
Exploring Force and Motion Concepts in Middle Grades Using
Computational Modeling: a Classroom Intervention Study

Osman Aksit1 & Eric N. Wiebe2

Springer Nature B.V. 2019

Abstract
Computational thinking (CT) and modeling are authentic practices that scientists and engineers use frequently in their daily work.
Advances in computing technologies have further emphasized the centrality of modeling in science by making computationally
enabled model use and construction more accessible to scientists. As such, it is important for all students to get exposed to these
practices in K-12 science classrooms. This study investigated how a week-long intervention in a regular middle school science
classroom that introduced CT and simulation-based model building through block-based programming influenced students’
learning of CT and force and motion concepts. Eighty-two seventh-grade students from a public middle school participated in
the study. Quantitative data sources included pre- and post-assessments of students’ understanding of force and motion concepts
and CT abilities. Qualitative data sources included classroom observation notes, student interviews, and students’ reflection
statements. During the intervention, students were introduced to CTusing block-based programming and engaged in constructing
simulation-based computational models of physical phenomena. The findings of the study indicated that engaging in building
computational models resulted in significant conceptual learning gains for the sample of this study. The affordances of the
dynamic nature of computational models let students both observe and interact with the target phenomenon in real time while
the generative dimension of model construction promoted a rich classroom discourse facilitating conceptual learning. This study
contributes to the nascent literature on integrating CT into K-12 science curricula by emphasizing the affordances and generative
dimension of model construction through block-based programming.

Keywords Computational thinking .Modeling . Block-based programming . Force andmotion .Middle school . Science

Introduction

Computational thinking (CT) has become an increasingly im-
portant skill and core competency in all science, technology,
engineering, and mathematics (STEM) fields (National
Research Council [NRC] 2010, 2011). As such, the Next
Generation Science Standards (NGSS) identified CT as one of
the eight science and engineering key practices that are essential
for all K-12 students to engage in as part of their science learning

in the classroom (NGSS Lead States 2013). Although there is
debate in the scholarly community on the definition of CT and
what specific concepts, abilities, and practices CT involves
(Grover and Pea 2013), researchers and policymakers have ar-
gued that CT has become an indispensable competency that all
students must acquire as part of their K-12 education (Barr and
Stephenson 2011; K-12 Computer Science [CS] Framework
Steering Committee 2016; NRC 2012).

Despite the apparent consensus on CT as a key set of con-
cepts and practices central to all STEM disciplines, research
suggests that CT has not been integrated well into K-12 sci-
ence curricula nor addressed properly in science classrooms
(Sengupta et al. 2013; Voogt et al. 2015;Wilensky et al. 2014).
Existing research efforts have mostly focused on developing
CT competencies in open-ended contexts including game de-
sign and storytelling with programming, or in informal set-
tings through extracurricular and after-school activities (e.g.,
Bers 2010; Bers et al. 2014; Denner et al. 2012). New lines of
research have demonstrated that model-based pedagogy can
be used as an effective medium to introduce and facilitate CT

* Osman Aksit
osmanaksit@gmail.com

Eric N. Wiebe
wiebe@ncsu.edu

1 Dhahran Ahliyya Schools, PO Box 39333, Dhahran 31942, Saudi
Arabia

2 Department of STEM Education, North Carolina State University,
Box 7801, 326 Poe Hall, Raleigh, NC 27695, USA

https://doi.org/10.1007/s10956-019-09800-z

Published online: 28 November 2019

Journal of Science Education and Technology (2020) 29:65–82

http://crossmark.crossref.org/dialog/?doi=10.1007/s10956-019-09800-z&domain=pdf
http://orcid.org/0000-0001-7568-6834
http://orcid.org/0000-0002-5920-5225
mailto:osmanaksit@gmail.com

development in addition to fostering science learning in for-
mal classroom settings (Basu et al. 2016; Hambrusch et al.
2009; Sengupta et al. 2013; Weintrop et al. 2016; Wilensky
et al. 2014).

The use of programming languages as a modeling tool for
the creation of simulations for the exploration of science con-
cepts has been demonstrated as a powerful vehicle for learn-
ing, especially in the physical sciences (diSessa 2000; Sherin
et al. 1993; Wilensky and Resnick 1999). However, learning
the syntax and semantics of a text-based programming lan-
guage is commonly one of the most frustrating challenges for
new learners (Guzdial 2004), especially when it is happening
simultaneously with grappling with new science concepts.
Block-based programming is a relatively new paradigm com-
pared to the traditional text-based programming and was spe-
cifically designed to introduce programming to beginners.
The embedded scaffoldings in block-based environments
serve to reduce cognitive overload that would result from hav-
ing to memorize and recall the syntax of programming lan-
guage and enable learner to focus on constructing algorithms
and practicing CT (Lye and Koh 2014).

Thus, the emergence of block-based programming has led
to a renewed interest in the still understudied set of ideas
around using CT-focused scientific modeling activities as a
vehicle to directly facilitate and foster both science learning
and CT development in formal classroom settings (Grover and
Pea 2013; Basu et al. 2016). This is especially true for younger
aged children since the older computational modeling envi-
ronments required the learning of more complex text-based
programming languages. Parallel with the renewed interest in
computational modeling in science has been the development
of instruments to measure the relatively new construct of CT
(e.g., Román-González et al. 2016). These instruments pro-
vide a relatively direct means for researchers to explore the
efficacy of block-based computational modeling to develop
CT.

In this study, we designed and conducted a week-long
classroom intervention in a public middle school where stu-
dents engaged in learning about block-based programming
and constructed computational models of physical phenome-
na in the context of force and motion. We report our findings
regarding students’ gains on CT and force and motion con-
cepts. The lessons learned from the design of the learning
activities and the actual classroom implementation are also
discussed to inform future research.

Literature Review

CT in K-12 Education

While there has been an ongoing discussion in the research
community regarding the definition of CT (Grover and Pea

2013) and its relationship with other types of analytical com-
petencies such as mathematical thinking (Sneider et al. 2014),
this study conceptualized CT as the “thought processes in-
volved in formulating problems so their solutions can be rep-
resented as computational steps and algorithms” (Aho 2012,
p. 832). CT requires an understanding of the potential and
limitations of computers, approaching and formulating prob-
lems that can be addressed by computing, and developing
abstractions and algorithms that can be carried out by com-
puters (K-12 CS Framework Steering Committee, 2016). Lu
and Fletcher (2009) argued that CT is not about thinking like a
computer, but it is about “developing the full set of mental
tools necessary to effectively use computing to solve complex
human problems” (p. 260).

An important line of work to develop a CT assessment
independent both of specific programming languages and
curricular contexts has been led by Román-González et al.
(2016, 2018). They chose to take a psychometric ap-
proach rooted in the CHC model of intelligence
(McGrew, 2009). Román-González et al. (2016) has
conjectured a relationship between CT knowledge and
ability constructs such as abstraction, pattern generaliza-
tion, algorithmic thinking, and conditional logic, and the
CHC constructs of fluid intelligence, visual processing,
and working memory. The design of these items was in-
formed both by prior assessments developed around CS-
centric programming tasks as well as other efforts devel-
oping programming-independent assessments (Lockwood
and Mooney 2018). This assessment, the Computational
Thinking Test (CTt), provides a decontextualized assess-
ment of CT based not on specific programming knowl-
edge, but of constructs grounded in the CHC model of
cognitive abilities. An open question with this new assess-
ment is its level of diagnostic sensitivity to short-term
interventions based around computational modeling.

To help guide the development of curricula and curricula-
based assessments of CT, the Computer Science Teachers
Association (CSTA) and the International Society for
Technology in Education (ISTE) collaborated to form a
steering committee and identify CT concepts and practices in
the context of K-12 education (Barr and Stephenson 2011).
The committee identified nine essential concepts and practices
pertaining to CT, which include “data collection, data analysis,
data representation, problem decomposition, abstraction, al-
gorithms, automation, parallelization, and simulation” (Barr
and Stephenson 2011). The committee also provided exam-
ples of pedagogical strategies for embedding CT practices
across the K-12 subject areas including science, mathematics,
social studies, and language arts. For example, the practice of
data analysis may be used in statistically analyzing data col-
lected from an experiment in a science classroom and in dis-
covering patterns for different sentence types in a language art
classroom (Barr and Stephenson 2011).

J Sci Educ Technol (2020) 29:65–8266

The development of CT curricular frameworks has helped
guide the beginning of new line of research into the efficacy of
computer programming to develop CTabilities in formal K-12
settings (Voogt et al. 2015). Likewise, these frameworks have
also opened a new line of research into optimal instructional
strategies for helping K-12 students engage in CT as part of
their science learning in formal classroom settings (Sengupta
et al. 2013). Combined with new tools for measuring CT
development at a more general, cognitive level, there is now
the opportunity to look at how CT-focused computational
modeling activities in science classrooms might forward both
science learning and CT abilities.

Learning About Force and Motion Concepts

The concept of force is one of the core concepts in physics,
which is used to describe the behavior of objects in electro-
magnetic and gravitational fields. A conceptual understanding
of force is important for describing how interaction between
objects leads to a change in their motion (NRC 2012).
Students’ conceptual understanding of force and motion con-
cepts has been extensively studied in the literature (e.g.,
Alonzo and Steedle 2009; Eryilmaz 2002; Hestenes et al.
1992; Kozhevnikov and Thornton 2006; Reiner et al. 2000;
Yuruk et al. 2009). Previous research has repeatedly showed
that students from primary school to college hold several mis-
conceptions about force and motion concepts, which are quite
robust and persistent (Eryilmaz 2002; Neumann et al. 2013).
For example, students tend to think that there should be a force
acting on an object if the object is moving (Halloun and
Hestenes 1985), or that force is property of a single object
rather than a feature of the interaction between two objects
(Reiner et al. 2000). Some students confound acceleration
with velocity, thinking that when two objects have the same
velocity they should have the same acceleration (Eryilmaz
2002). Students often have difficulty conceptualizing a fric-
tionless environment and think that a continuously applied
force is necessary for the motion of an object at constant
velocity even on a frictionless medium (Halloun and
Hestenes 1985). Some students think that velocity of an object
is directly proportional to the applied force; therefore, constant
force means constant velocity (Sequeira and Leite 1991).
Another common misconception among students is that they
believe heavier objects fall faster in free fall, which is related
to students’ difficulty visualizing a frictionless medium
(Alonzo and Steedle 2009; Yuruk et al. 2009). Besides, stu-
dents’ interpretation and use of the scientific terms may not
correspond to their actual scientific meaning. For instance, in
their study with primary and middle school students,
Ioannides and Vosniadou (2002) identified four well-defined
and internally consistent interpretation of the term force, and
none of these interpretations aligned with its actual scientific
meaning. The researchers also found that students’

understanding of the term force varied by age, with younger
students considered it as an internal property of all objects
while older students interpreted the term force as “an internal
property of objects that move, as the result of an agent pushing
or pulling them” (p. 2).

The deep literature base in physics conceptual understand-
ing provides guidance as to which concepts middle grade
students are likely to struggle with and insight as to what
interactive, computer-based affordances might help support
their learning. The next section will explore literature on
computer-basedmodeling and how it has been used to support
learning in this science area.

Modeling and CT

Modeling plays a central role in the conduct of scientific re-
search (Gilbert 1991; Schwarz and White 2005). Most scien-
tists spend a great deal of their time in building, testing, study-
ing, and revising models, often using computational tools.
Modeling can be defined as the practice of creating a simpli-
fied, external representation of a system to explain a scientific
concept such as the particle model of matter (Schwarz et al.
2009) and can help students link observed scientific phenom-
ena and underlying abstract conceptual underpinnings
(Harrison and Treagust 1998; Leenaars et al. 2013). A scien-
tific model can be a conceptual, mathematical, or physical
representation of physical phenomena. Models are built by
using a variety of tools such as plots, diagrams, physical struc-
tures, computer programs, and simulations (Bailer-Jones
2003). Different representational tools have different
affordances. For instance, models built through diagrams, pic-
tures, and drawings—although useful in describing the spatial
relationships between the different components of a system—
are inherently static representations that do not illustrate how
the system would behave or change over time. However,
simulation-based computer models are dynamic representa-
tions that can show how the target system or physical phe-
nomenon would behave or change under different conditions
in real time (Boulter and Buckley 2000; Delgado and Krajcik
2010). Constructing simulation-based models requires stu-
dents to articulate on their understanding of different variables
included in defining a system, and explicitly identifying the
relationships (i.e., the causal mechanisms) among these vari-
ables (de Jong and van Joolingen 1998; diSessa 2000). As
students must develop skills for constructing, interpreting,
and coordinating domain-specific representations for learning
and problem solving, they develop a broad, powerful set of
learning tools referred to as representational competence
(diSessa 2004; Wu and Puntambekar 2012). In computational
modeling activities, where students grapple with representing
scientific concepts in programming code with the goal of cre-
ating visual output representing the same concepts, there is
considerable potential for developing such meta-

J Sci Educ Technol (2020) 29:65–82 67

representational competencies (diSessa 2004; Sengupta et al.
2013).

The K-12 CS Framework (K-12 CS Framework Steering
Committee 2016), which was developed jointly by the
Computer Science Teachers Association (CSTA) and the
Association for Computing Machinery (ACM), recommends
integrating CT with curricular domains such as science and
mathematics, rather than teaching it as a separate topic in
primary and secondary schools (Tucker et al. 2011). In the
context of K-12 science education, the development of stu-
dents’ CT practices can be synergistically supported by
modeling in the science classroom (Basu et al. 2016;
Sengupta et al. 2013).

In a study targeting middle and high school students,
Sengupta et al. (2012) designed a series of simulation-based
scientific models with a visual programming environment
called ViMAP and investigated how engaging in these activ-
ities supported students’ learning of kinematics concepts.
Based on the NetLogo programming environment, it could
be considered as leveraging some of the same visual-based
scaffolding of current block-based programming environ-
ments such as Scratch (Resnick et al. 2009). The researchers
were interested in “integrating programming and computa-
tional modeling seamlessly with classroom physics instruction
in the particular domain of kinematics” (Sengupta et al. 2012,
p. 24). The results, based on observational data, indicated that
students need both teacher-led and software-embedded scaf-
folds when they engage in modeling activities using ViMAP
in the classroom. The researchers also suggested that the ac-
tivities helped students “develop new meanings and ways of
generating inscriptions, and use them to represent kinematic
phenomena in non-canonical ways” (p. 40).

Using similar tools, Basu et al. (2012) worked with a sam-
ple of sixth-grade students (N = 24) to investigate whether
engaging in modeling through a customized visual program-
ming environment helped students improve their understand-
ing of kinematics and ecology concepts. While this study did
show significant science learning gains for the partially scaf-
folding group, the researchers did not investigate how the
intervention influenced students’ CT ability. Finally, Broll
et al. (2017) demonstrated a new computational modeling
environment based on Snap!, a contemporary block-based
programming tool. Though they demonstrated the powerful,
cognitively supportive visual modeling environment well suit-
ed to explore physics phenomena, no student learning out-
comes were presented.

In summary, there has been important work emerging
building off of foundational computational modeling work,
re-envisioned for use with contemporary visual, block-based
programming environments. To date, most of the work has
been demonstration projects or focused on science learning
outcomes (e.g., Basu et al. 2012). Similarly, block-based pro-
gramming tools and new CT curricular learning frameworks

have been used to explore development of CT abilities (e.g.,
Grover et al. 2016), but little has been done to look at both
science learning and CT development in the same block-based
computational modeling environment.

Theoretical Framework

The Representational Construction Affordances (RCA)
framework (Prain and Tytler 2012) served as the theoretical
framework of this study. The RCA framework recognizes the
idea that by constructing representations, “students were pro-
ductively constrained in their reasoning by having to focus on
key aspects of the problem, select appropriate tools, and apply
relevant background knowledge to the problem.” (Prain and
Tytler 2012, p. 2756). The authors built off of the earlier work
of diSessa (2004) and others who demonstrated the impor-
tance of developing meta-representational competencies but
emphasized not only the manipulation of representations, but
also the creation of them, in particular visual representations.
Meta-representational competencies speak to the need to pro-
vide students opportunities to develop their ability to critique,
select, and create different representations that forward their
problem solutions (diSessa 2004). For example, in traditional
classroom instruction, students may be asked to use a simula-
tion representing a predator-prey model without learning how
to develop the model and construct the simulation, as well as
reflecting on the limitations posed by the simulation in
representing the scientific ideas.

In the RCA framework, Prain and Tytler (2012) identified
three interdependent dimensions, which consist of semiotic,
epistemic, and epistemological. The researchers argued that
“each dimension is linked by its focus on the way representa-
tions productively constrain meaning-making practices in sci-
ence and in science education, taking into account the inter-
play of diverse cultural and cognitive resources students use to
achieve this meaning-making.” (p. 2757). The second two
dimensions are perhaps most relevant for this work. The epi-
stemic dimension emphasizes the knowledge-building prac-
tices such as constructing models, and making, justifying,
and communicating claims based on the constructed models.
The epistemological dimension points out that students’ rea-
soning in science can be improved by the process of
constructing and interpreting their own representations. Prain
and Tytler (2012) argued that participating in activities to gen-
erate external representations in science classrooms leads to
high learning gains because building representations is not
only very engaging but also improves students’ reasoning
strategies and representational competence as well as helps
students better communicate and articulate their understand-
ing with their peers and teachers.

In introducing block-based programming as an additional
representational form, this study’s modeling practice provides
an opportunity for students to work with another

J Sci Educ Technol (2020) 29:65–8268

representational form (i.e., programming blocks) of the scien-
tific concepts (Wilkerson-Jerde et al. 2015). This additional
representational form may provide unique affordances for
conceptual interpretation for some students. Perhaps equally
important is providing the opportunity for students to develop
meta-representational competence of constructing ideas in
multiple forms (diSessa 2004) and allowing students to com-
pare and contrast the strengths of each representational
form—meta-modeling ability (Schwarz et al. 2009).

Purpose of the Study

The goal of this study was to investigate how participating in a
week-long intervention course that introduced CT practices
and simulation-based model building through a block-based
programming environment in regular middle school science
classrooms influenced seventh-grade students’ CT abilities as
well as their conceptual understanding of force and motion
concepts. Since there is a dearth of research on how to inte-
grate CT into science curricula and instruction in formal K-12
settings, the findings of this study provide insights on how
students’ CT abilities and science learning develop by engag-
ing in block-based programming and model-based pedagogy.
Specifically, this study aimed to answer the following research
questions:

1. How does building computational models of physical
phenomena through a block-based programming environ-
ment in a week-long intervention course influence middle
school students’ conceptual understanding of force and
motion concepts?

2. How does participating in a week-long intervention
course introducing CT and computational modeling
through a block-based programming environment influ-
ence middle school students’ CT abilities?

Methodology

Setting

This study took place at a public middle school in the south-
eastern USA during the spring semester of 2017. The school
was recently designated by the school district as a “magnet
school for the digital sciences” and offers elective courses on
basic computer science topics. The school was selected for
this study because of the authors’ familiarity with the school
and school district. The classroom intervention was conducted
by the first author in one of the computer labs in the school
during the regular seventh-grade science class periods (50 min
each).

Participants

A seventh-grade science teacher who was teaching five differ-
ent sections was recruited to participate in this study. The total
number of students in the teacher’s classrooms was 132 and
all students were invited to participate in the study. Eighty-two
students consented to participate. While all students attended
the classroom intervention and engaged in the learning activ-
ities, only the data from the consenting students was used in
this study. Participation to the study was completely voluntary
and had no effect on students’ school grade. Fifty-four percent
of the participating students were male (n = 44). The age of the
students ranged from 12 to 14, with an average of 12.7 (SD =
0.52). The classrooms were ethnically and racially diverse,
with 20% of the students were African-American, 21% were
Latino-Hispanic, 5% were Asian-American, 4% were Indian-
American, and the rest of the students (50%) was non-
Hispanic White. While no data was available nor was collect-
ed regarding participating students’ socioeconomic back-
grounds, about 53% of students in the school received free
or reduced lunch.

Research Design

This study employed a convergent mixed methods research
design, using a combination of quantitative and qualitative
research approaches (Creswell 2015). Figure 1 shows the de-
sign of this study, illustrating the flow of activities and proce-
dures at each stage.

Intervention

The purpose of the classroom intervention designed for this
study was to introduce seventh-grade students to CT concepts
and practices in the context of building simulation-based
models of physical phenomena through a block-based pro-
gramming environment in formal classroom settings. The in-
tervention aimed to further students’ CT abilities as well as
conceptual understanding of force and motion concepts. The
intervention was carefully designed by the first author using
their past experience as a physics teacher as well as their
background in teaching introductory-level programming.
Scratch (https://scratch.mit.edu) was chosen as the block-
based programming environment that students worked with
during the classroom intervention. Scratch was developed at
theMassachusetts Institute of Technology as a freely available
open-source software to teach computer programming
through a visual, block-based environment (Maloney et al.
2010).

The classroom intervention took five days (i.e., one class
period at each day) to complete. During the first three days of
the intervention, students learned about basic CT practices
(e.g., abstraction, algorithms) as well as the fundamental

J Sci Educ Technol (2020) 29:65–82 69

https://scratch.mit.edu

concepts in computer programming (e.g., variables, condi-
tionals, loops) using the Scratch environment. In the next
two days, students engaged in simulation-based model build-
ing activities in Scratch to demonstrate and improve their con-
ceptual understanding of force and motion concepts. It is im-
portant to note here that students formally studied force and
motion unit in the previous semester, so the purpose of the
modeling activities was to address any misconceptions stu-
dents might have had and further improve their conceptual
understanding of force and motion concepts. Table 1 shows
the contents of the learning activities covered for each day.

Figure 2 shows the screenshot of the first modeling activity
that students engaged in on day 4. In this activity, students
were asked to build a model to simulate the motion of a car
on a frictionless road with a given force and mass of the car.
Students were provided with the sprite (i.e., the car) and the
stage (i.e., the road) at the beginning of the activity to save
time, and they were asked to develop an algorithm and con-
struct the script for this model.

Figure 3 shows the screenshot of the second modeling ac-
tivity that students engaged in on day 5. In this activity, stu-
dents were asked to build a model to simulate the fall of a
basketball under the sole influence of gravitational force (i.e.,
free fall). Students were provided with the sprite (i.e., a bas-
ketball) and the stage (i.e., a background picture with a ground
represented by a black line at the bottom), and they were asked

to develop an algorithm and construct a script for this model,
just like they did in the previous day.

Data Sources

Data for this study were collected from a variety of sources
including two multiple-choice assessments, students’ written
responses to reflective statement questions, detailed classroom
observation notes, and interviews with students.

The pre- and post-test included a 28-item multiple-choice
assessment called the Computational Thinking Test (CTt;
Román-González et al. 2016) that aimed to assess students’
CT abilities and a 16-item multiple-choice assessment called
the Force and Motion Assessment (FMA; Alonzo and Steedle
2009) that aimed to assess students’ conceptual understanding
of force and motion concepts.

During the classroom intervention, students were asked to
reflect on what they learned by responding to the reflective
statement question of “What did I learn today?” at the end of
each class period before leaving the classroom.

In addition to the first author who conducted the inter-
vention, a member from the research team was always
present in the classroom and took extensive classroom
observation notes. These notes helped assess the fidelity
of the intervention, i.e., described and documented how
the learning activities went in the classroom, whether

Table 1 Computational thinking
concepts and modeling activities
covered during the intervention

Day 1 Introduction to block-based programming and Scratch user interface; problem decomposition and
creating algorithms as a set of instructions; creating and using abstractions; conditionals and
decision-making; using mathematical operators.

Day 2 Loops and repetition structures; nested loops and conditionals; using logical operators.

Day 3 Creating, using, and manipulating different types of variables; event-driven programming with
broadcasting in Scratch.

Day 4 Model building activity 1—building a model that will simulate the motion of a car on a frictionless
road with input variables of force applied on the car and mass of the car, and with output variables
of velocity and acceleration of the car.

Day 5 Model building activity 2—building a model that will simulate the fall of a basketball in a frictionless
medium (i.e., free fall) with input variables of gravitational acceleration and mass of the
basketball, and with output variables of velocity and weight of the basketball.

Fig. 1 Research design of the study

J Sci Educ Technol (2020) 29:65–8270

anything was too difficult or too simple for students, what
kind of challenges students faced during the activities.
The classroom observation notes also helped the authors
understand students’ engagement in the learning
activities.

After the completion of the classroom intervention, the
first author conducted structured interviews with a subset
of consenting students (n = 12). Participation to the inter-
view was voluntary and students who volunteered received
a $10 gift card. Seven of the volunteering students were

male and five of them were female. The sample was also
ethnically diverse: seven of them were non-Hispanic
White, three were African-American, and two were
Latino-Hispanic. During the interviews, the researcher
asked questions about the computer models students had
built to further explore their conceptual understanding of
force and motion concepts as well as their understanding of
CT concepts and practices introduced during the classroom
intervention. The researcher audio-recorded the interviews
and transcribed them verbatim for analysis.

Fig. 3 Screenshot of the second modeling activity

Fig. 2 Screenshot of the first modeling activity

J Sci Educ Technol (2020) 29:65–82 71

Data Analysis

The collected data was analyzed using both quantitative
and qualitative methods. Winsteps 4.0 (Linacre 2018)
software was used to conduct Rasch analysis (Rasch
1980) and generate log odd units (logit) for students’
scores for the multiple-choice assessments on the pre-
and post-test. Rasch analysis takes into account the diffi-
culty of the assessment items when generating student
scores in terms of logits, which provides a more accurate
measurement of the latent trait (e.g., conceptual under-
standing) (Boone et al. 2011). IBM SPSS Statistics 23
was used to run the descriptive statistics and the statistical
tests. Only the student scores on the Rasch scale were
used for the statistical data analysis. Internal consistency
of the multiple-choice assessments and the survey items
was calculated using Cronbach’s alpha (Cronbach 1951).
Descriptive statistics for students’ raw scores as well as
their scores on the Rasch scale (logits) for the multiple-
choice assessments were generated for both the pre- and
post-test.

Qualitative data analysis was carried out by two re-
searchers, the first author and a doctoral student. First, both
researchers carefully read the students’ responses and de-
veloped their own categories individually using an open
coding approach (Creswell and Clark 2011). Following
this initial coding process, the researchers met to discuss
and compare the emerging categories. During this process,
the researchers looked for similarities and differences be-
tween the categories and further merged and re-coded sev-
eral categories, which led to the emergent themes. After the
themes were determined by the coders, the author coded all
responses using the themes while the second coder coded
20% of all responses. Overall, a high level of agreement
(85%) was found between the two coders, κ = 0.786 (95%
CI, 0.752 to 0.820, p < 0.001).

Results and Discussion

Research question 1

How does building computational models of physical phe-
nomena through a block-based programming environment in
a week-long intervention course influence middle school stu-
dents’ conceptual understanding of force and motion
concepts?

Students’ pre- and post-test scores for the FMA (Alonzo
and Steedle 2009) were used to investigate their conceptual
understanding of force and motion concepts before and after
the intervention. Internal consistency of the test was measured
using Cronbach’s alpha and was found to be ⍺ = 0.603.
Table 2 shows descriptive statistics of the students’ raw scores

for the FMA along with the equivalent of logit scores gener-
ated by the Rasch analysis, which were converted to a scale of
1 to 100 for ease of interpretation. Students’ average raw score
for the FMA on the post-test (M = 6.82, SD = 2.96) increased
by 2.81 points as compared to the pre-test (M = 4.01, SD =
2.17), with an increase of 11.99 logits (out of 100) on the
Rasch scale. In addition, the minimum raw score was zero
(i.e., no correct answers) and the maximum was nine on the
pre-test whereas the minimum increased to two and the max-
imum increased to thirteen on the post-test (Table 2). Figure 4
shows histograms of frequencies of students’ scores on Rasch
scale for the FMA on the pre- and post-test.

A paired samples t test was conducted using students’ pre-
and post-test scores on the Rasch scale for the FMA to deter-
mine if students’ conceptual understanding of force and mo-
tion concepts significantly differed before and after the class-
room intervention. The results of the paired samples t test, as
presented in Table 3, showed that participating in the class-
room intervention resulted in a statistically significant increase
in seventh-grade students’ conceptual understanding of force
and motion concepts with a large effect size measured through
Cohen’s d (t (81) = 9.26, p < 0.001, d = 1.02).

In addition to the pre- and post-test results, students’ re-
sponses to the reflective statement questions as well as their
responses to the interview questions provided valuable in-
sights about their conceptual understanding of force and mo-
tion concepts. Here is an example of a student’s response to
the reflective statement question of “What did I learn today?”
at the end of the first modeling activity on day 5: “I learned
how acceleration changes when force changes. how to make
car move at different forces. I thought car would stop when no
force but it didn’t becase [sic] newton’s law.” Firstly, this
student’s response indicates that they understood that acceler-
ation of an object is dependent on how much net force is
applied on the object (i.e., Newton’s second law of motion).
In other words, the student was able to grasp an important
force and motion concept that acceleration, not velocity, is a
function of applied force, which means a change in net force
results in a change in acceleration of an object. Previous re-
search showed that students tend to reason that velocity is
directly proportional to force, increasing velocity meaning
increasingly applied force (Dykstra Jr and Sweet 2009;
Hestenes et al. 1992). Secondly, this student’s response also
suggests that they had held this conception of “motion re-
quires force” (i.e., if there is a motion, then there must a force
acting): “… I thought car would stop when no force ...,”which
is a very common alternative conception among students from
elementary grades to college. Students with this alternative
conception often have difficulty conceptualizing a frictionless
medium (diSessa and Sherin 1998; Eryilmaz 2002). In the first
modeling activity, students engaged in building a model in
Scratch that simulated the motion of a car on a frictionless
road. In the second modeling activity, students engaged in

J Sci Educ Technol (2020) 29:65–8272

building a model to simulate the fall of a basketball in a me-
dium without air resistance. By engaging in these modeling
activities, the student seemed to have revised their alternative
conception and gained a better conceptual understanding of
the Newton’s first and second law of motion.

When asked in the interviews about what specifically they
learned or understood better about force and motion concepts
during the computational modeling activities, another stu-
dent’s response indicated how their understanding of the
Newton’s first law changed:

I actually learned that even if you don’t have any outside
force, the car will still continuously go this way, I was
umm before that there was unseen just kind of force
acting on the entire world and everything inside, and
because of that the car would just you know gradually
slow but I now know that no friction no air resistance
means that it will continuously go at a constant speed in
the same way because nothing is slowing it down. This
makes much more sense to me now.

The student explicitly elaborated on their thinking about
how the car would go in the absence of friction before and
after they engaged in the modeling activities. Like most of the

other students in the classroom, they thought that the car needs
force to continue its motion even in the absence of friction
(i.e., “motion requires force”): “... there was unseen just kind
of force acting on the entire world and everything inside and
because of that the car would just you know gradually slow
....” After constructing and experimenting with their model,
the student was able to conceptually grasp the idea that no
force is needed for the car to go at constant velocity because
“... nothing is slowing it down.”

Acceleration is a fundamental concept in physics and its
conceptual understanding is essential when learning about
force and motion concepts. However, numerous studies in
the literature have consistently shown that acceleration is a
particularly challenging concept for students to conceptually
grasp (Jones 1983; Rosenquist and McDermott 1987; Dykstra
Jr and Sweet 2009; Hestenes 2007). In an earlier study with
middle and high school students, Jones (1983) found that the
following alternative conceptions were prevalent among stu-
dents: increasing speed always means increasing acceleration,
and if an object is going fast then it has acceleration. Students
often confuse acceleration with velocity and speed, thinking
that if two objects have the same speed, then they should have
the same acceleration (Rosenquist and McDermott 1987;
Dykstra and Sweet 2009; Tasar 2010). Perhaps not

Table 2 Descriptive statistics for
students’ scores on the Force and
Motion Assessment

M SD Median Mode Min. Max. Range

Force and Motion Assess.—prea 4.01 2.17 3.5 3 0 9 9

Force and Motion Assess.—posta 6.82 2.96 6 5 2 13 11

Force and Motion Assess.—pre (logit)b 33.99 10.21 33.33 30.98 0.17 53.22 53.05

Force and Motion Assess.—post (logit)b 45.98 10.63 43.60 40.00 25.17 68.98 43.81

N = 82
a Raw scores out of 16
b Scaled to 1–100

Fig. 4 Histograms of frequencies of students’ FMA scores on Rasch scale

J Sci Educ Technol (2020) 29:65–82 73

surprisingly, similar to the findings of the previous studies,
participating students of this study struggled explaining and
conceptualizing acceleration during the classroom interven-
tion. Since the force and motion unit was covered in the pre-
vious semester, some students were able to recite a definition
that they had probably memorized for their exam. However,
when the first author asked probing questions to assess their
conceptual understanding, most of the students were not able
to explain it in their own words. In both modeling activities,
students were supposed to create separate variables for accel-
eration and velocity of the object on the screen (i.e., car and
basketball) and formulate an algorithm using computational
concepts and mathematical operators available in the Scratch
environment to define the relationship between the variables
and then compute them, so the running model could show the
values of the variables on the screen in real time. In order to
formulate an algorithm, students needed to conceptually un-
derstand what is meant by acceleration and how the velocity
of the object is related to and calculated from its acceleration.
For many of the students, it was their “ah-ha” moment in the
classroom when they were able to figure out the relationship
between acceleration and velocity. The following quote from
the interviews demonstrates one of the participating students’
conceptual understanding of acceleration in their own words:

With the force applied, when I put 5 or 10 or whatever, I
thought it was going to go fast instantly you know be-
cause it has acceleration, but actually it went slowly and
then gradually became faster and faster although I didn’t
put more force. It was kind of eye-opening.

The student was talking about the first modeling activity
that simulated a car’s motion with an applied force on a fric-
tionless road. It is evident that this student conflated acceler-
ation with velocity as they thought with a given acceleration
the car will immediately go fast. However, after engaging in
the modeling activity, they were able to understand that accel-
eration made the car “gradually became faster and faster.”
Here is another student from the interviews that defined accel-
eration in their own words, which illustrates their deeper un-
derstanding of the concept: “I also understood better how

acceleration and velocity related to each other, you know if
you have high acceleration it will become faster after a few
seconds, if it has less acceleration it will take more to go fast.”
The student certainly did a great job describing how the mag-
nitude of acceleration of an object affect the “rate” at which its
velocity changes.

Looking at the significant learning gains on the pre- and
post-test, as well as the evidence of students’ conceptual un-
derstanding of force and motion concepts from their responses
to the reflective statement and interview questions, it is impor-
tant to discuss how the model building activities facilitated
conceptual science learning in the classroom. Were the signif-
icant learning gains on force and motion concepts because of
the fact that participating students spent just more time (i.e.,
two days) in the classroom on this topic? We argue that the
answer to this question is “no” because the participating stu-
dents had already spent several weeks on the force and motion
unit in the classroom previous semester and their mean score
for the FMA on the pre-test was M = 33.99 out of 100 on the
Rasch scale, which was relatively low. It is likely that what led
to the learning gains among the participating students was
their high cognitive engagement in the computational model-
ing activities. Then, how did the modeling activities help stu-
dents gain a better conceptual understanding of force and mo-
tion concepts? Drawing on the theoretical framework of this
study, the affordances of simulation-based computational
models as a dynamic form of representation were evident in
students’ interview responses as they were able to “see and
visualize” how the target physical phenomenon works or be-
haves in a simplified real-life situation (i.e., car moving on a
frictionless road) and then “play and experiment with” their
models to explore more about the different components of the
phenomenon (e.g., force, mass, velocity, acceleration).
However, it was evident that the interactive component of
learning went deeper than just a surface-level manipulation
of the models, as the generative dimension of model construc-
tion through block-based programming was clearly present
during the intervention (Schwarz et al. 2009; Wilkerson-
Jerde et al. 2015). A thorough review of the classroom obser-
vation notes showed that there was a rich discussion in the
classroom fostering a holistic conceptual understanding about
force and motion concepts while students were building their
computational models. The observation notes indicated that
most of the students in each class period talked to their peers
sitting next to them during the programming and model build-
ing activities. They asked questions to each other regarding
force and motion concepts, used their models to articulate and
convey their understanding of the concepts to their peers, and
discussed if their models needed any revision or modifica-
tions. Some of the questions that students had to answer to
build their models included “What is the relationship between
the mass and acceleration of an object if there is a constant
force being applied?,” “How to find the velocity of the car if

Table 3 Results of the paired samples t test analysis comparing
students’ pre- and post-test scores on the FMA

Pre-test Post-test

M SD M SD t (81) Cohen’s d

FMA (logit)a 33.99 10.21 45.98 10.63 9.26*** 1.02

N = 82

***p < 0.001, two-tailed
a Scaled to 1–100

J Sci Educ Technol (2020) 29:65–8274

its acceleration is known?,” and “What the behavior of the car
should be if the force acting on it becomes zero while it is
already moving?.” It was the generative dimension of con-
structing models where students were actively engaged in de-
fining and building the “rules” of the target phenomenon in
terms of algorithmic steps with programming blocks and then
experimenting with their models to examine how the physical
phenomenon works as well as using their models as a share-
able external artifact of their state of understanding to discuss
and communicate their ideas with their peers and teacher. It is
unlikely that just working with a pre-built computational mod-
el would provide similar discursive opportunities in the
classroom.

Computational modeling activities also enabled students to
explore force and motion concepts through creating and work-
ing with multiple representational systems (diSessa 2004;
Wilkerson-Jerde et al. 2015) including mathematical represen-
tations of physical laws in the form of block-based program-
ming code and dynamic visual representations of physical
phenomena in the form of graphical real-world objects.
These two representations are inherently linked to each other
as the behavior of the visual output of the program is governed
by the block-based code. Each representation has its own spe-
cific affordances and constraints. For example, Fig. 5 shows
the mathematical formula relating to Newton’s second law of
motion and the block-based code in Scratch calculating the
acceleration using the equation. In this example, students cre-
ated a variable for each element on the equation including the
force applied on the object, the mass of the object, and the
acceleration of the object. Then, using the set block, students
calculated acceleration by dividing the applied force to the
mass of the object.

While the above example shows a re-generation of a math-
ematical equation in terms of visual code, block-based pro-
gramming also served as a medium to help students contextu-
alize highly abstract mathematical relationships behind the
physical laws (Sherin et al. 1993; Sherin 2001; Wagh et al.
2017). For example, Fig. 6 shows how velocity of an object
can be calculated using the acceleration of the object. Here,
students did not re-generate the equation to find the velocity.
Instead, they applied their conceptual understanding to con-
textualize the relationship between velocity and acceleration.
Since acceleration is the rate of change of velocity per unit
time, the magnitude of velocity can be calculated in real time
by adding to its value the magnitude of acceleration at every

second. In other words, if an object is moving to the west with
an acceleration of “five” meters per second square, then its
velocity to the west will increase by “five” meters per second
at every second. The change block simply adds the value of its
parameter (i.e., acceleration) to the actual value of the velocity
variable. Since it is inside a forever block, its value will be
calculated in real time based on the value of acceleration and
the velocity of the object will change accordingly when the
model runs. So, instead of directly re-generating the equation
in block-based code to find velocity from acceleration, stu-
dents had to apply their conceptual understanding of the rela-
tionship between velocity and acceleration to construct an
algorithm for calculating velocity in this context of a car on
a frictionless surface.

Lastly, block-based programming allowed students to turn
the mathematical abstractions (i.e., equations) into causal re-
lationships in terms of programming instructions in the form
of pre-built programming blocks (diSessa 2000). For example,
the equation “force = mass × acceleration” does not actually
tell anything about the direction of causation (i.e., is it force
applied on an object that cause an acceleration or the other
way around?) (Sherin et al. 1993; Sherin 2001). During the
model building activities, it was the students’ responsibility to
figure out causal relationships among the variables, which is
an impetus for conceptual change, while re-creating this math-
ematical abstraction in a different representational system
(e.g., Fig. 6). Using block-based programming for formulating
an algorithm to represent a physical phenomenon (e.g., the
effect of a force on the motion of a car on frictionless road)
required students to think about which variable causes a
change in another variable, which is not usually obvious in
the algebraic notation of the laws governing the behavior of
physical phenomena. As shown in Fig. 6, students had to
determine the causal relation between force and acceleration,
and between velocity and acceleration. In other words, they
had to figure out that it is the force that causes a change in the
acceleration of an object and it is the acceleration that causes a
change in the velocity of an object. It is also evident from the
algorithm that no net force means zero acceleration, and zero
acceleration means no change in velocity.

In accordance with earlier literature on the efficacy of in-
teractive modeling environments (e.g., diSessa 2000, 2004;
Tisue and Wilensky 2004), the Scratch block-based computa-
tional modeling environment allowed students to engage
deeply with problems of understanding and representing

Fig. 5 Mathematical formula
versus block-based code on
Scratch

J Sci Educ Technol (2020) 29:65–82 75

conceptually important physics problems. That is, construct-
ing computational models using block-based programming
requires students to think and formulate the rules (i.e., science
concepts) that govern the behavior of a physical phenomenon.
Next, the dynamic visual output of the simulation allows stu-
dents to test and observe how their code (i.e., algorithm) be-
haves in real time. Finally, block-based programming poten-
tially has an advantage over earlier computational modeling
and representational systems by virtue of the research and
development of block-based visual programming environ-
ments that have minimized the syntactic overhead of text-
based programming tools (cf., Weintrop and Wilensky 2015,
2017).

Research question 2

How does participating in a week-long intervention course
introducing CT and computational modeling through a
block-based programming environment influence middle
school students’ CT abilities?

Students’ pre- and post-test scores for the CTt were used to
investigate their CT abilities before and after the intervention.
Internal consistency of the CTt was measured using
Cronbach’s alpha and was found to be ⍺ = 0.772. Table 4
shows descriptive statistics of students’ raw scores for the
CTt along with the equivalent of logit scores generated by
Rasch analysis, which were converted to a scale of 1 to 100
for easy interpretation. Students’ average raw score for the
CTt on the post-test (M = 17.83, SD = 5.63) increased by
2.93 points as compared to the pre-test (M = 20.76, SD =
4.29), with an increase of 7.92 logits (out of 100) on the
Rasch scale. Figure 7 shows histograms of frequencies of
students’ scores on the Rasch scale for the CTt on the pre-
and post-test.

A paired samples t test was conducted using students’ pre-
and post-test scores on the Rasch scale to determine if stu-
dents’ CT abilities significantly differed before and after the
classroom intervention. The results of the paired samples t
test, as presented in Table 5, showed that participating in the
intervention course resulted in a statistically significant in-
crease in seventh-grade students’ CT abilities with a large
effect size (t (81) = 8.06, p < 0.001, d = 0.91).

Overall, the results of the pre-test indicate that prior to the
classroom intervention, students’ CT abilities were moderate
(M = 58.37, SD = 12.77; out of 100 on the Rasch scale). The
histogram of frequencies of students’ pre-test scores on the
Rasch scale shows that majority of the students’ responses
were clustered between 40 and 80 with 63 as the mode of
the distribution (Fig. 7), which may be related to prior expo-
sure to computational activities. In fact, many students stated
during the intervention that they attended one or more Hour of
Code activities in the previous years, and some students were
also enrolled in an after-school robotics club, which can help
explain participating students’ overall modest performance on
the pre-test.

Although there were significant learning gains with a large
effect size as a result of participating in the intervention, stu-
dents did not demonstrate a particularly high level of CT abil-
ities in the post-test, with their average post-test score on the
Rasch scale M = 65.33 (SD = 11.05). The histogram of fre-
quencies of the post-test scores shows that majority of the
students’ responses were clustered between 50 and 80 with
66 as the mode of the distribution (Fig. 7). The significant
gains on CTt during the intervention indicate that students
can achieve higher CT ability levels if computationally rich
activities are explicitly integrated into science instruction
throughout the academic year. According to the classroom
observation notes and interview responses, several students
expressed that they wanted to spend more time freely practic-
ing the computational concepts themselves using the Scratch
programming environment. Due to time constraints, it was not
possible to do this during the intervention. However, the au-
thors recommend allocating more time to students for self-
practice and self-exploration during programming exercises,
so that students can do repeated practices in different contexts
(e.g., storytelling, game building) that they can choose, and
reinforce their understanding of CT concepts and develop CT
abilities in general. It is important to note that the first author
spent three days just on programming to make sure that every
student had the same base programming ability, and this time
was taken away from science-related learning activities.
However, the relatively high prior CTt scores meant that the
growth in the area of CT ability was modest. Future studies
conducting longer term interventions can assess students’

Fig. 6 Calculating velocity using block-based code

J Sci Educ Technol (2020) 29:65–8276

prior CT ability and then adjust the programming activities to
differentiate the instruction and allocate more time across
learning activities related to science.

To complement the pre- and post-test results, students’ re-
sponses to the reflective statement questions as well as their
responses to the interview questions provided in-depth in-
sights about their learning and application of CT concepts
and practices. Here is an example of a student’s response to
the reflective statement question of “What did I learn today?”
showing their understanding of conditionals and decision-
making in computer programming: “I learned that to take
out many options or commands, then you would use the if
then, else block.” By saying “many options,” the student was
probably referring to the different conditions they coded in
their programs to make the sprite take different decisions
using if and if-else statements. The concept of making deci-
sions to take certain actions based on different conditions is an
important computational concept in programming, and it is
often taught in introductory programming courses (K-12 CS
Framework Steering Committee 2016). Here is a reflective
statement response of another student that indicated their un-
derstanding of conditionals: “Today I learned how to make the
cat make a decision with many questions.”

Another important computational concept in programming
is loops and repetition/iteration structures (Brennan and
Resnick 2012). In programming, different looping statements
are used for running a particular set of instruction multiple
times during the execution of the code. Previous research sug-
gested that the concept of looping in programming is difficult
for students to master (Robins et al. 2003; Grover et al. 2015;
Zur-Bargury et al. 2013). There are different looping state-
ments in Scratch including forever, repeat, and repeat until.
Forever keeps executing the instruction inside it until the pro-
gram stops running. Repeat runs the instruction inside it for a
certain number of times that user specifies. Repeat until is
similar to repeat except that it runs the instruction inside it
until the condition in its parameter becomes false. Here is a
student’s response to the reflective statement question show-
ing evidence of their understanding of looping in program-
ming: “I learned how to use loops and conditions to run sep-
arate pieces of code over and over.” This student articulated
their understanding of looping by stating that loops execute a
certain set of instructions (“separate pieces of code”) multiple
times (“over and over”). Another student’s reflective state-
ment response shows evidence of their understanding of the
repeat and repeat until looping structures: “I learned how to

Table 4 Descriptive statistics for
students’ scores on the CTt M SD Median Mode Min. Max. Range

CTt—prea 17.83 5.63 19 21 6 28 22

CTt—posta 20.76 4.29 22 22 11 28 17

CTt—pre (logit)b 58.37 12.77 58.98 63.11 34.12 99.93 65.81

CTt—post (logit)b 65.33 11.05 66.22 66.22 45.06 99.97 54.91

N = 82
a Raw scores out of 28
b Scaled to 1–100

Fig. 7 Histograms of frequencies of students’ CTt scores on Rasch scale

J Sci Educ Technol (2020) 29:65–82 77

make something do something for some amount of time and
until certain conditions are met.” The student described the
repeat loop by saying that it runs “somethings for some
amount of time” where time is entered in seconds as the pa-
rameter of the loop statement. The student also described the
repeat until loop by saying that it executes an instruction “un-
til certain conditions are met.” Here is another reflective state-
ment response that a student elaborated on the repeat loop: “I
learned about loops like repeating blocks that repeat the script
inside that block how many ever times it wants.”

The authors identified several challenges faced by the par-
ticipating students during the classroom intervention using the
classroom observation notes and students’ interview re-
sponses. Firstly, most of the participating students struggled
outlining and formulating an algorithm when they were given
a programming task such as building a pong game. Devising
an algorithm requires examining the target problem and break-
ing it down into smaller problems (i.e., problem decomposi-
tion) and then formulating steps to solve each problem, one at
a time. Algorithms can be composed in several ways including
writing the solution steps in a natural language like English,
drawing flowcharts, or writing a pseudocode (K-12 CS
Framework Steering Committee 2016). The next phase in-
cludes translating the algorithm into code using the computa-
tional constructs such as conditionals, loops, and variables.
During the learning activities, the first author repeatedly ex-
plained as well as modeled the processes involved in formu-
lating an algorithm to solve computational problems by writ-
ing sample steps on the whiteboard as well as showing flow-
charts on the PowerPoint presentation. After giving students a
programming task, such as building a pong game, the re-
searcher emphasized that they should start by first carefully
thinking about the problem and then devising an algorithm.
The researcher suggested students take notes regarding the
design of their algorithms on a piece of paper or using a word
processor application on their computers. However, the obser-
vation notes indicated that majority of the students skipped
this step and directly delved into coding—attempting to for-
mulate an algorithm while they were coding. This was prob-
lematic as some students struggled to formulate an algorithmic
solution while navigating through the programming

environment at the same time. This suggests that instructor’s
modeling of the algorithm generation processes verbally in the
classroom with the aid of flowcharts may not be an effective
scaffolding for students to engage in formulating algorithmic
solutions before starting coding. A better approach may in-
clude explicitly teaching students about writing pseudocode
and translating it into code using computational constructs. A
pseudocode is basically a high-level description of an algo-
rithmic solution that highlights the “flow” of the solution and
can be generated using simple sentences and programming
constructs. Researchers recommended engaging students in
creating pseudocodes to draft an algorithmic solution to the
given problem during introductory programming exercises
(Futschek 2006; Grover et al. 2014).

Another challenge faced by the participating students was
that when their program did not run as expected, they were not
able to easily diagnose the errors (commonly referred to as
“bugs”) within their code because Scratch does not have a
built-in debugging feature. Casey (1997) defined debugging
as “the process of locating and correcting errors within a pro-
gram” (p. 47). Debugging is a crucial skill in programming
and requires complex reasoning (Grover et al. 2016). The
classroom intervention of this study did not explicitly teach
students about debugging. However, the researcher briefly
explained to students that when their code did not work as
expected, they could try to locate the error(s) by dismantling
the programming blocks in their scripts, running each block or
groups of blocks successively, and observing the output of the
program to isolate the error in the code. The researcher also
showed a sample debugging process step-by-step in Scratch a
number of times on the screen. However, students seemed to
have struggled doing this on their own. Some advanced block-
based programming environments such as ViMAP (Sengupta
et al. 2012) has a relatively intuitive built-in debugging fea-
ture, where students can run the program line by line in real
time and start and stop at any time while observing the output,
which can make it easier for students to isolate the error in the
code. However, there is a higher learning curve for using more
advanced block-based learning environments, and the instruc-
tor needs to make an informed decision based on the available
time allocated for these activities. If the CT activities are
planned to be integrated in the context of computational
modeling in a science classroom throughout the semester, then
the teacher may want to prefer using a more advanced block-
based programming environment that has a built-in debugging
feature.

Limitations

There are several limitations of this study. First, the sample of
this study involved a group of seventh-grade students in one
public middle school in the southeastern part of the USA. The

Table 5 Results of the paired samples t test comparing students’ pre-
and post-test scores on the CTt

Pre-test Post-test

M SD M SD t (81) Cohen’s d

CTt (logit)a 58.37 12.77 65.33 11.05 8.06*** 0.91

N = 82

***p < 0.001, two-tailed
a Scaled to 1–100

J Sci Educ Technol (2020) 29:65–8278

sample of this study may not be representative of the seventh-
grade student population in the USA. This may limit the gen-
eralizability of the findings of this study to a larger student
population. Also, this study did not employ a control group
that could be used to compare the results from the experimen-
tal group and determine if the learning gains were due to the
classroom intervention alone.

Secondly, the student interview data may be biased since
the interviews were volunteer-based (i.e., self-selecting) and
most of the volunteering students seemed to be particularly
interested in block-based programming and actively engaged
in the learning activities during the classroom intervention.
Therefore, their responses may not necessarily be representa-
tive of the larger group of students who participated in this
research. Third, there were several English language learner
(ELL) students, mostly from Hispanic origins, in each partic-
ipating classroom of this study and the classroom observation
notes showed that those students sometimes struggled to fol-
low the instructions, which might have potentially prevented
them from fully participating in the learning activities. While
the researcher tried to provide scaffolding for the ELL stu-
dents by explaining them important concepts and terminology
using a simpler language, those students might not have
benefited from the learning activities as much as other stu-
dents whose native language was English.

The intervention of this study lasted only for five class
periods and employed an immediate post-test to assess student
learning during the classroom intervention. Thus, our study
does not provide any evidence regarding the lasting effects of
the intervention on student learning. Future research
employing both immediate and delayed post-tests is needed
to assess long-term effects of similar classroom interventions
on students’ learning of science and CTconcepts. Similarly, it
would be useful to provide students similar computational
modeling opportunities on a regular basis to explore the po-
tential sustained positive affective and cognitive shift over
extended periods of time (e.g., multiple school years).

The CTt, which was used to assess participating students’
CT abilities prior to and after the classroom intervention, en-
tirely consisted of multiple-choice questions. The developers
of the test, Román-González et al. (2016), pointed out that the
CTt “might bemeasuring CTat its lower cognitive complexity
levels (‘recognize’ and ‘understand’)” (p. 688). Therefore, this
study might not have assessed students’ CT ability at higher
levels of cognitive complexity. Lastly, the learning activities
of this study were not differentiated based on students’ prior
experiences in block-based programming. There were a few
students who explicitly expressed their boredom during the
learning activities, especially in the first three days of pro-
gramming activities, in their reflective statement responses.
It is possible that those students along with others who had
extensive experience in block-based or traditional program-
ming languages did not benefit much from the learning

activities compared to students with minimal or no program-
ming background.

Conclusion and Future Work

CT and modeling are authentic practices that scientists and
engineers use frequently in their daily work (NRC 2012).
Therefore, it is crucial for students to get exposed to these
practices in their science classrooms. The findings of this
study indicate that infusing CT concepts and practices into
science instruction in the context of computational modeling
activities can foster students’ understanding of both CT and
science concepts and also develop general CT abilities, as
demonstrated through the pre-post assessments and student
interviews. The findings of this study also suggest that even
with minimal time in the classroom to introduce CT concepts
and practices through block-based programming, this can still
enable students to build relatively advanced computational
models, which, in turn, can facilitate conceptual science learn-
ing in formal classroom settings. This study contributes to the
evolving literature on integrating CT into science instruction
by emphasizing the affordances and generative dimension of
model construction through block-based programming.

With regard to the impact of computational modeling on
science learning, we were not able to disentangle the
affordances of interactive simulations from the generative rep-
resentational activity of constructing computational models.
This would be important since already constructed simula-
tions have their own unique learning affordances (cf., Rutten
et al. 2012). Similarly, if Román-González et al.’s (2016) con-
jecture that spatial ability is an important component of CT,
then we would also need to be concerned with what compo-
nent simply interacting with the spatial elements of the com-
putational model might have developed CT-related spatial
ability. Finally, we did not extensively explore how infusing
CT into science instruction through a model-based pedagogy
affects classroom discourse. The classroom observation notes
indicated that there was a rich discussion among students re-
garding force and motion concepts during the model building
activities. Future research investigating how computationally
enabled model-based pedagogy shapes classroom discourse is
needed to assess how this classroom discourse, in conjunction
with model construction and manipulation, helps students de-
velop both science concepts and CT abilities.

Since classrooms are getting more diverse nationwide with
increasing number of ELL students, future studies should ex-
plore what kind of scaffolds can be provided by teachers as
well as by the programming environment to ELL students
during programming and modeling activities, which can help
them overcome language barriers and fully participate in
learning activities. This can be particularly helpful for students
whose native tongue is English but have reading or learning

J Sci Educ Technol (2020) 29:65–82 79

difficulties. Leveraging the spatial nature of computational
models and simulations with culturally relevant representa-
tions and minimizing dense, specialized text in curriculum
design would provide more accessible learning opportunities
for ELL students.

The intervention of this study was conducted by the first
author. Future research should investigate prospective and in-
service teachers’ self-efficacy towards using computational
tools and model-based pedagogy in the classroom to better
understand teacher-curricular interactions. If this approach of
introducing CT in science classrooms in the context of com-
putational modeling activities is also found successful by oth-
er studies, then it will be the science teachers who will be
given the responsibility to employ this pedagogy in the class-
room. Therefore, it is important to study teachers’ competen-
cies and self-efficacy with regard to programming and CT
practices and its interaction with classroom practices when
they are implementing a computational modeling-based
pedagogy.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

Ethical Approval All procedures performed in this study were in accor-
dance with the ethical standards of the institutional and/or national re-
search committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. This article does not con-
tain any studies with animals performed by any of the authors.

Informed Consent Informed consent was obtained from all individual
participants included in the study.

References

Aho, A. V. (2012). Computation and computational thinking. The
Computer Journal, 55(7), 832–835.

Alonzo, A. C., & Steedle, J. T. (2009). Developing and assessing a force
and motion learning progression. Science Education, 93(3), 389–
421.

Bailer-Jones, D. M. (2003). When scientific models represent.
International Studies in the Philosophy of Science, 17(1), 59–74.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to
K-12: what is involved and what is the role of the computer science
education community? ACM Inroads, 2(1), 48–54.

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark,
D. (2016). Identifying middle school students’ challenges in com-
putational thinking-based science learning. Research and Practice
in Technology Enhanced Learning, 11(13), 1–35.

Basu, S., Kinnebrew, J., Dickes, A., Farris, A. V., Sengupta, P., Winger, J.,
& Biswas, G. (2012). A science learning environment using a com-
putational thinking approach. In Proceedings of the 20th International
Conference on Computers in Education (pp. 722-729).

Bers, M. U. (2010). The TangibleK Robotics program: applied computa-
tional thinking for young children. Early Childhood Research and
Practice, 12(2). Retrieved November 12, 2019, from https://files.
eric.ed.gov/fulltext/EJ910910.pdf

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014).
Computational thinking and tinkering: exploration of an early child-
hood robotics curriculum. Computers & Education, 72, 145–157.

Boone, W. J., Townsend, J. S., & Staver, J. (2011). Using Rasch theory to
guide the practice of survey development and survey data analysis in
science education and to inform science reform efforts: an exemplar
utilizing STEBI self-efficacy data. Science Education, 95(2), 258–
280.

Boulter, C. J., & Buckley, B. C. (2000). Constructing a typology of
models for science education. In Developing models in science
education (pp. 41-57). Springer Netherlands.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and
assessing the development of computational thinking. In
Proceedings of the 2012 Annual Meeting of the American
Educational Research Association, Vancouver, Canada.

Broll, B., Zare, H., & Ledeczi, A. (2017). Creating engaging science
projects with netsblox. Paper presented at the 2017 IEEE Blocks
and Beyond Workshop (B&B).

Casey, P. J. (1997). Computer programming: a medium for teaching
problem solving. Computers in the Schools, 13(1-2), 41–51.

Creswell, J.W. (2015).A concise introduction tomixedmethods research.
Sage Publications.

Creswell, J. W., & Clark, V. L. P. (2011). Designing and conducting
mixed methods research. Sage Publications.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of
tests. Psychometrika, 16(3), 297–334.

de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning
with computer simulations of conceptual domains. Review of
Educational Research, 68(2), 179–201.

Delgado, C., & Krajcik, J. (2010). Technology and learning—supports
for subject matter learning. In International encyclopedia of
education (3rd ed., pp. 197–203). Oxford: Elsevier.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by
middle school girls: can they be used to measure understanding of
computer science concepts? Computers & Education, 58(1), 240–
249.

diSessa, A. A. (2000). Changing minds: computers, learning, and
literacy. Boston: MIT Press.

diSessa, A. A. (2004). Metarepresentation: native competence and targets
for instruction. Cognition and Instruction, 22(3), 293–331.

diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual
change? International Journal of Science Education, 20(10),
1155–1191.

Dykstra Jr., D. I., & Sweet, D. R. (2009). Conceptual development about
motion and force in elementary and middle school students.
American Journal of Physics, 77(5), 468–476.

Eryilmaz, A. (2002). Effects of conceptual assignments and conceptual
change discussions on students’ misconceptions and achievement
regarding force and motion. Journal of Research in Science
Teaching, 39(10), 1001–1015.

Futschek, G. (2006). Algorithmic thinking: the key for understanding
computer science. In In International Conference on Informatics
in Secondary Schools - Evolution and Perspectives (pp. 159–168).
Berlin, Heidelberg: Springer.

Gilbert, S. W. (1991). Model building and a definition of science. Journal
of Research in Science Teaching, 28(1), 73–79.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: a review
of the state of the field. Educational Researcher, 42(1), 38–43.

Grover, S., Cooper, S., & Pea, R. (2014). Assessing computational learn-
ing in K-12. In Proceedings of the 2014 Conference on Innovation
& Technology in Computer Science Education (pp. 57-62). ACM.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in
a blended computer science course for middle school students.
Computer Science Education, 25(2), 199–237.

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer
science learning in middle school. In Proceedings of the 47th ACM

J Sci Educ Technol (2020) 29:65–8280

https://files.eric.ed.gov/fulltext/EJ910910.pdf
https://files.eric.ed.gov/fulltext/EJ910910.pdf

Technical Symposium on Computing Science Education (pp. 552-
557). ACM.

Guzdial, M. (2004). Programming environments for novices. In S. A.
Fincher & M. Petre (Eds.), Computer science education research
(pp. 127–154). London: Taylor & Francis Group, PLC.

Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about
motion. American Journal of Physics, 53(11), 1056–1065.

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L.
(2009). A multidisciplinary approach towards computational think-
ing for science majors. In Proceedings of the 40th ACM Technical
Symposium on Computer Science Education (SIGCSE '09) (pp.
183–187). New York: ACM.

Harrison, A. G., & Treagust, D. F. (1998). Modelling in science lessons:
are there better ways to learn with models? School Science and
Mathematics, 98(8), 420–429.

Hestenes, D. (2007). Modeling theory for math and science education. In
Paper presented at the ICTMA13: The International Community of
Teachers of Mathematical Modelling and Applications. Indiana: IL.

Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept in-
ventory. The Physics Teacher, 30(3), 141–158.

Ioannides, C., & Vosniadou, S. (2002). The changing meanings of force.
Cognitive Science Quarterly, 2(1), 5–62.

Jones, A. T. (1983). Investigation of students’ understanding of speed,
velocity and acceleration. Research in Science Education, 13(1),
95–104.

K-12 Computer Science Framework Steering Committee. (2016). K–12
computer science framework. Retrieved November 12, 2019, from
https://www.k12cs.org

Kozhevnikov, M., & Thornton, R. (2006). Real-time data display, spatial
visualization ability, and learning force and motion concepts.
Journal of Science Education and Technology, 15(1), 111–132.

Leenaars, F. A., van Joolingen, W. R., & Bollen, L. (2013). Using self-
made drawings to support modelling in science education. British
Journal of Educational Technology, 44(1), 82–94.

Linacre, J. M. (2018). Winsteps Rasch measurement computer program.
Beaverton: Winsteps.com.

Lockwood, J., & Mooney, A. (2018). Developing a Computational
Thinking Test using Bebras problems. Paper presented at the Joint
Proceedings of the CC-TEL 2018 and TACKLE 2018 Workshops,
co-located with 13th European Conference on Technology
Enhanced Learning (EC-TEL 2018).

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational think-
ing. ACM SIGCSE Bulletin, 41(1), 260–264.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of
computational thinking through programming: what is next for
K-12? Computers in Human Behavior, 41, 51–61.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E.
(2010). The scratch programming language and environment.
ACM Transactions on Computing Education (TOCE), 10(4), 1–15.

McGrew, K. S. (2009). CHC theory and the human cognitive abilities
project: standing on the shoulders of the giants of psychometric
intelligence research. Intelligence, 37(1), 1–10.

National Research Council (NRC). (2010). Committee for the Workshops
on Computational Thinking: Report of a workshop on the scope and
nature of computational thinking. Washington: National Academies
Press.

National Research Council (NRC). (2011). Committee for the Workshops
on Computational Thinking: Report of a workshop of pedagogical
aspects of computational thinking. Washington: National
Academies Press.

National Research Council (NRC) (2012). A framework for K-12 science
education: practices, crosscutting concepts, and core ideas.
National Academies Press.

Neumann, I., Fulmer, G. W., & Liang, L. L. (2013). Analyzing the FCI
based on a force and motion learning progression. Science
Education Review Letters, 2013:8-14.

NGSS Lead States. (2013).Next generation science standards: for states,
by states. Washington: National Academies Press.

Prain, V., & Tytler, R. (2012). Learning through constructing representa-
tions in science: a framework of representational construction
affordances. International Journal of Science Education, 34(17),
2751–2773.

Rasch, G. (1980). Probabilistic models for some intelligence and attain-
ment tests. Chicago: University of Chicago Press.

Reiner, M., Slotta, J. D., Chi, M. T., & Resnick, L. B. (2000). Naive
physics reasoning: a commitment to substance-based conceptions.
Cognition and Instruction, 18(1), 1–34.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond,
E., Brennan, K., ... & Kafai, Y. B. (2009). Scratch: Programming for
all. Communications of the ACM, 52(11), 60–67.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching
programming: a review and discussion. Computer Science
Education, 13(2), 137–172.

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C.
(2016). Which cognitive abilities underlie computational thinking?
Criterion validity of the Computational Thinking Test.Computers in
Human Behavior, 72, 678–691.

Román-González, M., Pérez-González, J.-C., Moreno-León, J., &
Robles, G. (2018). Can computational talent be detected?
Predictive validity of the Computational Thinking Test.
International Journal of Child-Computer Interaction, 18, 47–58.

Rosenquist, M. L., &McDermott, L. C. (1987). A conceptual approach to
teaching kinematics. American Journal of Physics, 55(5), 407–415.

Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The
learning effects of computer simulations in science education.
Computers & Education, 58(1), 136–153.

Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: de-
veloping students’ understanding of scientific modeling. Cognition
and Instruction, 23(2), 165–205.

Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus,
D., ... & Krajcik, J. (2009). Developing a learning progression for
scientific modeling: making scientific modeling accessible and
meaningful for learners. Journal of Research in Science Teaching,
46(6), 632-654.

Sengupta, P., Farris, A. V., & Wright, M. (2012). From agents to contin-
uous change via aesthetics: learning mechanics with visual agent-
based computational modeling. Technology, Knowledge and
Learning, 17(1-2), 23–42.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013).
Integrating computational thinking with K-12 science education
using agent-based computation: a theoretical framework.
Education and Information Technologies, 18(2), 351–380.

Sequeira,M.,& Leite, L. (1991). Alternate conceptions and history of science
in physics teacher education. Science Education, 75(1), 45–56.

Sherin, B. L. (2001). A comparison of programming languages and alge-
braic notation as expressive languages for physics. International
Journal of Computers for Mathematical Learning, 6(1), 1–61.

Sherin, B., diSessa, A. A., & Hammer, D. (1993). Dynaturtle revisited:
learning physics through collaborative design of a computer model.
Interactive Learning Environments, 3(2), 91–118.

Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Exploring
the science framework and NGSS: computational thinking in the
science classroom. Science Scope, 38(3), 10–15.

Tasar, M. F. (2010). What part of the concept of acceleration is difficult to
understand: themathematics, the physics, or both?ZDM, 42(5), 469–482.

Tisue, S., & Wilensky, U. (2004, May). Netlogo: a simple environment
for modeling complexity. In International conference on complex
systems, 21, 16–21.

Tucker, A., Seehorn, D., Carey, S., Moix, D., Fuschetto, B., & Verno,
A. (2011). CSTA K-12 computer science standards. CSTA
Standards Task Force. Retrieved April 20, 2018, from http://www.
education2020.ca/Content/K-12ModelCurrRevEd.pdf

J Sci Educ Technol (2020) 29:65–82 81

https://www.k12cs.org
http://www.education2020.ca/Content/K-12ModelCurrRevEd.pdf
http://www.education2020.ca/Content/K-12ModelCurrRevEd.pdf

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015).
Computational thinking in compulsory education: towards an agen-
da for research and practice. Education and Information
Technologies, 20(4), 715–728.

Wagh, A., Cook-Whitt, K., & Wilensky, U. (2017). Bridging inquiry-
based science and constructionism: exploring the alignment between
students tinkering with code of computational models and goals of
inquiry. Journal of Research in Science Teaching, 54(5), 615–641.

Weintrop, D., &Wilensky, U. (2015). To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In
Proceedings of the 14th International Conference on Interaction
Design and Children (pp. 199-208). ACM.

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-
based programming in high school computer science classrooms.
ACM Transactions on Computing Education, 18(1), 1–25.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., &
Wilensky, U. (2016). Defining computational thinking for mathe-
matics and science classrooms. Journal of Science Education and
Technology, 25(1), 127–147.

Wilensky, U., & Resnick, M. (1999). Thinking in levels: a dynamic sys-
tems approach to making sense of the world. Journal of Science
Education and Technology, 8(1), 3–19.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering computa-
tional literacy in science classrooms. Communications of the ACM,
57(8), 24–28.

Wilkerson-Jerde, M. H., Gravel, B. E., & Macrander, C. A. (2015).
Exploring shifts in middle school learners’ modeling activity while
generating drawings, animations, and computational simulations of
molecular diffusion. Journal of Science Education and Technology,
24(2-3), 396–415.

Wu, H. K., & Puntambekar, S. (2012). Pedagogical affordances of mul-
tiple external representations in scientific processes. Journal of
Science Education and Technology, 21(6), 754–767.

Yuruk, N., Beeth, M. E., & Andersen, C. (2009). Analyzing the effect of
metaconceptual teaching practices on students’ understanding of
force and motion concepts. Research in Science Education, 39(4),
449–475.

Zur-Bargury, I., Parv, B., & Lanzberg, D. (2013). A nationwide exam as a
tool for improving a new curriculum. In Proceedings of the 18th
ACM Conference on Innovation and Technology in Computer
Science Education (pp. 267-272). ACM.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

J Sci Educ Technol (2020) 29:65–8282

	Exploring Force and Motion Concepts in Middle Grades Using Computational Modeling: a Classroom Intervention Study
	Abstract
	Introduction
	Literature Review
	CT in K-12 Education
	Learning About Force and Motion Concepts
	Modeling and CT
	Theoretical Framework

	Purpose of the Study
	Methodology
	Setting
	Participants
	Research Design
	Intervention
	Data Sources
	Data Analysis

	Results and Discussion
	Research question 1
	Research question 2

	Limitations
	Conclusion and Future Work
	References

