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Response of active Brownian particles to boundary driving
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We computationally study the behavior of underdamped active Brownian particles in a sheared channel
geometry. Due to their underdamped dynamics, the particles carry momentum a characteristic distance away
from the boundary before it is dissipated into the substrate. We correlate this distance with the persistence of
particle trajectories, determined jointly by their friction and self-propulsion. Within this characteristic length, we
observe counterintuitive phenomena stemming from the interplay of activity, interparticle interactions, and the
boundary driving. Depending on the values of friction and self-propulsion, interparticle interactions can either
aid or hinder momentum transport. More dramatically, in certain cases we observe a flow reversal near the wall,
which we correlate with an induced polarization of the particle self-propulsion directions. We rationalize these
results in terms of a simple kinetic picture of particle trajectories.
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I. INTRODUCTION

Systems which are driven far from equilibrium exhibit
emergent phenomena that are strikingly different from the
thermodynamically allowed behaviors of equilibrium sys-
tems. Recently, intense research has focused on a class of such
systems known as active matter, in which driving enters the
system at the level of its microscopic constituents [1–10]. Ac-
tive matter occurs on many scales, from the microscopic and
colloidal to the macroscopic. Specific examples include the
cell cytoskeleton [11], reconstituted biopolymers and molec-
ular motors [11,12], bacterial suspensions [13,14], synthetic
self-propelled colloids [15–20], schooling fish [21,22], and
flocking birds [23].

Progress toward a fundamental understanding of active
matter requires minimal models that are sufficiently tractable
to describe theoretically but exhibit the key phenomenology
of more complicated, real-world systems. Toward this end, a
common paradigm is to consider particles which self-propel
as a result of an internal driving force acting along some body
axis. For example, the active Brownian particle (ABP) model
describes spheres or disks that self-propel at constant velocity
and whose direction of propulsion evolves diffusively [24].
Despite their simplicity, such self-propelled particle mod-
els exhibit striking emergent phenomena, including athermal
phase separation [25–36], spontaneous flows [37–42], and
long-range density variations [43–47]. However, researchers
have only recently begun to study these models in the presence
of external driving. Previous work has examined the response
of self-propelled particles to perturbing external fields [48]
and time-periodic compression and expansion [49]. Efforts
have also been made to construct a formal theoretical frame-
work of response and transport in active materials, using an
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Irving-Kirkwood-type approach [50,51], a multiple-timescale
analysis [52], or large deviation theory [53].

It has been established that boundaries have dramatic and
long-ranged effects in active systems, which make active sys-
tems nonextensive (i.e., their behaviors are not independent of
system size) [44,46,47,54–57]. However, the consequences of
boundary driving have yet to be addressed in the literature
of active particles. In this article, we begin to address this
question by performing computer simulations of an under-
damped ABP system subject to shearing forces applied at the
boundary. We characterize the response of the system in terms
of the flow velocity profile—defined as the average particle
velocity at a given position—and analyze the results in the
context of a simple kinetic picture of particle trajectories.

In general, the flow velocity profile decays exponentially
with distance from the boundary. We denote the length of this
decay as the penetration depth, which generically depends
on the friction and self-propulsion forces. Interestingly, we
find that interparticle interactions can either aid or hinder
momentum transport depending on the system parameters.
This stands in contrast with systems of passive spheres, where
interactions generically enhance momentum transport.

To shed light on possible boundary conditions applicable to
continuum theories of rheology of active fluids, we consider
also the properties of the system at the wall, i.e., on the order
of a particle diameter from the wall. In further contrast to
equilibrium systems, we discover a flow reversal phenomenon
within this region, where the flow velocity points opposite to
the boundary driving. Finally, we find that the stress at the
wall is a nontrivial function of the density of the system.

We rationalize these findings in terms of a simple kinetic
picture of how ABPs move and interact in the presence
of shear stress. We conclude that the response of ABPs to
boundary driving is dominated by a boundary layer on the
scale of the persistence of particle trajectories. Finally, we
discuss the implications of our results for developing a more
systematic theoretical description of response and transport in
systems of self-propelled particles.
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II. MODEL AND SIMULATIONS

A. Equations of motion

We work within the active Brownian particle (ABP) model,
which is an idealized model system that captures important
features of several experimental active matter systems, such as
vibration-fluidized granular matter and chemically propelled
colloidal particles [15,20,29,58]. In general, ABPs are self-
propelled spheres with diffusive reorientation statistics. In
our case we specialize to two-dimensional systems in which
the translational center-of-mass dynamics is underdamped
with corresponding friction coefficient ξ . Physically, this can
be conceptualized as particle motion on a two-dimensional
dissipative substrate. Although many previous investigations
of ABPs have assumed the overdamped limit, we require the
more general underdamped dynamics to study momentum
transport. Note also that underdamped dynamics is required
to accurately describe some features of other active systems
[59–61]. On the other hand, we keep the angular dynamics
overdamped, since angular inertia is expected to play only
a secondary role in the transport of linear momentum. The
equations of motion are then

dr
dt

= v, (1)

dv
dt

= Fp

m
û − 1

m
∇VWCA − ξv +

√
2DξηT(t ), (2)

dθ

dt
=

√
2Drη

R(t ). (3)

Here ηT(t ) and ηR(t ) are δ-correlated thermal noises, sat-
isfying 〈η(t )η(t ′)〉 = δ(t − t ′) with corresponding diffusion
coefficients D and Dr = 3D/σ 2. The self-propulsion enters as
the constant magnitude force Fp in the direction of a particle’s
orientation û = (cos θ, sin θ ). In particular, the combination
of self-propulsion and diffusive reorientation allows one to
define an active persistence length � = Fp/(mξDr ), which
in the overdamped limit (ξ → ∞ with mξ fixed) gives the
distance over which a free particle’s motion is correlated [24].
Interparticle interactions are described by a WCA potential
[62]

VWCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε r � 21/6σ

0 r > 21/6σ
. (4)

In simulations we nondimensionalize using σ as the unit
length and τ = σ 2/D as the unit time, and we set the WCA
well-depth parameter equal to the thermal energy, ε = kBT .
Denoting the new coordinates with primes, Eqs. (1)–(3) be-
come

dr′

dt ′
= v′, (5)

dv′

dt ′
= 3ξ0�0û − ξ0∇VWCA − ξ0v′ +

√
2ξ0η

T(t ′), (6)

dθ

dt ′
=

√
6ηR(t ′). (7)

Thus the control parameters of a single-particle trajectory
in free space are the nondimensional friction constant ξ0 =
ξτ and active persistence length �0 = �/σ . Note that due to

FIG. 1. The shearing geometry. The aspect ratio A and packing
fraction φ are varied to achieve a fixed overall number of particles.

the choice of units, 3�0 is the same as the Péclet number.
In addition, the quantity ξ/Dr = ξ0/3 expresses the relative
magnitude of frictional versus rotational relaxation.

B. Shearing geometry

To understand the effects of boundary driving on this
model, we consider a simple shearing geometry (Fig. 1), with
periodic boundary conditions in the y direction and confining
walls in the x direction. The bottom wall is stationary, and the
upper wall moves with constant velocity W . In the y direction
a force drives particles in contact with the wall in the direction
of the wall’s motion. We use a linear force, so the y component
of the force at the upper wall is given by

F upper
w,y (x, vy) =

{−b(vy −W ) x � (21/6 − 1)σ

0 x > (21/6 − 1)σ
, (8)

for a particle with velocity vy. Thus, the particles feel the wall
potential within a distance from the wall x � (21/6 − 1)σ �
0.12σ . Unless noted otherwise, we take b = 50(mD/σ 2) and
W = 5(D/σ ). The x component of the wall force is just a
short-range repulsion:

F upper
w,x (x) =

{
VWCA(x + σ ) x � (21/6 − 1)σ

0 x > (21/6 − 1)σ
, (9)

with VWCA as defined in Eq. (4). This form of the wall force
was chosen for simplicity; our results would not qualitatively
change for other functional forms. Since the bottom wall is
stationary and frictionless, it exerts a repulsive force in the x
direction but no force in the y direction:

F bottom
w,x (x) =

{
VWCA(L − x + σ ) L − x � (21/6 − 1)σ

0 L − x > (21/6 − 1)σ
,

(10)

F bottom
w,y (x) = 0 ∀x . (11)

Throughout the paper we will be calculating the flow veloc-
ity, 〈vy〉, which is the average of vy over all v and θ at a given r.
Anticipating this, we define the average particle velocity “at
the wall,” vw, to be the average velocity at x ≈ 0.35σ , i.e.,
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slightly outside the range of the wall potential. Note that in
general vw �= W .

Finally, the overall density is specified by the particle
area fraction φ ≡ Nπσ 2/(4AL2), where N is the number of
particles and L and A are defined as in Fig. 1.

C. Simulation parameters

Since we are interested in a range of values for the friction
ξ , and particularly the large friction limit, we use the Brown-
ian dynamics algorithm due to van Gunsteren and Berendsen,
which is not limited by the restriction �tξ 
 1 [63]. We set
�t = 0.00005τ and for a given L and φ adjust the aspect ratio
A (Fig. 1) to give 104 particles.

In general, the model considered here exhibits phase-
separated states for sufficiently large φ and � (see
Refs. [24,26,64] for the phase diagram in the overdamped
limit, noting that the Péclet number Pe is equal to 3�/σ ). In
our case, however, we restrict attention to those values of φ

and � for which the bulk system is in a homogeneous fluid
phase. Specifically, all simulations have φ � 0.5 and Pe � 30,
and the few simulations with Pe = 30 have φ � 0.3. Since the
presence of inertia only shifts the phase separation boundary
towards higher φ and � [65], it is sufficient to compare our
values of φ and � with the phase diagram in the overdamped
limit.

To rule out finite-size effects, we choose L such that the
channel dimensions are larger than any microscopic correla-
tion length. Since we consider only values of � and φ below
the onset of critical behavior and phase separation, the only
correlation lengths to consider are those of a single-particle
trajectory in the absence of interactions, namely, � and

√
D/ξ .

The former is the active persistence length, while the latter is
the distance a particle with characteristic velocity

√
Dξ travels

in a frictional time 1/ξ . Depending on the value of the friction,
L in the range 25σ–100σ is large enough to rule out finite-size
effects due to these lengths (see Appendix A for details). We
begin recording statistics at t = 200τ , when all trajectories
reach steady state, and continue until t = 1000τ .

III. RESULTS

In passive fluids described by the Boltzmann equation,
the interaction timescales are the smallest in the model and
therefore the primary mechanism behind thermalization and
relaxation into local equilibrium. In the case of a passive
fluid interacting with a substrate, however, there exists an
additional timescale, the frictional time 1/ξ , which can be
comparable to or smaller than the mean-free time between
collisions. Moreover, even in the absence of interparticle
interactions, all momentum is dissipated into the substrate via
the frictional mechanism. In these circumstances, momentum
transport and dissipation are predominantly determined by the
frictional and diffusive relaxation mechanisms, with interpar-
ticle interactions playing a supplementary role. Further, in the
case of an active fluid, there exists the reorientation time 1/Dr.
This timescale influences how far the momentum from the
wall penetrates into the bulk before being dissipated to the
substrate. In the limit where the frictional and reorientation
times are shorter than the mean-free time, the phenomenology

is most clearly understood by considering a system of non-
interacting particles. Then the noninteracting case can be
used as a baseline to interpret the phenomenology when the
interactions modify it. This is the route we follow below.

Since we are interested in momentum transport, we focus
on the flow velocity profiles 〈vy〉. The corresponding density
profiles have been well studied in limiting cases of our model
[56,66–69]. Most notably, in the overdamped limit and in the
absence of driving, particle accumulation is observed at the
wall. On the other hand, density profiles in underdamped and
driven systems have not been studied in depth. Our present
simulations indicate nontrivial and potentially interesting be-
havior in this case, including depletion near the wall for small
friction and zero activity. A few of these plots are shown in
Appendix A; however, this subject deserves further study.

A. Dilute limit

In the dilute limit, the steady-state flow velocity 〈vy〉 decays
rapidly away from the boundary over a length scale deter-
mined by ξ and �. This trend reflects the fact that, by virtue of
their persistent motion, particles travel a short distance into
the bulk before their momentum acquired at the boundary
dissipates into the substrate.

A precise quantitative analysis could in principle be ob-
tained using the Fokker-Planck equation associated with
Eqs. (5)–(7), whose steady-state solution f (r, θ, v) gives the
probability of finding a particle with coordinates (r, θ, v). The
flow velocity profile could then be obtained as an average of
vy with respect to f . On general grounds, it is plausible that
this analysis would yield a boundary layer consisting of a sum
of exponentials (see, e.g., Ref. [56] for an explicit verification
of this claim in the context of a simpler model). That is, the
velocity profile would take the form

〈vy〉 ∼
∑
k

e−x/λk , (12)

where the λk could be obtained from a spectral analysis of the
relevant Fokker-Plank operator.

In practice, this approach is difficult, and we do not attempt
it for the current problem. On the other hand, it is not difficult
to estimate the dimensional dependence of the leading order
exponential, modulo two dimensionless constants estimated
from simulations. Toward this end, we define a to be the decay
length of the leading order exponential, so that

〈vy〉 ≈ e−x/a. (13)

We note that asymptotic single-exponential behavior has
been obtained in steady-state density profiles in active sys-
tems [66,67,70–73]. Consistent with our analysis, Elgeti and
Gompper [67] have also suggested that the true density profile
(not just the asymptotic form) is a sum of exponentials.

For passive particles, the only microscopic length is
√
D/ξ ,

and so we take a(ξ, � = 0) = c
√
D/ξ where c is a constant.

Physically, the length
√
D/ξ approximates the distance a

passive particle with characteristic velocity
√
Dξ travels in a

frictional time 1/ξ : this is how far a particle penetrates into
the bulk before losing its momentum to the substrate.

In general, dimensional analysis implies that a = c(vc/ξ ),
where vc is an appropriate characteristic velocity. For passive
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particles, we already obtained vc = √
Dξ . For active particles,

however, there is not only the thermal velocity
√
Dξ which

contributes to vc, but also a characteristic active velocity
va = �t−1

a , where ta is a characteristic time. For instance, if
we assume that ξ � Dr = O(1); i.e., frictional relaxation is
faster that orientational relaxation, then the relevant timescale
is 1/ξ , and va can be estimated as Fp/(mξ ) = Dr�. In the
opposite limit, where orientational relaxation dominates, we
have va ∼ Fp/(mDr ) = ξ�.

Still, it is not obvious how these two velocities combine to
give the appropriate vc. Here we make a simple ansatz in the
form of a root-mean-square combination, which leads to

a(ξ, �) = (c/ξ )
√
Dξ + μv2

a (14)

= cσ

ξ
1/2
0

√
1 + μ

(
τ t−1

a
)2

ξ0

(
�

σ

)2

, (15)

where μ is a fitting parameter. We test this prediction in
the case ξ0 = 1 by performing an exponential fit on the
asymptotic 〈vy〉 profiles obtained from our simulations with
noninteracting ABPs. The parameters resulting from the fit are
c = 0.9 and μ(τ t−1

a )2 = 1.14. As shown in Fig. 2, the results
match the predicted scaling well. Further details on the fitting
procedure are given in Appendix A.

B. Role of interactions

The discussion in the previous section applies in the di-
lute limit. We now examine how interactions modulate the
behavior of the noninteracting system. For small to moderate
friction (ξ � 5) we find qualitatively similar flow velocity pro-
files, with interactions either aiding or hindering momentum
transport depending on the values of ξ and �. For instance,
Fig. 3 shows the flow velocity profiles for friction parameter
ξ = 0.1τ−1 and several packing fractions for passive parti-
cles (Fig. 3 top) or active particles (Fig. 3 bottom). While
increasing density increases momentum transport of passive
particles, we observe the opposite effect for the active case.
For large friction, there are more dramatic departures from
the dilute limit within a few particle diameters from the wall.
However, we postpone discussion of this phenomenon until
the next section.

In a passive dilute gas, elementary mean-free-path theo-
ries provide a qualitatively accurate picture of macroscopic
transport of momentum [74]. Here, also, we have been able to
construct a mean-free-path theory which adequately explains
the behavior of interacting systems with small to moderate
friction. This theory is presented in Appendix B. The basic
ideas underlying this kinetic theory can be explained by com-
parison of the respective length scales over which momentum
is transported due to (A) thermal motion and (B) free active
motion. In the absence of interactions, the first length scale
corresponds to free Brownian motion: independent of active
driving, particles travel a distance ∼√

D/ξ before their initial
y momentum is dissipated into the substrate. The second
length scale is determined by a characteristic active velocity
va, which (again in the absence of interactions) causes parti-
cles to travel an average distance of va/ξ before losing their
initial y momentum.

FIG. 2. Tests of the predictions in Sec. III A for the dependence
of the momentum transfer length scale a on friction and activity.
The value of a at each parameter set is obtained by fitting the flow
velocity profiles of noninteracting systems to the form 〈vy〉 = e−x/a.
(a) a as a function of the nondimensional friction parameter ξ in
passive systems (� = 0). (b) a as a function of active persistence
length � for fixed friction parameter ξ = τ−1. When fitting the value
of a, we have excluded a boundary layer that exhibits deviations from
exponential decay (see Appendix A and Fig. 9).

Interparticle interactions affect transport over these two
length scales differently. Note first that interactions do not
interrupt transport over length scale (A), since linear momen-
tum is conserved during the (nearly instantaneous) collisions.
In fact, interactions slightly aid transport in this case since
collisions also involve instantaneous and lossless transport of
momentum over a particle diameter. On the other hand, par-
ticle orientation is not transferred in collisions; i.e., a particle
which would otherwise carry its y momentum over a length
va/ξ might transfer its momentum to a particle oriented in the
opposite direction, breaking transport across this length. Thus,
interactions interfere with transport over length scale (B).

In light of these conclusions, it is reasonable to expect that
in cases where length scale (A) dominates (B), interactions
aid momentum transport; whereas when (B) dominates (A),
the opposite is observed. The boundary between the two
behaviors occurs when the length scales (A) and (B) are com-
parable: va/ξ ∼ √

D/ξ , or va = C
√
Dξ whereC is a constant.

In fact, the more detailed kinetic theory in Appendix B arrives
at the same prediction.

In Sec. III A we estimated va ∼ Fp/(mξ ) = Dr� in the limit
ξ � Dr, and va ∼ Fp/(mDr ) = ξ� in the opposite limit. Using

042610-4



RESPONSE OF ACTIVE BROWNIAN PARTICLES TO … PHYSICAL REVIEW E 100, 042610 (2019)

FIG. 3. Illustration of the effect of interparticle interactions on
momentum transport. The flow velocity 〈vy〉 is shown as a function
of distance x from the boundary. For passive particles [� = 0, panel
(a)], increasing the packing fraction φ increases momentum trans-
port, whereas with sufficiently high activity [� = 5σ , panel (b)], the
opposite is observed. In both cases ξ = 0.1τ−1.

these estimates, we can make the following predictions for the
boundary in the (�0, ξ0) space:

�0 = a1ξ
1/2
0 , ξ0 � 1 (16)

and

�0 = a2ξ
−1/2
0 , ξ0 � 1, (17)

where a1 = 1.96 and a2 = 0.28 are constants obtained by
fitting the expressions to a phase diagram in the (�0, ξ0)
space. The phase diagram is shown in Fig. 4, together with
the fits [Eq. (16), solid line; Eq. (17), dashed line]. Red
squares denote systems where interactions hinder transport,
green circles where interactions aid transport, and yellow stars
where the result is indeterminate. We classify each simulation
to one of these categories by comparing the penetration depth
of the flow velocity profile (cf. Fig. 3) at φ = 0, 0.05, 0.1, 0.2
(Appendix A). We obtained the prefactors in Eqs. (16) and
(17) by performing a best fit on the yellow (indeterminate)
data points in the ranges 0.5 � ξ0 � 5 and 0.02 � ξ0 � 0.2.

C. Structure and transport at the wall

The system exhibits further nontrivial behavior at the
wall (i.e., within roughly a particle diameter of the wall).
Understanding the behavior in this region will be important
for establishing proper boundary conditions on any continuum
theory describing the bulk.

FIG. 4. Generalization of Fig. 3 to the entire (ξ0, �0) space. The
top and bottom panels, respectively, show the low- and high-friction
regimes. Using the criterion discussed in the main text, red squares
indicate parameter values for which interactions hinder transport,
and green circles show values for which interactions aid transport.
Yellow stars indicate cases where the effect of interactions could not
be identified unambiguously (see Appendix A). The solid and dashed
curves are estimates for the boundary between the two regimes, based
on the kinetic picture discussed in Sec. III B.

1. Flow reversal

First, we observe flow reversal near the boundary for large
friction and moderate activity. For instance, Fig. 5 shows the
flow velocity profiles for ξ = 30τ−1, � = 5σ , and several
packing fractions. In this case flow reversal occurs for the
intermediate packing fraction: φ ≈ 0.1.

This flow reversal phenomenon is reminiscent of other
behaviors in active systems that would be thermodynamically
forbidden at equilibrium, such as spontaneous flow [37,39,40]
and orientational order in the absence of torques [56,70].
The operating principle underlying these phenomena is the
ability of conservative fields and geometric confinement to
kinetically “sort” particles from an isotropic state into an
orientationally ordered one. A similar mechanism drives flow
reversal here, with interparticle interactions playing the role
of the “sorting” force. More precisely, an active system ini-
tialized with the y component of the polarization Py equal to 0
(the steady state in the absence of activity) evolves towards a
state with Py �= 0.

The mechanism is illustrated in Fig. 6. We divide particles
near the wall into two layers at distances ≈ σ and 2σ from the
wall. We consider friction sufficiently large that the outer layer
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FIG. 5. An instance of flow reversal. Panel (a) shows the flow
velocity as a function of distance from the wall x, and panel
(b) shows the y component of the polarization. The corresponding
density profiles are shown in Appendix A. The “kinetic sorting”
mechanism illustrated in Fig. 6 induces this polarization, which itself
generates the negative flow velocity seen in the top plot. The sorting
mechanism depends on interparticle interactions and is optimized
for intermediate values of the packing fraction φ. The uncertainty
on each data point is negligible compared to the symbol size. Other
parameter values are ξ = 30τ−1, � = 5σ , and W = 5(D/σ ).

has a much smaller flow velocity than the inner layer. Let us
now consider two types of particles in the inner layer: type A
oriented parallel to the direction of driving (+y direction, 0 <

θ < π ) and type B antiparallel (−y direction, −π < θ < 0).
Since flow reversal is observed only for large friction, we can

FIG. 6. An illustration of the discussed kinetic sorting mecha-
nism. Particles are split into two types: those with orientation parallel
to the driving (type A) and those with orientation opposite the driving
(type B). Compared with their type B counterparts, type A particles
on average undergo more collisions with particles in the secondary
layer (at ∼2σ from the wall). Since these collisions tend to push
particles back towards the wall, the system sorts into a polarized
steady state where there are more type A particles at distance σ and
more type B particles at distance 2σ .

write va ∼ Dr� (see Sec. III A), which leads to

|〈vy〉A| − |〈vy〉B| ≈ |vw + αDr�| − |vw − βDr�|, (18)

where 0 � α, β � 1 are constants.
The variation of |〈vy〉A| − |〈vy〉B| with � can be made

clearer by rewriting the absolute values:

|〈vy〉A| − |〈vy〉B| =
{

(α + β )Dr� βDr� < vw

2vw + (α − β )Dr� βDr� � vw
.

(19)

For 0 < βDr� < vw, |〈vy〉A| − |〈vy〉B| is positive, increasing
linearly with � starting from 0. In the range βDr� � vw, it
either increases or decreases with � depending on the sign of
α − β. Clearly α = β in the absence of driving, since in this
case the distribution of orientations is symmetric about the
x axis. With driving, the symmetry is broken; however, since
the general dynamics is torque-free and the orientational order
induced by kinetic sorting is observed to be relatively small
(see Fig. 5), we assume α ≈ β. If this is true, then we expect
|〈vy〉A| − |〈vy〉B| to be positive over a large range of �. In what
follows we therefore assume the positivity of |〈vy〉A| − |〈vy〉B|.

Now, the crux of the argument is this: since particles of
type A on average possess velocities larger in magnitude than
those of type B, they undergo more off-center collisions with
particles in the outer layer. Since these types of collisions tend
to push particles back towards the wall, type B particles can
more easily escape the inner layer. In other words, if rI→O

X is
the rate of particle species X traveling from the inner to outer
layer, then rI→O

B > rI→O
A . On the other hand, this asymmetry

is not as pronounced for particles traveling from the outer
layer to the inner one: rO→I

B ≈ rO→I
A (since the difference

between A and B velocities is smaller in the outer layer).
The overall imbalance of rates implies that the Py = 0 state
is not stable. We verify this prediction with simulation results,
observing Py > 0 in the inner layer and Py < 0 in the outer
layer (Fig. 5). Finally, orientational order can be connected to
the flow velocity if ξ � Dr and � >

√
D/ξ ; i.e., active driving

dominates thermal driving. In this case v is approximately
parallel to û, and therefore Py < 0 corresponds to a negative
contribution to the overall flow velocity.

In fact, it is possible to make a more precise prediction.
Since |〈vy〉A| − |〈vy〉B| increases monotonically with vw until
Dr� ∼ vw, we expect the induced polarization to also increase
with vw until Dr� ∼ vw. This trend is confirmed in Fig. 7.
On the other hand, further increasing vw results in a smaller
polarization, despite the fact that |〈vy〉A| − |〈vy〉B| saturates.
This suggests that for large driving, particles of both types A
and B collide so frequently that the asymmetry between the
two is washed out; i.e., the difference in rates rI→0

B − rI→O
A is

no longer proportional to |〈vy〉A| − |〈vy〉B|.

2. Shear stress at the boundary

From an experimental standpoint, an important observable
is the shear stress at the wall, σw, defined as the y component
of the average force, per unit length, which particles exert
on the wall. Note that since the wall potential [Eq. (4)] has
finite width in our simulations, our measurement of wall stress
includes all particles with x/σ < 21/6 − 1 ≈ 0.123.
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FIG. 7. Dependence of the flow reversal phenomenon on driving.
(a) The y polarization for varying values of vw (the particle velocity
at the wall). In simulations vw is indirectly varied by changing the
parameter W in the wall force [Eq. (8)] over the range W τ 2/mσ ∈
[0.1, 200]. (b) The maximum value of Py for each vw. The magnitude
of the induced polarization is maximized when Dr� ∼ vw. Here ξ =
30τ−1, � = 5σ , and φ = 0.1.

We observe that σw increases monotonically with activity
(8). This result can be explained by the fact that more particles
accumulate at the wall with higher activity, increasing the
burden of shearing the system. However, we observe more
complex behavior with varying density. First, we note that
in a noninteracting system the stress increases linearly with

FIG. 8. (a) Stress at the wall σw as a function of � for ξ0 = 10
and φ = 0.1. The stress increases monotonically, corresponding to
increasing particle accumulation at the boundary. (b) σw as a function
of packing fraction φ for ξ0 = 10 and �0 = 5 (squares) and �0 = 0
(stars). To illustrate more clearly the effect of interactions, the y
axis shows σw/φ: this is to factor out the linear dependence σw ∝ φ

already present in the noninteracting system.

packing fraction vw ∼ φ. Thus we plot σ/φ (Fig. 8) to reveal
effects due to interactions. For passive particles we find that
the stress increases faster than φ, whereas for high activity the
stress is sublinear in φ. To understand this observation, note
that the y momentum dissipated into the substrate is propor-
tional to the integral of the flow velocity,

∫ 〈vy(x)〉 dx. Since
the wall is the dominant source of the average momentum,
this implies that the stress at the wall is also proportional to∫ 〈vy(x)〉 dx. Thus, if vy(x) penetrates farther into the bulk,
stress at the wall is increased. On the other hand, recall from
Sec. III B that the penetration depth of vy(x) increases with φ

for passive particles and decreases with φ for active particles.
The combination of these two effects implies that the stress
at the wall should increase faster than φ for passive particles,
and the opposite for sufficiently active particles, consistent
with our observations.

IV. DISCUSSION

Using Brownian dynamics simulations and kinetic ar-
guments, we have investigated the phenomenology of a
boundary-driven active gas in a sheared channel geometry.
We find that the nontrivial parts of this phenomenology are
confined to a boundary layer characterized by the microscopic
length scales � (the active persistence length),

√
D/ξ (the

thermal persistence length), and σ (the particle diameter). We
do not observe spontaneous flow or density inhomogeneities
in the bulk for parameters below the onset of motility-induced
phase separation.

Within the boundary layer, the mechanisms of momentum
transport are dictated by the complex interplay among in-
terparticle interactions, active forces, and boundary driving.
We find that the flow velocity profiles decay exponentially
when the distance from the wall is sufficiently large compared
with all of the three microscopic lengths:

√
D/ξ , �, and σ .

Close to the wall, we observe nonexponential velocity profiles
and even flow reversal. In general, we find that interparticle
interactions can either aid or hinder momentum transport
depending on system parameters.

Although we have rationalized these findings in terms of a
simple kinetic picture, it is an open question whether a more
systematic theoretical description in terms of appropriate hy-
drodynamic variables and constitutive relations exists. Our
results suggest difficulties in developing this type of descrip-
tion, however. The nontrivial phenomenology is confined to a
boundary layer which cannot be mapped onto a generic bulk
description in terms of a finite set of hydrodynamic variables
and associated constitutive relations.

Besides addressing such general questions, an interest-
ing topic for future work will be to study the effect of
phase separation on the shear response. Boundary driving
will nontrivially influence the glassy dynamics observed in
high-density, weakly active particle fluids [75–77] and could
potentially exhibit phenomenology similar to shear jamming
[78,79] and discontinuous shear thickening [80,81] seen in
passive athermal suspensions. Further, given the coupling in
active systems between orientational order and flow, it would
be interesting to study the effect of torques at the boundary.
Finally, the phenomena observed here will generally depend
on the full distribution function at the boundary, and in
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particular on the exact form of the driving force. However,
our simulations show that the results from Sec. III are at
least qualitatively robust against variations of the wall force.
To further test the generality of this conclusion, it would be
interesting to perform the types of analyses we describe here
on other externally driven active matter systems.

Our simulation code and data are associated and can be
accessed on the Open Science Framework (OSF) at Ref. [82].
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APPENDIX A: ADDITIONAL SIMULATION DETAILS

1. Simulation parameters

As described in the main text, all simulations contain 104

particles. On the other hand, we adjust the channel dimensions
according to the following rules:

ξ0 < 0.1 → L = 100σ, (A1)

0.1 � ξ0 < 1 → L = 75σ, (A2)

1 � ξ0 < 10 → L = 50σ, (A3)

ξ0 � 10 → L = 25σ. (A4)

This enables improved statistics near the wall in simulations
with large friction, where a large value of L is not required to
exclude finite-size effects.

Obtaining sufficient statistics at some parameter sets re-
quires additional simulations. To improve the quality of the
fits in Fig. 2, at least 30 simulations are run in parallel at
each data point and the results averaged. Moreover, for several
data points in Fig. 4 with large friction and near the phase
boundary, we average results over 15 independent simulations
(in these cases the effect of density on the flow velocity
profile is small and susceptible to noise). Finally, we obtain
the results in Fig. 5 from averages over 100 independent
simulations.

2. Dilute limit: Fits of 〈vy〉
For each parameter set we fit 〈vy〉 to the form e−x/a. The

fit is limited to the range x/�fit ∈ (1.5, 3.5), where �fit =
max(

√
D/ξ, �) approximates the distance over which a par-

ticle’s motion is correlated in a system with no interactions
or wall. We select the lower bound of this interval because
nonexponential behavior is expected a priori for x � �fit [56]
(the factor of 1.5 has been used for good measure). This
expectation is confirmed by our simulation velocity profiles,
which exhibit nonexponential behavior in this range; see
Fig. 9 for several examples. The upper bound of the fit interval
is set by the quality of our statistical sampling: as the velocity

profile 〈vy〉 approaches 0, the quantity ln(〈vy〉/vw) becomes
noisy, which compromises the quality of the fit. Indeed, far
enough from the wall, negative values of 〈vy〉 are registered
due to statistical noise; in these cases ln(〈vy〉/vw) is not even
defined. Choosing 3.5�fit as the upper bound eliminates these
statistical artifacts in all the fits.

3. Construction of the phase diagram

We construct the phase diagram in Fig. 4 using the fol-
lowing criteria. First, at each point in the (ξ0, �0) space,
we measure 〈vy〉 for packing fractions φ = 0, 0.05, 0.1, and
0.2. To quantify how far 〈vy〉 penetrates into the bulk, we
calculate for each value of φ the values of x for which 〈vy〉 =
0.3vw and 〈vy〉 = 0.2vw, denoted as x0.3 and x0.2. Finally,
we order these quantities with respect to φ. If x0.3 and x0.2

both increase monotonically with φ, we infer that interactions
aid momentum transport, corresponding to green circles in
Fig. 4. For the opposite trend, interactions hinder transport,
corresponding to red squares. Any other ordering of x0.3 and
x0.2 is assigned an indeterminate outcome denoted by yellow
stars. The velocity profiles for one such point are shown in
Fig. 10. A possible reason for an indeterminate outcome is
random noise in the measured 〈vy〉 due to the finite number of
particle trajectories sampled in simulations. Alternately, the
exact 〈vy〉 might display nonmonotonic behavior near the wall
due to interparticle interactions.

4. Density profiles

Representative density profiles are shown in Fig. 11.

APPENDIX B: KINETIC ARGUMENT FOR THE
EFFECT OF INTERACTIONS

Recall from Sec. III B that increasing density increases
momentum transport of passive particles but has the opposite
effect for active particles. This phenomenon can be explained
with a more careful consideration of the density dependence
of the total momentum flux jT, defined as the flux of the y
component of momentum in the x direction. We write jT as
a sum of two contributions: a streaming contribution jstream

and a collisional contribution jcoll. The streaming piece is the
momentum flux due to the streaming motion of the particles
between collisions. The collisional piece is the same as was
first considered by Enskog: at the instant of an interparticle
collision, momentum is transferred across a length on the
order of a particle diameter [74]. In the classical dilute gas,
this mechanism results in a density-dependent increase to the
viscosity.

If f (r, θ, v) denotes the probability of finding a particle at
position r with orientation θ and velocity v, then

jstream(r) = m
∫

dvx dvy dθ f (r, θ, v)vxvy. (B1)

This integral can be simplified on the hypothesis∫
dvy dθ f (r, θ, v)vy = 0, where vx < 0; (B2)

that is, the average y velocity of particles with negative x ve-
locity is 0. This hypothesis is reasonable due to the dissipative
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FIG. 9. Sample fits of the flow velocity profile 〈vy〉 in the dilute limit. As explained in further detail in the text, the fit is performed over
the range x/�fit ∈ (1.5, 3.5), where �fit = max(

√
D/ξ, �). In the plots shown here, the fit range is enclosed by vertical dashed lines.

nature of the particle dynamics: consider a particle beginning
with some vy, vx > 0 at x = x0. Because of the persistence of
particle trajectories, by the time a typical trajectory with such
a starting point returns to x = x0, one expects most of its initial
y momentum to be lost to the substrate.

FIG. 10. Illustration of an “indeterminate” outcome in the phase
diagram from Fig. 4. The flow velocity 〈vy〉 is shown as a function
of distance x from the boundary, for four different packing fractions.
Simulation parameters are ξ = 2τ−1 and � = 2σ . The fact that the
velocity profiles overlap prevents an unambiguous determination of
the effect of interactions on momentum transport.

Under this hypothesis, Eq. (B1) becomes

jstream(r) = m
∫

vx>0
dvx dvy dθ f (r, θ, v)vxvy. (B3)

If we moreover assume that f (r, θ, v) = g(r, vx )h(r, vy)/2π ,
i.e., the angles θ are distributed uniformly and vx is indepen-
dent of vy wherever vx > 0, then

jstream(r) = m
∫

vx>0
dvxvxg(r, vx )

∫
dvyvyh(r, vy) (B4)

= mρ(r)〈vy〉
[∫

vx>0 dvxvxg(r, vx )∫
dvxg(r, vx )

]
(B5)

≡ mρ(r)〈vy〉 ·C1vavg, (B6)

where C1 is a constant and the last equation defines vavg.
The scalar velocity vavg can be identified as a characteristic
velocity related to the magnitude of the fluctuations of vx
about its mean. With this interpretation, it is reasonable to
estimate this quantity in the dilute limit as proportional to the
root-mean-square combination of the thermal velocity

√
Dξ

and a characteristic active velocity. For the latter quantity we
previously used va, defined as the characteristic velocity due to
free active motion in the absence of interparticle interactions
(see Sec. III A).

On the other hand, at finite density, interparticle interac-
tions tend to block the self-propelled motion of a particle,
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FIG. 11. Sample density profiles for (ξ, �) = (0.1τ−1, 5σ ) (top left); (ξ, �) = (0.1τ−1, 0) (top right); (ξ, �) = (5τ−1, 0) (bottom left);
(ξ, �) = (30τ−1, 5σ ) (bottom right). The units on ρ are (particles/length2), and the normalization is that ρ integrated over the entire channel
(both x and y coordinates) equals N = 10 000, the total number of particles. Note that due to translational invariance, ρ is a function of x only.
The top two figures correspond to Fig. 3, and the bottom right figure corresponds to the flow reversal phenomenon shown in Fig. 5.

which decreases the net momentum flux. More precisely, col-
lisions tend to destroy the positive correlation between vx and
vy which defines the momentum flux. For example, a particle
moving in the positive x direction, with positive cos θ and
vy, might collide with and transfer y momentum to a second
particle whose self-propulsion points in the opposite direction,
i.e., with cos θ < 0. In this case momentum transport into
the bulk is interrupted in comparison with the case where no
collision occurred. In general, because particle orientation is
not transferred during a collision, collisions tend to destroy the
correlation between cos θ and vy, and by extension between
vx and vy. We model this decrease in momentum flux by
introducing a density-dependent active velocity, denoted by
vI

a[ρ(r)], a function of ρ. The analog to vavg in this case is
then denoted by vI

avg[ρ(r)]:

vI
avg[ρ(r)] =

√{
vI

a[ρ(r)]
}2 + Dξ . (B7)

At low densities, we can expand to first order in ρ,

vI
avg[ρ(r)] =

√
v2

a [1 −C3σ 2ρ(r) + O(ρ(r)2)]2 + Dξ (B8)

= v0 −C3σ
2 v2

a

v0
ρ(r) + O[ρ(r)2], (B9)

where C3 > 0 and v0 ≡ √
v2

a + Dξ .
An expression for jcoll can be obtained along similar lines

to the above arguments, the only major difference being the

replacement of vavg by vavg · πσ 2ρ(r), which factors in the
rate of collisions. Putting the pieces together, we have

jT = jstream + jcoll (B10)

≈ C1v
I
avg(ρ(r)) · mρ(r)〈vy〉︸ ︷︷ ︸

momentum density︸ ︷︷ ︸
jstream

+ C2vavg · πσ 2ρ(r) · mρ(r)〈vy〉 + O[ρ(r)3]︸ ︷︷ ︸
jcoll

. (B11)

Substituting for vavg and vI
avg(ρ(r)) gives

jT = C1v0mρ(r)〈vy〉 (B12)

−C1C3σ
2 v2

a

v0
mρ(r)2〈vy〉 (B13)

+C2v0mρ(r)2πσ 2〈vy〉 + O[ρ(r)3]. (B14)

Except for dense systems, we expect the density ρ(r) to be
proportional to φ, that is,

ρ(r) = φ�(x), (B15)

where �(x) is a positive function that depends on the location
in the (�, ξ ) parameter space but is independent of φ.
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In steady state, conservation of the y component of mo-
mentum gives

d jT
dx

= (momentum source/sink) (B16)

= −ξmρ(r)〈vy〉 (B17)

≈ −ξmφ�(x)〈vy〉. (B18)

Substituting jT and absorbing numerical factors into the con-
stants gives

d〈vy〉
dx

= −ξ

{
C1v0

[
1 +

(
C2

C1
−C3

v2
a

v2
0

)
σ 2φ�(x)

]}−1

〈vy〉.
(B19)

The resulting velocity profile is in general nonexponential,
since �(x) is not a constant. However, our simulations indicate
that the deviation from a true exponential is not too dramatic;
hence it is still reasonable to consider an (approximate) decay
length. With this in mind, the decay length of the flow velocity

profile increases with φ if

� ≡ C2

C1
−C3

v2
a

v2
a + Dξ

> 0, (B20)

which is certainly true if va = 0, since C1 and C2 are positive.
Without knowing the relative magnitudes of the constants, it
is not possible to say whether � changes sign as va increases
from 0. However, simulations indicate the change in sign
does indeed occur; we therefore proceed on the hypothesis
that a more detailed kinetic analysis would reach the same
conclusion. Then the change in sign will occur when

C2

C1
−C3

v2
a

v2
a + Dξ

= 0 (B21)

→ va = C
√
Dξ, (B22)

where C is a new constant. This is the same criterion that
was reached in Sec. III B [see the two paragraphs preceding
Eqs. (16) and (17)].
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