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Abstract—Pervasive sensing has enabled continuous
monitoring of user physiological state through mobile and
wearable devices, allowing for large scale user studies to
be conducted, such as those found in mHealth. However,
current mHealth studies are limited in their ability of
allowing users to express their privacy preferences on
the data they share across multiple entities involved in
a research study. In this work, we present mPolicy, a
privacy policy language for study participants to express
the context-aware and data-handling policies needed for
mHealth. In addition, we provide a privacy-adaptive policy
creation mechanism for byproduct data (such as motion
inferences). Lastly, we create a software library called
privLib for implementing parsing, enforcement, and policy
creation on byproduct data for mPolicy. We evaluate the
latency overhead of these operations, and discuss future
improvements for scaling to realistic mHealth scenarios.

I. INTRODUCTION

The recent decades have seen a tremendous effort
towards establishing new software frameworks for per-
forming scientific studies [1]–[3]. We see works such
as [4]–[6] proving the significant value found in studies
enabled by pervasive sensing. One particular class of
these studies is mHealth, the concept of using mobile
and wireless technologies for scientific studies to enable
medical objectives [7] - we term this category of scien-
tific studies as mHealth studies. Through sensing enabled
mobile devices such as smartphones and wearables, such
mHealth studies have become easier to conduct and
are less disruptive of user habit, with the benefit of
having multiple modalities for streaming personal user
data. But despite research showing that users are willing
to participate in these studies to benefit science [8],
there remains the possibility that participant sensor data
is exposed to multiple 3rd parties who may perform
unwanted inferences, thus incurring a privacy risk.

Providing a language that can describe the privacy
preferences of study participants is a first step towards
improving the current model for conducting mHealth
studies. In this work, we present mPolicy, a privacy
policy language modeled off the interaction involved in
scientific studies, specifically in the context of mHealth.
We adopt a model-centric view of privacy policy, where
policies should express constraints on the modeled in-
teractions between actors in an mHealth study, allow-
ing for more intuitive and readable policies than those

typically expressed in XML based languages [9], [10].
In addition, we design methods of automatic policy
creation on data byproducts - particularly policy fusion
mechanisms for combining data with different policies.
Finally, we build a library called privLib designed around
the functionalities of mPolicy. More specifically, privLib
allows for enforcement of policies and attaching new
policies to the various types of data byproducts. mPolicy
and privLib are our first steps towards providing a unified
framework for enabling privacy policies in mHealth and
other scientific studies.

Our contributions are as follows:
• A model-centric language called mPolicy for ex-

pressing the context-aware and data-handling needs
of mHealth studies.

• A privacy-adaptive mechanism for attaching new
policies to data byproducts of mHealth studies.

• An enforcement mechanism utilizing a context data
stream to enforce querying and downstream dissem-
ination.

• privLib, a library written in Java for evaluating the
overhead of parsing and enforcement of mPolicy
policies, as well as the data byproduct policy cre-
ation mechanisms.

The rest of the paper is as follows: In Section II we
discuss the motivation behind providing a privacy policy
language for mHealth studies. In Section III we explore
the interactions between the actors in an mHealth study
to inform our language design. In Section IV we present
the taxonomy of our language. In Section V we provide
a mathematical formulation for automatically producing
privacy policies on data byproducts. In Section VI we
design mechanisms for receiving, querying, and dissem-
inating data according to privacy policies, which we
use to implement privLib. We evaluate the overhead of
privLib in Section VII. In Section VIII we discuss the
related work to this topic and differentiate our work
from others. In Section IX we discuss the limitations
and conclude in Section X.

II. MOTIVATION

Pervasive sensing has made it possible to conduct
large scale user studies with continuous monitoring of
digital biomarkers, which are measurable indicators of a
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Fig. 1: Example showing the flow of sensor data from study participants to downstream entities. Components
relating to knowledge discovery and model training are shown in green, while model deployment and inference is
shown in blue.

user’s physiological state [11], [12]. These biomarkers
are potentially unlimited sequences of sensory data;
for that reason, we characterize biomarkers as sensory
data streams. Current mHealth study platforms such as
the Center of Excellence for Mobile Sensor Data-to-
Knowledge (MD2K) [13] allows a variety of interested
organizations and other entities besides study researchers
to take part in the collection, processing, and analysis
of these sensory data streams from a diverse group of
participants. These entities may be government organi-
zations, university research groups, commercial compa-
nies, or individual researchers, all with their own data
byproducts. Figure 1 shows an example of the flow of
information from study participants to study researchers,
and finally to multiple entities downstream, whom may
also share information amongst each other. In addition,
these studies may consist of two general phases [14],
where biomarkers are developed and validated. We use
the characteristics of these phases to inform the modeling
of interactions in Section III. Broadly speaking, the first
phase in an mHealth study is for knowledge discovery,
where data is collected to train a multitude of scientific
models for inferring additional information. For exam-
ple, study researchers may collect Heart Rate Variability
(HRV) data and Inertial Measurement Unit (IMU) data to
identify average heart rates of individuals at rest. The end
goal of this may be to simply draw inferences from this
collected data, in which case the study ends during this

first phase. However, other goals may include analyzing
this collected data to produce scientific models, which
are then deployed for validation on new collected data.
Thus, there is a potential second phase to the study.

As the first phase scientific models are using collected
data to determine new biomarkers, the second phase
deploys those models to validate the biomarkers. More
specifically, these models are deployed to be used on the
sensor data streams, resulting in new data byproducts.
These data byproducts are new data streams1 (such as
machine learning inferences). Using the prior example,
study researchers collected HRV and IMU data from
multiple participants. Using this data, they may aggre-
gate these measures from many individuals to produce
a machine learning model determining whether an indi-
vidual’s resting heart rate is within a normal threshold.
In this second phase, the researchers may deploy this
model to detect abnormal resting heart rate, resulting in
a new data stream of detection results to validate against
their model. Studies may then repeat these two phases
to continuously validate and improve the model.

This current approach for performing mHealth stud-
ies is greatly beneficial to the various researchers and
entities involved. There are also studies showing that
users are interested in providing their information to
benefit science [8], and the success of data sharing

1It is important to note here that the models themselves are byprod-
ucts as well, although we do not consider them in this work.
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platforms such as OpenHumans [15] illustrates this point
further. However, there is still a lack of control for
study participants to express their privacy needs, which
remains a significant concern. This is further exacerbated
with the current consent model for participating in such
mobile app-based studies. Consent is still a binary deci-
sion, where users may join a study by allowing all the
requested data streams to flow freely downstream, or be
forced to leave the study. Study participants are unable
to express their own privacy policies on their data, which
in turn harms the study by turning away participants with
diverse biomarkers who do not agree to the policies fixed
by the study. What is needed is a language that can ex-
press the diverse privacy needs of study participants and
ensure that each research entity can adhere to it before
using it. More specifically, the language should enable
expression of context-aware policies with data handling.
Context-aware privacy policies enable dynamic altering
of policies according to context - examples of context
include time, geographical location, device in motion,
and user defined events such as button presses. Data
handling capabilities allow for expressing how the data
is processed, how it can be stored, and how the data may
be further disseminated.

As mentioned previously, there is a secondary phase to
mHealth studies where models are deployed, producing
new data byproducts using the sensor data streams.
These data byproducts are themselves streams of data
(i.e. an activity classification based on IMU data), which
we term byproduct data streams. Since these byproduct
data streams do not have their own privacy policies,
there is a challenge to automatically determine what the
privacy policies of these streams should be. In other
words, we seek to generate the byproduct policies.

Motivated by the limitations of the current consent
model in mHealth, we create a language that is capable
of expressing privacy policies that are both context aware
and capable of data handling. This language allows for a
convergence of participant privacy policies with a study’s
outlined policies, allowing studies to benefit from a more
diverse set of participants who would have otherwise quit
the study. In addition, we design the mechanisms for
producing privacy policies of data byproducts, motivated
by the second phase of current mHealth studies.

III. MODELING INTERACTIONS

Before creating a privacy policy language for mHealth
studies, it is first necessary to be able to model the
interactions among actors involved. More specifically,
these interactions describe how the entity interacts with
a participant’s data. We characterize these interactions
using entities, data windows, data stream types, opera-
tions and intents. Entities are the identifiable actors at
different points of the flow of data - examples include

Bob’s mobile device, University Health researchers, and
government groups. Data Windows are the segments
or time windows of a data stream that these entities
might perform processing on. Data stream types describe
the type of sensor or inference stream producing the
data (i.e. GPS, IMU, Motion Detections). Operations
are specific functions or classes of functions performed
on a data stream, such as group statistical aggregations,
machine learning inference, and so on. Lastly, Intents
refer to the purposes that this stream could be used for,
such as personalized fitness tracking or inferring heart
conditions.

Using these objects, we can formulate how these
interactions work. More specifically, we want to charac-
terize how entities may process data, how they produce
data byproducts, and how they disseminate data further
downstream:

• Interaction A: ”Entity E1 processes data window
DW1 from data stream DS1 for operation O1 and
intent I1”

• Interaction B: ”Entity E1 produces new output data
stream DS2 using operation O2 for intent I2 using
processing interactions A1, A2...”

• Interaction C: ”Entity E1 disseminates data window
DW1 from data stream DS1 to Entity E2 for
operation O3 and intent I3”

Using how each study entity interacts with the par-
ticipant’s data, we introduce how we express privacy
policies for participants. In our approach, each study
entity must be able to express the interactions they
desire with the study participants. The participants may
then express additional constraints on these interactions,
resulting in a set of privacy policies. As a result, all
interactions between study entities and participant data
must now satisfy the set of privacy policies - if not, then
the interaction is not valid, and therefore not permitted
according to the participant’s privacy policy. We discuss
how these interactions can be expressed in Section IV.

IV. MPOLICY LANGUAGE

We present mPolicy, a language designed to ex-
press privacy policies over the interactions involved in
mHealth studies. As defined in Section II, mPolicy must
express constraints over the existing interactions, while
being both context aware and capable of data handling.
More specifically, we introduce the following general
classes of constraints:

• data-window, used to determine what aspects of
the data window is relevant to a policy. These
depend on the time conditions (i.e. 9am to 9pm),
location conditions (i.e. can’t access data from this
location), and other contextual values (i.e. if a
button is pressed, motion is detected, and so on). We
can use these rules to create context-aware policies.
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• operations, used to determine what set of opera-
tions are valid for the data segment.

• intents, used to determine what purposes this data
segment can be used for.

• data-stream, implicitly involved in the interaction,
and represent the actual stream values themselves.
For example, the actual stream values from a GPS
sensor are the latitude and longtudinal values. This
constraint allows us to apply operations on the
stream itself, such as perturbing data values to add
noise or creating more coarse representations such
as rounding up of values, and aggregating data (i.e.
average all values in this data segment).

Our general language structure for expressing a pri-
vacy policy shown Figure 2. The language structure
has a number of variable fields, such as PROPOSI-
TION FUNCTION or OPERATIONS, which can be
used to express privacy policies. Note that many of
these fields take on a potentially infinite set of values
to provide freedom in expressing constraints. In our
implementation of mPolicy, we restrict ourselves to a
smaller set of values, which we discuss in Section IX.
Here we describe each of these classes of constraints
in detail and then explore how policies are created
using this language. More specific example policies are
included in our GitHub 2.

As discussed earlier, we seek to produce a language
can express context aware policies with data handling
capabilities. Context-aware privacy policies enable dy-
namic altering of policies according to context, while
data handling expresses how the data is processed, how
it can be stored, and how the data may be further
disseminated. We can create these context aware policies
by using the data-window constraint. This constraint
allows us to specify what policies should be evaluated
given a particular context. This case is expressed in Fig
2 in lines 6-9. In addition, the data-window field also
allows us to constrain access with respect to time: one
of the aspects of data-handling is data retention, which
determines how long the data can be stored for. Looking
at the syntax guide in Figure 2, the TimeGreaterThan
proposition function can be used to express when this
policy expires, which will prevent further access to the
data. As discussed in Section III, any interaction that
does not satisfy the privacy policies is not permitted.

To further improve data-handling abilities, we can
use the data-stream to express how the data must be
processed before access, such as reducing the granularity
of the data values. Line 12 shows how one can apply
optional methods to the data stream, with possibilities
such as reducing the resolution of GPS values, perturbing
data, etc. The operations and intents constraints (line

2https://github.com/nesl/mPolicy-and-privLib

15) allow us to further tune the conditions that must be
satisfied for any interaction a study entity would like to
have with the participant’s data.

Although we have described how this language can
achieve our conceptual goals of expressing privacy poli-
cies that are context aware and capable of data handling,
we have yet to prove this language working in a real
system. To that end, we created a library privLib for
supporting mPolicy in terms of attaching policies to the
context stream, as well as enforcing access to participant
data streams. We discuss the functions of privLib in
Section VII.

It is important to note how participants are expected to
use this language. As we discussed in Section III, study
entities must be able to express their desired interactions
with the participant’s data. In our approach, these entities
are expected to create an initial policy using mPolicy,
where most of these fields are empty or always true (i.e.
setting a time range of 24 hours every day). The entities
will then submit these policies to the participant, who
may then express the additional constraints they desire
to create their own privacy policies, or have another
entity set these policies on behalf of the user (i.e. an
automated privacy policy agent). In this work we focus
on the designing and developing language itself, leaving
this envisioned communication for future work.

This language uses the interactions discussed in Sec-
tion III to create constraints on them. However, the
assumption here is that study participants have sufficient
knowledge of the interaction elements to express their
privacy policies. For example, users are likely aware that
a research organization would like to use their HRV data
at any time window to track average heart rate - such
information is already present in the current mHealth
study consent model [16]. Thus, for processing and
dissemination of data streams, we can apply constraints
on each of the interaction elements because we assume
most elements are likely known to the user. However this
is not the case for the creation of data byproducts: study
participants are probably unaware that there even exists
a data product from their data streams. For example,
study participants are likely not aware that their IMU and
HRV data is producing an additional activity recognition
stream of data, unless it is explicitly mentioned by
the study. Since participants are not able to express
those privacy preferences on these unknown interactions,
we provide some insights as to how policies can be
automatically attached to these data byproducts.

V. PRIVACY ADAPTIVE OUTPUT POLICY STREAMS

Although our language can express a variety of pri-
vacy preferences on sensor data streams, finding the
appropriate policies to attach to byproduct data streams
and models is still a significant challenge. One method of
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Fig. 2: The general structure of mPolicy for expressing a single privacy policy. Fields that take on multiple values
are underlined, with optional fields highlighted in yellow. Each field is discussed in Section IV.

creating byproduct data policies is by applying general
rule combining algorithms used in XACML [9], [17],
such as decision by majority voting. Other possibilities
include calculating a residual policy [18] within the re-
strictions of the input policy, or using logical entailment
of policies to validate combinations of privacy policies
[19]. However, these algorithms consider output policies
strictly as a function of the input policies, resulting in
general approaches to computing output policies without
explicit regard to the entities, operations, and data at
play. What is missing in these approaches is a notion
of the future - more specifically, we need a method of
creating data byproduct policies parameterized by the
entities, operations, and data involved in an interaction
later on, not based solely on the prior policies involved.
In our approach, we use a notion of trust, which we
will describe in Section V-B. More generally, if there
does not exist sufficient trust in the entities to perform
the operation on such data, such that there is a risk of
accidental or purposeful misuse of the data, then the data
byproduct policies need to reflect this lack of trust.

A. Privacy Policies for Data Byproduct Streams

We first consider the input policies of the data stream
to create an initial privacy policy for the data byproduct
stream. However, we note that because our language is
semantically separated into classes of constraints, we
consider each constraint class separately to produce a
data byproduct stream.

First, to properly fuse the data window constraints
from multiple policies, we first have to find the set of
minimally restrictive data windows that satisfy all data
window constraints for those policies. For example, we
may be faced with constraints from two different policies
such as ”Time Range from 9am to 9pm” and ”Time
Range from 8:30am to 8:30pm”, requiring us to create

a new data window constraint for ”Time Range from
9am to 8:30pm”. To solve this problem, we define a
restrictive ordering on propositional functions in privLib
for comparing contexts (i.e. ”Time Range of 9am to
10am is more restrictive than Time Range of 9am to
11am”. This requires a custom function to be created for
each comparison between unique constraints - privLib
currently implements a only few of these comparisons,
which we discuss further in Section IX. For example, a
custom function would be need to compare time ranges,
while another custom function would be required to
compare GPS locations.

To compare intents and operations of multiple differ-
ent streams, privLib provides these comparisons through
matching - in our implementation we take a more liberal
approach by allowing for output policies that include
all unique intents and operations from the combining
policies. Lastly, we do not consider the input policies
when creating the data-stream constraints - instead we
use the notion of trust to inform these byproduct data
stream constraints. We discuss this further in Section
V-B.

B. Enabling Privacy Policies for Byproduct Streams
Based on Trust

We refer to trust as a risk of misuse: if participants
do not trust an entity, it refers to how unlikely the entity
will adhere to their privacy policies; not trusting their
own sensor data refers to how easily it can be misused.
Depending on the entity, entity type (whether it be
a government organization or independent researcher),
operation, or data type used, the potential and con-
sequence of such misuse changes. To enable privacy
policies informed by trust, we propose a method of
adding operations on the data-stream constraints through
the mPolicy language using a measure of trust, which we
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call the Entity Trust Measure (ETM), with each object
having a corresponding weight. More formally,

ETM = wentity ∗ tentity + wentity−class ∗ tentity−class

+woperation ∗ toperation + wstream−type ∗ tstream−type

(1)

where wX is the weight associated with object X, and tX
is a binary trust value for object X. In our experiments
we assume uniform weights of 1.

Using this measurement, we propose a simple thresh-
olding function that determines what policies to be
added, shown in Algorithm 1. This algorithm simply
seeks to measure the ETM, and based on the value
of ETM append to the data-methods constraint in an
mPolicy policy. The three possibilities shown are to
either deny access to the stream entirely, apply a uni-
form perturbation to the data, and finally reducing the
granularity of the values by rounding up.

Algorithm 1 Thresholding Function

1: we, te ← weight(w) of entity, trust value(t) of entity
2: wec, tec ← entity class weight and trust value
3: wop, top ← operation weight and trust value
4: wdst, tdst ← data stream type weight and trust value
5: P ← Byproduct Policy
6: val ← ETM(we, te, wec, tecwop, topwdst, tdst)
7: if val < α then
8: P.append(DENY-ALL())
9: else if val < β then

10: P.append(PERTURB())
11: else if val < γ then
12: P.append(REDUCE-GRANULARITY())

Although all of these values are arbitrary, we use this
simple formalization to illustrate the idea that policies on
byproduct data should adhere to trust regarding whom
the data is meant for, what the data is, and how the data
is used. Having defined both the language, as well as
mechanisms for creating byproduct policies for sensor
data streams, we now turn to enforcing the language.

VI. ENFORCING MPOLICY

To show how mPolicy can be used and enforced, we
have created a Java library called privLib consisting
of ∼1500 lines of code for the major functionalities
described below. privLib is designed to be used by
entities involved in the study who want to parse the
mPolicy policies that are created by the participants
and ensure that their actions adhere to the policies.
More specifically, it is designed for determining relevant
policies, determining whether or not a query on user
data satisfies the relevant policies, and finally combining
policies together to produce new output policies. This

section shows the concepts and algorithms we use to
develop privLib.

There are several steps in our implementation for
enforcing mPolicy. The first point is upon an entity
receiving the data stream, to determine what policies are
relevant to this stream for enforcement. This requires
the addition of a context stream allowing entities to
attach the correct policies to portions of the stream.
The second point is when the entity seeks to analyze or
process a portion of the data, requiring them to access
a portion of the stream. This access must be controlled
according to the query they offer. Lastly, the entity may
provide additional enforcement on their output data and
byproduct stream(s), determining which ones they may
disseminate further and which ones they may not.

A. Building the Context Stream

To produce context-aware policies, we use the data-
window constraints coupled with an external context
stream. The context stream entails the information to
correlate with the data-window. More specifically, this
stream allows us to enforce context aware policies on
downstream entities. Such a stream allows for dynam-
ically changing policy rules over time for a variety of
downstream entities, which is not captured in current
languages.

The context stream is composed of several channels
of contexts - for example, time, location, button press
detection, and so on. The number of channels depends on
the privacy policy rules determined by the data-window
field in the privacy rules set by the user. For example,
if a data-window has a time range constraint, then time
must be included in the context stream. By using this
context stream, we can inform what policies are relevant
to this time instance of a stream.

B. Access and Downstream Enforcement

When an entity accesses a segment of a sensor data
stream to perform an operation or analysis, we must
evaluate whether or not the access query attributes satis-
fies the privacy policies. This involves using the context
stream to determine the relevant policies and comparing
the query against those policies. In order for the access
decision to succeed, the current entity must satisfy the
operations and intents fields of each relevant policy of
this data stream for access to be granted. For example, if
the user queries for GPS data between 9am and 10am for
the purpose of identifying travelling behaviors, then we
must identify policies for which the query satisfies. We
determine the relevance of the policies by attaching them
to windows of time, informed by the context stream,
shown in Algorithm 2. We then evaluate these relevant
policies against a query on the data, shown in Algorithm
3. A query consists of a time instance of the sensor data
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Algorithm 2 Policy Relevance Function

1: Pall ← Set of mPolicy policies for this entity and sensor stream
2: Cstream ← context stream
3: for Ct in Cstream do � For context values at every time instance t of the context stream
4: Prelevant ← Relevant policies at this instance of t
5: for P in Pall do
6: Pdata−windows ← Set of data window propositional functions for policy P
7: Evaluation ← Dictionary of Logical quantifiers, initially all set to True
8: for prop in Pdata−windows do
9: Quantifier ← Logical quantifier for this data window constraint

10: Negation ← true or false value, if the proposition function should be negated
11: if Quantifier == ”ALL” then
12: Evaluation[”ALL”] = Evaluation[”ALL”] ∧ ¬(prop(Ct)Negation)
13: else if Quantifier == ”ANY” then
14: Evaluation[”ANY ”] = Evaluation[”ANY ”] ∨ ¬(prop(Ct)Negation)
15: else if Quantifier == ”NONE” then
16: Evaluation[”ALL”] = Evaluation[”ALL”] ∧ (prop(Ct)Negation)

17: if Evaluation[”ALL”] ∧ Evaluation[”ANY ”] ∧ Evaluation[”NONE”] then
18: Prelevant.append(P)

stream to be accessed, the operation to be performed on
the retrieved data, and the intent behind the access. If
the policies relevant to this query match the operation
and intent, then the access decision is approved 3.

Once the entity is finished processing the stream,
it may have an output stream with a set of privacy
policies. Before the output stream can be disseminated
further, the current entity must complete the functions
explicitly described in the data-stream section of the
privacy policy. Semantically, this requires the current
entity to perturb or manipulate the data values before
transmitting downstream.

VII. EVALUATION

To evaluate realistic settings using mPolicy, we ex-
plore the overhead of enforcing these policies using
the methods described in Section VI. We are mainly
interested in three overheads - the overhead of deter-
mining which policies are relevant, the overhead of
determining whether a query is appropriate by comparing
it against the relevant policies, and lastly, the overhead
of combining two policies together. These correspond to
the major functionalities described in Section VI that are
needed to build systems supporting mPolicy.

We performed these evaluations on a PC with an AMD
Ryzen 7 3800X 8-Core processor. Each experiment is
repeated 20 times, and the results shown are the median
latencies across these 20 repeated experiments. For our
experiments, we would like to highlight an assump-
tion we have made. In our experiments, we have used

3For this case, we implicitly assume that the querying entity and the
entity referred to in the policy both match.

Policies Evaluated 1000 10,000 100,000
Latency (ms) per 250 samples, RP 150 1734 41,029
Latency (ms) per 250 samples, QD 2 222 21,723

TABLE I: Latency for determining relevant policies (RP)
and query decisions (QD)

Number of Participants 200 2,000 20,000
Latency (ms) per 250 samples 1,314 12,676 133,026

TABLE II: Latency for determining combining policies

the same policy for all experiments (i.e. evaluating 25
of the same policies). Without this assumption, every
query would be performed on an inconsistent number of
policies, since different policies means not all of them
will be relevant for evaluating the query. Although this
assumption is unrealistic, it offers us a way of measuring
the worst case time in each of our experiments.

For the purposes of this evaluation, we will consider
the following scenario that a study entity might expect:
a study consists of 200 to 20,000 study participants
each expressing 5 policies corresponding to a particular
type of data stream (i.e. GPS, IMU). If we assume the
maximum sensor sampling rate on a user’s smartphone
or wearable to be a ∼250Hz, the context stream will also
produce values at around the same sampling rate.

If the entity aggregates all 200 participant policies
together, it means evaluating 1000 policies at 250Hz
to determine which policies are relevant at every time
stamp. If this is a larger study with 2000 participants,
then the entitiy evaluates 10,000 policies at 250Hz.
Similarly, for 20,000 participants they evaluate 100,000
policies at 250Hz. For this first set of experiments, we
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Algorithm 3 Policy Query

1: t ← Time instance of query access
2: Prelevant ← Relevant policies at t
3: Qi ← Intent of query access
4: Qo ← Operation for access data
5: decision = APPROVE
6: if Prelevant == none then � If there are no relevant policies, DENY access
7: decision = DENY
8: else
9: for P in Prelevant do

10: Pi ← List of allowed intents for policy P
11: Po ← List of allowed operations for policy P
12: if NOT Qi in Pi then � If querying intent does not match allowed intents, DENY access
13: decision = DENY
14: if NOT Qo in Po then � If querying operation does not match allowed operations, DENY access
15: decision = DENY
16: return decision

measure the time it takes to attach relevant policies
for 4 seconds of a context stream (1000 samples). As
mentioned earlier, the actual policies themselves are
exact copies. These results are shown in Table I.

Our results for time taken to evaluate a query against
the same number of policies is also shown in Table I. We
have used a predefined query so that all policies allow
the access, thus requiring the algorithm to evaluate all
policies in order to measure the worst case query time.

Lastly, we evaluate the overhead of combining two
policies. For the sake of space, we have omitted the
policy example, but feel free to consult our Github4 for
such examples. Following the scenario from before, if we
assume that the entity is generating byproduct data by
combining two data streams at a rate of 250Hz, then the
entity is combining 2 policies per participant for a 250Hz
context stream. We show these corresponding latencies
in Table II.

It appears that the overhead grows rapidly for all op-
erations. Especially for studies involving large numbers
of users, these operations will never be able to keep
up with the actual sensor sampling rates on participant
mobile devices. This may not be a problem if the entity
is only collecting and analyzing data offline, this is not
acceptable in settings where entities require continuous
monitoring. Particularly in the second phase of studies,
as described in Section II, deployed models (i.e. for real
time medical intervention) will suffer from long delays
when attempting to query user data. Although these
latencies may be ameliorated by amortizing over more
capable servers, the scalability of this library remains
questionable - this motivates us to seek optimizations
to our library in the future. Although we have not

4https://github.com/nesl/mPolicy-and-privLib

mentioned it in Section VI, it is not necessary to evaluate
the context stream at every point. In our implementation,
we determine if policies are relevant when the context
stream changes. For example, if we have policies that
only depend on a GPS location, we only need to evaluate
the context stream when the location changes.

VIII. RELATED WORK

There are a number of works on enforcing fine-grained
control of user policies specific to systems such as
Android. Examples include IpShield [20], FlaskDroid
[21], and Mr. Hide [22]. [20] provides enforcement of
context-aware policies with respect to time and location
over Android OS. [21] provides a policy language based
on Security Enhanced Android [23] to produce both
context-aware policies as well as attribute enforcement
of various Android objects (i.e. Activity, Intent). [22]
develops a policy language that expresses parameterized
permissions (i.e. restricting data access to a particular
column of a database), a more fine-grained variant of
the Android permission model.

Access control policy languages such as those of
eXtensible Access Control Markup Language (XACML)
[9] and Platform for Privacy Preferences (P3P) [10] are
expressed in the XML markup language, designed to
compare user defined policies against access requests
(as in the case of XACML) or website policies (in the
case of P3P). Primelife Policy Language (PPL) [24]
builds off of XACML to provide better data handling
capabilities via an obligation language, where accesses to
user data may trigger notifications. It also adds fields for
data access purpose, as well as policies for downstream
handling. Accountability PPL (A-PPL) [25] builds off
of PPL to enable auditing of an entity via logging of
data accesses. Purpose To Use (P2U) [26] is another
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policy language that improves upon the limitations of
P3P to prevent improper secondhand sharing of data via
explicitly defined purposes, length of data retention, and
other factors.

Our work differs from these two types of languages.
Although system specific user policy languages can pro-
vide context aware policies, they do not target the notion
of downstream data. The policies are designed to remain
on the device, and can not be enforced downstream. On
the other hand, general privacy policy languages, such
as the access control policy languages, are not designed
to address the need for context-aware policies that are
found in the pervasive sensing setting. Our work seeks to
provide a language that addresses both of these missing
gaps, which are needed in mHealth studies.

The concept of creating a new set of privacy policies
for output streams of data isn’t new either. [18] seeks
to attach a residual policy of a program’s output. This
residual policy is computed by combining the attributes
from the input policies and removing the attributes
that are less restrictive. [9] provides a number of rule
combining algorithms that determining the output policy
given a combination of input policies. In a similar vein,
works such as [27], [28] seeks to provide automated
decisions of privacy configurations in exchange for a
reward. [27] provides an automated negotiation agent
to determine what data permissions to grant based on
a virtual currency reward. [28] introduces the economics
of privacy, where privacy of user attributes (such as
demographics) has an associated utility (web search
relevance), and seeks to optimize the attributes shared
to meet an associated utility threshold. Although our
byproduct policy is inspired by the similar abilities
demonstrated in these prior works, we look to other
factors for guiding the creation of output policies that
these works have not addressed.

IX. LIMITATIONS AND FUTURE WORK

One limitation for our byproduct policy creation
comes from the fact that it is defined by a single static
threshold. In reality, a single threshold is not sufficient
to encapsulate the possible combinations of optimal
privacy-adaptive byproduct policies. We believe that this
is a necessary improvement for future work.

A number of limitations also arise from our prototype
library privLib. Many of the propositional functions
expressed in real context aware policies have yet to be
implemented (such as ”While participant is connected to
the WiFi, use policy 1”). In our implementation, we have
only considered GPS location, time ranges, and button
presses (a user defined context). There are such many
propositional functions to create, and we hope to add
these to privLib in the future. There is also limited logi-
cal evaluation functionality for the creation of byproduct

policies in privLib. For example, byproduct policies
assume that there is no negation for data-windows (i.e.
we can not combine ”Not between 9am and 12pm” with
”between 8am and 2pm”). Addressing these flaws are a
necessary step to further improve privLib in the future.

A fair part of this work involves adding additional
privacy rules to existing policies informed by the trust
in different entities and interaction objects of an mHealth
study. These new privacy policies include perturbations
and other privacy mechanisms, albeit in this work they
are rather coarse grained. The concept of differential
privacy [29] can play a role in our approach, as the
area offers more fine-grained and measurable privacy
guarantees via privacy notions such as k-anonymity, l-
diversity, or t-closeness [30]–[33]. We leave the integra-
tion of these mechanisms into future work.

One additional challenge that we have not addressed
is the evolution of data products over time. As deployed
models change (i.e. become more accurate), the privacy
policies should also change to address new risks. For
example, improved precision of the data byproducts may
result in higher risk of identifying participants. We hope
to address the challenge of evolving data byproducts in
future work.

Lastly, it is important to note the barrier to usability
for policy languages such as mPolicy. Participants might
find the syntax abtruse or are unsure of what they want to
express in the first place. We believe this challenge can
be addressed by providing an automated software agent
acting on behalf of the participants to express privacy
policies. Though such work remains outside the scope
of this paper, it is an excellent next step in establishing
a real system that enables privacy policies in mHealth.

X. CONCLUSION

In this work we present a privacy policy language for
meeting the privacy demands of users in the context of
mHealth studies. Our language is both context-aware and
capable of data handling to handle a variety of expres-
sions in the context of mHealth. We also address the
need for creating policies on byproduct data produced
by different entities in the mHealth study, and enable
privacy-adaptive policy creation on this byproduct data.
We have discussed some preliminary results from our
implementation for enforcing and combining mPolicy
policies. These results encourage us to further optimize
and improve the library, moving us one step closer
to establishing a practical and extensive framework for
creating privacy policies in mHealth studies.
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