In-database Distributed Machine Learning: Demonstration
using Teradata SQL Engine

Sandeep Singh Sandha

UCLA

sandha
@cs.ucla.edu

Mohammed Al-Kateb

Teradata Labs

mohammed.al-kateb
@teradata.com

ABSTRACT

Machine learning has enabled many interesting applications
and is extensively being used in big data systems. The pop-
ular approach - training machine learning models in frame-
works like Tensorflow, Pytorch and Keras - requires move-
ment of data from database engines to analytical engines,
which adds an excessive overhead on data scientists and be-
comes a performance bottleneck for model training. In this
demonstration, we give a practical exhibition of a solution
for the enablement of distributed machine learning natively
inside database engines. During the demo, the audience
will interactively use Python APIs in Jupyter Notebooks
to train multiple linear regression models on synthetic re-
gression datasets and neural network models on vision and
sensory datasets directly inside Teradata SQL Engine.

PVLDB Reference Format:

Sanjay Nair

Teradata Labs

sanjay.nair
@teradata.com

Sandeep Singh Sandha, Wellington Cabrera, Mohammed Al-Kateb,

Sanjay Nair, and Mani Srivastava. In-Database Distributed Ma-
chine Learning: Demonstration in Teradata. PVLDB, 12(12):
1854-1857, 2019.

DOI: https://doi.org/10.14778/3352063.3352083

1. INTRODUCTION

Relational databases systems remain as the principal tech-
nology to implement repositories for transactional data in
enterprises. This makes data stored in relational tables the
main source for business intelligence, executive reporting as
well as many other data analytics tasks. The conventional
approach to train machine learning models is to use exter-
nal, cross-platform engines such as TensorFlow, Pytorch or
Keras. With this approach, however, model computation
tasks become more complex since a data analyst needs to
handle data ingestion, manage data transformation, address
performance regressions, etc.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOIL: https://doi.org/10.14778/3352063.3352083

1854

Wellington Cabrera
Teradata Labs

wellington.cabrera
@teradata.com

Mani Srivastava
UCLA

mbs
@ucla.edu

By and large, enabling machine learning natively inside
database engines brings intelligence directly to where data
lives. Native database support of machine learning helps
data scientists steer clear of the complexity of handling data
ingestion, cleansing, preparation, etc. It also relieves data
scientists from many other challenges such as addressing so-
phisticated performance issues and dealing with tedious se-
curity and privacy protocols.

In this demonstration, we present our approach of en-
abling distributed machine learning using data parallel train-
ing natively to the Teradata SQL engine. Teradata SQL
Engine runs on parallel clusters of a shared-nothing archi-
tecture [4], which offers high scalability, workload balancing
and fault tolerance. Our approach is to 1) train local models
in parallel on local data, 2) aggregate local models to ob-
tain a global model, 3) replaces local models with the global
model and 4) iterate until a max iteration count or a desired
accuracy threshold is reached. Our goal is not to replace the
machine learning frameworks but to enable widely-used ma-
chine learning algorithms organically as first-class citizens
within database engines.

Throughout the demonstration, audience will interactively
train and validate multiple linear regression models on syn-
thetic regression datasets and neural networks models on
MNIST [9], Fashion-MNIST [12] and SHL [6] datasets using
Python API of Teradata in Jupyter Notebooks. Audience
will be able to select the training data, decide model archi-
tecture and choose Teradata cluster size (small, medium or
large) to train model interactively. Results of model train-
ing will be presented to audience as a final outcome of the
demonstration.

2. SYSTEM OVERVIEW

In this section, we first give an overview of Teradata shared-
nothing architecture. Then we explain our approach for par-
allel and distributed model training. And finally, we discuss
implementation details.

2.1 Teradata Architecture

The SQL Engine of Teradata (see Figure 1) is a highly
parallel engine with a shared-nothing architecture [10]. It
can be deployed to Symmetric Multi Processing (SMP) and

I i I
| A A A O 1T
ITITIT [T IT IT

Figure 1: Teradata SQL Engine Shared-Nothing Ar-
chitecture.

Massively Parallel Processing (MPP) systems [5]. The ar-
chitecture (Figure 1) has four main software components:
PE, AMP, VDisk and BYNET.

A PE (Parsing Engine) is a multithreaded virtual pro-
cessor responsible for controlling a set of sessions, validat-
ing security rules, parsing requests, optimizing queries and
dispatching processing steps to AMPs. An AMP (Access
Module Processor) consists of a collection of worker tasks,
which are threads that perform operations on a portion of
the data, e.g., sorting, aggregation and join. A VDISK (Vir-
tual Disk) is a physical space of the storage allocated and
assigned by the virtual storage subsystem to each AMP. The
BYNET is a communication layer used by PEs and AMPs
to exchange messages through bidirectional, multicast and
point-to-point communications between processes.

2.2 Distributed Machine Learning

Nearly all machine learning algorithms have an objec-

tive/loss function defined over model parameters and input
data. Model parameters are updated iteratively towards
optimal value so as to minimize (or alternatively maximize)
the objective function. From the iid (independent and iden-
tically distributed) assumption on input data, updates to
the model parameters can be aggregated in data parallel
fashion [11]. We enable distributed machine learning using
Data Parallel Training natively to database.
Data Parallel Training: In Teradata shared-nothing ar-
chitecture, data parallel training (see Figure 2) is motivated
by the parameter server [11] and federated learning [8] ap-
proaches. Algorithm 1 explains the pseudo code of our ap-
proach. We consider each AMP as a compute unit which
trains its local model using the local data stored on VDISK.
Training of local models is done using batch stochastic gra-
dient descent [7]. After the local training on each AMP,
local models are aggregated to get a global model. Various
aggregation strategies (like weighted averaging, etc.) can be
considered. We assume data is uniformly distributed among
the AMPS, and we directly average the local model param-
eters. During each iteration, the global model replaces the
local model on each AMP.

Algorithm 1 is a direct extension of federated learning
algorithm modified for the shared-nothing architecture of
Teradata SQL Engine. During training process, data move-
ment is completely avoided. Local models are aggregated
to share the learned knowledge across AMPs. In current

1855

Global Model

/

Model Aggregation

AMP AMP
wipdates Localupdjy'
[LocalModel | | LocalModel |
Y v
____/
VDISK o VDISK
_4/

Local Data Local Data

Figure 2: Parallel and Distributed Model Training
in Teradata SQL Engine.

setting, during training updates to the global model are de-
layed until each AMP processes its local data. Several other
extensions like delaying updates only for a few data points
or sharing only the model updates are also possible. We
leave these extension for future exploration.

2.3 Implementation

The concept of Teradata table operator is used to imple-
ment Algorithm 1. Similar to database physical operators, a
table operator 1) receives an input stream as a set of rows 2)
performs an arbitrary computation that transforms or sum-
marizes the input and 3) produces an output stream of rows
that may be used by another operator. Table operators are
compiled code integrated to the query processing that runs
in parallel on each AMP and performs a computation based
on the local data. We created an in-house implementation in
C-language for the batch stochastic gradient descent, which
was scheduled on each AMP using table operator.

3. ML MODELS AND WORKFLOW

The machine learning models which are currently sup-
ported within Teradata SQL Engine are multiple linear re-
gression and fully connected neural networks. We update
the model parameters iteratively. The hyperparameters such
as batch size and learning rate can be controlled for each it-
eration. The iterations can be terminated after the desired
validation matrix (accuracy, loss) is achieved or after prede-
fined iteration maximum count.

3.1 Multiple Linear Regression and Neural
Network

Multiple Linear Regression: Multiple linear regression is
very widely used simple model. It assumes a linear relation-
ship between the explanatory variables and the dependent
variable.

Neural Network Neural network are the state of art ma-
chine learning models for applications like vision, speech,
natural language processing, human activity recognition, etc.
In our prototype implementation, Teradata SQL engine sup-
ports fully connected 3-layer (input, output and one hidden
layer) neural network for multi-class classification.

Data: X: features Y: labels or dependent variable
Function trainModel(maxlteration)
1=0
while i <mazlteration do
Copy GlobalM odel to each AMP’s Local M odel
for each AMP do in Parallel
| Local Model=LocalTraining(Local M odel)
end
Global M odel=Aggregate all Local Models
t=1+1
end
return Global M odel

Function LocalTraining(Local Model)

for each batch(X,Y) of local training data do
Compute the output O of the Local Model using X
Compute the error E between O and Y
Update LocalModel to minimize the error E.

end

return Local M odel

Function Validation()
Val_error =0
Val_accuracy = 0
for each AMP do in Parallel
for each batch(X,Y) of local validation data do
Compute the output O of the Local M odel

using X
Compute the error data points err using O
and Y
Val_error = Val_error+err
end

end

Val_error=Val_error/Size_of walidation_data
Val_accuracy = 1.0 - Val_error

return Val_accuracy

Algorithm 1: Data parallel training within Teradata

3.2 ML Workflow

In this section, we present the machine learning workflow,
with focus on neural network models.

3.2.1 Data Ingestion and Preprocessing

The input data is assumed to be present in the relational
tables. Rich SQL functionalities supported by Teradata
SQL Engine can be used to preprocess the data. In Figure 3,
views (NNTrain, NNTest) are created for train data and test
data in Sub Figure A. The input table schema for multiple
linear regression is considered in format with first column as
primary index followed by the dependent variables and last
column is considered as the explanatory variable. For neu-
ral network, the first column is considered as primary index
followed by dependent variables and explanatory variables.
The explanatory variables are expected in one-hot encoded
format for multi-class classification.

3.2.2 Model Architecture and Initialization

The model parameters are stored in the SQL table. For
multiple linear regression the model parameters are stored
as a single row in the model table. In case of neural net-
work the model is stored as a table with rows and columns
representing weights. The initial model table is created by
the user with the desired initialization of weights. We create
initial model weights in Python and then insert them into

the model table. In Figure 3, Sub Figure B shows the weight
initialization for a 3-layer neural network having 784 input,
16 hidden and 10 output nodes respectively for MNIST and
Fashion-MNIST datasets.

3.2.3 Model Training

In Figure 3, Sub Figure C, model training is done by
calling Function TrainModel(maxIteration) of Algorithm 1.
The test accuracy output per iteration is shown on the
MNIST for neural network defined in Sub Figure B.

3.2.4 Model Evaluation

After every training iteration, the global model can be
validated on the test (or validation) data to monitor the
training progress. The training iteration can be terminated
after the desired results on test (or validation) data are
achieved. In Figure 3, Sub Figure D illustrates the visualiza-
tion created by monitoring the training process for MNIST
and Fashion-MNIST on the test data.

4. DEMONSTRATION DESCRIPTION

Our demo will present to audience the ease of training
models within Teradata SQL engine. The SQL queries to
the machine learning table operator will be demonstrated
for both multiple linear regression and neural network mod-
els. We will use Python API of Teradata SQL Engine to
show the entire workflow of input data creation, training
and validation. The demo will be shown using interactive
Jupyter notebooks. Audience will experience the entire ma-
chine learning workflow presented in Figure 3. The audience
will be free to vary the number of iterations or the number of
nodes in neural network model. To check scalability, three
Teradata clusters of different size would be available for com-
putation: small, medium and large. While the model is
being computed iteratively, the user can observe the conver-
gence of the algorithm, presented by visualization generated
by the application. Likewise, we will demonstrate compu-
tation of Linear Regression models on clusters of different
sizes.

Multiple Linear Regression: We will generate a random
regression dataset and show model training. The learned
model parameters will be compared by solving the problem
with a well-known Python library to validate the accuracy
of our implementation in Teradata SQL Engine.

Neural Network: We will demonstrate the training of a
neural network model for multi-class classification problems.
We will use the classical MNIST and Fashion-MNIST vi-
sion datasets to test our in-database implementation. The
MNIST dataset consists of 70,000 images of 10-class hand-
written digits. Fashion-MNIST consists of images of 70,000
fashion products from 10 categories. The test accuracy re-
sults obtained using 4 AMP Teradata system on MNIST
and Fashion-MNIST are shown in Figure 3 (Sub Figure D).

We will also demonstrate the use case of predicting mode
of transportation using SHL dataset [6]. SHL dataset con-
sists of sensor data recorded by a smartphone.

5. RELATED WORK

In this section, we will give a brief overview of the machine
learning capabilities in existing SQL database or closely re-
lated engines. Google BigQuery supports training of linear
regression and logistic regression models [1]. Microsoft SQL

1856

query = 'CREATE VIEW NNTrain AS SELECT ...'
session.execute(query)

query = 'CREATE VIEW NNTest AS SELECT ...'
session.execute(guery)

Sub Figure: A /__'

1. Data Ingestion

\

2. Data

Preprocessing
& Partitioning

I saL
Vision Data & Teradata
Sensory Data SQL Engine
0.95
0.90 sSQL
@ 0.85
g 0.80
Lo7s 5. Model Evaluation
E 0.70 ——— Test Accuracy on MNIST

—— Test Accuracy on Fashion-MNIST

1 3 5 7 9 11

Iterations

Sub Figure: D

13 15 17 19 21

T

IN=784 #input Nodes
HN=16 #Hidden Nodes
ON=10 #Output Nodes

#Initialize model Weights
NNmodel=Initialize(IN,HN,ON
#Distribute Model to all AMPS
Insert_Initial_Models (NNmodel)

Sub Figure: B

3. Model
Architecture &
Initialization

4. Model Training

no_of_iteration = 20
TrainModel (no_of_iteration)

0.798
0.918
0.921
0.926

Iteration:
Iteration:
Iteration:
Iteration:

1, Test Accuracy:
2, Test Accuracy:
3, Test Accuracy:
4, Test Accuracy:

Sub Figure: C

Figure 3: Demo Interactive Workflow: Sub Figure A shows creation of NNTrain (train) view and NNTest
(test) view from data table. Sub Figure B illustrates definition of 3-layer fully connected neural network
along with initialization. Sub Figure C demonstrates iterative training process along with test accuracy per
iteration. Sub Figure D shows the variation in test accuracy with iterations for MINIST and Fashion-MNIST.

server [2] and Oracle [3] supports training of neural net-
work models. However, in this work, we enabled distributed
machine learning natively within SQL engines using data
parallel training. Our approach considers machine learning
as a first-class citizen within database. The algorithms and
approach presented can be adopted to enable distributed
machine learning capabilities within other database engines.

6. CONCLUSION AND DISCUSSION

The work we present in this demonstration provides a first
step to realize the distributed machine learning within a
shared-nothing architecture of the database. We are work-
ing on providing capabilities to define widely-used neural
network architectures with convolutional and LSTM layers.
The existing training process can be made communication-
efficient by aggregating only the updates from local models
rather than the entire local models during iterations. We
implemented batch stochastic gradient descent. Different
optimization algorithms can be made available to the user.
We leave these extensions for future development.

7. REFERENCES
[1] Google BigQuery ML. https:

//cloud.google.com/bigquery/docs/bigquery.
Accessed: 2019-03-14.

Neural Networks in Microsoft SQL Server.
https://docs.microsoft.com/en-us/sql/
analysis-services/data-mining/
microsoft-neural-network-algorithm. Accessed:
2019-03-14.

Neural Networks in Oracle.

https://docs.oracle.com/en/database/oracle/
oracle-database/18/dmcon/neural-network.html.

Accessed: 2019-03-14.

1857

[4] C. Ballinger and R. Fryer. Born To Be Parallel: Why
Parallel Origins Give Teradata an Enduring
Performance Edge. IEEE Data Eng. Bull., 20(2):3-12,
1997.

J. Catozzi and S. Rabinovici. Operating System
Extensions for The Teradata Parallel VLDB. In
VLDB, 2001.

H. Gjoreski, M. Ciliberto, L. Wang, F. J. O. Morales,
S. Mekki, S. Valentin, and D. Roggen. The university
of sussex-huawei locomotion and transportation
dataset for multimodal analytics with mobile devices.
IEEFE Access, 2018.

G. Hinton, N. Srivastava, and K. Swersky. Neural
Networks for Machine Learning Lecture 6a Overview
of Mini-batch Gradient Descent. Coursera Lecture
slides, 2012.

J. Koneény, H. B. McMahan, F. X. Yu, P. Richtarik,
A. T. Suresh, and D. Bacon. Federated Learning:
Strategies for Improving Communication Efficiency.
arXw preprint arXw:1610.05492, 2016.

Y. LeCun. The MNIST database of handwritten
digits. http: //yann. lecun. com/ exdb/mnist/, 1998.
Michael Stonebraker. The Case for Shared Nothing.
IEEE Database Eng. Bull., 9(1):4-9, 1986.

A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A.
Gibson, and E. P. Xing. Litz: Elastic framework for
high-performance distributed machine learning. In
USENIX Annual Technical Conference, 2018.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: A
Novel Image Dataset for Benchmarking Machine
Learning Algorithms. arXiv preprint
arXw:1708.07747, 2017.

(10]

(11]

(12]

