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Abstract—Representative deep neural networks (DNNs) have 
been successfully mapped on an RRAM-based tiled in-memory 
computing (IMC) architecture. Effects of finite array size and 
quantized partial products (PPs) due to ADC precision constraints 
have been analyzed. Methods were developed to solve these 
challenges and preserve DNN accuracies and IMC performance 
gains in the tiled architecture. Popular models VGG-16, 
MobileNet, and RNN/LSTM have been successfully implemented 
and tested on ImageNet dataset and text classification tasks, 
respectively. 
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I. INTRODUCTION 
Deep neural networks have shown impressive  performance 

in many artificial intelligence (AI) tasks. However, DNNs also 
come with high computation cost and complexity when 
implemented on conventional processor architectures,  which 
are poorly matched for such workload. Dedicated AI 
accelerators are desirable for meeting the computational demand 
of DNNs. In most deployment scenarios, only inference 
operations on pre-trained model are needed, and efficiency of 
such operation is important for wider adaption. In particular, for 
edge computing applications where power and latency 
constrains are severe, efficient inference is crucial. 

Among approaches for DNN accelerators, resistive random-
access memory (RRAM) based in-memory computing (IMC) 
accelerators have received increasing attention in recent years. 
RRAM is a type two terminal non-volatile resistive device 
whose conductance level can be changed by applying electrical 
signal in analog or digital fashion. RRAM array can perform 

vector-matrix multiplication (VMM) in analog domain by 
accumulating the total current or charge at each column. 
Furthermore, the high density and non-volatile nature of RRAM 
devices enable entire DNN models to be stored on chip, thus 
eliminating the expensive off-chip memory access.  

Previous studies have been limited to small neural networks 
models and simple tasks such as MNIST and CIFAR-10, or 
without considering physical limitations of the RRAM array [1]. 
The results may not capture many of the challenges that may 
arise when implementing large-scale models. For example, 
device and circuit non-idealities limit the maximum usable array 
size, making it impractical to implement an entire layer of large-
scale models on a single array.  

In this paper, we discuss a reconfigurable and scalable tiled 
RRAM architecture to fulfill the requirement of large-scale 
storage for mapping DNN weights. A simulation framework is 
developed to evaluate the performance of different DNNs 
mapped on this hardware accelerator with the existence of the 
non-ideal factors.    

II. IMPLEMENTATION OF TILED ARCHITECTURE 
The schematic of the tiled architecture for implementing 

large scale DNN is shown in Fig. 1. In this architecture, 
multiple moderately sized RRAM arrays are linked through 
digital interface, thus a large amount of crossbar arrays can be 
integrated on a single chip. This allows large-scale DNN 
models to be implemented across multiple RRAM arrays while 
minimizing effect from device and circuit non-idealities. 
However, a layer of a typical DNN model is usually much 
larger than the practical array size. Strategies for mapping of 
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Fig. 1. Schematic of a DNN mapped on tiles of RRAM crossbar arrays. 
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Fig. 2: Examples of input voltage pulses and accumulated currents during 
VMM operation. Input activations are encoded as pulses in bit-serial 
approach.
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different types of DNN layers onto crossbar arrays using this 
approach can be found in [4].  

As the number of conductance levels of RRAM devices and 
the area/energy of periphery circuitry are both limited, DNN 
models where quantized input activations and weights are used. 
In the inference stage, the input activations are programmed as 
voltage pulses and are fed to different rows of the crossbar 
arrays. To optimize the latency, the bit-serial approach is 
adopted. As an example, we implement 8-bit models and set the 
unit pulse width as 10ns. Plain pulse-width modulation would 
require 2550ns to complete a single VMM operation. By 
applying bit-serial modulation, the latency for single VMM 
operation can be reduced to 80ns, therefore significantly 
improving the throughput.  

After collecting the currents/charges from the crossbar, the 
analog signals need to be digitized by ADCs to produce the 
VMM results. Since the input vector and the weights are 
divided among multiple arrays, each array only outputs a 
partial-product (PP).  To keep the design general, ADCs are 
located at each crossbar so that the PPs are quantized first and 
then summed in digital domain to produce the final layer 
output. However, due to limited ADC accuracy, digitization of 
the PPs can introduces significant additional error in the VMM 
process and can severely degrade DNN model performance. 
This effect is particularly pronounced for highly optimized 
models (e.g. MobileNet) that cannot tolerate VMM errors well. 
In addition, device non-idealities including finite on/off ratio 
and conductance variations can also introduce errors to the 
computation. These effects can be carefully analyzed through 
our simulation framework, as shown in Fig. 3.  

III. IMPLEMENTATION OF SIMULATION FRAMEWORK 
The simulation framework of the tile-based DNN accelerator 

is implemented in a hierarchical structure, as shown in Fig. 4. In 
the bottom level, we defined Crossbar Class and Activation 
Class to store the crossbar arrays and the activation vectors, 
respectively. Each Crossbar object contains the information of 
an array, including the conductance levels of each device and 
the device non-ideality parameters such as on-off ratio and 
device variability. Each Activation object is a 2-D array, with 
each column dimension denoting the vector length and the row 
dimension denoting the number of vectors.  

In the second level, the weight mapping functions and 
activation mapping functions are defined. Weight mapping 
methods for fully connected (FC) layer, regular convolution 
(Conv) layer and depthwise convolution (DW Conv) layer are 
discussed in [4]. Activations at the same time step will form a 
vector and elements in different vectors will be programmed as 
voltage pulses and fed into crossbar arrays in bit-serial manner.  

In the third level, we defined different layer functions to 
implement in the hardware, including FC layer, regular Conv 
layer and DW Conv layer. In the crossbar operation stage, these 
functions will perform VMM with the Crossbar objects and the 
Activation Objects and produce the output PPs. Afterwards, the 
PPs are quantized with the ADCs at each crossbar. Some 
information in the PPs will be lost in the quantization stage and 
the mult-and-add stage is not able to restore them. To mitigate 
the accuracy degradation due to quantization effects of the PPs, 
the ADCs need to support multiple quantization ranges, i.e. at 
the extreme case for each column at each crossbar. This 
approach is termed column-wise ADC quantization [4]. We note 
that for inference operations for a given model the ADC ranges 
only need to be set once before the model operation, and does 
not need to be dynamically re-configured during inference. 
Afterwards, the quantized PPs will be scaled with the 
corresponding ranges and then added up with the other PPs to 
produce the final output activation. At last, the final quantized 
8-bit output product is obtained. Nonlinear activation functions 
including ReLu and ReLu6 can also be added at this stage. 

In the top level, the users can build their own model in a user 
defined file. In this file, the pretrained model should be loaded 

 
Fig. 3: The purpose of the simulation framework is to map different neural
networks to the tile-based architecture, and to simulate inference through the 
crossbar and the effects of quantization, device variability and other 
nonlinearity factors. 

Fig.4: Hierarchical structure of the simulation framework and details in each 
level. 
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Fig. 5: RNN/LSTM models for text classification. 
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and the weights in the model should be mapped onto crossbar 
arrays by calling the weight mapping functions defined in the 
second level. Different layers in the model can be built by calling 
different layer functions in the third level. The layer functions 
will automatically call the activation mapping functions. The 
mapped Activation and Crossbar  objects are stored in the global 
variables. They will be loaded with the layer functions and 
multiplied with each other in the crossbar operation stage in the 
simulation framework. At the end of inference on each image in 
the dataset, the predicted result will be recorded.  

IV. SIMULATION OF IMAGENET AND NLP MODELS 
As a general implementation of hardware neural network 

accelerators, the tiled architecture can support models from a 
broad range of  categories. Simulations have been performed for 
image classification tasks based on the tiled architecture, using 
popular models including VGG-16 [2] and MobileNet [3] using 
our framework, and mitigation methods were developed to 
preserve prediction accuracy on the tiled architecture after 
considering the PP quantization effects and  other non-ideality 
factors, as discussed in [4]. Here, we will show that RNN and 
LSTM models for text classification can also be mapped on the 
tiled-architecture and simulated through our simulation 
framework. The structures of the models are shown in Fig. 5. 
Each word in the input sentence is embedded to a vector with 50 
elements. At each time step, the RNN or LSTM unit accepts an 
input vector and a previous hidden vector, which will be 
multiplied with input-to-hidden weights (�����and hidden-to-
hidden weights (����, respectively. The two results will then be 
added up to produce the output of the current time step, which 
also works as the previous hidden vector for the next time step. 
The current output vector will go through an additional fully 

connected layer, and a 2-element vector will be produced. At 
last, all the 2-element vectors corresponding to different time 
steps will be averaged and the input sentence can be labeled 
according to the final output. 

The mapping results and data flow of these two models are 
shown in Fig. 6 and 7, respectively. In the simulations, dual 
array mapping discussed in [4] is used to map signed weights. 
The VMM operations are implemented with crossbar arrays. 
Other functions, including subtracting PPs corresponding to the 
positive weights and the negative weights, adding the output 
activations corresponding to ���  and ��� , tanh function, 
sigmoid function, multiplication and addition of intermediate 
results, are implemented with digital circuits. 

We first simulated RNN and LSTM model accuracies for 
text classification with floating point models. Using the floating 
models as baseline, digital models with input activation and 
weight values quantized from 8-bit to 2-bit are simulated, under 
different ADC quantization conditions. The results in Table I 
show that even with 4-bit model and layer-wise 4-bit ADC, the 
accuracies do not degrade much. Highest accuracies can be 
achieved with 4-bit model and column-wise 8-bit ADC for RNN 
and 8-bit model and layer-wise 8-bit ADC for LSTM. These 
accuracies are in fact higher than the floating models, likely a 
result of over-fitting in the floating model. Finally, the models 
are simulated under 100 on/off ratio and 2% variation of the 
device, and rounded ADC quantization scales, as shown in Table 
II. The performances in most cases are still high. One reason that 
the performances of the RNN and LSTM model in this 
application are robust against quantization is that this task is 
relatively simple, and the models are in general over-
parameterized. While for highly optimized models and for more 
challenging tasks, quantization effects need to be carefully 
analyzed and mitigated, as discussed in [4]. 

TABLE I.  ACCURICIES OF RNN AND LSTM IN DIFFERENT CASES 

 

TABLE II.  ACCURICIES OF RNN AND LSTM WITH DEVICE NON-
IDEALITIES AND ROUNDED QUANTIZATION SCALES 

 

 

  
Fig. 6: Mapping results and data flow of the RNN model. 

Fig. 7: Mapping results and data flow of the LSTM model. 
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V. CONCLUSION 
In this paper, we discussed strategies to implement DNN 

inference models using the tiled architecture by considering 
practical crossbar size limitations, quantization effects and 
other non-ideality factors. The simulation framework for 
evaluating model accuracies based on the tiled architecture is 
presented in detail. To demonstrate the generality of the 
architecture for tasks beyond image classification, RNN and 
LSTM models were mapped on the same architecture and 
demonstrated that the tiled-architecture and the simulation 
framework can support models from different categories. 

REFERENCES 
[1] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim+: An integrated device-to-

algorithm framework for benchmarking synaptic devices and array 
architectures,” in 2017 IEEE International Electron Devices Meeting 
(IEDM), 2017, pp. 6.1.1-6.1.4. 

[2] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional 
Networks: Visualising Image Classification Models and Saliency Maps,” 
pp. 1–8, Dec. 2013. 

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, 
M. Andreetto and H. Adam, “MobileNets: Efficient Convolutional Neural 
Networks for Mobile Vision Applications,” Apr. 2017. 

[4] X. Wang, Q. Wang, S. H. Lee, F.-H. Meng, and W. D. Lu, “A Deep 
Neural Network Accelerator Based on Tiled RRAM Architecture,” 2019 
IEEE Int. Electron Devices Meet., p. 14.4, 2019. 

[5] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, 
and D. Kalenichenko, “Quantization and Training of Neural Networks for 
Efficient Integer-Arithmetic-Only Inference,” in 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 2018, pp. 
2704–2713. 

[6] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn 
and W. D. Lu, “A fully integrated reprogrammable memristor–CMOS 
system for efficient multiply–accumulate operations,” Nat. Electron., vol. 
2, no. 7, pp. 290–299, Jul. 2019. 

[7] M. A. Zidan, Y. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner and W. 
D. Lu, “A general memristor-based partial differential equation solver,” 
Nat. Electron., vol. 1, no. 7, pp. 411–420, Jul. 2018. 

 

144

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 11,2020 at 20:48:11 UTC from IEEE Xplore.  Restrictions apply. 


