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ABSTRACT 1 INTRODUCTION

Edge devices rely extensively on machine learning for intelligent Edge devices are typically equipped with a wide variety of sensing

inferences and pattern matching. However, edge devices use a multi- modalities for tracking environmental markers. To provide insights

tude of sensing modalities and are exposed to wide ranging contexts. and enable context-aware applications (e.g. user activity recogni-

It is difficult to develop separate machine learning models for each tion [25], workout tracking [22], speech recognition [8]) the data

scenario as manual labeling is not scalable. To reduce the amount collected on these devices are used to train deep neural network

of labeled data and to speed up the training process, we propose models. However, to fully realize the learning-at-the-edge para-

to transfer knowledge between edge devices by using unlabeled digm, several challenges still needs to be addressed. In particular,

data. Our approach, called RecycleML, uses cross modal transfer the model training process needs to handle insufficient labeled data,

to accelerate the learning of edge devices across different sens- and the heterogeneity in inter-device sensing modalities.

ing modalities. Using human activity recognition as a case study, As a step towards addressing the above concerns, we propose

over our collected CMActivity dataset, we observe that RecycleML RecycleML- a mechanism to transfer knowledge between edge

reduces the amount of required labeled data by at least 90% and devices. Our approach is guided by the observation that application-

speeds up the training process by up to 50 times in comparison to specific semantic concepts can be better associated with features in

training the edge device from scratch. the higher layers (close to the output side) of a network model [5].
This observation allows us to conceptualize the layers of the dif-

CCS CONCEPTS ferent networks as an hourglass model, as shown in Figure 1. The

lower half of the hourglass correspond to the lower layers (close to
the input side) of the individual models (trained on specific sensing
modalities). The narrow waist is the common layer (latent space)
into which the lower layers project their data for knowledge trans-
KEYWORDS fe.r. The upper half of the .hourglass .comPrises of the task-sPeciﬁc
higher layer features which are trained in a targeted fashion for
task-specific transfer.

To evaluate RecycleML, we emulate edge devices with three
sensing modalities - vision, audio and inertial (IMU) sensing as
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Figure 1: Shared representation between edge devices.

(2) We introduce a new dataset CMActivity that have synchro-
nized data of three modalities: vision, audio, and inertial.

(3) For activity recognition task, we verify that the shared repre-
sentation exists for time series sensory data, and it can help
transfer knowledge from ambience edge devices to wearable
edge devices and vice versa. The code for our experiment is
available on-line.!.

2 METHOD OVERVIEW

2.1 Conceptual Scenario

Suppose Alice has an edge device Dy with camera in her living
room, and it is trained to do activity recognition. Alice wants to
replicate the inferencing ability of Dy on other devices: a smart
watch Dy which she wears regularly, an acoustic device D 41 in
her living room to turn off Dy; whenever needed due to privacy
reasons, and a camera Dy 5 and a voice assistant D 45 in her office,
Our objective is to transfer activity recognition knowledge of Dy
to D 41 and Dyy (Video— Audio and IMU), and later, transfer activity
recognition knowledge of Dy, to D 42 and Dy, (IMU— Audio and
Video).

2.2 RecycleML Description

RecycleML uses the same latent feature representation across edge
devices of different modalities to do knowledge transfer. Knowl-
edge transfer uses synchronous unlabeled data to map the input of
untrained model to the shared latent feature representation of the
pre-trained model (details in Section 2.2.1). Later edge devices can
either reuse the upper layer across models or do task transfer on
the upper layers if needed (details in Section 2.2.2).

https://github.com/nesl/RecycleML
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different sensing modalities.
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2.2.1 Knowledge Transfer. For simplicity, let us consider two
edge devices Dx and Dy, each with different sensing modality
capturing data X and Y respectively. Suppose Dx has a pre-trained
model My and performs task Tx. Our goal is to train a new model
My for Dy to perform task Ty. To transfer knowledge from Dy to
Dy, we collect data X and Y from both devices while observing the
same event. X and Y need not be labeled. An important requirement
is the time synchronization in devices Dx and Dy so as to capture
the same event in their data X and Y. Synchronization is natural in
different sensing modalities. For example, vision, audio and inertial
sensors observing the same event of human motion can capture it
in different signals (see Section 3.1 for details).

We input data X to the pre-trained model My, and instead of
getting the final output value, we calculate the activation values
f(X) of an intermediate layer that acts as our shared latent feature
representation. f is the transformation of all the early layers before
the specific activation. We use f(X) as the training value for the
model My of device Dy. Specifically, we choose a new network
g, specialized for input modality Y, and train the network g(Y) so
that it maps Y to the same shared latent feature representation
by minimizing |g(Y) — f(X)|? as our loss function. We generate
the model My for device Dy by adding the task specific output
layers to g. In this way, model Mx teaches the new model My in a
teacher-student data distillation manner [11].

2.2.2 Task Transfer. Transferring knowledge from device Dx
to Dy does not need any ground-truth labels. However, the new
model My for device Dy may need additional information before
performing any classification or regression task. Therefore, three
different scenarios arise when devices Dy and Dy performing tasks
Tx and Ty in classification settings respectively: (i) Devices Dx
and Dy are performing same tasks Tx, (ii) Devices Dx and Dy
are performing related tasks Tx and Ty, e.g. where Tx and Ty are
both human activity inferencing but with different numbers of
categories, and (iii) Devices Dx and Dy are performing completely
different tasks Tx and Ty. In this paper, we study how to transfer
knowledge between devices in the first two scenarios.
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We explore two different methods of task transfer:

o PureTransfer directly uses the higher layers of model Mx for
new model My. In this case no further training is needed
and no labeled data is required.

o Transfer+LimitedTrain freezes the network g and adds higher
layers to My and retrains only the higher layers using limited
labeled data.

In the first scenario, since the tasks are same we can use both
methods. In the second and the third scenarios, direct transfer of
higher layers from model Mx to model My does not work as Mx
does not give the same desired output. Hence, we use the second
method. In our experiments, we evaluate scenario (i) of task transfer
using both methods of PureTransfer and Transfer+LimitedTrain and
scenario (ii) using Transfer+LimitedTrain.

In our experiments, we used the output of last hidden layer
after removing the final output layer from model My as the f
transformation. Here f and g serve as shared latent representations
across modalities. We add a single task specific layer to g to generate
model My. In future, we will explore the different choices of f and
addition of multiple task specific output layers to g.

3 EVALUATION
3.1 Dataset

For our experiments, we collected a new dataset, called CMAc-
tivities, composed of videos for vision and audio modality, and
corresponding IMU data (accelerometer and gyroscope) from sen-
sors on left and right wrist. We collected 767 videos of roughly 10
second each from 2 users® doing 7 different activities at 6 locations.
Every video contains a single activity and is used to label the vision,
audio and IMU data. The total duration of collected data for each
modality is 125 minutes.

Table 1: Description of CMActivities dataset

Activity Number of Videos Duration (sec)
Go Upstairs 162 1338
Go Downstairs 161 1113
Walk 119 1143
Run 115 891
Jump 73 995
Wash Hand 73 1070
Jumping Jack 90 958

We collected the videos of the user using an observer smart-
phone. The wrist sensors communicate the data to the smartphone
of the user doing the activities. The IMU data was timestamped
by user’s smartphone and the video by the observer smartphone.
Time synchronization between vision and audio is naturally present
because both are extracted from the same videos. However, time
synchronization between the user smartphone and the observer
smartphone is needed so as to synchronize video and IMU data. In
our data collection, we used the default smartphone timestamps syn-
chronized through the Network Time Protocol (NTP) [17] service,

2The data is collected from the authors and thus does not require approval from IRB.
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and observed a maximum time difference of 0.5 seconds between
the observer smartphone and the user smartphone. We leave it for
future to explore the effect of poor time synchronization across
devices in observing the same event. We expect the knowledge
transfer capabilities of RecycleML to degrade as the time difference
between devices increases.

The details of CMActivities are shown in Table 1. The data col-
lection was done at different locations with two users wearing
separate set of clothes at each location so as to make sure that the
trained classifier learns the activity features and is least affected by
the environmental factors. We split 767 videos and IMU sessions
into three parts: training dataset (624), testing dataset (71) and per-
sonalization dataset (72). Training and testing datasets contain 7
activities at 5 different locations and personalization dataset con-
tains 5 activities at 6!/ location. We don’t have Go Upstairs and Go
Downstairs activities in the personalization dataset.

The training dataset is further split into 3 parts: Pre-Training
set, Transfer set and LimitTrain set. The personalization dataset is
split into PersonalTrain and PersonalTest sets. The testing dataset
is used only for evaluation. The frame rate of video is 29 and the
sampling frequency of audio and IMU is 22050 Hz and 25 Hz re-
spectively. We use a window of 2 seconds to extract vision, audio
and IMU features from dataset with sliding window of 0.4 seconds
between consecutive windows. In case of vision and IMU, we use
raw features directly as input to the models. We extracted features
from the raw audio data using Librosa [16] and use it as the input
features. Specifically, we extract mel-frequency cepstral coefficients
(MFCC) [15], power spectrogram [6], mel-scaled spectrogram, spec-
tral contrast [13] and tonal centroid features (tonnetz) [10].

In total, we have 11976 samples in training (5000 samples for
Pre-Training set, 6000 samples for Transfer set, and 976 samples
for LimitedTrain set), 1377 samples in test and 1592 samples in
personalization (475 samples for PersonalTrain set and 1117 samples
for PersonalTest set) for each modality.

Table 2: Testing accuracy of baseline models

Input Modality Video Audio IMU
Accuracy 90.92% 92.81% 90.99%
Number of parameters  4.6M 0.8M 57K

3.2 Baselines

To compare the results of RecycleML, we trained Video, Sound and
IMU models using Pre-Training dataset individually to do activ-
ity recognition. The models we use are the state-of-the-art deep
learning architectures that are generally adapted in a wide range
of applications:

(a) Video Network is a reduced version of C3D [24] network. It in-
cludes four 3D-convolutional modules combined with 3D-maxpooling
layers, followed by 3 fully-connected layers and one output layer.
The total number of parameters are about 4.6 million.

(b) Audio Network is a multi-layer perceptron model. It has 10
fully-connected layers and a total of 810 K parameters. We add
drop-out to avoid overfitting.
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Table 3: Comparison of knowledge transfer between devices.
Significance tests (compared to the training from scratch) are carried out using t-test with P<0.005 in most cases.

Transfer+LimitedTrain = Training from Scratch

Transfer Trained-Device Pure-Transfer
Video(Dy1) to Audio(D 41) 90.92% 90.20%
Video(Dy1) to IMU(Dy) 90.92% 94.19%
IMU(Dyy) to Video(Dy5) 90.99% 74.00%
IMU(Dyy) to Audio(D 42) 90.99% 84.82%

90.36% 84.12%
94.37% 70.73%
75.13% 72.26%
87.82% 84.28%

(c) IMU Network is a CNN network. It has 2 convolutional modules

(convolution layer + maxpooling layer), 3 fully-connected layers

and a output layer. 57K parameters are trainable in this network.
Table 2 shows the summary of the individual models. The models

are trained using the training dataset and tested on testing dataset.

These baseline models are trained using SGD [4] and Adam [14]
optimizers with a learning rate of 0.001. We save the models with
best test accuracy after training for 500 epochs.

3.3 Knowledge Transfer Results

Knowledge transfer results are presented in Table 3. In the first
and second experiment, vision device Dy is trained while acoustic

device D4y and wearable device Dyy are untrained respectively.

In the third and fourth experiment wearable device Dyy is trained
while vision device Dy, and acoustic device D 45 are untrained. For
each of these four transfers, we follow the same procedure. Taking
vision device Dy to acoustic device Dy4; as an example, we first
train the vision model of Dy from scratch using the Pre-Training
set (5000 samples) of training dataset. We use the standard SGD
optimizer with a learning rate of 0.001. The training is finished in
500 epochs. We then use Dy as a pre-trained device to transfer
knowledge to a D 4; following the procedure described in Section
2.2.1.In the knowledge transferring process, we use Adam optimizer
with a learning rate of 0.001, and run it for 500 epochs. The data
used in transfer process are the synchronized unlabeled vision and

sound data from Transfer set (6000 samples) of training dataset.

After transfer, the higher layers of audio model can be created using
two methods Pure-Transfer and Transfer+LimitedTrain discussed in
Section 2.2.2 when both Dy and D 4; are doing the same task. In
Pure-Transfer method audio model uses the output layer of vision
model directly. In Transfer+LimitedTrain, we train the new output
layer for audio model. We select a small labeled set of 500 samples
randomly out of 976 samples from LimitedTrain set of training
dataset and name it LimitTrainSet. We use the LimitTrainSet to
train the output layer of audio model for 100 epochs using Adam
optimizer. As a comparison, we also trained an audio model from
scratch using the same LimitTrainSet for 500 epochs. We use more

epochs for training from scratch as it takes more time to converge.

The other three transfers are tested in the same way. The Audio and
IMU models which are trained from scratch use Adam optimizer.
Note: In Video to IMU transfer, it takes more time to transfer the

knowledge, so we perform the knowledge transfer for 1000 epochs.

In real implementations, the knowledge transfer process for edge
devices can either be done in background or at the server using
unlabeled data, so as to avoid the overhead.
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Table 3 shows the knowledge transfer results between devices
doing the same task of activity recognition. Model performance is
measured by test accuracy. Considering row 1, Trained-Device is
the accuracy of pre-trained device Dy 1. Pure-Transfer and Trans-
fer+LimitedTrain are the accuracy of device D 41 using both methods
respectively. The last cell shows the accuracy of audio model trained
from scratch using LimitTrainSet. As we can see both methods Pure-
Transfer and Transfer+LimitedTrain achieve better accuracy than
training from scratch. This shows that shared latent feature repre-
sentation is successful in doing knowledge transfer across devices
of different modalities. We also observe that Transfer+LimitedTrain
usually gives the best performance.
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Figure 3: Transfer+LimitedTrain converges in 10 epochs
whereas Training from scratch requires training for
around 500 epochs.

In our experiment, we train every model for 10 times to preclude
the effect of randomness. Based on the results, significance tests
(compared to training from scratch) are carried out using ¢-test. We
find that the Transfer+LimitedTrain can outperform training from
scratch (p < 0.005) in three cases (Video to Audio, Video to IMU,
IMU to Audio); and p < 0.4 for the case of IMU to Video transfer.
This is because video model is complicated and sensitive, and the
performance of video model trained from scratch fluctuates.
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3.4 RecycleML Reduces Training Time

We further compare the effect of number of epochs between Trans-
fer+LimitedTrain method and training from scratch using Limit-
edTrainSet (500 samples). Figure 3 shows our results in all the 4
transfers. Clearly, Transfer+LimitedTrain method trains model with
accuracy greater than 80% in most of the cases with less than 10
epochs, while training from scratch can not achieve comparable
accuracy after 500 epochs. This makes RecycleML even more suit-
able to be deployed on edge devices: it reduces the training time by
50x. The reason for this huge gain is the knowledge transfer using
unlabeled data and Transfer+LimitedTrain trains only the output
layer so it requires very less number of epochs.

3.5 RecycleML Reduces Required Labeled Data

To study the effect of number of labeled data samples on model accu-
racies, we change the size of training data for Transfer+LimitedTrain
and training from scratch. All the training samples were selected
randomly from LimitedTrain set (976 samples) of training dataset.

Although methods converge at different speeds (Transfer+LimitedTrain

converges in 10 epochs, while Training from scratch takes about
500 epochs), in this experiment, we only compare the converged
performance of all the models. Figure 4 shows our results for
four device transfers. Consider Video (Dy1) to Audio (D 41), Trans-

fer+LimitedTrain is compared with training Audio (D 41) from scratch.

Using Transfer+LimitedTrain, the model achieve best achievable ac-
curacy using only 50 data samples. While training model from
scratch cannot get comparable results even if we increase the
size of available data to 976 samples as shown in upper left fig-
ure. The testing was performed on entire test dataset. So Recy-
cleML reduces labeled data requirement by at least 90%. However,
in ideal scenario, when abundant labeled data samples are available,
training from scratch slowly converges and can outperform Trans-
fer+LimitedTrain. For IMU (Dyp) to Video (Dy2), when more than
750 labeled data are available, training from scratch can outperform
the method of Transfer+LimitedTrain.

3.6 Related Task Transfer Using RecycleML

We tested knowledge transfer from video device to IMU device
with video model doing activity recognition task with 7 categories
while goal of IMU model is to do activity recognition task with 5
categories in a totally different location.

We did knowledge transfer as described in Section 2.2.1 and
finally used Transfer+LimitedTrain method to train the output layer
of IMU model using PersonalTrain set (475 samples). The trained
models are tested on PersonalTest set (1117 samples). In Figure 5, we
plot the learning curve on Transfer+LimitedTrain and training from
scratch trained using PersonalTrain . When transferring knowledge
to a relevant task, RecycleML still learns faster: it converges in 10
epochs and gets a testing accuracy of 91.58%, while training from
scratch takes 500 epochs and only gets an accuracy of 61.86%.

4 RELATED WORK

RecycleML is inspired from prior works in machine learning for
multimodal data. Previous works [12, 18, 20, 21] combine lower
layers from multiple modalities to develop a unified model that
outperforms the individual modalities. Radu et al. [20, 21] study
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Figure 5: Transferring knowledge to a new task:
Transfer+LimitedTrain learns faster and better than
Training from Scratch.

combining modalities for human activity recognition on mobile
devices. We use the idea of representing multiple modalities in the
same latent space in intermediate layers of a deep network, but our
focus is on knowledge transfer for machine learning models across
multi-modal edge devices.

Ba et al. [3], Hinton et al. [11] present knowledge transfer be-
tween the same modality. Ngian et al. [19] use shared representa-
tions to improve visual speech classification. Aytar et al. [1] learn
shared representations that connect multiple forms of image and
text data. Frome et al. [7] show knowledge transfer from text to
vision for object classification. Gupta et al. [9] present knowledge
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transfer between labeled RBG images and unlabeled depth and op-
tical flow images. Aytar et al. [2] show that visual knowledge can
be transfer from vision to sound.

The prior works either focus on image and text data, or take two
modalities (vision and audio) from the same source into considera-
tion. In RecycleML, we consider three commonly available sensing
modalities on edge devices from multiple sources, and create a uni-
fied representation that bridge them. This allows edge devices to
use multimodal knowledge transfer across different sensing modal-
ities of ambient sensors (vision and audio) and wearables sensors
(IMU) for the first time.

5 DISCUSSION

While RecycleML shows promise in terms of handling both paucity
of labeled data and also speeds up model training across multiple
modalities, the ability of the approach to generalize to different
applications for larger datasets needs further investigation. Further-
more, our experiments indicate that while the trained models can
be personalized to a specific environment, they need regularization
to generalize to new settings.

For cross modal knowledge transfer using RecycleML, we need
unlabeled but synchronized data. In our experiments, since audio
and video data are captured by the same device, they are natu-
rally synchronized. In addition, we used the default smartphone
timestamps, synchronized through the Network Time Protocol
(NTP) [17] service, to synchronize IMU device with video and sound
device. In real settings, however, edge devices have to be time syn-
chronized in order to observe the same event at the same time.

In our experiments, we chose the fully connected layer (imme-
diately prior to the output layer) as the common latent space. In
future, we plan to explore different choices for the shared represen-
tation layer, for efficient sensory substitution and task transfer on
edge devices.

6 CONCLUSION

Heterogeneity in sensing modality of the edge devices, together
with lack of labeled training data, represent two of the most sig-
nificant barriers to enabling the learning-on-the-edge paradigm.
Towards this end, we presented RecycleML, a system that enables
multi-modality edge devices to perform knowledge transfer be-
tween their models by mapping their lower layers to a shared latent
space representation. RecycleML further allows task-specific trans-
fer between models by targeted retraining of the higher layers
beyond the shared latent space — reducing the amount of labeled
data needed for model training. Our initial experiments, performed
using multi-modality data (vision, audio, IMU) for activity recogni-
tion, show that transfer model trained using RecycleML leads to
reduced training time and results in increased accuracy compared
to an edge model trained from scratch using limited labeled data.

7 ACKNOWLEDGEMENT

This research was sponsored by the U.S. Army Research Laboratory and
the UK Ministry of Defence under Agreement Number W911NF-16-3-0001,
by the National Institutes of Health under award #U154EB020404, and by
the National Science Foundation under award #1636916. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed

42

Xing, Sandha et al.

or implied, of the funding agencies. The U.S. and UK Governments are
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copy-right notation hereon.

REFERENCES

[1] AYTAR, Y., CASTREJON, L., VONDRICK, C., PIRSIAVASH, H., AND TORRALBA, A.
Cross-modal scene networks. IEEE transactions on pattern analysis and machine
intelligence (2017).

[2] AYTAR, Y., VONDRICK, C., AND TORRALBA, A. Soundnet: Learning sound repre-
sentations from unlabeled video. In Advances in Neural Information Processing
Systems (2016), pp. 892-900.

[3] Ba,J., AND CARUANA, R. Do deep nets really need to be deep? In Advances in
neural information processing systems (2014), pp. 2654-2662.

[4] Bortou, L. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT 2010. Springer, 2010, pp. 177-186.

[5] DONAHUE, J., J1a, Y., VINYALS, O., HOFFMAN, J., ZHANG, N., TZENG, E., AND DAR-
RELL, T. Decaf: A deep convolutional activation feature for generic visual recog-
nition. In International conference on machine learning (2014), pp. 647-655.

[6] Eruis, D. Chroma feature analysis and synthesis. Resources of Laboratory for the
Recognition and Organization of Speech and Audio-LabROSA (2007).

[7] FroME, A., COrRrRADO, G., SHLENS, J., BENGIO, S., DEAN, J., RANZATO, M., AND
Mikorov, T. Devise: A deep visual-semantic embedding model. In Neural
Information Processing Systems (NIPS) (2013).

[8] GRaVEs, A., MOHAMED, A.-R., AND HINTON, G. Speech recognition with deep
recurrent neural networks. In Acoustics, speech and signal processing (icassp),
2013 ieee international conference on (2013), IEEE, pp. 6645-6649.

[9] Gupta, S., HOFFMAN, ]., AND MALIK, ]J. Cross modal distillation for supervision

transfer. In Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference

on (2016), IEEE, pp. 2827-2836.

HARTE, C., SANDLER, M., AND GASSER, M. Detecting harmonic change in musical

audio. In Proceedings of the 1st ACM workshop on Audio and music computing

multimedia (2006), ACM, pp. 21-26.

HiNTON, G., VINYALS, O., AND DEAN, J. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531 (2015).

HUANG, J., AND KINGSBURY, B. Audio-visual deep learning for noise robust

speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2013

IEEE International Conference on (2013), IEEE, pp. 7596-7599.

Jiang, D.-N,, Lu, L., ZHANG, H.-]., Tao, J.-H., AND Car, L.-H. Music type clas-

sification by spectral contrast feature. In Multimedia and Expo, 2002. ICME’02.

Proceedings. 2002 IEEE International Conference on (2002), vol. 1, IEEE, pp. 113-116.

KiNGMA, D. P., AND Ba, J. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 (2014).

LoGaAN, B., ET AL. Mel frequency cepstral coefficients for music modeling. In

ISMIR (2000), vol. 270, pp. 1-11.

MCcFEE, B., RaFFEL, C., LIANG, D, ELLIS, D. P., MCVICAR, M., BATTENBERG, E., AND

NiETO, O. librosa: Audio and music signal analysis in python. In Proceedings of

the 14th python in science conference (2015), pp. 18-25.

Mivts, D. L. Internet time synchronization: the network time protocol. IEEE

Transactions on communications 39, 10 (1991), 1482-1493.

MUNZNER, S., SCHMIDT, P., RE1ss, A., HANSELMANN, M., STIEFELHAGEN, R., AND

DURICHEN, R. Cnn-based sensor fusion techniques for multimodal human activity

recognition. In Proceedings of the 2017 ACM International Symposium on Wearable

Computers (2017), ACM, pp. 158-165.

NGiaMm, J., KHosLA, A., Kim, M., NAM, J., LEE, H., AND NG, A. Y. Multimodal deep

learning. In Proceedings of the 28th international conference on machine learning

(ICML-11) (2011), pp. 689-696.

Rapu, V., LANE, N. D., BHATTACHARYA, S., MAascoLo, C., MARINA, M. K., AND

KAwsAR, F. Towards multimodal deep learning for activity recognition on mobile

devices. In Proceedings of the 2016 ACM International Joint Conference on Pervasive

and Ubiquitous Computing: Adjunct (2016), ACM, pp. 185-188.

RaDpuy, V., ToNG, C., BHATTACHARYA, S., LANE, N. D, Mascoro, C., MARINA, M. K.,

AND KawsAR, F. Multimodal deep learning for activity and context recogni-

tion. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies 1, 4 (2018), 157.

SHEN, C., Ho, B.-]., AND Srivastava, M. Milift: Efficient smartwatch-based

workout tracking using automatic segmentation. IEEE Transactions on Mobile

Computing (2017).

SOCHER, R., GANJOO, M., MANNING, C. D., AND NG, A. Zero-shot learning through

cross-modal transfer. In Advances in neural information processing systems (2013),

Pp. 935-943.

TrAN, D., BouRDEV, L., FERGUS, R., TORRESANI, L., AND PALURI, M. Learning

spatiotemporal features with 3d convolutional networks. In Computer Vision

(ICCV), 2015 IEEE International Conference on (2015), IEEE, pp. 4489-4497.

YANG, J., NGUYEN, M. N,, SaN, P. P., L1, X., AND KRISHNAswAMY, S. Deep convolu-

tional neural networks on multichannel time series for human activity recogni-

tion. In IJCAI (2015), pp. 3995-4001.

(13]

(14]
[15]

[16]

[19

[20]

[21]

[22]

[23

[24]

[25]



	Abstract
	1 Introduction
	2 Method Overview
	2.1 Conceptual Scenario
	2.2 RecycleML Description

	3 Evaluation
	3.1 Dataset
	3.2 Baselines
	3.3 Knowledge Transfer Results
	3.4 RecycleML Reduces Training Time
	3.5 RecycleML Reduces Required Labeled Data
	3.6 Related Task Transfer Using RecycleML

	4 Related Work
	5 Discussion
	6 Conclusion 
	7 Acknowledgement
	References

