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Abstract
This article provides an introduction for the special issue of the Journal of Science Education and Technology focused on
computational thinking (CT) from a disciplinary perspective. The special issue connects earlier research on what K-12 students
can learn and be able to do using CTwith the CT skills and habits of mind needed to productively participate in professional CT-
integrated STEM fields. In this context, the phrase “disciplinary perspective” simultaneously holds two meanings: it refers to and
aims to make connections between established K-12 STEM subject areas (science, technology, engineering, and mathematics)
and newer CT-integrated disciplines such as computational sciences. The special issue presents a framework for CT integration
and includes articles that illuminate what CT looks like from a disciplinary perspective, the challenges inherent in integrating CT
into K-12 STEM education, and new ways of measuring CT aligned more closely with disciplinary practices. The aim of this
special issue is to offer research-based and practitioner-grounded insights into recent work in CT integration and provoke new
ways of thinking about CT integration from researchers, practitioners, and research-practitioner partnerships.

Keywords Computational thinking . Disciplinary perspective . Integrating computational thinking . K-12 science . technology .
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Computational thinking (CT) is the thought process involved
in formulating problems such that their solutions can be
expressed as computational steps or algorithms to be carried
out by a computer (Cuny et al. 2010; Aho 2012; Grover and
Pea 2013; Lee 2016). As such, CT can be seen as the

connective tissue (Martin 2018) that links computer science
(CS) to many disciplines. In particular, CT has been used as
an investigative and problem-solvingmethod that utilizes com-
puter science concepts, tools, and techniques in science, tech-
nology, engineering, and mathematics (STEM). New integrat-
ed fields such as computational biology, computational chem-
istry, computational geometry, and computational physics have
emerged that capitalize on the power of computation in extend-
ing discovery and innovation within classical STEM fields.

As computationally enabled scientific innovations and
technological advances are reshaping the ways we live and
the type and scope of problems we can pose and solve, there
has been increasing interest in engaging K-12 students in CT.
It has been touted as an essential competence that should be
included in every student’s skill set (Grover and Pea 2018) and
acknowledged as a key scientific practice in the Next
Generation Science Standards (NGSS Lead States 2013).
The integration of CT in elementary and secondary education
has been promoted by both national computer science educa-
tion (Seehorn et al. 2011) and science education associations
prompting many school districts and states to make wide-
sweeping changes based on a limited research base (Stanton
et al. 2017).
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The integration of CT into STEM classrooms is relatively
new. It is seen as having the potential to deepen STEM learn-
ing by positioning students as young scientists and innovators
through engagement in authentic STEM practices. It has been
proposed that students who learn to develop computational
solutions and marshall computational tools, resources, and
methods will advance their understanding of subject area con-
tent, CT skills, and awareness of modern uses of computation
across STEM fields. This integration strategy also aims to
bypass some of the difficulties associated with offering
stand-alone courses (focusing on CS and CT) and adding ad-
ditional subjects to an already crowded school day while ad-
dressing new standards in science, math, and computer sci-
ence education. Thus, researchers and educators alike have
embarked on projects to engage students in CT as early as
elementary school as a means to prepare them with the foun-
dational knowledge, skills, and practices for future endeavors
in STEM fields.

Researchers have made progress in elucidating what CT
integration entails. Recent attempts to integrate CT into sci-
ence classrooms fall along a continuum from the addition of
“coding” activities that provide little if any support of science
learning (Lye and Koh 2014; Kazimoglu et al. 2012; Maloney
et al. 2008; Tarkan et al. 2010; Touretzky et al. 2013; Grover
et al. 2015); to the integration of CT in the service of science
content knowledge as it currently exists in science textbooks
(Sengupta et al. 2013; Wilkerson and Fenwick 2016; Benakli
et al. 2016; Sherin 2001; Sherin et al. 1993; diSessa 2001);
and the integration of modern uses of computation aligned
with the work of STEM professionals (Uzzo and Chen
2015; Wilensky et al. 2014; Orton et al. 2016). Weintrop
et al. (2016) provided a well-regarded computational thinking
in mathematics and science practices taxonomy describing
four main categories of practices (data practices, modeling
and simulation practices, computational problem-solving
practices, and systems thinking practices) that form a defini-
tion of CT drawn from literature, interviews with mathemati-
cians and scientists, and instructional materials. Yet, work in
the field of CT integration suggests that much more guidance
from empirical research is still needed to ensure the teaching
of CT concepts and practices within STEM classrooms sets
the foundations for future endeavors leading up to profession-
al CT-integrated STEM practices.

This special issue proposes to connect earlier research on
what K-12 students can learn and be able to do using CTwith
the CT skills and habits of mind needed to productively par-
ticipate in professional CT-integrated STEM fields. In this
context, the phrase “disciplinary perspective” simultaneously
holds two meanings: it refers to and aims to make connections
between established K-12 subject areas (science, technology,
engineering, and mathematics) and newer CT-integrated dis-
ciplines such as computational sciences at the core of scientif-
ic discovery and innovation in a world driven by technology.

In the first framing article, Lee and Malyn-Smith (this is-
sue) describe two strands of research that informed the forma-
tion of a framework for integration of CT in STEM class-
rooms. The first strand is a set of studies on the use of CT
by STEM professionals (research scientists, product engi-
neers, and data scientists) conducted by EDC that illustrates
the transition of traditional scientists and engineers to compu-
tational thinking STEM professionals. The second strand of
research is an analysis of a set of K-12 CT integration activi-
ties that was collected at the NSF-funded two-part “Workshop
on Developing a Framework for Computational Thinking
from a Disciplinary Perspective” (Malyn-Smith et al. 2018).
They provide an overview of recent work in the CT integra-
tion domain and identify gaps between CTas it is being taught
in K-12 and what may be needed to prepare students for CT
integration in professional STEM workplaces. Other articles
share interesting and productive research themes and compel-
ling classroom-grounded strategies that address specific as-
pects of CT integration in K-12 as we explore ways to help
students develop competence in computational thinking.

The next two articles describe research on the affordances
and challenges of building representational fluency in the ear-
ly grades as a foundation to CT. While both articles focus on
computing concepts and computer programming into elemen-
tary classrooms (rather than integrations into specific STEM
subjects), they offer a glimpse of thought processes of young
children that can be further developed into a broader spectrum
of CT integration into STEM classrooms as well.

Moore et al. (this issue) explored how young children in
grades K-2 engaged with and moved among multiple repre-
sentations as they managed the cognitive demands of various
computational tasks. The children in the study were asked to
translate information encoded in different representations in-
cluding concrete, symbolic, pictorial, motor, and language
representations. The authors found that students translated
among representations by constructing intermediary represen-
tations such as gestures and placing objects in the environment
to represent current state, an early form of simulation, to man-
age cognitive load. They contributed to the Lesh translation
model, or LTM (Lesh and Doerr 2003), by adding gesture as a
representational support. This article points to junctures in
student activities where concepts of looping, parallelism, and
decomposition as well as programming and debugging occur
naturally and could be explicitly linked to CT used by profes-
sionals. For instance, when asked to draw a representation of a
scene composed of tiles, and features such as barriers and
bridges, students were seen to organize the task in different
ways: one child drew each tile and its associated features;
another child drew the matrix of tiles first then added features.
This is akin to task vs. domain decomposition in parallel com-
puting. In another example, upon seeing a repetitive pattern of
steps (e.g., forward 5 steps) in coding cards, a student trans-
formed the sequence into a single movement of 5 steps
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forward in the physical space hinting at looping. The authors
contribute to this special issue by positing that understanding
the strategies children naturally use when translating among
representations may help educators embed scaffolds to sup-
port representational transitions and manage cognitive load in
CT. They also point to an area for further study—the connec-
tion between CT and spatial reasoning. The difficulty young
children had with spatial orientation tasks suggested that their
mental rotation ability was not yet sufficiently developed but
since spatial abilities have been shown to improve with prac-
tice and support (Feng et al. 2007; Uttal et al. 2013), this need
not be a barrier to CT.

Dickes, Farris, and Sengupta (this issue) investigated how
computer programming was integrated in an elementary
school 3rd grade classroom through agent-based modeling
in the ViMAP environment. The authors demonstrated how
the classroom teachers’ emphasis on mathematizing and mea-
surement positioned computing as an epistemic tool (tool for
knowledge construction) for solving real-world problems in
kinematics (i.e., movement). Mathematization and measure-
ment were supported by classroom norms for defining and
designing “mathematically sound” computational models of
motion. “Mathemization” (Lehrer et al. 2001) involves the
highlighting of mathematics as a meaning-making lens
through which the natural world can be systematized and de-
scribed. The classroom norm was to assess what “counts as”
an acceptable mathematical solution. Two forms of represen-
tations were integrated into classroom activities in the study of
animal movement through their environment. The animals’
movement within the agent-based model was compared to
movement patterns in the real world. Drawing students’ atten-
tion to stride and measuring stride first took place in a partic-
ipatory activity in which students learned tomeasure and com-
pare stride length when running and walking. Next, an ani-
mal’s stride in the simulated environment, ViMAP, was inves-
tigated and analyzed for face validity (by comparing it to how
students measured stride in the participatory activity). The
authors concluded that curricular integration of computing
within K-12 STEM contexts is a complex and challenging
endeavor for both teachers and students. It involves the adop-
tion of new literacies (e.g., programming) as well as disciplin-
ary ideas. They propose connecting STEM and computer pro-
gramming by framing CT and modeling as model eliciting
activities (Lesh and Doerr 2003) in the science classroom.
Their contribution to this issue is elucidating how even young
students can be engaged in the practice of evaluating computer
models on a mathematical basis.

The next three articles highlight computer modeling and
simulation as a productive approach to integrating CT within
STEM classrooms. They demonstrate how computer model-
ing and simulation can be integrated into K-12 science class-
rooms to support student learning of core science concepts
and increase exposure to CS while preparing students for

professional STEM practices. The ability to teach computer
modeling and simulation in K-12 has been made possible by
the availability of age-appropriate modeling and simulation
tools such as StarLogo Nova and NetLogo. Researchers
such as Moursund (2009) suggested that the underlying idea
in CT is formulating and developing models and simulation of
phenomena and problems that one is trying to study and solve.
CT, when defined as a thinking process necessary when de-
veloping computer models, is a key component of modern
scientific practice (PITAC 2005). CT is used by modern sci-
entists as they engage in making models and running experi-
ments using computer models for the purpose of conducting
fundamental research (Gilbert 1991; Schwarz and White
2005). Scientists’ ability to simulate the natural or designed
phenomena has generated a great expansion of scientific
knowledge (Emmott and Rison 2006).

Waterman, Goldsmith, and Pasquale (this issue) contribute
a practitioner report on a CT integration module (iMOD) de-
veloped for 3rd grade students. They describe developing the
module and characterized CT integration within school classes
using a framework that spans three levels: exist, enhance,
extend. A rich account is given of a CT-integrated activity in
ecosystem science as well as utterances that evidence student
learning that aligns with Massachusetts Department of
Elementary & Secondary Education CT concepts and the
computational thinking integration elements described in the
f i rs t ar t ic le (Lee and Malyn-Smith , th is issue) .
Recommendations on designing extensions to bridge between
K-12 disciplinary concepts and professional practices are pro-
vided as a roadmap for practitioners.

Aksit et al. (this issue) describe a study on exploring force
and motion concepts in middle grades using computational
modeling. This article extends the earlier articles by Dickes
et al. and Moore et al. to examine representations and repre-
sentational fluency for an older age range. The authors pro-
posed the frame of “representational competence” to describe
the thinking skills that may prepare students for the profes-
sional practice of “innovating with representations.” In the
context of modeling activities, the authors described students
constructing, modifying, and experimenting with a model of
force and motion. They identified instances of students mak-
ing key connections between coded mechanisms and physics
concepts. For example, they stated that “In order to formulate
an algorithm [e.g. to position a falling object], students needed
to conceptually understand what is meant by acceleration.”
Further, they described how multiple representations of the
concepts as conceptual (diagram); algorithmic (mathematized
version); code (encoded); and simulation run (visualization)
assisted students in understanding the physics concepts. While
the mathematical sophistication necessary to encode the for-
mula to position an object was higher in this study when
compared to that in Dickes et al. and Moore et al., the fluency
needed to shift between different representations is similar.
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The next article by Hutchins et al. (this issue) presents a
comprehensive approach to integrating STEM and CT using
the affordances of C2STEM, a computer-based learning envi-
ronment that uses the NetBlox extension of Snap! Block-
based programming. Hutchins et al. discussed C2STEM’s ne-
gotiation of the competing interests in computing and science
instruction in high school physics classrooms. They investi-
gated “When are students learning or applying concepts or
practices of physics?,” “When are students learning or apply-
ing CTconcepts or practices?,” and “When is their learning of
physics and CT mutually reinforcing?” They identified three
types of synergistic learning moments when the learning of
physics and CT were mutually reinforcing: (1) using a simu-
lation to test a conceptual issue; (2) debating whether the
model should capture the mechanism of the phenomenon;
and (3) debugging a program that is not behaving in the
expected/intended way. For all three types of synergistic learn-
ing, students encountered suchmoments while pursuing emer-
gent goals as they engaged with model-building challenges
within the C2STEM environment and curriculum. An exam-
ple of an emergent goal was debugging a model that was not
behaving in the intended/expected way. They found
debugging often invoked students’ conceptual understanding
of physics (e.g., object is not accelerating when it should)
through engagement in the practices of physics (e.g., refining
a model based on observational evidence), all while
debugging the model code, a key computational thinking skill.

These three articles show the breadth and depth of engage-
ment in computer modeling and simulation practices in grades
3 through 12. Approaches to integrating CT that are
productive—in that they lead up to professional modeling
and simulation practices, are provided. Waterman et al. dem-
onstrated how CTcan be supported through participatory sim-
ulations and data studies without interrogating a model’s
encoded mechanisms. Aksit et al. described the skill of
shifting between representations such as diagrams, algo-
rithms, code, and visualizations, as key to gaining an under-
standing of physics concepts. Their article suggests that fur-
ther study may be warranted on the connection between rep-
resentational fluency and the innovating with representations
seen in professional CT-enabled STEM practice. Hutchins
et al.’s article contributes a clear example of when the learning
of content area concepts and CT are mutually reinforcing in
authentic practices (i.e., age-appropriate versions of profes-
sional practices in computer modeling and simulation). The
article suggests a direction for further study: examining
whether these three variants of mutually reinforcing learning
episodes are universally applicable in STEM.

The following article by Pierson et al. (2019, this issue) pre-
sages the future in which CT extends to encompass dialogic
relationships between humans and intelligent agents. It considers
motivation and identity issues that arise when co-constructing
inquiry with non-human partners. Pierson framed interactions

with computer models as dialogic exchanges with co-
participants then identified this type of interaction as a pro-
ductive practice for disciplinary engagement in science and
for computational thinking (Chandrasekharan and
Nersessian 2015; Dennett 1989; Latour 1993; Pickering
1995). She found that computational models have unique
affordances for dialogic interaction because they are proba-
bilistic and iteratively executable. These features of compu-
tational models provided an entry point for students to adopt
stances that treat computational models as conversational
peers, co-constructors of lines of inquiry, and projections of
students’ agency and identity. Pierson argued that students’
treatment of models as conversational peers parallels scien-
tists’ interactions with non-human entities, which often in-
volve treating tools as agentive participants in inquiry
(Latour 1999; Pickering 1995). Pierson argued that taking a
computational entity as an interlocutor and co-participant in
investigations is an important facet of computational think-
ing. She suggested that since students’ enactment of a “dance
of agency” acts as a precursor of legitimate disciplinaryways
of operating with a scientific apparatus in conducting inves-
tigations. Thus, interactions with non-human collaborators
may extend the five computational thinking integration ele-
ments in Lee and Malyn-Smith (this issue) as it affords stu-
dents a pathway topractices at the intersectionof disciplinary
engagement and computational thinking. The co-editors of
this special issue posit that this type of relationship will be-
come ubiquitous in artificial intelligence andmachine learn-
ing. In these fields, humans will interact with machine intel-
ligences in conversational, creative, and agentiveways at the
Human-Technology Frontier.

The next three articles describe studies that involve
assessing CT integration from various perspectives. When
considering “disciplinary” as “referring to K-12 subject
areas,” assessment of integrated CT addresses the questions
“what are students learning about X?” and “what are students
learning about CT.” Furthermore, researchers ask “does the
integration of CT in X improve learning of X?” and “does
the integration of CT in X improve learning of CS?”
Answers to these questions may help to make the case for
the integration of CT in K-12 subject areas. Since these topics
and skills are not yet tested in standardized assessments, their
value is unknown and measurements do not exist to assess
student learning or teaching. But when considering “disciplin-
ary” to mean newer CT-integrated disciplines such as compu-
tational sciences, seeking learning gains in traditional science
and CS is not the point. Instead, the objective is for students to
be able to formulate questions in a domain then design, devel-
op, and use computational tools to answer those questions.
Thus, there is a tension within school day integration of
CT—the “integrated learning goal” (formulating questions
then using computational tools and techniques to answer those
questions) may be in conflict with the goals of a STEM
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classroom that has to prepare students for traditional assess-
ments in a STEM domain (AP exams, state tests); and unless
traditional assessment in STEM is changed, educators are un-
likely to abandon the domain learning view in favor of the
integrated learning view.

Bortz et al. (this issue) argued that assessing integrated
domains in K-12 education is problematic and difficult. The
authors note intrinsic problems such as relying on rubric-
based approaches that are insensitive to small movement to-
ward incompletely mastered skills, and interactions between
domains that may invalidate the results of the assessment ei-
ther because gains in one domain may be easier to measure at
certain times than the gains in the other, or because interac-
tions between the domains may cause measurement interfer-
ence. Instead, they argue that differentiated scoring methods
should be employed to detect learning in each domain plus the
“interplay” of domains. Based on their experience
implementing and assessing a high school CT-integrated
chemistry module, the authors suggest using assessments that
enable students to express multiple ways of knowing and do-
ing. Open-ended questions are considered as a form of assess-
ment that may capture students’ conceptions via multiple rep-
resentations and uncover alternative conceptions, but the au-
thors note the challenges and impracticality of using this type
of measurement in regular day classrooms. The authors con-
clude that assessing multiple facets from each domain is nec-
essary until we have a deeper understanding of the interplay of
elements in a CT-integrated learning experience.

In the next article, Arastoopour et al. (this issue) propose an
assessment approach combining an automated assessment
tool, embedded assessments, and a pre-post survey. The au-
thors used this assessment approach for a ten-day high school
biology unit with CT activities. They identified students with
both positive and negative gains and examined how each
group’s CT practices developed as they engaged with the cur-
ricular unit. The automated assessment tool is based on epi-
stemic network analysis or ENA (Shaffer et al. 2016; Shaffer
et al. 2009; Shaffer and Ruis 2017). It is a novel discourse
analysis tool that creates a centroid representation of discourse
networks. Discourse elements were identified based on a the-
matic analysis that identified common discourse elements in
the student data and based on whether such discourse ele-
ments related to existing practices in the CT-STEM taxonomy
(Weintrop et al. 2016). To measure connections among cog-
nitive elements, the nodes in the network represent an individ-
ual’s knowledge and skills identified in discourse and the links
represent the individual’s associations between knowledge.
The links were analytically determined when elements co-
occur in the discourse. The development of the network rep-
resentation was based on research that shows that co-
occurrences of concepts in a given segment of discourse data
are good indicators of cognitive connections (Arastoopour
et al. 2016; Lund and Burgess 1996). ENA measures when

and how often learners make links between domain-relevant
elements during their work. Their results showed that (1) stu-
dents exhibited both science and computational learning gains
after engaging with a science unit with computational models
and (2) the use of embedded assessments and discourse ana-
lytics tools reveals how students think differently with com-
putational tools throughout the unit. The authors suggest that
discourse learning analytics might help teachers identify a
student’s struggles with understanding particular mechanisms.
Such automated assessments may address some of the con-
cerns raised in Bortz et al. (this issue) about the impracticality
of using open-ended assessments in typical classroom
settings.

In the third article on assessment, Hadad et al. (this issue)
describe informal formative assessment of CT inmakerspaces.
Makerspaces are arenas in which students practice as active
learners working directly with materials as if they were pro-
fessionals in the field. Thus, these spaces have the potential to
provide the opportunity to assess students’ ability to formulate
questions and design solutions in a domain then develop and
use CTand tools to answer those questions or implement their
design. The authors found that students used multiple repre-
sentations of their construction: the artifact itself and diagrams
were used as “objects to think with” (Papert 1980). In one
case, students led by the mentor discussed levels of abstraction
in the diagram and what needed to be represented in the dia-
gram for it to be useful as a thinking tool. Using a framework
from Csizmadia (citation), the authors describe individual
“moments of notice” or instances when formative assessment
could guide students’ understanding of CT. This played out as
an incident in which a program mentor finds an opening to
query students about their project, their intent, and/or their
reflections on the project or process. They identified four ap-
proaches to formatively assessing students’ project work that
surface their CT: using materials and CT terms; drawing or
sketching for understanding; debugging practice; and fluidity
of roles. This article contributes to the set by describing how
instructors can use formative assessment to uncover students’
prior knowledge and improve their use of CT in construction-
ist and project-based settings.

The final paper in the special issue focuses on teacher ed-
ucation and professional development (PD). Teacher prepara-
tion has been noted as a critical factor in the integration of CT
into K-12 subject areas (Barr and Stephenson 2011; Voogt
et al. 2015; Yadav et al. 2016; Yadav et al. 2017). Teacher
PD programs focusing on CT integration often include key
features of effective PD known from education research liter-
ature. To be effective, PD should be grounded in teachers’
needs and their work environments, and address core areas
of teaching: content, curriculum, instruction, and assessment.
Common features of effective teacher PD programs include
opportunities to (a) gain new knowledge, (b) reflect on chang-
es in teaching practice, and (c) increase abilities and skills.
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Additionally, effective PD focuses on student learning out-
comes and models learner-centered instruction such that
teachers experience and reflect upon learning activities that
they will ultimately lead for their students (Hassel 1999;
Gaible and Burns 2005). In addition to what is known about
PD generally, Yadav et al. (2016) suggested that effective PD
in CT should be tied to teachers’ curricular needs, explicitly
describe overlaps between learning objectives in the subject
area and CT, promote the development of a community of
practice among teachers, and be continuous rather than
episodic.

Ketelhut et al. (2019, this issue) examined teacher change
following a PD experience in integrating CT into elementary
school science. The authors found that teachers’ views of CT
developed across personal, domain-specific practice, and out-
comes dimensions. Teachers communicated their own knowl-
edge, beliefs, and attitudes about CT integration (personal
domain), they designed lessons to integrate CT into instruc-
tion (domain of practice), and they described outcomes of CT-
infused learning for their students (domain of consequence).
The authors then synthesized across the case studies and gen-
eral findings, looking for common themes that arose out of the
relationships between these domains. Across the personal and
practice domains, they found teachers did not feel they had
adequate knowledge and skills to troubleshoot students’ prob-
lems or issues in open-ended inquiry-based projects, and
teachers’ developing notions of CT caused them to overesti-
mate their claims of integrating CT. Additionally, though the
relevance of computation was questioned, teachers found that
efforts to integrate CT into their classrooms provided a forum
for teachers to focus deeply on providing “good” science in-
struction. In the outcome domain, teachers grew to believe
that integrating computation engaged student learners of all
backgrounds. Numerous difficulties were encountered during
the teacher PD program aimed at supporting 1st–2nd grade
teachers for integration of CT in ES classrooms. The re-
searchers found that teachers struggled with how CT best fit
within their curricula, how to champion CT in school environ-
ments unfamiliar with CT, and how to find the resources and
support they needed to enact their ideas for CT integration.
This article brings an important question to the forefront: how
deeply do teachers need to understand and master CT in order
to help their students develop CT capacity and skills?

Together, this set of articles provides a picture of the current
status of CT integration in STEM subjects from a disciplinary
perspective as educators and researchers explore what it takes
to prepare today’s students for work at the Human-
Technology Frontier. We believe that this special issue’s pre-
sentation of a framework for computational thinking from a
disciplinary perspective connects the interesting and produc-
tive research themes and compelling classroom-grounded
strategies described in this issue to the foundational skills,
knowledge, and dispositions needed by computational

thinking scientists and engineers. Together, these advance
our understanding of STEM+CT integration in K-12 learning,
and we hope that it will provoke new ways of thinking about
CT integration and generate discussion among the community
of scholars, STEM teachers, and other STEM professionals.
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