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In this work, we prove a new family of Lieb-Robinson bounds for lattice spin

systems with long-range interactions. Our results apply for arbitrary k-body inter-

actions, so long as they decay with a power-law greater than kd, where d is the

dimension of the system. More precisely, we require that the sum of the norm of

terms with diameter greater than or equal to R, acting on any one site, decays as a

power-law 1/Rα, with α > d. These new bounds allow us to prove that, at any fixed

time, the spatial decay of quantum information follows arbitrarily closely to 1/rα.

Moreover, we define a new light-cone for power-law interacting quantum systems,

which captures the region of the system where changing the Hamiltonian can affect

the evolution of a local operator. In short-range interacting systems, this light-cone

agrees with the conventional definition. However, in long-range interacting systems,

our definition yields a stricter light-cone, which is more relevant in most physical

contexts.

In a relativistic quantum field theory, information can never travel faster than the speed
of light. A Lieb-Robinson bound [1–6] establishes a similar “light-cone” for the spread of
quantum information in a non-relativistic lattice system. However, the information spread
outside the light-cone is not strictly vanishing but, instead, has non-zero tails. Such con-
straints on the spread of information, in addition to being physically important in their own
right, have also been used as ingredients in the rigorous mathematical proof of key results
about non-relativistic lattice systems [2, 3, 7–17], including the exponential decay of corre-
lations in the ground states of gapped Hamiltonians [2, 3] and the stability of topological
order [11, 13, 14, 16].

More recently, new results have generalized Lieb-Robinson bounds to lattice spin systems
with interactions between distant spins that fall off as a power of their separation [3, 18–
22]. Such long-range interactions arise in a wide variety of experimental platforms, ranging
from solid-state spin defects [23–25] to quantum optical systems of trapped ions [26], polar
molecules [27], and Rydberg atoms [28]. While the majority of previous studies have focused
on few-body physics, recent advances have enabled a number of these platforms to begin
probing the many-body dynamics and information propagation of strongly interacting, long-
range systems [20, 29, 30].

Motivated by the development of these physical platforms, in this work, we improve Lieb-
Robinson bounds for generic power-law interactions. Specifically, let us consider a system of
spins on a lattice Λ governed by a Hamiltonian H, which can be written as a sum H =

∑
Z HZ
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Reference Multi-body Hamiltonians Asymptotic Spatial Decay LC1 LC2

Foss-Feig et al. Ref. [21] 7 r−(α+d) α > d α > d

Matsuta et al. Ref. [22] 3 r−(α−d)/(η+1) α > d α > 2d

Present work 3 r−α α > d α > d

TABLE I. Summary of power-law Lieb-Robinson bounds for α > d. Note that the LC1 and LC2

columns describe the power-law regime where these light-cones exist and are power-law.

of terms acting on sets of lattice sites Z ⊆ Λ in d-dimensional space. Moreover, we assume
(among other conditions described in Section I) that there exists a constant J such that

sup
z∈Λ

∑
Z3z:diam(Z)≥R

||HZ || ≤
J

Rα
, (1)

where diam(Z) is the greatest distance between any two points in Z. A familiar example
[31, 32] is the long-range Ising interaction,

H = Hshort-range + J
∑
i6=j

1

|ri − rj|d+α
σzi σ

z
j . (2)

An early result on Lieb-Robinson bounds in power-law interacting systems was proved in
Ref. [3], which demonstrated the existence of a light-cone whose size grows exponentially in
time for any α > 0. More recently, this result was improved in Refs. [21] and [22], where it
was shown that a power-law light-cone emerges for α > d, where d is the spatial dimension.

However, each of these results has certain limitations (Table I). On the one hand, Ref. [21]
assumes a two-body Hamiltonian, where each term acts on at most two spins. 1 This as-
sumption limits the usage of this result in analyzing multi-body effective Hamiltonians of
broad interest in condensed matter physics. Such Hamiltonians can arise in a number of
different contexts: for example, ring-exchange interactions may be important in solid 3He
[33] and are known to stabilize certain topological phases [34, 35]; multi-body Hamiltonians
arise in explicit constructions of various results in mathematical physics [8, 13, 14, 17]; and
higher-body interactions naturally emerge in the effective description of periodically-driven
two-body Hamiltonians [17, 36].

On the other hand, while Ref. [22] overcomes this two-body assumption, it proves a
significantly weaker result regarding the power-law decay of information outside the light-
cone (Table I).2 In particular, for α >∼ d, the bounds of Ref. [22] ensure only a relatively slow
decay outside the light-cone; which can limit its applicability to some important results, e.g.
bounding the difference in operators time evolved under slightly different Hamiltonians.

In this paper, we prove a Lieb-Robinson bound that addresses both of the above concerns.
We demonstrate that for multi-body interactions with α > d, the spatial decay of quantum

1 Note that we are following the convention of Ref. [22] in the definition of the power-law, α. This differs

from the definition of “α” in Ref. [21], which would be equal to α+ d in our convention.
2 The ∼ 1/r(α−d)/(η+1) decay can be improved arbitrarily close to ∼ 1/rα−d at the cost of widening the

light-cone.
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information outside the light-cone scales arbitrarily closely to ∼ 1/rα (Table I). While this
bound is not as strong as the ∼ 1/rα+d decay obtained in Ref. [21], our combination of an
improved scaling (over Ref. [22]) and applicability to arbitrary multi-body Hamiltonians,
enables the usage of this Lieb-Robinson bound to prove new results in mathematical physics
[37].

An important comment is in order. Unlike either short-range or exponentially decaying
interactions, power-law interactions are characterized by Lieb-Robinson bounds with power-
law tails which lack a natural notion of a length scale. This implies that one should be
particularly careful when defining an associated light-cone for such long-range interacting
systems. One possible definition of a light-cone (used in Refs. [21, 22]) is the following: at
late times, outside the light-cone, the propagated quantum information is small. From here
on, we will refer to this as light-cone 1 (LC1). For short-range interacting systems, LC1
is the only length-scale associated with time evolution. For power-law interacting systems,
one can already get a sense of the insufficiency of LC1 by noting the following: despite the
fact that the asymptotic spatial decays obtained in Refs. [21], [22] and this work are quite
different (Table I), they all yield the same LC1 (Table II).

To this end, we introduce a second light-cone, LC2, which properly captures these dif-
ferences. In particular, LC2 ensures that at late times, the evolution of the operator is not
affected by changes to the Hamiltonian outside of LC2. For short-range interacting systems,
LC1 and LC2 coincide, but for long-range interacting systems, they can be quite different.
More specifically, Ref. [21] exhibits a finite, power-law LC2 for α > d, while Ref. [22] does
not have a finite LC2 for α < 2d, despite both having the same power-law LC1. Intuitively,
the lack of an LC2 for α > d in Ref. [22] is due to the aforementioned slow asymptotic spatial
decay of quantum information. This highlights the importance of our improved decay; it
enables us to prove our second main result, which is the existence of a power-law LC2 for
α > d for arbitrary multi-body Hamiltonians (Table I)3.

I. ASSUMPTIONS AND NOTATION

Our notation will be similar to that of Ref. [22]. We consider a set of lattice sites Λ with
a metric d(x, y) for x, y ∈ Λ, and a Hamiltonian H written as a sum of terms H =

∑
Z HZ ,

where HZ is supported on the set Z ⊆ Λ. We extend the notation of the metric to sets,
denoting d(X, Y ) as the minimum distance between any two elements of the sets X, Y ⊆ Λ,
as well as between sets and sites, denoting d(X, y) = d(X, {y}). We define a function f(R)
that captures the power-law decay of interactions:

f(R) := sup
z∈Λ

∑
Z3z:diam(Z)≥R

‖HZ‖ , (3)

where
diam(Z) = sup

x,y∈Z
d(x, y) , (4)

3 We note that this extension comes at the expense of a worse LC2 exponent compared to Ref. [21] (Table

II)
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and we assume there are constants J and α > d (the dimensionality of the system) such
that f(R) ≤ JR−α. We also require that the sum of the operator norms of all of the terms
involving any site be finite:

C0 := sup
x∈Λ

∑
y∈Λ

∑
Z3x,y

‖HZ‖ <∞ . (5)

Finally, we assume certain regularity conditions on the lattice Λ. Specifically, we assume
that Λ can be embedded in Euclidean space Rd, so that for each z ∈ Λ there is a corresponding
rz ∈ Rd, such that d(x, y) = |rx − ry|. Moreover, we assume there is a smallest lattice
separation a such that d(x, y) ≥ a for any x, y ∈ Λ unless x = y. We choose to work in units
such that a = 1.

Let us also define τHt (O) as the operator O time-evolved according to the Heisenberg
representation

τHt (O) = eitH O e−itH . (6)

Throughout the paper we will use “C” to refer to any constants that depends only on
σ (the parameter introduced in the statement of the theorem in the next section) and the
lattice. It will not necessarily be the same constant each time it appears.

II. MAIN RESULT

Theorem 1. Given the assumptions stated in Section I, let observables A and B be supported
on sets X and Y respectively. Then for any (d+ 1)/(α + 1) < σ < 1:

‖[τHt (A), B]‖ ≤ ‖A‖‖B‖
{

2|X|evt−r1−σ + C1
G(vt)

rσα

}
, (7)

where r = d(X, Y ) and v = C2 max{J, C0}. Moreover, there exists a constant C3 such that:

G(τ) ≤ C3(τ + τ 1+d/(1−σ))|X|n∗+2, (8)

where

n∗ =

⌈
σd

σα− d

⌉
(9)

Here, all Ci are constants only dependent on σ and the lattice.

By choosing σ arbitrarily close to 1 we obtain a decay of the Lieb-Robinson bound that
approaches ∼ r−α for large r.

III. PROOF

A. Iteration Procedure

The main challenge in understanding the spread of quantum information in long-range
interacting systems is being able to differentiate the contribution from strong “short” range
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terms and the weak “long” range terms in a problem with no natural length scale. As a result,
there is no single separation between “short” and “long” range terms of the Hamiltonian
that yields a strict bound. We develop a construction that iteratively introduces a new
short scale, enabling us to improve on the Lieb-Robinson bound by better accounting for the
spatial decay of interactions in the Hamiltonian.

As a starting point, we consider a truncated version of our long-range Hamiltionian with
a cutoff R, H≤R:

H≤R =
∑

Z:diam(Z)≤R

HZ . (10)

At the end of our construction we can make R → ∞, recovering the full Hamiltonian.
Because H≤R has finite range R, a Lieb-Robinson bound for short-ranged Hamiltonians can
be applied. However, this is clearly not the optimal bound, as it assumes all interactions
of range up to R are equally strong, ignoring their decay with range. Nevertheless, this
provides the starting point for our iterative process.

At each iteration, the Hamiltonian H≤R is split into a short and a long-range piece using
a cutoff R′:

H≤R = H≤R
′
+HR′;R where HR′;R =

∑
Z:R′<diam(Z)≤R

HZ . (11)

Then, following the strategy of Refs. [21] and [22], the time-evolution of an operator A is
separated into a contribution from the short-range part H≤R

′
and the long-range part HR′;R;

these play the role, respectively, of the unperturbed Hamiltonian and the perturbation in
the interaction representation.

Then, using Lemma 3.1 in Ref. [22], we can bound the total spread of the operator as a
contribution from the short-range part H≤R

′
, as well as an additional contribution due to

the long-range part HR′;R:

‖[τH≤Rt (A), B]‖ ≤ ‖[τH≤R
′

t (A), B]‖+ 2‖B‖
∫ t

0

‖[τH≤R
′

t−s (A), HR′;R]‖ ds (12)

This procedure enables us to better distinguish the contribution of the strong short-range
terms and the weak long-range terms of the evolution, improving upon the initial naive
bound. Once an improvement is obtained, one can perform the procedure again further
reducing the contribution from the long-range piece of Eq. (12) and improving the spatial
decay of the Lieb-Robinson bound. We note this iterative process recovers the argument of
Ref. [22] after one iteration; by iterating multiple times we can improve on their results. We
make this iterative construction more precise with the following Lemma:

Lemma 1. Fix a set X ⊆ Λ and a time t. Suppose that we have a function λ(R)(r) such that
for all 0 ≤ s ≤ t, Y ⊆ Λ and observables A and B supported on sets X and Y respectively,
the bound

‖[τH≤Rs (A), B]‖ ≤ λ(R)(d(X, Y ))‖A‖‖B‖ (13)
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is satisfied. We assume that λ(R)(r) is monotonically increasing in R and decreasing in r.

Then, for any R′ > 0, Eq. (13) is also satisfied with λ replaced by λ̃, defined according to

λ̃(R)(r) = λ(R′)(r) + CΘ(R−R′) |X| t f(R′) I[λ(R′)], (14)

where f(R) is given in Eq. (3); C is a constant independent of R,R′, |X| and t; Θ(x) is the
Heaviside theta function and:

I[λ] = λ(0) +

∫ ∞
1/2

ρd−1λ(ρ) dρ. (15)

Proof. For R′ ≥ R, the result follows directly from the monotonicity with respect to R. On
the other hand, for R′ < R we have, from Eq. (12):

‖[τH≤Rt (A), B]‖ ≤ ‖[τH≤R
′

t (A), B]‖+ 2‖B‖
∫ t

0

‖[τH≤R
′

t−s (A), HR′;R]‖ ds

≤ ‖[τH≤R
′

t (A), B]‖+ 2‖B‖
∫ t

0

∑
Z:R′<diam(Z)≤R

‖
[
τH
≤R′

s (A), HZ

]
‖ ds

≤ λ(R′)(d(X, Y ))‖A‖‖B‖+ 2t‖B‖
∑

Z:R′<diam(Z)≤R

λ(R′)(d(X,Z))‖HZ‖‖A‖

≤ λ(R′)(d(X, Y ))‖A‖‖B‖+ 2t‖A‖‖B‖
∑
z∈Λ

∑
Z3z:R′<diam(Z)≤R

λ(R′)(d(X, z))‖HZ‖

≤ λ(R′)(d(X, Y ))‖A‖‖B‖+ 2t‖A‖‖B‖f(R′)
∑
z∈Λ

λ(R′)(d(X, z))

≤ ‖A‖‖B‖

{
λ(R′)(d(X, Y )) + 2tf(R′)|X| sup

x∈X

∑
z∈Λ

λ(R′)(d(x, z))

}
.

(16)

In going from the second line to the third line, it is helpful to recall that λ(R′)(d(X, Y )) is
independent of s (but dependent on t). In going from the fourth line to the fifth, we used:∑

z∈Λ

∑
Z3z,R′<diam(Z)<R

λ(R′)(d(X, z))‖HZ‖ =
∑
z∈Λ

λ(R′)(d(X, z))
∑

Z3z,R′<diam(Z)<R

‖HZ‖

≤ f(R′)
∑
z∈Λ

λ(R′)(d(X, z)). (17)

To get the final result, we use Lemma 2 from the Appendix to replace the sum by an integral
in the last line of Eq. (16).

Finally, let us note that the simplest bound for λ(R′)(d(X, Y )) corresponds to the short-
range Lieb-Robinson bound where the interactions have at most range R′.
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We now iteratively apply Lemma 1. Eq. (14) says that a Lieb-Robinson bound λ(R) for an
interaction with maximum range R can be rewritten as the sum of two contributions: a Lieb-
Robinson bound λ(R′) for an interaction of maximum range R′, which can be interpreted as
the short-range part of the evolution; and an additional propagation of quantum information
due to long-range hops, which have range between R′ and R and maximum strength f(R′).
However, these “long-range hops” need not originate in the support of the original A itself
but, rather, in the support of the time-evolved A under the short-range part of the interaction.
The latter spreads the quantum information by I[λ(R)], as depicted in Fig. 1.

At each iteration we replace the short-range contribution by the short-range Lieb-
Robinson bound. We make use of the bound proven in Theorem A.1 of Ref. [22] which
state that, for observables A and B supported on sets X and Y , respectively:

‖[τH≤R
′

t (A), B]‖ ≤ 2|X| exp[vt− d(X, Y )/R′]‖A‖‖B‖ . (18)

Finally, we are free to choose R′ in Eq. (14) so we take it to be a function of r; specifically,
at the n-th iteration we take R′ = rσn , with d/α < σn < 1. The resulting bound no longer
depends on any cut-off R′ and when used again in Eq. (14), leads to a faster decaying I[λ]
and an improved bound.

Therefore, at the n-th iteration we obtain the bound:

‖[τH≤Rs (A), B]‖ ≤ λ(R)
n (d(X, Y ))‖A‖‖B‖, (19)

where the iteration equation is:

λ(R)
n (r) = ∆r

(
2|X| exp

[
vt− r1−σn

]
+ CΘ(R− rσn)|X|t f(rσn)I[λ

(rσn )
n−1 ]

)
, (20)

where

∆r(u) =

{
2 r < 1 or u > 2

u otherwise
(21)

This choice of ∆r ensures that we always use the trivial bound on the commutator when
r = 0 or when it is the most stringent bound. Now, it only remains to carry out the iteration.

B. Analyzing the iteration

To begin the iterative process we can invoke the generic Lieb-Robinson bound for finite-
range Hamiltonians, as described in Eq. (18). Taking into account the trivial case,

‖[τH≤Rt (A), B]‖ ≤ 2‖A‖‖B‖, (22)

we begin the iteration with the initial bound:

λ
(R)
0 (r) = ∆r(2|X|evt−r/R). (23)
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FIG. 1. The Lieb-Robinson bound measures the spread of quantum information during evolution

by bounding the commutator of a time evolved local operator A, with another operator B a distance

r away. The spread the operator A can be apportioned into the spread due to interactions of range

shorter than R′ (left column) and long-range hops due to interactions of range larger than R′ (center

column). The long-range hops connect the short-range time evolved operator A with strength at

most f(R′) but they can originate from any location that A has spread to, so the total contribution

of these long-range hops is weighted by the integral I[λ] (see Lemma 1). At the first iterative

step, which yields λ1, the short-range interactions can always be characterized by an exponentially

decaying bound with a sharp light-cone with slope (vR′)−1, Eq. (18). This corresponds exactly to

the short-range contribution to λ1 (a). The long-range contribution arises from the long-range hops

that connect the inside of the light-cone to the support of B (b). By choosing the cut-off R′ as a

function of the operator distance, R′ = rσ1 , the resulting bound becomes the sum of exponential

and power-law decaying terms, Eq. (25), the latter of which dominate the long distance decay of

the bound (c). This choice of R′ leads to the light-cone slope of (vrσ1)−1 of panel (a). At the n-th

iteration step, which yields λn, we choose a new cut-off R̃′. As before, we obtain a short-range

contribution that yields a linear light-cone with slope (vR̃′)−1 (d). More importantly, the long-

range hops will now be weighted by the power-law decay of the previous bound λn−1, illustrated by

the red shading (e). It is the combination of these two power-law decays that enables our iterative

procedure to improve the asymptotic decay of the bound λn after specifying the cut-off as R̃′ = rσn

(f) (see Section III.B). This choice of R̃′ leads to the light-cone slope of (vrσn)−1 of panel (d).

We then find (calculation in Appendix B 1):

I[λ
(R′)
0 ] ≤ C|X|

[
1 + (vtR′)d

]
(24)
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Taking Eq. (20) and setting R′ = rσ1 , we have:

λ
(R)
1 (r) ≤ ∆r

(
2|X|evt−r1−σ1 + CΘ

(
R− rσ1

)
|X|2Jtr−σ1α[1 + rσ1d(vt)d]

)
(25)

which recovers the results in Ref. [22] with an appropriate choice of σ1. From this point, we
proceed by induction. Indeed, suppose at the n-th iteration we have:

λ(R)
n (r) ≤ ∆r

(
2|X|evt−r1−σn + CΘ(R− rσn)

2∑
i=1

F
(n)
i (vt) rµ

(n)
i

)
. (26)

Note that, according to Eq. (25), this is satisfied for n = 1 if we take

µ
(1)
1 = σ1(−α + d) (27)

µ
(1)
2 = −σ1α (28)

F
(1)
1 (τ) = Cτ d+1|X|2 (29)

F
(1)
2 (τ) = Cτ |X|2 (30)

Then, so long as µ
(n)
1 + d > 0 and µ

(n)
2 + d < 0 we have (as computed in Appendix B 2):

I[λ(R′)
n ] ≤ C

[{
|X|(1 + (vt)d/(1−σn)) + F

(n)
2 (vt) (vt)(d+µ

(n)
2 )/(1−σn)

}
+ F

(n)
1 (vt) (R′)(µ

(n)
1 +d)/σn

]
(31)

and therefore, using Eq. (20) and setting R′ = rσn+1 :

λ
(R)
n+1(r) ≤ ∆r

(
2|X|evt−r

1−σn+1
+

+ CΘ(R− rσn+1)|X|Jtr−σn+1(α−(µ
(n)
1 +d)/σn) F

(n)
1 (vt)+

+ CΘ(R− rσn+1)|X|Jtr−σn+1α
{
|X|(1 + (vt)d/(1−σn)) + F

(n)
2 (vt) (vt)(d+µ

(n)
2 )/(1−σn)

}
. (32)

By choosing σn+1 ≤ σn we ensure that the spatial decay of the exponential term does not
increase in performing the iterative procedure.

So at the next iteration we have

µ
(n+1)
1 = σn+1

(
−α + (µ

(n)
1 + d)/σn

)
(33)

µ
(n+1)
2 = −σn+1α (34)

F
(n+1)
1 (τ) = Cτ |X| F(n)

1 (τ) (35)

F
(n+1)
2 (τ) = Cτ |X|

{
|X|[1 + τ d/(1−σn)] + F

(n)
2 (τ) τ (d+µ

(n)
2 )/(1−σn)

}
(36)

Iteratively applying Eq. (33) to the initial condition of Eq. (27) yields:

µ
(n)
1 =

(
1 +

1

σ1

+
1

σ2

+ . . .
1

σn−1

)
σnd − nσnα. (37)
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At each iteration, µ
(n)
1 is made smaller (i.e. more negative) at the cost of increasing

the leading power of τ in F
(n)
1 (τ), so long as µ

(n)
1 > −d. By choosing appropriate σj, we

eventually reach an iteration step n = n∗ such that µ
(n∗)
1 + d < 0 and Eq. (31) no longer

holds (and neither will the iteration equations Eqs. (33) - (36)). For n > n∗, I[λR
′

n ] becomes
independent of R′:

I[λR
′

n≥n∗ ] ≤ C
[
|X|(1 + (vt)d/(1−σn)) + F

(n)
1 (vt) (vt)(d+µ

(n)
1 )/(1−σn) + F

(n)
2 (vt) (vt)(d+µ

(n)
2 )/(1−σn)

]
(38)

which leads to new iterative steps where the spatial decay of both polynomial terms is the
same:

µ
(n+1)
1 = µ

(n+1)
2 = −σn+1α (39)

F
(n+1)
1 (τ) = τ 1+(d+µ

(n)
1 )/(1−σn)|X| F(n)

1 (τ) (40)

F
(n+1)
2 (τ) = τ |X|

{
|X|[1 + τ d/(1−σn)] + F

(n)
2 (τ)τ (d+µ

(n)
2 )/(1−σn)

}
. (41)

At this point in the iterative procedure, further iterations do not improve on the power-law
decay of the Lieb-Robinson bound since they are set by −σnα.

With regards to the time dependence of the bound, at each iteration step n, one can choose

σn > (1− σn−1 + d)/α, reducing the time dependence of F
(n)
i (vt) in Eqs. (36), (40) and (41).

For such choices of σn and enough iterations steps, the leading temporal dependence arises
from the τ 1+d/(1−σn) term introduced each iteration step in Eq. (41). As a result, there is
some iteration number m > n∗ above which the most meaningful terms of the bound do not

change. At this point, the bound λ
(R)
m (r) is given by:

λ(R)
m ≤ ∆r

(
2|X|evt−r1−σ1 + CΘ(R− rσm)r−σmα

{
|X|2(vt)1+d/(1−σ1) + . . .

})
, (42)

where . . . are terms with lower power in vt, but higher power in |X|.
We can make the previous considerations more concrete by analyzing the case where σj

are all made equal, σj = σ > (d + 1)/(α + 1). This inequality ensures the reduction of the

time dependence of F
(n)
i (vt).

For this choice of {σj}, Eq. (37) simplifies to:

µ
(n)
1 = (n− 1 + σ)d− nσα (43)

further leading to n∗ = dσd/(σα− d)e.
For n > n∗, the time dependence is encoded in:

F
(n)
1 (τ) ∼ τ 1+d/(1−σ)

[
τ [1+d−σ(1+α)]/[1−σ]

]n−1
+ . . . (44)

F
(n)
2 (τ) ∼ τ 1+d/(1−σ) + . . . (45)

where . . . correspond to lower power of τ . Then, F2(τ) becomes the dominant term immedi-

ately for iteration step n∗ + 1 as the term [ · ]n−1 reduces the leading term of F
(n)
1 (τ) to be
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smaller than F
(n)
2 (τ). Because different terms have different dependences on |X|, to ensure

all constants are independent of |X|, we include the largest power of |X| emmerging from
our construction in front of the time dependence. Finally, taking R → ∞ yields the final
result as expressed in Theorem 1.

IV. POWER-LAW LIGHT-CONES

In short-range interacting systems, the length scale associated with the exponential de-
cay of the Lieb-Robinson bound, Eq. (18), provides a natural definition for a light-cone.
In contrast, Lieb-Robinson bounds in long-range interacting systems are characterized by
power-law decays that lack a natural length scale4. As a result, the precise notion of a
light-cone will vary depending on which properties we wish to capture.

One way to define a light-cone is in terms of the “spread of information”: that is, suppose
we consider the time evolution of two states |ψ〉 and O|ψ〉, where O is a local operator that
perturbs the initial state. The light-cone is the region of radius RLC1(t) around the support
of O, outside which, both time-evolved states yield nearly identical local observables. It is
a direct measure of the spread of the influence of the perturbation O across the system as a
function of time t. We refer to this light-cone as LC1.

A different way to define a light-cone is in terms of the region of the system that can
affect the evolution of local observables appreciably. More specifically, consider the time
evolution of an operator O under two different Hamiltonians, H and H + ∆H. Intuitively,
if ∆H only acts very far away from O, it will not have a significant impact on the evolution
of O at short times. One can make this intuition precise and guarantee that the evolution of
O does not change appreciably, until time t, if ∆H only acts a distance RLC2(t) away from
O. RLC2(t) then characterizes the “zone of influence” of the evolution of operator O. We
refer to this light-cone as LC2. Strictly speaking, LC2 is not a light-cone. However, this
“zone of influence” is intimately connected with a modified notion of the past light-cone.
Our usual understanding of such a past light-cone consists of all events (points in space-
time) where acting with a local operator can influence the current event. The modified past
light-cone that is naturally associated with LC2 corresponds to all events where a change
in the Hamiltonian can influence the current event. In long-range systems, these two light-
cones need not be equal, as even a local change to the Hamiltonian can affect the system
non-locally.

In general, in power-law interacting systems, LC2 will be greater than LC1. Intuitively, as
the operator O expands outwards, the number of terms of ∆H it can interact with increases
dramatically. As a result, it is not only necessary that the operator is mostly localized to a
particular region, but also that the spatial profile of the operator spread decays fast enough
to counteract the increasing number of terms that can modify its dynamics.

We now make these definitions more precise. In order to simplify the notation in this
section, we write the Lieb-Robinson bound between two operators A and B, such that

4 Such power-lay decays are present in current Lieb-Robinson bounds for long-range interacting systems,

both in Refs [3, 21, 22] and this work.

11



d(A,B) = r, as:
‖[τHt (A), B]‖
‖A‖‖B‖

≤ C(r, t), (46)

This allows us to formally define LC1 as the light-cone used in the previous literature:

Definition 1. Let light-cone 1 (LC1) be defined as a relation r = f(t) such that:

lim
t→∞
C(f(t), t) = 0. (47)

The meaning of LC1 is that the propagation of quantum information outside the light-cone
is small and gets smaller as t→∞ 5. Because we are interested in the asymptotic behavior,
we focus on power-law light-cones, f(t) = tγ, which characterize the Lieb-Robinson bounds
considered here. The smallest light-cone is characterized by the exponent βLC1, the infimum
of the γ which satisfy Eq. (47).

In contrast we wish to define LC2 as the region outside which changing the Hamiltonian
of the system has no significant impact in the evolution of the operator. To obtain a precise
condition for LC2, we consider how changing the Hamiltonian H to H + ∆H impacts the
evolution of an operator. More specifically, we consider modifying the Hamiltonian only a
distance rmin away from the operator of interest O. In Appendix C, we show the difference
in the time evolved operators is bounded by:

‖eiHtOe−iHt − ei(H+∆H)tOe−i(H+∆H)t‖ ≤ C∆J‖O‖t
∫ ∞
rmin

dr rd−1C(r, t) (48)

where ∆J quantifies the difference between the Hamiltonians.
LC2 is then given by the relationship between rmin and t that ensures that operator

difference, bound in Eq. (48), remains small and goes to zero in the long time limit. This
immediately motivates the definition of LC2 as follows:

Definition 2. Let light-cone 2 (LC2) be defined as a relation r = f(t) such that:

lim
t→∞

t

∫ ∞
f(t)

dr rd−1C(r, t) = 0, (49)

where d is the dimensionality of the system.

Again, we will focus on polynomial light-cones, f(t) = tγ and define βLC2 as the infimum
of the γ which satisfy Eq. (49).

In short-ranged interacting systems, where C(r, t) ∝ evt−r/R, the exponential suppression
of C(r, t) at large r is insensitive to the extra volume term in the definition of LC2, Eq. (49),
leading to the same linear light-cone for both LC1 and LC2. This result is an immediate
consequence of the natural length scale in C(r, t).

5 Let us note that this has been measured in different forms in different results. More specifically, Ref.[21]

requires the probe operator B to be localized at one site, measuring the spread of quantum information

to any one site, while in Ref.[22] the probe operator need not be local. Our bound follows this second

convention, more common in previous literature.

12



Reference LC1 (d < α) LC2 (d < α ≤ 2d) LC2 (2d < α < αM ) LC2 (αM ≤ α)

Ref. [21] βLC1
FF =

α+ 1

α− d
βLC2

FF =
α+ d

α

α+ 1

α− d
+

1

α
βLC2

FF =
α+ d

α

α+ 1

α− d
+

1

α
βLC2

FF =
α+ d

α

α+ 1

α− d
+

1

α

Ref. [22] βLC1
M =

α+ 1

α− d
7 βLC2

M =
α+ 2

α− 2d
βLC2

M =
α+ 2

α− 2d

Present Work βLC1 =
α+ 1

α− d
βLC2

FF < βLC2 = β̃ βLC2
FF < βLC2 = β̃ < βLC2

M βLC2 =
α+ 2

α− 2d

TABLE II. Summary of the power-law light-cone exponents of LC1 and LC2 for both previous

literature and our work. We use the subscript FF and M to refer to the light-cone exponents from

the bounds of Refs. [21] and [22] respectively. Here β̃ = 2
(α−d)2

×
[
α− d+ αd(1 +

√
1 + 2/d− 2/α)

]
and αM = 3d

2

[
1 +

√
1 + 8

9d

]
. For a detailed calculation see Appendix D.

However, in long-range interacting systems, C(r, t) has a power-law decay which is sensitive
to the extra volume term in LC2. For example, for Eq. (49) to converge and ensure a power-
law LC2, the Lieb-Robinson bound must decay faster than r−d; for LC1 there is no such
requirement. As a result, for slowly-decaying Lieb-Robinson bounds one may have a power-
law LC1 but no LC2, i.e. there is no power-law f(t) that satisfies Eq. (49). This is the case
for the bound in Matsuta et al. [22], where LC2 does not exist for d < α < 2d, yet LC1
matches that of Foss-Feig et al. [21]. LC2 is able to capture the difference between these
two results.

By comparison, our result supports both an LC1 and LC2 for d < α, extending the
existence of an LC2 in long-range multi-spin Hamiltonians to d < α < 2d. In this regime
both our Lieb-Robinson bound and that of Ref. [21] lead to finite LC2, albeit with a larger
light-cone exponent for our bound. Much like the difference in decay profile, this might be
inherent to our treatment of the more general case of arbitrary multi-spin interactions.

In Table II and Figure 2, we compare the different light-cone exponents obtained from
both our work and previous literature for different values of α. In Figure 2, we plot the
exponent of LC2 of the different works as a function of α for dimension d = 1. More details
on the calculation, and the general formulae for all space dimensions d, can be found in
Appendix D.

V. DISCUSSION

In this paper, we have proven an improved Lieb-Robinson bound for generic multi-body
long-range interactions, characterized by a faster asymptotic spatial decay. The importance
of this improvement is captured by the notion of LC2, a definition of light-cone that provides
a stricter definition of locality for the growth of operators, in particular, that their evolution
is not affected by the outside region for large t. Our work extends the existence of an LC2
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FIG. 2. Power-law LC2 exponent for the present paper and Refs. [21] and [22] for d = 1 as

a function of α. While Ref. [22] has a finite power-law LC2 for α > 2d, Ref. [21] and our work

have a power-law LC2 for all α > d. For α < αM our work leads to a better LC2 than Ref. [22],

while matching it for α ≥ αM . The horizontal dashed line corresponds to a linear light-cone. More

details about the calculation can be found in Appendix D.

light-cone for generic multi-body interacting systems for d < α < 2d.

This improvement has important implications for understanding prethermalization and
Floquet phases of matter in periodically-driven systems. In such systems (especially in the
high frequency regime), one can capture the evolution under a time-dependent Hamiltonian
H(t) using a time-independent approximation. Even when the original H(t) has strictly two-
body terms, the time-independent approximation will naturally exhibit multi-body terms.
The results which establish the accuracy and limitations of such approximations require
Lieb-Robinson bounds for multi-body power-law interactions with a rapid decay outside the
light-cone. This application will be discussed in future work [37].

During the preparation of this manuscript, the authors became aware of a new Lieb-
Robinson bound [38] that improves upon Ref. [21]. The bound in Ref. [38] has an LC1
exponent of α/(α−d) under similar assumptions as Ref. [21], namely, two-body interactions.
However, their result (phrased in terms of commutators) does not yield a finite LC2 for
d < α < 2d. Nevertheless, the structure of their arguments is intriguing and understanding
how to generalize their results to multi-body interactions is a promising direction for future
study.
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Appendix A: Some technical results

Lemma 2. Let f(r) be a monotonically decreasing function of r, and fix an x ∈ Λ. Then

∑
z∈Λ,a≤d(z,x)≤R

f(d(z, x)) ≤ C

ad

∫ R

a/2

f(r)rd−1 dr, (A1)

where a is the minimum separation between lattice points.

Proof. Around each lattice point z, consider a ball Bz of radius a/2. Given our assumption
that a is the smallest separation between lattice points, these balls are pairwise disjoint (up
to sets of measure zero). Now, for any r in Bz, we have that f(|r− rx| − a/2) ≥ f(d(z, x)).
Therefore,

V f(d(z, x)) ≤
∫
Bz

f(|r− rx| − a/2) ddr, (A2)

where V is the volume of the ball Bz. In the case that d(x, z) < 3a/2, we will use the tighter
bound

V f(d(z, x)) ≤
∫
Bz :|r−rx|<a

f(|r− rx|) ddr +

∫
Bz :|r−rx|>a

f(|r− rx| − a/2) ddr, (A3)

Now using the fact that ∪Bz ⊆ Rd, we find that

∑
z∈Λ:a≤d(z,x)≤R

f(d(z, x)) ≤ C

ad

(∫ a

a/2

rd−1f(r) dr +

∫ R+a/2

a

rd−1f(r − a/2) dr

)
. (A4)

We can bound the second integral by∫ R+a/2

a

rd−1f(r − a/2) dr =

∫ R

a/2

(u+ a/2)d−1f(u) du (A5)

≤ C ′
∫ R

a/2

ud−1f(u) du. (A6)

This immediately proves the Lemma.
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Lemma 3. For any µ and ν and positive ρ then the following inequality holds for a constant
C independent of ρ: ∫ ∞

ρ

e−x
ν

xµ dx ≤ Ce−ρ
ν (

1 + ρµ−ν+1
)

(A7)

Proof. It sufficient to consider the case of ν = 1, since we can reduce to this case by a change
of variables. Let us first consider µ < 0, then:∫ ∞

ρ

e−xxµ dx ≤ ρµ
∫ ∞
ρ

e−x dx = ρµe−ρ (A8)

We are now left with the case µ > 0. In that case, if ρ ≤ 1 then we can certainly bound
the left-hand side of Eq. (A7) by:∫ ∞

ρ

e−xxµ dx ≤ e1−ρ
[∫ ∞

0

e−xxµ
]

= C1e
−ρ. (A9)

On the other hand, for ρ ≥ 1, we have∫ ∞
ρ

e−xxµ dx = e−ρρµ
∫ ∞
ρ

e−(x−ρ)(x/ρ)µ dx (A10)

= e−ρρµ
∫ ∞

0

e−u(u/ρ+ 1)µ du (A11)

≤ e−ρρµ
∫ ∞

0

(u+ 1)µe−u du (A12)

= C2e
−ρρµ ≤ C2e

−ρρµ+ε, (A13)

for any ε > 0. Adding both bounds with C = max(C1, C2) ensures it holds for all values of
ρ.

Appendix B: Calculation of I[λ]

In this Appendix we perform the calculation of short-range spread of quantum information

I[λ
(R′)
n ], defined in Eq. (15). We divide this calculation into two cases, n = 0 and n > 0,

where λ
(R′)
n takes different functional forms.

1. n = 0 case

In the initial bound, given in Eq. (23) of the main text, one can define a “light-cone”
inside which the trivial bound is best, described by:

|X|evt−r/R′ = 1 ⇒ r = R′(ln |X|+ vt). (B1)
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As a result, one can bound I[λ
(R′)
0 ] by the less stringent “light-cone” r = R′vt as follows:

I[λ
(R′)
0 ] = λ

(R′)
0 (0) +

∫ ∞
1/2

ρd−1λ
(R′)
0 (ρ) dρ (B2)

≤ 2 + 2

∫ R′vt

1/2

ρd−1 dρ+ 2|X|
∫ ∞
R′vt

ρd−1evt−ρ/R
′
dρ (B3)

≤ 2

[
1 +

1

d
(R′vt)d + |X|evte−vtC(1 + (R′vt)d−1)

]
(B4)

≤ C
[
|X|+ |X|(R′vt)d−1 + (R′vt)d

]
(B5)

where we made use of Lemma 3 to bound the second integral.
This bound can be made less stringent as follows:

I[λ
(R′)
0 ] ≤ C|X|

[
1 + (R′vt)d

]
. (B6)

This simplification leads to one less polynomial term in our iterative analysis but does
not affect the spatial or temporal asymptotic behavior of the bound. In contrast, it increases
F1 by a factor of |X| in our construction.

2. n ≥ 1 case

For n ≥ 1, the bound λ
(R′)
n (r) is composed of an exponential term and two polynomial

terms, as described in Eq. (26) of the main text.
Similar to the calculation for n = 0, there exists a “light-cone” inside of which the trivial

bound is best. Such “light-cone”, in principle, will depend on the polynomial terms of the
bound, however, it must be at least as big as the length scale of the exponential term of the
bound given by:

vt− r1−σn = 0⇒ r = (vt)1/(1−σn) (B7)

One can then bound the spread of quantum information as:

I[λ
(R′)
0 ] = λ

(R′)
0 (0) +

∫ ∞
1/2

ρd−1λ
(R′)
0 (ρ) dρ (B8)

≤ 2 + 2

∫ (vt)1/(1−σn)

1/2

ρd−1 dρ+ (B9)

+

∫ ∞
(vt)1/(1−σn)

ρd−1

[
2|X|evt−ρ1−σn + CΘ(R′ − ρσn)

2∑
i=1

F
(n)
i (vt)ρµ

(n)
i

]
dρ (B10)

≤ 2 + 2

∫ (vt)1/(1−σn)

1/2

ρd−1 dρ+ 2|X|
∫ ∞

(vt)1/(1−σn)

ρd−1evt−ρ
1−σn

dρ (B11)
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+
2∑
i=1

C

∫ R′1/σn

(vt)1/(1−σn)

ρd−1F
(n)
i (vt)ρµ

(n)
i dρ (B12)

≤ 2 +
2

d
(vt)d/(1−σn) + 2|X|C[1 + (vt)(d)/(1−σn)−1] + C

2∑
i=1

F
(n)
i (vt)

ρd+µ
(n)
i

d+ µ
(n)
i

∣∣∣∣∣
(R′)1/σn

(vt)1/(1−σn)

(B13)

The sign of d+µ
(n)
i becomes important in bounding the polynomial terms 6 : if d+µ

(n)
i > 0,

we can bound the term solely by the upper limit of integration, if d+ µ
(n)
i < 0, then we can

bound using the lower limit. The final bound on I[λ
(R′)
n ] then becomes:

I[λ(R′)
n ] ≤ C(|X|+ |X|(vt)d/(1−σn)−1 + (vt)d/(1−σn)) (B14)

+ C
2∑
i=1

F
(n)
i (vt)×

{
(R′)(d+µ

(n)
i )/σn d+ µ

(n)
i > 0

(vt)(d+µ
(n)
i )/(1−σn) d+ µ

(n)
i < 0

(B15)

This bound can be slightly simplified at the expense of a higher dependence on |X| on the
(vt)d/(1−σn) term. Nevertheless, this simplification does not change the asymptotic spatial or
temporal decay of our results:

I[λ(R′)
n ] ≤ C|X|(1 + (vt)d/(1−σn)) + C

2∑
i=1

F
(n)
i (vt)×

{
(R′)(d+µ

(n)
i )/σn d+ µ

(n)
i > 0

(vt)(d+µ
(n)
i )/(1−σn) d+ µ

(n)
i < 0

(B16)

Appendix C: Bounding the operator difference under two different Hamiltonians

Consider a local operator O, which is time evolved under two different Hamiltonians H1

and H2. Let us consider ∆H = H1 −H2 such that it is only non-zero at sites outside some
radius rmin around O and quantify its difference in terms of the largest local difference:

sup
x∈Λ

∑
Z:x∈Z

‖(H1)Z − (H2)Z‖ = sup
x∈Λ

∑
Z:x∈Z

‖∆HZ‖ < ∆J, (C1)

where Λ is the set of sites of the system and ‖ · ‖ corresponds to the norm of the HZ term.
The goal of this section is to bound how much O will differ when evolved under the two

different Hamiltonians. More particular, we consider the following norm:

‖U †1OU1 − U †2OU2‖ = ‖O − U1U
†
2OU2U

†
1‖ where Un = e−iHnt (C2)

where the time dependence of Un is implicit to simplify the notation. Let us also note the
similarities to results in Loschmidt echoes, where one evolves the system forwards with one
Hamiltonian H1 and then backwards with a slightly different Hamiltonian H2 [39, 40].

6 In this analysis, we disregard the case where d + µ
(n)
i = 0 which would lead to logarightmic corrections.

In the iterative construction of the main text, this can always be avoided by an appropriate choice of σj .
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We begin by noting the following property:

f(t) = O − U1(t)U †2(t)OU2(t)U †1(t) (C3)

⇒ d

dt
f(t) = −iU1(t)[U2(t)OU †2(t),∆H]U †1(t) (C4)

where we used the fact that [Un, Hn] = 0. One can now bound the difference as:

‖f(t)‖ =

∥∥∥∥∫ t

0

ds iU1(s)[U2(s)OU †2(s),∆H]U †1(s)

∥∥∥∥ ≤ ∫ t

0

ds
∥∥∥[U2(s)OU †2(s),∆H]

∥∥∥ (C5)

≤
∫ t

0

ds
∑
Z

∥∥∥[U2(s)OU †2(s),∆HZ ]
∥∥∥ (C6)

We now focus our attention to the inner sum. Because ∆H is only non-zero on sites at
rmin away from the operator O we can bound:∑

Z

∥∥∥[U2(s)OU †2(s),∆HZ ]
∥∥∥ ≤ ∑

z:d(z,O)≥rmin

∑
Z:z∈Z,

d(Z,O)=d(z,O)

∥∥∥[U2(s)OU †2(s),∆HZ ]
∥∥∥ (C7)

≤
∑

z:d(z,O)≥rmin

∑
Z:z∈Z

d(Z,O)=d(z,O)

‖O‖‖∆HZ‖C(d(O, z), s) (C8)

= ‖O‖
∑

z:d(z,O)≥rmin

C(d(O, z), s)
∑
Z:z∈Z

d(Z,O)=d(z,O)

‖∆HZ‖ (C9)

≤ ‖O‖
∑

z:d(z,O)≥rmin

C(d(O, z), s)∆J ≤ C‖O‖∆J
∫ ∞
rmin

dr rd−1C(r, s) , (C10)

where we used Lemma 3 to turn the sum into an integral.
Using the fact that C(r, s) is an increasing function in s we can obtain the final bound:

‖U †1OU1 − U †2OU2‖ ≤ C‖O‖∆Jt
∫ ∞
rmin

dr rd−1C(r, t) (C11)

Appendix D: Calculation of Light-cones

Our task in this Appendix is to determine the LC1 and LC2 light-cones for Refs. [21],[22]
and our work. In order to simplify the notation, let us write the Lieb-Robinson bounds in
terms of C(r, t) as defined in Eq. (46). For the different results, C(r, t) contains a combination
of exponential and power-law terms which need to be considered in determining LC1 and
LC2.

Let us note that the iterative construction that leads to the bound in Theorem 1 depends
on two parameters: σ, the scaling of the inner cutoff in the iterative procedure, and n, the
number of iterations performed. While the fastest spatial decay occurs for σ → 1, this does
not necessarily lead to the smallest light-cone, as the spatial decrease occurs at the expense
of an increased growth in the temporal dependency. The same is true for the number of
iterations n. As a result, one has to optimize both σ and n to find the smallest light-cone.
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1. Light-Cone 1 (LC1) for power-law interactions

a. Foss-Feig et al. Ref. [21] and Matsuta et al. Ref. [22]

The computation of LC1 for Refs. [21] and [22] is performed in their work, leading to a
matching light-cone power-law:

βLC1
FF = βLC1

M =
α + 1

α− d
, (D1)

where the subscript FF and M refer to Refs. [21] and [22] respectively.

b. Our work

As described in the main text, our proposed iterative construction matches the result of
Ref. [22] for n = 1. As a result, for n = 1 we have βLC1 = βLC1

M .
We now can show that performing further iterative steps does not change the value of

the LC1 exponent. In the iterative construction of our Lieb-Robinson bound, for n > 1 and
σj = σ for all j, we have:

C(r, t) ≤ C
{
evt−r

1−σ
+ F

(n)
1 (vt)rµ

(n)
1 + F

(n)
2 (vt)rµ

(n)
2

}
. (D2)

where we have absorbed any |X| dependence into the constant C as it does not affect the
light-cone calculation; and:

F
(n)
i (τ) = τ γ

(n)
i + . . . (D3)

where . . . refers to lower power of τ . Because we are interested in the late time asymptotic

form of the light-cone we only need to focus on the largest power of τ . This exponent γ
(n)
i

is given by:

γ
(n)
1 =

d+ n n ≤ n∗

σα + n(1 + d− σ(1 + α))

1− σ
n > n∗

(D4)

γ
(n)
2 = 1 +

d

1− σ
+ max

[
0 ,

n− 2

1− σ
{1 + d− σ(1 + α)}

]
(D5)

An important remark is that if σ > (d + 1)/(α + 1) then 1 + d−σα
1−σ < 0. In this regime,

increasing n reduces γ
(n)
1 for n > n∗ and does not change γ2.

The spatial decay is then given by:

µ
(n)
1 =

{
−nσα + d(σ + n− 1) n ≤ n∗

−σα n > n∗
(D6)

µ
(n)
2 = −σα (D7)
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Each of the three terms (the exponential and the two polynomials) will lead to a LC1
exponent. The final exponent is the largest of the three for some n and σ. Optimizing over
these two parameters yields the best βLC1.

βLC1
n;exp =

1

1− σ
, βLC1

n;poly1 =
γ

(n)
1

−µ(n)
1

, βLC1
n;poly2 =

γ
(n)
2

−µ(n)
2

(D8)

Immediately, one can see that βLC1
n;exp is an increasing function of σ. At the same time

βLC1
n;poly1 is a decreasing function of σ for any fixed n, as shown below. The intersection of the

two curves provides the best LC1 exponent from the exponential and first polynomial term
alone. This intersection occurs at σ = σ1;exp. If βLC1

n;poly2(σ1;exp) is less or equal than the other
two curves at this point, it corresponds to the correct LC1 exponent.

We begin by showing that βLC1
n;poly1 is a decreasing function. If n ≤ n∗:

βLC1
n;poly1 =

d+ n

σ(nα− d)− (n− 1)d
(D9)

which is a decreasing function of σ.
We now focus on the case n > n∗:

βLC1
n;poly1 =

σα + n(1 + d− σ(1 + α))

(1− σ)σα
(D10)

First, let us note that n∗ is a decreasing function of σ. Moreover, for this calculation to be
meaningful we need:

n > n∗(σ = 1)⇒ n ≥ n∗(σ = 1) + 1 =

⌈
d

α− d

⌉
+ 1 =

⌈
α

α− d

⌉
⇒ n ≥ α

α− d
(D11)

We can now compute the derivative of βLC1
n;poly1 with respect to σ:

d

dσ
βLC1
n;poly1 =

ασ2 − n[(1 + d)(1− 2σ) + σ2(1 + α)]

ασ2(1− σ)2
(D12)

Parameterizing α = d + ε and n = α/(α − d) + δ = (d + ε)/ε + δ, with ε > 0 and δ ≥ 0, we
obtain:

d

dσ
βLC1
n;poly1 = −1

ε

1 + d

σ2
− δ (1 + d)(1− σ)2 + σ2ε

(d+ ε)σ2(1− σ)2
(D13)

which is always negative. Since the function is continuous, and in both cases it is decreasing,
it is always decreasing.

The intersection of the two curves then occurs at:

If n ≤ n∗ :
d+ n

σ(nα− d)− (n− 1)d
=

1

1− σ
⇒ σ1;exp =

d+ 1

α + 1
(D14)

If n > n∗ :
σα + n(1 + d− σ(1 + α))

σα(1− σ)
=

1

1− σ
⇒ σ1;exp =

d+ 1

α + 1
(D15)
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which regardless of the regime occurs at the same value of σ, leading to:

βLC1
exp;poly1 =

α + 1

α− d
. (D16)

At the same time:

βLC1
n;poly2(σ = σ1;exp) =

α + 1

α− d
= βLC1

exp;poly1 = βLC1 (D17)

which corresponds to the best LC1 light-cone for this bound (equal for any number of
iterations), in agreement with the previous works [21, 22].

2. Light-Cone 2 (LC2) for power-law interactions

a. Foss-Feig et al. Ref. [21]

We can summarize the bound obtained in Ref. [21] as7:

CFF(r, t) = exp
[
vt− r

tγ

]
+
t(α+d)(1+γ)

rα+d
where γ =

1 + d

α− d
(D18)

One can immediately extract the light-cone associated with LC2 for the two terms:

βLC2
FF;exp =

α + 1

α− d
, βLC2

FF;poly =
α + d

α

α + 1

α− d
+

1

α
(D19)

Since the latter is larger, it sets βLC2
FF , which is valid for α > d.

Let us note that because the Lieb-Robinson bound in Ref. [21] holds only for two body
interactions, the calculation of LC2 also only holds for such Hamiltonians H1. Moreover,
because the bound is only valid for operators A and B which lie at a single site, the derivation
in Appendix C needs to consider the size of each term Hz. More specifically, in going from
line Eq. (C7) to Eq. (C8), one should multiply each term by the size Z, the support of HZ .
This does not affect the asymptotic behavior of the light-cone as long as:

sup
x∈Λ

∑
Z:x∈Z

|Z| ‖Hz‖ <∞ (D20)

b. Matsuta et al. Ref. [22]

In analyzing Ref. [22], we can make use of the results obtained in our iterative procedure
after a single iteration. Using Eq. (25), we can immediately compute the exponent of the
LC2 power-law light-cone arising from each term of the bound:

βLC2
n=1;exp(σ) =

1

1− σ
, βLC2

n=1;poly1(σ) =
d+ 2

σ(α− d)− d
, βLC2

n=1;poly2(σ) =
2

σα− d
. (D21)

7 As mentioned in footnote 1, we follow the notation of Ref. [22] which differs from Ref. [21] in its definition

of α. The “α” in the latter should read α+ d in the current notation.
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for d/(α − d) < σ < 1. This condition immediately requires α > 2d for there to exist a
power-law LC2. Having the exponents as a function of σ, βLC2

M is given by the optimized
exponent with respect to σ:

βLC2
M = inf

d/(α−d)<σ<1
max

(
βLC2
n=1;exp(σ), βLC2

n=1;poly1(σ), βLC2
n=1;poly2(σ)

)
. (D22)

For all σ, βLC2
n=1;poly1(σ) > βLC2

n=1;poly2(σ) and both are decreasing functions, while βLC2
exp is

an increasing function. As a result, the minima occurs at the intersection between βLC2
n=1;poly1

and βLC2
exp , which occurs at σ = (2d+ 2)/(α + 2), leading to the light-cone exponent:

βLC2
n=1 =

α + 2

α− 2d
= βLC2

M , (D23)

for α > 2d.

c. Our work

Since we have considered the case of n = 1 in Appendix D.2.b, we now restrict our
attention to n > 1. We will begin our calculation by focusing on the contribution from βLC2

n;exp

and βLC2
n;poly2 first and then confirming the other polynomial term will not change the obtained

exponent.
Based on the exponential term and the polynomial exponents in Eqs. (D5) and (D7) we

obtain:

βLC2
n;poly2 =

1 + γ
(n)
2

−µ(n)
2 − d

=


−d+ 2σα + n(1 + d− σ(1 + α))

(1− σ)(σα− d)
σ <

d+ 1

α + 1
2(1− σ) + d

(1− σ)(σα− d)
σ ≥ d+ 1

α + 1

(D24)

βLC2
n;exp =

1

1− σ
(D25)

Because βLC2
n;poly2 is a convex function, the correct LC2 exponent βLC2 will occur in one of

two regimes: at the minimum of βLC2
n;poly2, or at the intersection of βLC2

n;poly2 and βLC2
n;exp (i.e. at

the first intersection of βLC2
n;poly2 and βLC2

n;exp; the second intersection is occurs as σ → 1, where
both exponents become infinite).

The location of the minimum occurs at:

σ2;min = 1 +
d

2
− d

2

√
1 +

2

d
− 2

α
(D26)

⇒ βLC2
n;poly2(σ2;min) = 2

α− d+ dα
[
1 +

√
1 + 2/d− 2/α

]
(α− d)2

(D27)

The intersection on the other hand occurs at:

σ2;exp =
2d+ 2

α + 2
⇒ βLC2

n;poly2(σ = σ2;exp) =
α + 2

α− 2d
(D28)
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which requires, for consistency, α > 2d. This exponent matches that of n = 1 and Ref. [22].
Because σ2;min, σ2;exp > (d + 1)/(α + 1), only the second branch of Eq. (D24) is relevant

for this minimization procedure. This branch is independent of the number of iterations
performed, the above results are valid for all n > 1.

If we now consider βLC2
n;poly1 it can never improve on this minimization, only worsen it.

Moreover, by choosing σ > (d+1)/(α+1) and n ≥ n∗+1 iterations, one ensures that F
(n∗+1)
2

contains the dominant asymptotic time dependence of the polynomial terms, ensuring that
βLC2
n;poly2 ≥ βLC2

n;poly1. As a result, considering βLC2
n;poly1 does not change our analysis of the LC2

exponent, only imposes that n ≥ n∗ + 1.
Then, by choosing n ≥ n∗ + 1, we can immediately compute the LC2 exponent βLC2 by

just considering βLC2
n;poly2 and βLC2

n;exp. In this regime, the exponents are independent of n, as

shown above. There are two regimes that can determine βLC2:

• βLC2 occurs for at the intersection of the curves βLC2
n;poly2(σ) and βLC2

n;exp which occurs at
σ = σ2;exp. This requires that σ2;exp ≤ σ2;min, which gives us a condition for α:

α ≥ αM ≡
3d

2

(
1 +

√
1 +

8

9d

)
. (D29)

which is consistent with the requirement 2d < αM for the intersection solution to be
meaningful.

• βLC2 occurs at the minimum of βLC2
n;poly2 which occurs for α < αM .

Thus, we can summarize our result as:

βLC2 =


2

(α−d)2

{
α− d+ dα

[
1 +

√
1 + 2/d− 2/α

]}
d < α < αM

α + 2

α− 2d
αM < α

(D30)

Then, for α > αM , our LC2 light-cone matches that of Matsuta et al. [22]. While for
α < αM , our iterative procedure ensures a better LC2 under similar assumptions. In fact,
for α < 2d, our LC2 is well-defined while the LC2 of Matsuta et al. [22] diverges. However,
our LC2 is bigger than that of a purely two-body power-law interacting system [21]. This
situation is summarized in Table II and the α dependencies of βLC2 are plotted for the
Lieb-Robinson bounds of the present paper and Refs. [21, 22] for d = 1 in Fig. 2.
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