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ABSTRACT
Edge devices rely extensively on machine learning for intelligent

inferences and pattern matching. However, edge devices use a multi-

tude of sensingmodalities and are exposed to wide ranging contexts.

It is difficult to develop separate machine learning models for each

scenario as manual labeling is not scalable. To reduce the amount

of labeled data and to speed up the training process, we propose

to transfer knowledge between edge devices by using unlabeled

data. Our approach, called RecycleML, uses cross modal transfer

to accelerate the learning of edge devices across different sens-

ing modalities. Using human activity recognition as a case study,

over our collected CMActivity dataset, we observe that RecycleML

reduces the amount of required labeled data by at least 90% and

speeds up the training process by up to 50 times in comparison to

training the edge device from scratch.
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1 INTRODUCTION
Edge devices are typically equipped with a wide variety of sensing

modalities for tracking environmental markers. To provide insights

and enable context-aware applications (e.g. user activity recogni-

tion [25], workout tracking [22], speech recognition [8]) the data

collected on these devices are used to train deep neural network

models. However, to fully realize the learning-at-the-edge para-

digm, several challenges still needs to be addressed. In particular,

the model training process needs to handle insufficient labeled data,

and the heterogeneity in inter-device sensing modalities.

As a step towards addressing the above concerns, we propose

RecycleML– a mechanism to transfer knowledge between edge

devices. Our approach is guided by the observation that application-

specific semantic concepts can be better associated with features in

the higher layers (close to the output side) of a network model [5].

This observation allows us to conceptualize the layers of the dif-

ferent networks as an hourglass model, as shown in Figure 1. The

lower half of the hourglass correspond to the lower layers (close to

the input side) of the individual models (trained on specific sensing

modalities). The narrow waist is the common layer (latent space)

into which the lower layers project their data for knowledge trans-

fer. The upper half of the hourglass comprises of the task-specific

higher layer features which are trained in a targeted fashion for

task-specific transfer.

To evaluate RecycleML, we emulate edge devices with three

sensing modalities - vision, audio and inertial (IMU) sensing as

shown in Figure 2. We perform zero-shot learning [23], i.e. use zero

training labels, across different sensing modalities when they are

performing the same classification task. We achieve this by training

the target edge device model to have the same latent space as the

source model. RecycleML can also learn to expand the classification

tasks of the transferred model with very few training examples.

Our results across a mix of sensory substitutions and task trans-

fers show that, over our collected CMActivity dataset, RecycleML

reduces the amount of labeled data required to train edge devices

by at least 90% and speeds up the training process by up to 50 times

after doing knowledge transfer using unlabeled data.

Our contributions are as follows:

(1) We combine the idea of transfer learning (lower layers trans-

fer) with sensory substitution (higher layers transfer) to-

gether and propose a unified framework, where the knowl-

edge in every part of a network could be transferred.
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Figure 1: Shared representation between edge devices.

(2) We introduce a new dataset CMActivity that have synchro-

nized data of three modalities: vision, audio, and inertial.

(3) For activity recognition task, we verify that the shared repre-

sentation exists for time series sensory data, and it can help

transfer knowledge from ambience edge devices to wearable

edge devices and vice versa. The code for our experiment is

available on-line.
1
.

2 METHOD OVERVIEW
2.1 Conceptual Scenario
Suppose Alice has an edge device DV 1 with camera in her living

room, and it is trained to do activity recognition. Alice wants to

replicate the inferencing ability of DV 1 on other devices: a smart

watch DW which she wears regularly, an acoustic device DA1 in

her living room to turn off DV 1 whenever needed due to privacy

reasons, and a camera DV 2 and a voice assistant DA2 in her office,

Our objective is to transfer activity recognition knowledge of DV 1

toDA1 andDW (Video→Audio and IMU), and later, transfer activity

recognition knowledge of DW to DA2 and DV 2 (IMU→Audio and

Video).

2.2 RecycleML Description
RecycleML uses the same latent feature representation across edge

devices of different modalities to do knowledge transfer. Knowl-

edge transfer uses synchronous unlabeled data to map the input of

untrained model to the shared latent feature representation of the

pre-trained model (details in Section 2.2.1). Later edge devices can

either reuse the upper layer across models or do task transfer on

the upper layers if needed (details in Section 2.2.2).

1
https://github.com/nesl/RecycleML

Figure 2: Knowledge transfer across edge devices with
different sensing modalities.

2.2.1 Knowledge Transfer. For simplicity, let us consider two

edge devices DX and DY , each with different sensing modality

capturing data X and Y respectively. Suppose DX has a pre-trained

modelMX and performs task TX . Our goal is to train a new model

MY for DY to perform task TY . To transfer knowledge from DX to

DY , we collect data X and Y from both devices while observing the

same event.X andY need not be labeled. An important requirement

is the time synchronization in devices DX and DY so as to capture

the same event in their data X and Y . Synchronization is natural in

different sensing modalities. For example, vision, audio and inertial

sensors observing the same event of human motion can capture it

in different signals (see Section 3.1 for details).

We input data X to the pre-trained model MX , and instead of

getting the final output value, we calculate the activation values

f (X ) of an intermediate layer that acts as our shared latent feature

representation. f is the transformation of all the early layers before

the specific activation. We use f (X ) as the training value for the

model MY of device DY . Specifically, we choose a new network

д, specialized for input modality Y , and train the network д(Y ) so
that it maps Y to the same shared latent feature representation

by minimizing |д(Y ) − f (X )|2 as our loss function. We generate

the model MY for device DY by adding the task specific output

layers to д. In this way, modelMX teaches the new modelMY in a

teacher-student data distillation manner [11].

2.2.2 Task Transfer. Transferring knowledge from device DX
to DY does not need any ground-truth labels. However, the new

modelMY for device DY may need additional information before

performing any classification or regression task. Therefore, three

different scenarios arise when devicesDX andDY performing tasks

TX and TY in classification settings respectively: (i) Devices DX
and DY are performing same tasks TX , (ii) Devices DX and DY
are performing related tasks TX and TY , e.g. where TX and TY are

both human activity inferencing but with different numbers of

categories, and (iii) Devices DX and DY are performing completely

different tasks TX and TY . In this paper, we study how to transfer

knowledge between devices in the first two scenarios.
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We explore two different methods of task transfer:

• PureTransfer directly uses the higher layers of modelMX for

new model MY . In this case no further training is needed

and no labeled data is required.

• Transfer+LimitedTrain freezes the network д and adds higher
layers toMY and retrains only the higher layers using limited

labeled data.

In the first scenario, since the tasks are same we can use both

methods. In the second and the third scenarios, direct transfer of

higher layers from modelMX to modelMY does not work asMX
does not give the same desired output. Hence, we use the second

method. In our experiments, we evaluate scenario (i) of task transfer
using both methods of PureTransfer and Transfer+LimitedTrain and

scenario (ii) using Transfer+LimitedTrain.
In our experiments, we used the output of last hidden layer

after removing the final output layer from model MX as the f
transformation. Here f and д serve as shared latent representations

across modalities. We add a single task specific layer toд to generate
modelMY . In future, we will explore the different choices of f and

addition of multiple task specific output layers to д.

3 EVALUATION
3.1 Dataset
For our experiments, we collected a new dataset, called CMAc-

tivities, composed of videos for vision and audio modality, and

corresponding IMU data (accelerometer and gyroscope) from sen-

sors on left and right wrist. We collected 767 videos of roughly 10

second each from 2 users
2
doing 7 different activities at 6 locations.

Every video contains a single activity and is used to label the vision,

audio and IMU data. The total duration of collected data for each

modality is 125 minutes.

Table 1: Description of CMActivities dataset

Activity Number of Videos Duration (sec)

Go Upstairs 162 1338

Go Downstairs 161 1113

Walk 119 1143

Run 115 891

Jump 73 995

Wash Hand 73 1070

Jumping Jack 90 958

We collected the videos of the user using an observer smart-

phone. The wrist sensors communicate the data to the smartphone

of the user doing the activities. The IMU data was timestamped

by user’s smartphone and the video by the observer smartphone.

Time synchronization between vision and audio is naturally present

because both are extracted from the same videos. However, time

synchronization between the user smartphone and the observer

smartphone is needed so as to synchronize video and IMU data. In

our data collection, we used the default smartphone timestamps syn-

chronized through the Network Time Protocol (NTP) [17] service,

2
The data is collected from the authors and thus does not require approval from IRB.

and observed a maximum time difference of 0.5 seconds between

the observer smartphone and the user smartphone. We leave it for

future to explore the effect of poor time synchronization across

devices in observing the same event. We expect the knowledge

transfer capabilities of RecycleML to degrade as the time difference

between devices increases.

The details of CMActivities are shown in Table 1. The data col-

lection was done at different locations with two users wearing

separate set of clothes at each location so as to make sure that the

trained classifier learns the activity features and is least affected by

the environmental factors. We split 767 videos and IMU sessions

into three parts: training dataset (624), testing dataset (71) and per-

sonalization dataset (72). Training and testing datasets contain 7

activities at 5 different locations and personalization dataset con-

tains 5 activities at 6
th

location. We don’t have Go Upstairs and Go
Downstairs activities in the personalization dataset.

The training dataset is further split into 3 parts: Pre-Training

set, Transfer set and LimitTrain set. The personalization dataset is

split into PersonalTrain and PersonalTest sets. The testing dataset

is used only for evaluation. The frame rate of video is 29 and the

sampling frequency of audio and IMU is 22050 Hz and 25 Hz re-

spectively. We use a window of 2 seconds to extract vision, audio

and IMU features from dataset with sliding window of 0.4 seconds

between consecutive windows. In case of vision and IMU, we use

raw features directly as input to the models. We extracted features

from the raw audio data using Librosa [16] and use it as the input

features. Specifically, we extract mel-frequency cepstral coefficients

(MFCC) [15], power spectrogram [6], mel-scaled spectrogram, spec-

tral contrast [13] and tonal centroid features (tonnetz) [10].

In total, we have 11976 samples in training (5000 samples for

Pre-Training set, 6000 samples for Transfer set, and 976 samples

for LimitedTrain set), 1377 samples in test and 1592 samples in

personalization (475 samples for PersonalTrain set and 1117 samples

for PersonalTest set) for each modality.

Table 2: Testing accuracy of baseline models

Input Modality Video Audio IMU

Accuracy 90.92% 92.81% 90.99%

Number of parameters 4.6M 0.8M 57K

3.2 Baselines
To compare the results of RecycleML, we trained Video, Sound and

IMU models using Pre-Training dataset individually to do activ-

ity recognition. The models we use are the state-of-the-art deep

learning architectures that are generally adapted in a wide range

of applications:

(a) Video Network is a reduced version of C3D [24] network. It in-

cludes four 3D-convolutionalmodules combinedwith 3D-maxpooling

layers, followed by 3 fully-connected layers and one output layer.

The total number of parameters are about 4.6 million.

(b) Audio Network is a multi-layer perceptron model. It has 10

fully-connected layers and a total of 810 K parameters. We add

drop-out to avoid overfitting.
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Table 3: Comparison of knowledge transfer between devices.
Significance tests (compared to the training from scratch) are carried out using t-test with P<0.005 in most cases.

Transfer Trained-Device Pure-Transfer Transfer+LimitedTrain Training from Scratch

Video(DV 1) to Audio(DA1) 90.92% 90.20% 90.36% 84.12%

Video(DV 1) to IMU(DW ) 90.92% 94.19% 94.37% 70.73%

IMU(DW ) to Video(DV 2) 90.99% 74.00% 75.13% 72.26%

IMU(DW ) to Audio(DA2) 90.99% 84.82% 87.82% 84.28%

(c) IMUNetwork is a CNNnetwork. It has 2 convolutionalmodules

(convolution layer + maxpooling layer), 3 fully-connected layers

and a output layer. 57K parameters are trainable in this network.

Table 2 shows the summary of the individual models. The models

are trained using the training dataset and tested on testing dataset.

These baseline models are trained using SGD [4] and Adam [14]

optimizers with a learning rate of 0.001. We save the models with

best test accuracy after training for 500 epochs.

3.3 Knowledge Transfer Results
Knowledge transfer results are presented in Table 3. In the first

and second experiment, vision device DV 1 is trained while acoustic

device DA1 and wearable device DW are untrained respectively.

In the third and fourth experiment wearable device DW is trained

while vision device DV 2 and acoustic device DA2 are untrained. For

each of these four transfers, we follow the same procedure. Taking

vision device DV 1 to acoustic device DA1 as an example, we first

train the vision model of DV 1 from scratch using the Pre-Training

set (5000 samples) of training dataset. We use the standard SGD

optimizer with a learning rate of 0.001. The training is finished in

500 epochs. We then use DV 1 as a pre-trained device to transfer

knowledge to a DA1 following the procedure described in Section

2.2.1. In the knowledge transferring process, we use Adam optimizer

with a learning rate of 0.001, and run it for 500 epochs. The data

used in transfer process are the synchronized unlabeled vision and

sound data from Transfer set (6000 samples) of training dataset.

After transfer, the higher layers of audio model can be created using

two methods Pure-Transfer and Transfer+LimitedTrain discussed in

Section 2.2.2 when both DV 1 and DA1 are doing the same task. In

Pure-Transfer method audio model uses the output layer of vision

model directly. In Transfer+LimitedTrain, we train the new output

layer for audio model. We select a small labeled set of 500 samples

randomly out of 976 samples from LimitedTrain set of training

dataset and name it LimitTrainSet. We use the LimitTrainSet to

train the output layer of audio model for 100 epochs using Adam

optimizer. As a comparison, we also trained an audio model from

scratch using the same LimitTrainSet for 500 epochs. We use more

epochs for training from scratch as it takes more time to converge.

The other three transfers are tested in the same way. The Audio and

IMU models which are trained from scratch use Adam optimizer.

Note: In Video to IMU transfer, it takes more time to transfer the

knowledge, so we perform the knowledge transfer for 1000 epochs.

In real implementations, the knowledge transfer process for edge

devices can either be done in background or at the server using

unlabeled data, so as to avoid the overhead.

Table 3 shows the knowledge transfer results between devices

doing the same task of activity recognition. Model performance is

measured by test accuracy. Considering row 1, Trained-Device is
the accuracy of pre-trained device DV 1. Pure-Transfer and Trans-
fer+LimitedTrain are the accuracy of deviceDA1 using bothmethods

respectively. The last cell shows the accuracy of audio model trained

from scratch using LimitTrainSet. As we can see both methods Pure-
Transfer and Transfer+LimitedTrain achieve better accuracy than

training from scratch. This shows that shared latent feature repre-

sentation is successful in doing knowledge transfer across devices

of different modalities. We also observe that Transfer+LimitedTrain
usually gives the best performance.

Figure 3: Transfer+LimitedTrain converges in 10 epochs
whereas Training from scratch requires training for

around 500 epochs.

In our experiment, we train every model for 10 times to preclude

the effect of randomness. Based on the results, significance tests

(compared to training from scratch) are carried out using t-test. We

find that the Transfer+LimitedTrain can outperform training from

scratch (p < 0.005) in three cases (Video to Audio, Video to IMU,

IMU to Audio); and p < 0.4 for the case of IMU to Video transfer.

This is because video model is complicated and sensitive, and the

performance of video model trained from scratch fluctuates.
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3.4 RecycleML Reduces Training Time
We further compare the effect of number of epochs between Trans-
fer+LimitedTrain method and training from scratch using Limit-

edTrainSet (500 samples). Figure 3 shows our results in all the 4

transfers. Clearly, Transfer+LimitedTrain method trains model with

accuracy greater than 80% in most of the cases with less than 10

epochs, while training from scratch can not achieve comparable

accuracy after 500 epochs. This makes RecycleML even more suit-

able to be deployed on edge devices: it reduces the training time by

50x. The reason for this huge gain is the knowledge transfer using

unlabeled data and Transfer+LimitedTrain trains only the output

layer so it requires very less number of epochs.

3.5 RecycleML Reduces Required Labeled Data
To study the effect of number of labeled data samples onmodel accu-

racies, we change the size of training data for Transfer+LimitedTrain
and training from scratch. All the training samples were selected

randomly from LimitedTrain set (976 samples) of training dataset.

Althoughmethods converge at different speeds (Transfer+LimitedTrain
converges in 10 epochs, while Training from scratch takes about

500 epochs), in this experiment, we only compare the converged

performance of all the models. Figure 4 shows our results for

four device transfers. Consider Video (DV 1) to Audio (DA1), Trans-
fer+LimitedTrain is comparedwith trainingAudio (DA1) from scratch.

Using Transfer+LimitedTrain, the model achieve best achievable ac-

curacy using only 50 data samples. While training model from

scratch cannot get comparable results even if we increase the

size of available data to 976 samples as shown in upper left fig-

ure. The testing was performed on entire test dataset. So Recy-

cleML reduces labeled data requirement by at least 90%. However,

in ideal scenario, when abundant labeled data samples are available,

training from scratch slowly converges and can outperform Trans-
fer+LimitedTrain. For IMU (DIMU ) to Video (DV 2), when more than

750 labeled data are available, training from scratch can outperform

the method of Transfer+LimitedTrain.

3.6 Related Task Transfer Using RecycleML
We tested knowledge transfer from video device to IMU device

with video model doing activity recognition task with 7 categories

while goal of IMU model is to do activity recognition task with 5

categories in a totally different location.

We did knowledge transfer as described in Section 2.2.1 and

finally used Transfer+LimitedTrainmethod to train the output layer

of IMU model using PersonalTrain set (475 samples). The trained

models are tested on PersonalTest set (1117 samples). In Figure 5, we

plot the learning curve on Transfer+LimitedTrain and training from

scratch trained using PersonalTrain . When transferring knowledge

to a relevant task, RecycleML still learns faster: it converges in 10

epochs and gets a testing accuracy of 91.58%, while training from

scratch takes 500 epochs and only gets an accuracy of 61.86%.

4 RELATEDWORK
RecycleML is inspired from prior works in machine learning for

multimodal data. Previous works [12, 18, 20, 21] combine lower

layers from multiple modalities to develop a unified model that

outperforms the individual modalities. Radu et al. [20, 21] study

Figure 4: With different sizes of labeled data,
Transfer+LimitedTrain converges better than Training

from scratch.

Figure 5: Transferring knowledge to a new task:
Transfer+LimitedTrain learns faster and better than

Training from Scratch.

combining modalities for human activity recognition on mobile

devices. We use the idea of representing multiple modalities in the

same latent space in intermediate layers of a deep network, but our

focus is on knowledge transfer for machine learning models across

multi-modal edge devices.

Ba et al. [3], Hinton et al. [11] present knowledge transfer be-

tween the same modality. Ngian et al. [19] use shared representa-

tions to improve visual speech classification. Aytar et al. [1] learn

shared representations that connect multiple forms of image and

text data. Frome et al. [7] show knowledge transfer from text to

vision for object classification. Gupta et al. [9] present knowledge
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transfer between labeled RBG images and unlabeled depth and op-

tical flow images. Aytar et al. [2] show that visual knowledge can

be transfer from vision to sound.

The prior works either focus on image and text data, or take two

modalities (vision and audio) from the same source into considera-

tion. In RecycleML, we consider three commonly available sensing

modalities on edge devices from multiple sources, and create a uni-

fied representation that bridge them. This allows edge devices to

use multimodal knowledge transfer across different sensing modal-

ities of ambient sensors (vision and audio) and wearables sensors

(IMU) for the first time.

5 DISCUSSION
While RecycleML shows promise in terms of handling both paucity

of labeled data and also speeds up model training across multiple

modalities, the ability of the approach to generalize to different

applications for larger datasets needs further investigation. Further-

more, our experiments indicate that while the trained models can

be personalized to a specific environment, they need regularization

to generalize to new settings.

For cross modal knowledge transfer using RecycleML, we need

unlabeled but synchronized data. In our experiments, since audio

and video data are captured by the same device, they are natu-

rally synchronized. In addition, we used the default smartphone

timestamps, synchronized through the Network Time Protocol

(NTP) [17] service, to synchronize IMU device with video and sound

device. In real settings, however, edge devices have to be time syn-

chronized in order to observe the same event at the same time.

In our experiments, we chose the fully connected layer (imme-

diately prior to the output layer) as the common latent space. In

future, we plan to explore different choices for the shared represen-

tation layer, for efficient sensory substitution and task transfer on

edge devices.

6 CONCLUSION
Heterogeneity in sensing modality of the edge devices, together

with lack of labeled training data, represent two of the most sig-

nificant barriers to enabling the learning-on-the-edge paradigm.

Towards this end, we presented RecycleML, a system that enables

multi-modality edge devices to perform knowledge transfer be-

tween their models by mapping their lower layers to a shared latent

space representation. RecycleML further allows task-specific trans-

fer between models by targeted retraining of the higher layers

beyond the shared latent space – reducing the amount of labeled

data needed for model training. Our initial experiments, performed

using multi-modality data (vision, audio, IMU) for activity recogni-

tion, show that transfer model trained using RecycleML leads to

reduced training time and results in increased accuracy compared

to an edge model trained from scratch using limited labeled data.
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