
Deep Neural Network Mapping and Performance
Analysis on Tiled RRAM Architecture

Xinxin Wang1, Qiwen Wang1, Fan-Hsuan Meng1, Seung Hwan Lee1, and Wei D. Lu1,*
1Electrical Engineering and Computer Science, University of Michigan

*Email: wluee@umich.edu

Abstract—Representative deep neural networks (DNNs) have
been successfully mapped on an RRAM-based tiled in-memory
computing (IMC) architecture. Effects of finite array size and
quantized partial products (PPs) due to ADC precision constraints
have been analyzed. Methods were developed to solve these
challenges and preserve DNN accuracies and IMC performance
gains in the tiled architecture. Popular models VGG-16,
MobileNet, and RNN/LSTM have been successfully implemented
and tested on ImageNet dataset and text classification tasks,
respectively.

Keywords—RRAM, Deep Neural Network, In-Memory
Computing, AI Accelerator

I. INTRODUCTION
Deep neural networks have shown impressive performance

in many artificial intelligence (AI) tasks. However, DNNs also
come with high computation cost and complexity when
implemented on conventional processor architectures, which
are poorly matched for such workload. Dedicated AI
accelerators are desirable for meeting the computational demand
of DNNs. In most deployment scenarios, only inference
operations on pre-trained model are needed, and efficiency of
such operation is important for wider adaption. In particular, for
edge computing applications where power and latency
constrains are severe, efficient inference is crucial.

Among approaches for DNN accelerators, resistive random-
access memory (RRAM) based in-memory computing (IMC)
accelerators have received increasing attention in recent years.
RRAM is a type two terminal non-volatile resistive device
whose conductance level can be changed by applying electrical
signal in analog or digital fashion. RRAM array can perform

vector-matrix multiplication (VMM) in analog domain by
accumulating the total current or charge at each column.
Furthermore, the high density and non-volatile nature of RRAM
devices enable entire DNN models to be stored on chip, thus
eliminating the expensive off-chip memory access.

Previous studies have been limited to small neural networks
models and simple tasks such as MNIST and CIFAR-10, or
without considering physical limitations of the RRAM array [1].
The results may not capture many of the challenges that may
arise when implementing large-scale models. For example,
device and circuit non-idealities limit the maximum usable array
size, making it impractical to implement an entire layer of large-
scale models on a single array.

In this paper, we discuss a reconfigurable and scalable tiled
RRAM architecture to fulfill the requirement of large-scale
storage for mapping DNN weights. A simulation framework is
developed to evaluate the performance of different DNNs
mapped on this hardware accelerator with the existence of the
non-ideal factors.

II. IMPLEMENTATION OF TILED ARCHITECTURE
The schematic of the tiled architecture for implementing

large scale DNN is shown in Fig. 1. In this architecture,
multiple moderately sized RRAM arrays are linked through
digital interface, thus a large amount of crossbar arrays can be
integrated on a single chip. This allows large-scale DNN
models to be implemented across multiple RRAM arrays while
minimizing effect from device and circuit non-idealities.
However, a layer of a typical DNN model is usually much
larger than the practical array size. Strategies for mapping of

This work was supported in part by SRC and DARPA through the
Applications Driving Architectures (ADA) Research Center, and by the
National Science Foundation through grant CCF-1900675.

Fig. 1. Schematic of a DNN mapped on tiles of RRAM crossbar arrays.

Layer 1 output activation Layer 2 output activation

Layer 3

Layer 3 output activation

Layer n

Layer n output activation

Input
activation

Tiled architecture

Fig. 2: Examples of input voltage pulses and accumulated currents during
VMM operation. Input activations are encoded as pulses in bit-serial
approach.

…
… …
…

…
…

……

……

……

AD
C

AD
C

AD
C

AD
C

…… SRAMSRAM SRAMSRAM

…
…

SR
AM

SR
AM

SR
AM

SR
AM

…… DigitalDigital DigitalDigital

11111111

01010101

10101010

00000000

2020 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)

978-1-7281-4922-620$31.00 c©2020 IEEE 141

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 11,2020 at 20:48:11 UTC from IEEE Xplore. Restrictions apply.

different types of DNN layers onto crossbar arrays using this
approach can be found in [4].

As the number of conductance levels of RRAM devices and
the area/energy of periphery circuitry are both limited, DNN
models where quantized input activations and weights are used.
In the inference stage, the input activations are programmed as
voltage pulses and are fed to different rows of the crossbar
arrays. To optimize the latency, the bit-serial approach is
adopted. As an example, we implement 8-bit models and set the
unit pulse width as 10ns. Plain pulse-width modulation would
require 2550ns to complete a single VMM operation. By
applying bit-serial modulation, the latency for single VMM
operation can be reduced to 80ns, therefore significantly
improving the throughput.

After collecting the currents/charges from the crossbar, the
analog signals need to be digitized by ADCs to produce the
VMM results. Since the input vector and the weights are
divided among multiple arrays, each array only outputs a
partial-product (PP). To keep the design general, ADCs are
located at each crossbar so that the PPs are quantized first and
then summed in digital domain to produce the final layer
output. However, due to limited ADC accuracy, digitization of
the PPs can introduces significant additional error in the VMM
process and can severely degrade DNN model performance.
This effect is particularly pronounced for highly optimized
models (e.g. MobileNet) that cannot tolerate VMM errors well.
In addition, device non-idealities including finite on/off ratio
and conductance variations can also introduce errors to the
computation. These effects can be carefully analyzed through
our simulation framework, as shown in Fig. 3.

III. IMPLEMENTATION OF SIMULATION FRAMEWORK
The simulation framework of the tile-based DNN accelerator

is implemented in a hierarchical structure, as shown in Fig. 4. In
the bottom level, we defined Crossbar Class and Activation
Class to store the crossbar arrays and the activation vectors,
respectively. Each Crossbar object contains the information of
an array, including the conductance levels of each device and
the device non-ideality parameters such as on-off ratio and
device variability. Each Activation object is a 2-D array, with
each column dimension denoting the vector length and the row
dimension denoting the number of vectors.

In the second level, the weight mapping functions and
activation mapping functions are defined. Weight mapping
methods for fully connected (FC) layer, regular convolution
(Conv) layer and depthwise convolution (DW Conv) layer are
discussed in [4]. Activations at the same time step will form a
vector and elements in different vectors will be programmed as
voltage pulses and fed into crossbar arrays in bit-serial manner.

In the third level, we defined different layer functions to
implement in the hardware, including FC layer, regular Conv
layer and DW Conv layer. In the crossbar operation stage, these
functions will perform VMM with the Crossbar objects and the
Activation Objects and produce the output PPs. Afterwards, the
PPs are quantized with the ADCs at each crossbar. Some
information in the PPs will be lost in the quantization stage and
the mult-and-add stage is not able to restore them. To mitigate
the accuracy degradation due to quantization effects of the PPs,
the ADCs need to support multiple quantization ranges, i.e. at
the extreme case for each column at each crossbar. This
approach is termed column-wise ADC quantization [4]. We note
that for inference operations for a given model the ADC ranges
only need to be set once before the model operation, and does
not need to be dynamically re-configured during inference.
Afterwards, the quantized PPs will be scaled with the
corresponding ranges and then added up with the other PPs to
produce the final output activation. At last, the final quantized
8-bit output product is obtained. Nonlinear activation functions
including ReLu and ReLu6 can also be added at this stage.

In the top level, the users can build their own model in a user
defined file. In this file, the pretrained model should be loaded

Fig. 3: The purpose of the simulation framework is to map different neural
networks to the tile-based architecture, and to simulate inference through the
crossbar and the effects of quantization, device variability and other
nonlinearity factors.

Fig.4: Hierarchical structure of the simulation framework and details in each
level.

input_mapped: matrix index
input_set: matrix object

weight_mapped: crossbar index
crossbar_set: crossbar object

Main
Build network

• Call layer function
• Initialize weight or map pretrained weight
• Run inference on preprocessed ImageNet data

Layer function
• FC
• Regular Conv
• DW Conv
• Nonlinear
• Pooling

Weight mapping
• Map weight to

arrays
• FC mapping
• Conv mapping
• DW Conv mapping

Activation mapping
• Map activation to

a single matrix
• FC mapping
• Conv mapping
• DW Conv mapping

Crossbar class
• Store data
• Write/Read
• Matrix multiplication
• ADC quantization

Activation class
• Store data
• Write/Read
• Matrix multiplication

Call function

Call function Call function

Fig. 5: RNN/LSTM models for text classification.

142

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 11,2020 at 20:48:11 UTC from IEEE Xplore. Restrictions apply.

and the weights in the model should be mapped onto crossbar
arrays by calling the weight mapping functions defined in the
second level. Different layers in the model can be built by calling
different layer functions in the third level. The layer functions
will automatically call the activation mapping functions. The
mapped Activation and Crossbar objects are stored in the global
variables. They will be loaded with the layer functions and
multiplied with each other in the crossbar operation stage in the
simulation framework. At the end of inference on each image in
the dataset, the predicted result will be recorded.

IV. SIMULATION OF IMAGENET AND NLP MODELS
As a general implementation of hardware neural network

accelerators, the tiled architecture can support models from a
broad range of categories. Simulations have been performed for
image classification tasks based on the tiled architecture, using
popular models including VGG-16 [2] and MobileNet [3] using
our framework, and mitigation methods were developed to
preserve prediction accuracy on the tiled architecture after
considering the PP quantization effects and other non-ideality
factors, as discussed in [4]. Here, we will show that RNN and
LSTM models for text classification can also be mapped on the
tiled-architecture and simulated through our simulation
framework. The structures of the models are shown in Fig. 5.
Each word in the input sentence is embedded to a vector with 50
elements. At each time step, the RNN or LSTM unit accepts an
input vector and a previous hidden vector, which will be
multiplied with input-to-hidden weights (�����and hidden-to-
hidden weights (����, respectively. The two results will then be
added up to produce the output of the current time step, which
also works as the previous hidden vector for the next time step.
The current output vector will go through an additional fully

connected layer, and a 2-element vector will be produced. At
last, all the 2-element vectors corresponding to different time
steps will be averaged and the input sentence can be labeled
according to the final output.

The mapping results and data flow of these two models are
shown in Fig. 6 and 7, respectively. In the simulations, dual
array mapping discussed in [4] is used to map signed weights.
The VMM operations are implemented with crossbar arrays.
Other functions, including subtracting PPs corresponding to the
positive weights and the negative weights, adding the output
activations corresponding to ��� and ��� , tanh function,
sigmoid function, multiplication and addition of intermediate
results, are implemented with digital circuits.

We first simulated RNN and LSTM model accuracies for
text classification with floating point models. Using the floating
models as baseline, digital models with input activation and
weight values quantized from 8-bit to 2-bit are simulated, under
different ADC quantization conditions. The results in Table I
show that even with 4-bit model and layer-wise 4-bit ADC, the
accuracies do not degrade much. Highest accuracies can be
achieved with 4-bit model and column-wise 8-bit ADC for RNN
and 8-bit model and layer-wise 8-bit ADC for LSTM. These
accuracies are in fact higher than the floating models, likely a
result of over-fitting in the floating model. Finally, the models
are simulated under 100 on/off ratio and 2% variation of the
device, and rounded ADC quantization scales, as shown in Table
II. The performances in most cases are still high. One reason that
the performances of the RNN and LSTM model in this
application are robust against quantization is that this task is
relatively simple, and the models are in general over-
parameterized. While for highly optimized models and for more
challenging tasks, quantization effects need to be carefully
analyzed and mitigated, as discussed in [4].

TABLE I. ACCURICIES OF RNN AND LSTM IN DIFFERENT CASES

TABLE II. ACCURICIES OF RNN AND LSTM WITH DEVICE NON-
IDEALITIES AND ROUNDED QUANTIZATION SCALES

Fig. 6: Mapping results and data flow of the RNN model.

Fig. 7: Mapping results and data flow of the LSTM model.

143

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 11,2020 at 20:48:11 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION
In this paper, we discussed strategies to implement DNN

inference models using the tiled architecture by considering
practical crossbar size limitations, quantization effects and
other non-ideality factors. The simulation framework for
evaluating model accuracies based on the tiled architecture is
presented in detail. To demonstrate the generality of the
architecture for tasks beyond image classification, RNN and
LSTM models were mapped on the same architecture and
demonstrated that the tiled-architecture and the simulation
framework can support models from different categories.

REFERENCES
[1] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim+: An integrated device-to-

algorithm framework for benchmarking synaptic devices and array
architectures,” in 2017 IEEE International Electron Devices Meeting
(IEDM), 2017, pp. 6.1.1-6.1.4.

[2] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps,”
pp. 1–8, Dec. 2013.

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto and H. Adam, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” Apr. 2017.

[4] X. Wang, Q. Wang, S. H. Lee, F.-H. Meng, and W. D. Lu, “A Deep
Neural Network Accelerator Based on Tiled RRAM Architecture,” 2019
IEEE Int. Electron Devices Meet., p. 14.4, 2019.

[5] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
2704–2713.

[6] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn
and W. D. Lu, “A fully integrated reprogrammable memristor–CMOS
system for efficient multiply–accumulate operations,” Nat. Electron., vol.
2, no. 7, pp. 290–299, Jul. 2019.

[7] M. A. Zidan, Y. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner and W.
D. Lu, “A general memristor-based partial differential equation solver,”
Nat. Electron., vol. 1, no. 7, pp. 411–420, Jul. 2018.

144

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 11,2020 at 20:48:11 UTC from IEEE Xplore. Restrictions apply.

