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Abstract

This paper describes analyses of the K—12 computational thinking (CT) integration activities collected at two NSF-funded
workshops, “Developing an Interdisciplinary Framework for Integrating Computational Thinking in K—-12 Science,
Mathematics, Technology, and Engineering Education,” held in August and November of 2017 at Education Development
Center, Inc., in Waltham, Massachusetts. The workshops convened a working group of principal investigators, researchers,
and educators from the National Science Foundation (NSF) ITEST (Innovative Technology Experiences for Students and
Teachers) and STEM + C (STEM + Computing) funded projects to draft an interdisciplinary framework for integrating CT into
K~12 education. The goal of this paper is to share that framework and our findings on promising learning progressions, gaps that
exist in the collected set of activities, specific advances in STEM fields that were made possible through CT, and suggested ways
that CT integration in K-12 can evolve to reach what the CT integration framework proposes as five “computational thinking
integration elements” or “CTIEs”. This framework is designed to help educators see ways to engage students in CT within
disciplinary learning. The analyses and findings may benefit STEM and computing education fields by elucidating the target of

CT as used within CT-integrated STEM fields.

Keywords Computational thinking - Integration of CT - STEM fields - Disciplinary learning

Background

CT is widely described as “the thought processes involved in
formulating problems and their solutions so that the solutions
are represented in a form that can be effectively carried out by
an information-processing agent” (Wing 2010, p. 1). Since
noted computer scientist Jeannette Wing first proposed CT
as a new “core skill” in 2006, various groups (e.g., Grover
and Pea 2013, 2018) have attempted to define CT for educa-
tion and training purposes. CT was given prominence as a
strand of the K—12 Standards for computer science developed
by the Computer Science Teachers Association (CSTA)
(2011), and the K-12 Computer Science Framework
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Steering Committee (2016) positioned CT at the heart of the
computer science practices in the K—12 Computer Science
Framework. CT, seen as the “connective tissue” between
computer science and science (Martin 2018), also has rele-
vance in scientific practices; the Next Generation Science
Standards (NGSS Lead States 2013) include CT as one of
eight scientific practice standards.

CT integration is the embedding of CT within fields in the
service of STEM learning and innovation. Numerous exam-
ples exist of CT fundamentally changing STEM fields and
producing new integrated fields, such as computational biol-
ogy, computational chemistry, and computational social sci-
ences. In these fields, once laborious tasks are now made
easier when utilizing computers’ processing power. More im-
portantly, new techniques and tools have enabled scientists to
ask new questions and expand the knowledge base in these
fields. Many innovations in these rapidly changing fields are
due to CT; what is being accomplished now would not have
been possible without computational power, CT, and compu-
tational tools.

Too often in today’s STEM classrooms, CT is taught in a
manner disconnected from the STEM content it serves. CT is
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dissected into its component parts, and activities focus only on
developing understanding of a single component of CT (such
as algorithms, or data analysis) without connection between
components. In this paper, we argue that CT in today’s STEM
classrooms needs to be more than an introduction to computer
science. Instead of being taught in a manner disconnected
from disciplinary learning and understanding, rich opportuni-
ties exist to link CT to the practices of CT-enabled scientists
and engineers.

Prior Work and Foundational Understandings

Three “profiles” of computational thinking-enabled STEM
professionals working in America’s workplaces were devel-
oped and validated nationally between 2011 and 2014: the
CT-enabled STEM professional/research scientist (Malyn-
Smith and Ippolito 2011), the CT-enabled product engineer
(Malyn-Smith and Ippolito 2012), and the big-data-enabled
specialist (Malyn-Smith and Ippolito 2014). Each profile
was collaboratively developed by a panel of professionals in
these jobs who shared their firsthand knowledge of the CT
tasks and functions they perform on a daily basis. The
resulting profiles clearly defined the role and described the
job functions (duties and tasks) of professionals in STEM
fields who are work integrated and were dependent on CT.
These profiles informed the framework defining CT from a
disciplinary perspective (Malyn-Smith et al. 2018).

A fourth profile, of the CT integration specialist (Malyn-
Smith, Lee, & Ippolito 2017), was developed in 2017. The
panel which created this profile consisted of K—12 educators
whose job was to integrate CT in K—12 curriculum within
school settings. The panel defined a CT integration specialist
as an educator who recognizes that CT is integral to learning;
integrates CT across academic disciplines and/or out-of-school
activities by establishing an inclusive culture, modeling the use
of CT, creating new CT activities or modifying existing ones,
and assessing students’ CT learning. Through this work and our
connections to the panel members, our understanding of how
CT is integrated into K—12 education and professional STEM
fields was formed and has continued to develop through our
subsequent work and as these fields evolve.

The Framework Defining Computational
Thinking from a Disciplinary Perspective

To guide the teaching and learning of CT within the STEM
disciplines, a new kind of CT framework was needed—one
that captured and clarified what students were able to do in a
STEM context using CT, and were unable to do without CT.
The workshops on “developing an interdisciplinary frame-
work for integrating computational thinking in K—12
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Science, mathematics, technology, and engineering educa-
tion” were our first step toward developing a CT integration
framework.

The 54 workshop participants comprised a balance of re-
searchers and practitioners. They represented four grade spans
(K2, 3-5, 6-8, and 9-12) and a number of disciplines, in-
cluding science, mathematics, engineering, social science,
computer science, and the humanities. In total, there were 31
researchers, 18 teachers and practitioners, 3 participant ob-
servers, and 2 staff members. Thirteen participants were from
colleges or universities, 15 from schools, 15 from nonprofits,
1 from business, and 3 from foundations, including NSF.
Others were guests. The development of a framework for
CT from a disciplinary perspective was guided by some of
the foremost CT thought leaders in the United States, includ-
ing Irene Lee of Massachusetts Institute of Technology,
Shuchi Grover, Fred Martin of University of Massachusetts/
Lowell and CSTA, and Michael Evans of North Carolina State
University.

Educators, researchers and practitioners across K—12 grade
levels shared curricular lessons and activities that illustrated
CT in action in classrooms. Together, the group explored these
examples and found that a number of common “CT integra-
tion elements” emerged that forged connections between these
CT activities and the powerful practices used by professionals
in CT-integrated STEM fields. Participants were then asked to
provide additional examples of CT integration by grade level
and discipline and how their lesson or activity aligned with
CTIEs. These examples were subsequently reviewed and
discussed within the emerging framework of common CT
integration elements.

Sixty-one descriptions of CT integration activities were
collected and refined by the participants during the work-
shops. Each activity was described in a paragraph and then
annotated by the submitter with (a) an identification of the CT
involved in the activity, (b) how CT enhanced the disciplinary
learning, and, if relevant, (c) how the disciplinary learning
illuminated CT.

The resulting framework (Malyn-Smith et al. 2018) lists
five CT integration elements (CTIEs) that span the profession-
aluses of CT in STEM fields and can be integrated into K—12
STEM education:

e Understanding complex systems. Modeling how inter-
actions of many individuals or components in a system
lead to aggregate-level emergent patterns is difficult to
do without CT, as complex systems are often hard to pre-
dict, due to having a multitude of interrelated factors and
levels. Indeed, our understanding of complex adaptive
systems prior to the advent of computational tools for
modeling these systems was limited. Modeling the rules
governing such systems, then simulating a system’s
change over time and gathering real-time feedback in the



J Sci Educ Technol (2020) 29:9-18

"

form of simulations help scientists understand the dynam-
ics of complex systems. In K—12 education, computer
modeling and simulation of complex systems offers stu-
dents a way to see and test their hypotheses about the
generators of pheonomena, and visualize how systems
behave under different circumstances and with different
inputs (Lee and Martin 2016). Students are able to pose
“what if?” questions and conduct scientific experiments to
seek answers.

* Innovating with computational representations. The
design and development of innovations is made pos-
sible through CT. New ideas, conceptualizations,
representations, and processes can be thought of
and developed as computations. For example, think-
ing of the brain as a signal processor and creating
neural networks as artificial brains has led to ad-
vances in artificial intelligence and cognitive sci-
ence. In K—12 settings, educators can encourage stu-
dents to think of processes as computations that can
be combined and/or reordered to produce different
outcomes.

* Designing solutions thatleverage computational power
and resources. Scientists working with large data sets or
on computationally intensive calculations design solutions
that leverage the efficient use of resources and computa-
tional power to optimize their time. In some cases, distal
collaborators can pool and share computational resources;
in other cases, colocated collaborators can access distrib-
uted resources to achieve their goal. Some speedups are
achieved by decomposing data sets and/or processes to
run in parallel. In K—12 settings, educators can challenge
students to think about how they would solve a problem
differently if the input set was larger in size. For example,
rather than sorting 10 items, how would students go about
sorting 10,000 items?

+ Engaging in collective sense-making around data. Data
sets can be amassed through crowd-sourcing or collection
by multiple individuals or sensors. These data can then be
analyzed to uncover patterns. Visualization of multidi-
mensional data enables students to see patterns that might
not otherwise be apparent. In K—12 settings, teachers can
ask small groups of students to run simulations on a subset
of'the inputs, and then share their output data and analyses.
Gathering and analyzing the combined data illustrates
how each part of the data set contributes to an understand-
ing of the whole.

*  Understanding potential consequences of actions.
Scientists envision the future through simulation and use
machine learning to make predictions. Using parameter
sweeping, the space of all possible combinations of inputs
can be tested to see the variety and probability of out-
comes. In K—-12 classrooms, students can learn how
cause-and-effect relationships can be used to predict

outcomes. Students can also begin to understand the space
of inputs created by parameterizing models.

These elements are foundational to gaining new under-
standing and developing processes that enabled innovation
and scientific discovery in these new fields (see Fig. 1).

Notably, the CTIEs go beyond the mechanics of learning to
program a computer. They form a bridge between CT as it has
traditionally integrated into K—12 classrooms and professional
practices in CT-integrated STEM fields.

CT Learning Progressions Aligned to the CTIEs

To better understand if and how existing CT integration activ-
ities in grades K—12 prepared students for the work described
in the framework, we conducted three analyses of these activ-
ities. In the first analysis, to identify promising CT integrations
and any existing gaps, the activities were sorted and arranged
in a matrix, with grade band along the vertical axis and the
primary CT component addressed (using the five components
of the Massachusetts Digital Literacy and Computer Science
[MA DLCS] Standards ([Massachusetts Department of
Elementary and Secondary Education (MA DESE) 2019])
along the horizontal axis (see Fig. 2).

Further annotation (horizontal bars) was added to indicate
when an activity spanned several CT areas, and vertical loz-
enges were used to indicate potential progressions comprising
multiple activities. These progressions were not inherent in the
activity descriptions but were drawn after the activities were
arranged to suggest potential linkages between activities. This
landscape view was intended to expose gaps and potential
links between activities that could form the basis for progres-
sions in the sample of activities and potential progressions
built out of existing activities.

A second analysis aimed to assess if when and how various
activities reached the five CTIEs. Each activity was also
assessed for its coherence with the five CTIEs.

Activities were arranged by grade level within each DLCS
component: abstraction, algorithms, programming and soft-
ware development, data collection and analysis, and modeling
and simulation. Our findings, arranged by the primary MA
DLCS CT component addressed, are described below.

Abstraction

The MA DLCS defines abstraction as “a process of reducing
complexity by focusing on the main idea. By hiding details
irrelevant to the question at hand and bringing together related
and useful details, abstraction reduces complexity and allows
one to focus on the problem” (MA DESE 2019, p. 16). As the
grade level increased in K—12 settings, abstraction progressed
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When the CT skills below are understood/mastered, one has (some of)
the necessary computational basis to formulate problems and their
solutions so their solutions can be carried out by a computational agent.

CT skills (
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Fig. 1 CTIEs as a bridge between traditional CT integration in K—12 education and CT as a powerful practice used in CT-integrated STEM fields

from “What is an abstraction?” to identifying and using ab- lettter patterns in words and movement patterns in dances.
stractions and then creating abstractions. Abstraction was also taught through representing fellow stu-

In grades K-2, students learned about abstraction by iden- dents by their attributes, such as eye color, hairstyle, and
tifying and matching patterns. Activities included finding  height. These representations were then connected to data
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Fig. 2 CT integration in K—12: samples from the EDC CT integration workshop
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studies by having students count and analyze the number of
classmates who had each characteristic.

In grades 3-5, abstraction was used to answer the question
“What key features do I need to include?” in a representation
of a story, artistic creation, or building, presaging the use of
abstraction in developing computer models. In middle school,
examples of how abstraction was taught were somewhat lim-
ited. Activities ranged from identifying patterns in poetry to
representing probablistic outcomes of reproduction via
Punnett squares. Seventh and eighth graders were engaged
in involved moving through a series of representations
stressing the utility of models at varying levels of abstraction.
Students in grades 9-12 combined engineering design and
representation in which they were tasked with drawing a cir-
cuit diagram for the indicator. Students traded their diagrams
with another group and then had to recreate the indicator using
only the diagram.

Abstraction extends up to innovating with computational
representations. Three activities in this grouping lend them-
selves to moving from abstraction to innovating with repre-
sentations as seen in the practices of STEM professionals:

+ The Willis Tower activity required students to decide on
and then develop the language primitives or basic set of
commands that a robot would need to construct the Willis
Tower as a set of layers. This provided students with the
opportunity to create and refine a reusable set of moves
that can be used to encode a building.

» Creation of decision trees provided high school students
an opportunity to develop innovative representations as
they developed classification schemes for objects based
on key characteristics. The path taken to the item from
the root to a leaf node could then become the shorthand
representation of the item.

* The creation of an algebraic function as an object to rep-
resent a process, pattern, or phenomenon is key to the
work of STEM professionals.

Gap analysis: Only a quarter of the examples of abstraction
provided K—12 students with the opportunity to gemerate new
representations rather than simply using provided
representations.

Based on this finding, we make the following suggestions
on moving from abstraction to innovating with representations
in classroom activities:

» Link abstraction explicitly to condensed representations
that a computer could use to process operations on a set.
For example, human visual systems are capable of differ-
entiating between 6 million colors. In computer systems,
color is commonly represented by bytes in RGB (red—
green—blue) that enables a compact digital representation
of those colors.

* Focus attention on developing and assessing representa-
tions that can be encoded digitally. Compare and contrast
alternate representations when possible.

Highlight abstraction in the context of modeling and sim-
ulation by identifying which entities were chosen to be includ-
ed in a model and which were left out.

Algorithms

In K-2, algorithms were introduced as a sequence of instruc-
tions for completing a task. Initially, single instructions are
given to update from the current state (e.g., position in a maze)
to the next state. As students’ age and sophistication advance,
longer sequences of instructions were developed before “run-
ning and checking” the algorithm for correctness. Across
grades K—6, the addition of algorithmically driven robot
movement was used to reinforce content learning. For exam-
ple, on a mat made up of alphabet tiles, the robot could be
instructed to follow a path that connects life stages of a but-
terfly in order. In these activities, the robots were extraneous to
the primary content area learning objectives but may have
reinforced a progression or process.

In grades 3-5, students were tasked with the decomposition
of objects, either LEGO brick constructions or famous build-
ings, prior to developing algorithms to build the target struc-
ture. In middle school, the concept of an algorithm as a set of
instructions to perform a task was reinforced by eliciting al-
gorithms for everyday classroom routines. Students also de-
veloped and used algorithms to construct animations. Students
in a math class used interpolation to position characters at
intermediary positions between the starting and ending anima-
tion frames. Scientific reasoning and argumentation from ev-
idence were reinforced by encoding warrants as if-then state-
ments, such as “If _ happens, then  know that " or “If
_ happens, then I know that my hypothesis was correct.”
Program logic, internal to an algorithm, was introduced to
middle school students who created flowcharts of a mathemat-
ical game for learning about divisors and multiples. In a high
school activity, the issue of scale (or processing at scale) was
addressed in an engineering activity in which students devel-
oped parallel processing algorithms to mass-produce a LEGO
brick construction. Students conducted experiments with dif-
ferent pipelining and parallelization schemes to determine
which would be optimal under certain constraints.

Gap Analysis: In terms of moving from algorithms to de-
signing solutions that leverage computational power and re-
sources, only one activity (at the high school level) moved
students toward thinking of algorithms for more than one pro-
cessor. This type of algorithmic thinking and optimization is
critical in the work of STEM professionals who use vast com-
puting resources.
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Based on this finding, we make the following suggestions
on moving from algorithms to leveraging computational pow-
er and resources in classroom activities:

* Emphasize that the benefit of computational power is the
processing speed and capability. With this greater speed
and capability, one can test multiple solutions quickly,
search parameter spaces to find best solutions, and process
large quantities of data to inform decision making.

* Provide real-world examples from CT-integrated fields,
such as modeling of weather systems where the increased
capabilities enable longer-term forecasts. Additionally,
multiple models can be executed in parallel to produce
landscapes of potential outcomes.

* Minimize engaging students in creating algorithms that
simply reinforce content and have no alignment with the
use of CT in integrated fields.

* Provide age-appropriate versions of professional high-
performance computing practices such as task decompo-
sition or domain decomposition. One way to accomplish
this is to have students play the role of processors and
develop strategies to carry out processes in parallel.

Programming and Software Development

In grades K—2, programming and software development be-
gan with block-based languages in which students linked
blocks to create a program. Several examples were situated
in everyday math activities that students can automate such as
money exchanging and number line traversal. In grades 3-5,
programming activities included making Scratch animations
to reinforce content learning, programming a mechanism in a
makerspace context, and programming clock hands in a math
context. At the middle school level, programming to create
Scratch animations and/or games was common theme, but
the degree to which these activities included abstraction var-
ied. At the high school level, an activity featured designing
and building an automated device to count paperclips.

Gap Analysis: The activities presented engaged students in
using arithmetic operators, conditional, and looping, and cre-
ating, testing, and modifying a simple program. They did not
extend students’ work to selecting a “best” algorithm based on
a given criteria or using functions to hide details. No evidence
was found of students being taught to use a software develop-
ment process that leads to a minimal viable product, selecting
appropriate data structures, and analyzing tradeoffs among
multiple approaches.

Both algorithms and programming lead up to the ability to
design solutions that leverage computational power and re-
sources at scale. There is a need for students to think about
and develop automations beyond a single computer as the
processor and to consider sharing and allocating resources to
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complete a large task—all of which are important precursors
to the professional tasks of using the cloud, networked re-
sources, and parallel processors. The issue of scale (process-
ing at scale) is not often addressed in K—12, though it is critical
in the work of STEM professionals who use computing
resources.

Based on the findings, we make the following suggestions
on moving from programming and software development to
leveraging computational power and resources in classroom
activities:

» Extend students’ work in programming to finding or
selecting the “best” algorithm based on a given critera.

+ Introduce functions as a way to encapsulate task-specific
solutions and hide detail in programs.

» Consider solutions that leverage more than one processor.

Data Collection and Analysis

In grades K-2, data collection and analysis took the form of
categorizing objects and sorting them into groups, using the
pre-defined categories. In some cases, students also needed to
be able to explain the reasoning for the groupings they created.
In a math context, tally marks were used to track collected
items in categories; the tally marks were then counted to pro-
duce a total for a given category. In grades 3-5, various
project-based learning activities necessitated the collection
and visualization of data. In these projects, developing solu-
tions to the open-ended problems often entailed collecting,
monitoring, and analyzing data. An activity in grades 5-6
focused on multiple sets of experimental data to be generated,
collected, and analyzed, using simulations. For a given re-
search question, students worked in small groups to design
one run of the experiment, identifying the experiment setting,
steps, and data to be gathered. As a class, students reviewed
and refined the design and agreed on the experiment settings
for which each group had responsibility. This method of di-
viding a multiple-dimension parameter sweep and assigning
different simulations to different groups is a common way to
mimic multiprocessor simulation experiments. Later, the
teacher gave a copy of the output data as a spreadsheet to
students for additional analyses that included reorganization,
formatting, and sorting to reveal patterns. Formulas and charts
were also introduced. These practices mimic the professional
practices of crowdsourcing and engaging in collective sense-
making around data.

Students in grades 6-8 collected real-world data in a vari-
ety of ways. Data collection methods included using data log-
gers on field trips; using probeware to collect data while run-
ning classroom experiments, and conducting snail and slug
counts as part of a citizen science project. Additionally, stu-
dents used readily available data sets found online, such as
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penguin population data from Antarctica. These data were
subsequently cleaned, organized, and analyzed. In citizen sci-
ence projects, collecting local data supported discussion about
both the advantages of this type of data (e.g., having many
people collect data allows you to get data from a larger area)
and the disadvantages (e.g., an absence of data from a partic-
ular location could mean that no one made observations at that
location).

At the high school level, data collection and analysis
were integrated into a variety of content areas. In one
mathematics class, a sampling device (a calculator, com-
puter, etc.) was used to conduct thousands of iterations of
data sampling based on a particular distribution. Students
graphed the outcomes at various sample sizes and ob-
served how the plotted outcomes approached the shape
of the distribution. In a high school science context, data
collection and analysis were used to identify which every-
day processes could be automated. Students logged their
activity over a 24-h period then searched for patterns in
the data and discussed which activities could be automat-
ed or enhanced through computation. Other sources of
data used in high school data analysis activities included
DNA substrand data, sensor data, and historical texts.

One of the most innovative CT integration examples came
from a combined social studies and ELA context. Given ac-
cess to 73 Federalist Papers (essays) and the attribution of 61
of them to one of three authors, students were tasked with
inferring the authors of the remaining papers. Using collabo-
rative sampling and analysis of word size, students were able
to infer the specific authors of the remaining 12. This activity
was designed for an AP Statistics course and links to the
professional practices of engaging in collective sense-
making around data and predicting or making inferences from
data.

Gap Analysis: Many rich examples of activities incorporat-
ing data collection and analysis were presented in the the K—
12 grade bands. In terms of moving from data collection and
analysis to collective sense-making, several activities pooled
data from different collectors to perform analyses of the com-
bined data set thus elucidating the impacts of sample size and
sampling variability.

Based on these findings, we make the following sugges-
tions on moving from data collection and analysis to collective
sense-making and understanding consequences and making
predictions in classroom activities:

* Consider the impact of sample size, variability, and miss-
ing data on analyses and findings.

*  When appropriate, discuss the data representation and for-
mats used to prepare the data for processing by a compu-
tational agent.

» Use project-based learning scenarios to frame data collec-
tion and analysis.

* Provide opportunities for students to make inferences
from data sets through data analytics.

Modeling and Simulation

Modeling and simulation activities took many different forms
across K—12 education. In the K—2 activities contributed, stu-
dents learned about modeling by creating physical models to
be used as a test beds for running simulation experiments, but
the link to computer models and simulation was absent. In
grades 3-5, stronger links between a physical or participatory
simulation and an analogous computer model were seen. In a
math activity, students engaged in drawing diagrams to break
down math problems (decomposition), then used an interac-
tive computer-based math simulation to help explain an algo-
rithm to solve an algebra problem through balancing equa-
tions. Project-based learning activities that integrated CT
through abstraction (answering “What are the key elements
to include?”’) were seen in grade 4, but students were generally
not expected to follow the abstraction exercises with automa-
tion or programming to create a working model and run sim-
ulations. Other activities featured readily available simulations
used by students to run experiments, generate data to be ana-
lyzed, or “get a sense of” a scientific process through an en-
gaging interactive visualization.

In the middle and high school grade bands, the use—modi-
fy—create trajectory (Lee et al. 2011; GUTS, 2014) was a
pedagogical tool to progressively engage students in deeper
CT. In these lessons, students were tasked with using,
decoding, and then modifying a computer model (through
programming) to answer a question about a system’s behavior
under different circumstances or reflect a local condition.
Subsequently, parameter sweeping experiments were con-
ducted using the model as an experimental test bed; data from
the experiments were collected and analyzed in order to assess
the impact of the modifications. The use of CT—in particular,
automation—allowed multiple runs to be conducted.
Subsequent analysis of the data generated by the simulation
enabled students to test their hypotheses about the generators
of the system’s behavior.

Gap Analysis: Overall, modeling and simulation activities
that follow the use-modify—create trajectory mimic profes-
sional practice in STEM fields and, together with data collec-
tion and analysis, link to the professional practices of design-
ing solutions that leverage computational power and re-
sources, engaging in collective sense-making around data, un-
derstanding potential consequences of actions, and under-
standing complex systems.

Based on these findings, we offer the following sugges-
tions on moving from modeling and simulation to understand-
ing complex systems in classroom activities:

@ Springer



J Sci Educ Technol (2020) 29:9-18

» Use computer modeling and simulation tools that enable
students to “look under the hood” and decode the models
they use to run simulations. Avoid “black box” simula-
tions that cannot be inspected and evaluated.

* Discuss the abstractions and assumptions embedded in
models.

* Run parameter sweeping experiments to understand the
behavior of the system under different conditions. Data
from these experiments can be gathered in a spreadsheet
and used to generate a landscape of outcomes.

» Use a jigsaw method to distribute parameter sweeping
experiments among student pairs acting as processors.

» Investigate sources of randomness in models of complex
systems and discuss the impact of that randomness on the
simulation outcomes.

* Discuss the need to run multiple trials at each parameter
setting during experimentation due to randomness factors
in the model’s behavior.

* Consider which behaviors are encoded in the model and
which are emergent (generated through the interaction of
the entities in the model but not specifically programmed).

CT Learning Progressions that Combine
and Connect DLCS Components

Several interesting examples of linked activities that cut across
DLCS components were seen. (These progressions are
displayed as horizontal bars in Fig. 2.) One example was the
fifth grade “Willis Tower” lesson in which students were
tasked with programming a robot to build a tower (the
DLCS component programming and software development).
This required students to develop a language of primitives that
would be necessary to complete this task (the DLCS compo-
nent abstraction, and the CTIE innovating with computational
representations). The lesson concluded with having students
build a volume calculator (the DLCS components abstraction,
algorithms, and programming and software development).

A second example was the high school algebra lesson in
which students defined functions (the DLCS component ab-
straction), designed algorithms that encapsulated the functions
(the DLCS component algorithms), and then built computer
programs that executed the functions (the DLCS component
programming and software development).

A third example was a population dynamics lesson; stu-
dents engaged in a participatory simulation in which they
acted out the part of a species in an ecosystem, based on the
rules of interaction, and tracked their population size over
time. They viewed a computer model of a similar ecosystem
and saw patterns of population dynamics over many genera-
tions (the DLCS component modeling and simulation, and the
CTIE engaging in collective sense-making around data). This
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activity could be followed by students modifying and creating
their own models of ecosystems to uncover dynamics in other
ecosystems (the DLCS components abstraction, algorithms,
programming and software development, modeling and sim-
ulation, and data collection and analysis, and the CTIE under-
standing complex systems).

A fourth example was a “water as a shared resource” mod-
ule, in which students participated in a participatory simula-
tion of sharing (or not) a finite water source among local
stakeholders with different water needs. In each round of the
“game,” students collected data on how much water they took
and if they had enough to meet their needs (the DLCS com-
ponent data collection and analysis, and the CTIE engaging in
collective sense-making around data). Discussion ensued
about the “tragedy of the commons” phenomenon (the CTIE
understanding complex systems), and students developed
strategies to attempt to share the water equitably. This activity
was followed by using the model to collect data (the DLCS
components modeling and simulation and data collection and
analysis, and the CTIE understanding complex systems) and
examining a model of a single in-ground water pump fed by
an aquifer. Students were tasked with modifying the model
(the DLCS components abstraction, algorithms, and program-
ming and software development) to more closely match the
scenario with multiple stakeholders (i.e., water users). The
new model was then used as an experimental test bed to gain
an understanding of the ramifications of multiple users of the
same aquifer (the DLCS components modeling and simula-
tion and data collection and analysis, and the CTIEs engaging
in collective sensemaking around data and understanding
complex systems). In their final activity, students designed
and built innovative storage systems for community water.

Presaging the Future

“Developing a framework for computational thinking from a
disciplinary perspective” (Malyn-Smith et al. 2018) presented
a new framework that aimed to bridge between the CT prac-
tices used when learning in STEM content and the profession-
al practices of those in CT-integrated STEM fields. In partic-
ular, the framework identified five CT elements that reflect the
work of CT-enabled STEM professionals and can be integrat-
ed into schools—the CTIEs further explored in this paper.

We also found that it is possible to map from the DLCS
components to the CTIEs in a number of meaningful ways.
For example:

* Gaining experience with abstraction and understanding
representations can be expanded to developing more pow-
erful abstractions and innovating with representations.

* Developing and analyzing algorithms and then instantiat-
ing them as computer programs can be extended to an
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understanding of how tasks can be decomposed and then
parallelized for running on multiprocessors.

* Collecting data and analyzing small local data sets can be
expanded to crowdsourcing data (either collecting data
from different regions or generating data by running sim-
ulations with different inputs or variable settings) and col-
lective sense-making as the data are pooled, helping stu-
dents understand a system on a larger scale.

* Modeling and simulation experiences along a single vari-
able or a set of variables can be extended to running pa-
rameter sweeping experiments to gain an understanding of
systems behavior as a landscape of potential outcomes.

* Modeling and simulation experiences in which students
are asked to modify a model to reflect a change in a sys-
tem, run the simulation to generate data, and analyze the
data to see the consequence of that change help students
more deeply understand the potential consequences of
changes to a complex system.

The new CT integration framework and the results of this
analysis raise new questions around where we should focus
our teaching, learning, and assessment efforts as we help stu-
dents move along a CT progression in K—12:

* Recognizing that enacting age-appropriate versions of
professional practices may not be a reasonable target for
students at younger ages, what is the appropriate grade
band to start introducing these practices?

» If our goal to help students bridge school to work at the
human technology frontie—what curriculum changes
need to be made to get there most effectively and
efficiently?

* How can our existing assessment tools be revised to ade-
quately capture students’ learning of concepts and prac-
tices in CT-integrated STEM fields?

*  How do we best provide educators with insights into the
work of professionals in CT-integrated STEM fields?

* As technological advances associated with artificial intel-
ligence (Al) and machine learning (ML) impact both our
daily lives and nearly all STEM fields, how can CT and
CT integration best address the burgeoning need to pre-
pare students for work in Al and ML?

* Asliterally all industry sectors are impacted by technology
innovations, is the novel application of computing tech-
nologies to STEM fields a new critical skill needed for
future career success?

These questions point to the importance of ongoing re-
search on computational thinking and the integration of CT
in STEM education.
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