==3(1-CX V). g=2(1+C "),
A; = 1080 Y =1 (24 3¢} i = 30
+ g{\fr—linz_v-i—l + ggi\/;tinZNJriJrl)
1<i<N-2,
PN: fy==3ny(1=o"), gy =23 (1 +ny),
Ay =108 (1 + 21y +n3v(3 = 30N + 0?V)),
(C8)
we notice that the only other intersection point of the 7
with the resolved base is on the “last” P!, which has self-
intersection (—1) and no gauge fiber enhancement; this
however does not lead to any additional charged matter.
Let us now analyze k =1, m = n + 1, case. The first
blowup follows from (C4), and it reads
PL: fi==3(1-uY), g =2(1+u"e)"),
Ay =108uNEY (2438, +uN eV (=3 + 7 +uMEY)),
P2: fr==3n{(1=o"), gy =2n7(m +v"),

Ay =1080Mpl0 (N + 25, + 2 (3 =30V + ). (C9)

A; = 0when u = 0 and {; # 0. This implies that A, in the
second patch is meaningful. We then blow up the non-
minimal singularity in P2, and we obtain

P2: f,==3(1-8ny),  g=2(1+5Ym™),
Do = 108537}~ (243 + N~ (1 =3 + ) %),
P3: f3==3n5(1-0"), g3=2m3(n+ "),
Az =108V =1pl0(bN=1 421, + 130 (3 =30V +02)).
(C10)
|

Pl: f1 =-=3(1—uM¢l),

We observe that A, =0 if ¢, =0 and 7, :i;é 0.

Therefore, the I, locus intersects the first resolution P!,
as stated in Sec. VI D. Again, we have seen that in order to
understand how the 7, locus interacts with the SCFT, we
needed to blow up twice. The I; locus still contains
v = 1, = 0, but this point is still a nonminimal singularity.
For this reason, we need to apply sequentially the reso-
lution procedure of line (C4). We will show in (C12) that
the 7, will still meet the “last” self-intersection (—1) P!,
but this intersection does not carry any nontrivial extra
matter.

At last we analyze one more example, i.e., k > 1. For
simplicity, we consider k =2, but the argument will
straightforwardly generalize to higher k. We repeat the
previous strategy where we sequentially blow up the base.
In order to see how the /; locus behaves, we have to blow
up k + 1 times. In this case, we perform three blowups, and
we get

Pl: fi==3(1-uM¢Y), g1=2(1+u¢),
Ay =108uNCY (2+3ulf +u Y (=3 +Ctu? +uM(Y)),
P2: f,==3(1-nY). g =2(1+5""n}),
By =108 Y (3425 + &Y (=3 + G + ),
P3: f3==3(1-¢YnY). gs=2(1+Lm™").
Ay = 10855 ny 1 (24 3m, + S nh 1 (133 +L¥nd 2)).
P4: fy==3n3(1=0"), gs=2n3(n3+ "),
Ay =1080N=1pl0(WN=1 £ 253 + 130 (3 =30V +02)).
(C11)

The I, locus intersects at 7, =0, {3 =0, 17, = gi’ #0,
which means that it meets the second resolution P'.
For generic k, the 1, locus intersects at the kth resolution

P'; see also [18, Fig. 7]. This becomes manifest when we
fully resolve the base for k > 0,

g1 =2(1 + uktN=1g),

Al — 108MNC1]V(3 _|_2Cl]<uk—1 + u2k+N_2C%k+N _ 3uNC}1V + u2Né’%N)’

P(i+1): fi:—3(1—5?i1d-v), i+1
P(k+i+1): fips = =31 =Y, £V,
A= logé’kNIz’iﬂ ’7§<v+_ii_l 2+ 3é’§c+i+l ’75::; -3¢

P(N+K): fran = =3 y(1=2"),

g = 2(1 +§N+k_i N+k—1-i
l ’
A= 1085Y N (3 + 28 it~ + Y i N e O Y (3 ) 1<i<k=2,

g =20+ &3 ms

Je+N = 2'72+N(1 + kN )
Apin = 10800 (14 2y + 1 yv(3 =30V 4 02Y)).

N—l—i)
Nti  N+itl | #Nei  Nei=l | #2N+i  2ON+itl .
prietMir - e T Cqiamags ) 1<iSN=2,
(C12)
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Similarly to k = 0, I; meets the (self-intersection —1) curve, but this does not add any matter to the SCFT spectrum.

What we have seen admits a dual interpretation in the Type IIA brane configurations of [20,21,23,25,26], namely, the
extra I; corresponds to a single D8-brane intersecting N D6-branes.
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