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The spontaneous breaking of time-translation symme-
try in periodically driven quantum systems leads to a new
phase of matter: discrete time crystals (DTC). This phase
exhibits collective subharmonic oscillations that depend
upon an interplay of non-equilibrium driving, many-body
interactions, and the breakdown of ergodicity. However,
subharmonic responses are also a well-known feature of
classical dynamical systems ranging from predator-prey
models to Faraday waves and AC-driven charge density
waves. This raises the question of whether these classi-
cal phenomena display the same rigidity characteristic of
a quantum DTC. In this work, we explore this question in
the context of periodically driven Hamiltonian dynamics
coupled to a finite-temperature bath, which provides both
friction and, crucially, noise. Focusing on one-dimensional
chains, where in equilibrium any transition would be for-
bidden at finite temperature, we provide evidence that
the combination of noise and interactions drives a sharp,
first-order dynamical phase transition between a discrete
time-translation invariant phase and an activated classi-
cal discrete time crystal (CDTC) in which time-translation
symmetry is broken out to exponentially-long time scales.
Power-law correlations are present along a first-order line
which terminates at a critical point. We analyze the tran-
sition by mapping it to the locked-to-sliding transition of
a DC-driven charge density wave. Our work points to a
classical limit for quantum time crystals, and raises sev-
eral intriguing questions concerning the non-equilibrium
universality class of the CDTC critical point.

Subharmonic entrainment occurs when the long time dy-
namics of a system manifest a period that is a fixed multi-
ple of the period of the underlying equations of motion [1–7].
Such subharmonic behavior is ubiquitous in deterministic dy-
namical systems; most notably for example, discrete maps,
e.g. x→ f(x), can exhibit stable period-doubled orbits [2, 8–
10], and continuous-time systems can settle down into limit
cycles [7, 11]. From the point of view of many-body physics,
however, in order to consider this subharmonic response char-
acteristic of a phase of matter, the system should satisfy cer-
tain properties which embody the notion of rigidity. First,
the system should have many locally coupled degrees of free-
dom so that a notion of spatial dimension and thermodynamic
limit can be defined. Second, the system’s subharmonic re-
sponse should be stable to arbitrary perturbations of both the
initial state and the equations of motion, so long as the lat-

FIG. 1. Period-doubled dynamics “boil” out of a uniform initial
state. In the main figure we present a stroboscopic view qj(2ntD),
with time n running down vertically (0 < n < 1200) and space
j running horizontally over the nosc = 100 oscillators. The color
scale is qj < 0 red, qj > 0 blue, and qj ∼ 0 white. Note that
we strobe every two driving periods, which is the frequency of the
subharmonic response; hence the displayed phase of the oscillators
varies slowly. In the inset, we show a detail of a smaller region
strobed at the driving frequency, qj(ntD). The period-doubled oscil-
lations qj(ntD) ∝ (−1)n are now manifest. Strikingly, the correla-
tions are anti-ferromagnetic both in time and space, even though the
oscillators are coupled together ferromagnetically (ωD = 1.958, g =
0.065, δ = 0.067, η = 0.003, T = 0.004). In the final state, there is
a finite density of π-domain walls between the two different period-
doubled solutions.

ter preserves the periodicity. Models with continuous time-
translation invariance, such as the Van der Pol oscillator [11]
and the Kuramoto model [12, 13] are not rigid in this sense
(though the many-body synchronization transition of the lat-
ter is of interest its own right - we comment on its relation to
the CDTC problem in the conclusions). Finally, the subhar-
monic response should have an infinite autocorrelation time,
by analogy to “long-range” order.

Even within the constraints of these criteria, it turns out that
general dynamical systems can still exhibit rigid subharmonic
entrainment. The reason for this is that the dynamics about
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fixed points can be strongly damped so that perturbations to
either the state or the dynamics decay rapidly; in the presence
of such contractive/dissipative dynamics, many-body subhar-
monic entrainment has been observed in a multitude of sys-
tems including: Faraday wave instabilities [3], driven charge
density wave materials [4, 14–20] and Josephson junction ar-
rays [21, 22].

The possibility of rigid subharmonic entrainment in the ab-
sence of contractive dynamics is significantly more subtle, but
also particularly relevant [23–30]. Indeed, two broad classes
of systems that fall into this category are time-periodic Hamil-
tonian dynamics in classical systems and unitary dynamics in
quantum systems. Such systems are far more restrictive than
general dynamical maps; Hamiltonian dynamics, for example,
are volume preserving in phase space, thereby explicitly for-
bidding contractive dynamics. In the presence of an external
drive (e.g. which sets the periodicity of the dynamics), energy
conservation is broken and one generically expects the long-
time dynamics of the many-body system to be completely er-
godic. In certain fine-tuned special cases [31, 32], it may be
possible for a driven, many-body system to avoid its ergodic
fate [33]. An ergodic system can never exhibit true subhar-
monic rigidity since it is impossible for the system to remem-
ber which of the distinct subharmonic orbits (i.e. related by
time translation symmetry) it began in.

To this end, a tremendous amount of recent excitement has
focused on the discovery that rigid subharmonic entrainment
can occur in a periodically driven (Floquet), unitary, many-
body quantum system. Dubbed Floquet/discrete time crystals
[34–42], this new phase of quantum matter relies crucially on
many-body localization to prevent the drive-induced heating
of the system to infinite temperature. While it is difficult to
experimentally verify the long-time rigidity associated with
a discrete time crystal, promising signatures of such behavior
have been observed in spin systems [43, 44] for time-scales up
to hundreds of Floquet cycles, despite the fact that localization
is likely absent in such systems [41, 44–46].

A natural question thus arises: How quantum must a time
crystal truly be? Is quantum mechanics important only inso-
far as it allows for many-body localization to prevent heat-
ing of the system? Or does it play a more fundamental role?
If closed Hamiltonian dynamics cannot generically stabilize
a time crystal due to heating, a natural generalization is to
consider preventing such heating by coupling the system to
a bath, most simply by adding friction. However, by adding
only friction, one essentially reverts back to the damped case
where the existence of rigid subharmonic entrainment is well
known. On the other hand, if the bath is in equilibrium
at finite temperature T , the fluctuation-dissipation theorem
implies that friction must come with noise [47]. In classi-
cal systems, this noise can be captured as a Langevin force,
FB(t) = −ηq̇ + ξ(t), on each coordinate q, where η is the
strength of the friction and ξ(t) is a stochastic force with vari-
ance, 〈ξ(t)ξ(t′)〉 = 2ηTδ(t − t′). Taking η > 0, T = 0
reduces to the damped case where period-doubling is easily
stabilized, while a combination of finite T and driving results

(b)

(a) ⇠ cos(!dt)

g

v

1/T

F = 0.1

F

v

T

F

?
Classical DTC

Symmetry Unbroken

T

(d)

(c)

�v

�
v

FIG. 2. Diagnostics and phase diagram of an activated classi-
cal discrete time crystal. a) Schematic of a one dimensional array
of coupled non-linear pendula. The pendula are coupled via ferro-
magnetic interactions of strength g, and the system is parametrically
driven at frequency ωD. b) Phase diagram of the classical discrete
time crystal as a function of F = 2η

δ
(where δ is the driving ampli-

tude and η the damping) and the temperature T . At low-T there is
a first order phase transition between the CDTC phase and the non-
time-crystalline phase, while at high-T there is only a crossover. c)
In the 1D CDTC, there is a finite rate of phase slips v between the
two symmetry-breaking solutions. v fits very well to the Arhennius
form v ∼ e−∆/T , indicating the phase slips are activated. d) The
phase transition is diagnosed by measuring the rate of phase slips v
between the two time-translation related period doubled solutions.
As we cross the first order line out of the CDTC, v jumps discontin-
uously.

in a truly non-equilibrium situation. The question concern-
ing the existence of “classical discrete time crystals” (CDTC)
can then be posed as follows: In what dimensions can a clas-
sical many-body system, coupled to an equilibrium bath, ex-
hibit rigid subharmonic entrainment for either the closed case
(η = 0), the zero-temperature case (η > 0, T = 0), or the
finite temperature case (η, T > 0)?

Because the T = 0 (no noise) case is already known to
feature rigid subharmonic entrainment, in this work we focus
on T > 0. Furthermore, if a CDTC exists in d∗ dimensions,
it will presumably exist for all d ≥ d∗, so we focus on the
most delicate case: T > 0 in one dimension (1D). While an
equilibrium phase transition is impossible in 1D, might there
nevertheless be a non-equilibrium dynamical phase transition
between a period-doubled CDTC and a symmetric phase?

In this work, we first argue, based on remarkable results
due to Gács [48–50] and Toom [51–53], that in principle true
CDTCs, with an infinite autocorrelation time, are possible in
all dimensions d > 0 [54]. However, in 1D the construc-
tion is so baroque that we cannot yet explicitly prove this
conjecture theoretically or numerically. To this end, we in-
stead investigate in detail a more physical Hamiltonian, the
parametrically-driven Frenkel-Kontorova (FK) model. The
basic idea is simple: each non-linear oscillator in the chain
undergoes a 2:1 parametric resonance, and we couple the os-
cillators together to try and stabilize the CDTC phase at fi-
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nite temperature. We find that this model exhibits an intrigu-
ing line of first order dynamical phase transitions between an
“activated” period-doubled CDTC and a symmetry unbroken
phase that terminates at a critical point (Fig. 2). The activated
CDTC is not a true time-crystal, rather, it has has an autocorre-
lation time that diverges exponentially as T → 0. Because of
this exponentially diverging timescale, it would be extremely
difficult in experiments to distinguish between an activated
CDTC and a true, long-range-ordered CDTC; indeed, in order
to detect this difference we must conduct careful numerical
experiments over many millions of Floquet cycles.

Before diving into the details, let us emphasize the key
characteristic of a true long-range-ordered CDTC; namely,
the existence of period-doubling with an infinitely long auto-
correlation time, τ , which is stable to small perturbations of
the dynamics. More precisely, if one considers a model of pe-
riodically driven oscillators with position coordinates qi, the
auto-correlation time, τ , of period doubling can be quantified
as 〈qi(ntD)qi(0)〉 ∝ (−1)ne−ntD/τ , where tD is the period
of the drive and 〈〉 indicates averaging over noise realizations.
For low but finite temperatures, the period doubling we ob-
serve in the driven FK model exhibits only an activated auto-
correlation time, τ(T ) ∼ e∆eff/T , where ∆eff is an effective
activation barrier. Thus, in 1D, the CDTC order of the FK
model we study survives only to exponentially long, but not
infinite times. Despite the activated behavior of the period
doubling, we nevertheless find a first order dynamical phase
transition where τ(T ) drops discontinuously and period dou-
bling is completely destroyed (Fig. 2). In 1D, such a first order
phase transition would be impossible in equilibrium [55].

This leaves the question of CDTCs at a peculiar point:
while we believe a true CDTC is in principle possible in 1D,
the obvious candidate model is only exponentially close to
one. It may be that the full complexity of Gács’ construction,
which we now explain, is in fact required.

Conjecture on the existence of classical time-crystals—
While our ultimate interest is to understand the possibil-
ity of time-crystals in open Hamiltonian systems, it is first
worth considering a more general class of dynamical sys-
tems, “probabilistic cellular automata” (PCA). Recall that a
deterministic cellular automata (CA) is a set of spins {σi},
where σi ∈ {1, 2, · · · , N}, with a discrete update rule σi →
T [σi−1, σi, σi+1] [56]. In a PCA, the system is instead de-
scribed by a probability distribution P[{σi}] over spin con-
figurations which is updated by a local Markov process, i.e.,
each σi is updated with a probability distribution that depends
only on itself and its neighbors. One way to obtain a PCA is
to start with a deterministic CA and perturb it by stochastic
errors, e.g., with probability E � 1, a spin can violate the
transition rule and flip into a random state (the precise state-
ment of such an error model can be found in [49]).

Since the PCA update rule is discrete-time translation in-
variant, one can then ask if the long-time probability distri-
bution can ever oscillate with period two, thereby realizing a
time-crystal. For a deterministic CA, a time-crystal is triv-

ially obtained by letting binary spins transform under the rule
0 ↔ 1 (this is analogous to our previous discussion of fine-
tuning, or introducing friction but no noise). However, any
infinitesimal rate of errors will desynchronize the spins and
the autocorrelations will decay over a time-scale, τ ∼ 1/E.

Might there be a more complicated CA which implements
“error correction” enabling the system to preserve long-range
(time-crystalline) order? The most obvious guess is to have
each spin poll its neighbors and transition opposite to the
majority, essentially implementing a type of ferromagnetism.
This “anti-majority vote” rule, it turns out, is insufficient to
preserve the long-range order, because if a pair of domain
walls nucleates and separates beyond the range of the vote,
they will diffuse randomly throughout the system and destroy
the order.

For a very long time it was thought such error correction
was in fact impossible in 1D as a consequence of the so-called
“positive rates conjecture.” A PCA is said to be “ergodic” if
it has a unique fixed-point probability distribution P0[{σi}].
The positive rates conjecture states that a PCA is generically
ergodic, generalizing the physics folklore regarding the im-
possibility of ferromagnetism in 1D to the non-equilibrium
setting [33]. On the other hand, the infinite auto-correlation
time of a time-crystal requires ergodicity breaking, because
there will be two probability distributions P±[{σi}], corre-
sponding to the two phases (σi = ±1) of the period doubling,
invariant under a double Markov update. Consequently, were
the positive rates conjecture true, it would forbid time-crystals
as a corollary.

However, almost two decades ago, a truly remarkable
counter-example to the positive rates conjecture was provided
by Gács [48–50]. Gács constructed a 1D PCA with the follow-
ing property: in the thermodynamic limit, there is a threshold
error-rate E < E∗ below which a system of size L has 2L

distinct steady states in the thermodynamic limit, i.e. it “re-
members” one bit per unit cell. Admittedly, the Gács PCA
is very complicated: each cell has a state space whose di-
mension is on the order of σi ∈ {1, 2, · · · 2400}, which one
can think of as 399 ancillary bits which implement an error-
correction protocol on one protected bit. The error correction
is a highly collective phenomena, requiring communication
(interactions) between neighboring cells since there are oc-
casional error events which scramble all constituent 400 bits
simultaneously. The error-correction is stable against generic
perturbations (for example, the errors can be adversarially bi-
ased towards a particular spin configuration, breaking any-
thing like an Ising symmetry), so is truly a feature of a new
non-equilibrium phase. This is somewhat analogous to MBL,
insofar as the ergodicity breaking is extensive and stable to
arbitrary perturbations, but is even stronger because the sys-
tem is open (noisy). Furthermore, the Gács PCA can be used
to simulate any deterministic CA acting on the protected sub-
space. Thus, by using the Gács PCA to simulate the trivial
0 ↔ 1 CA, one obtains an example of a true classical time-
crystal stable against arbitrary stochastic perturbations!

We conjecture that Gács’ result on PCAs implies the exis-
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tence of true CDTCs in time-periodic Hamiltonian Langevin
dynamics, because the latter can be used to approximately
simulate a discrete PCA. By “simulate,” we mean that if we
interpret the integer part of a classical oscillator qi as the state
of a discrete CA, σi = bqic, then by an appropriate choice
of time-dependent Hamiltonian and Langevin friction, the dy-
namics of qi under one Floquet-cycle can mimic the discrete
update of a CA. Langevin noise then introduces stochastic er-
rors analogous to those of the PCA. Simulating Gács’ PCA
in this way would then realize a time-crystal as discussed
above, and small errors in the “simulation” would be covered
by Gács’ stability result.

However, at present this remains a conjecture, rather than a
proof, because a priori it is unclear whether the errors arising
from Langevin noise can be successfully mapped onto the er-
ror model covered in Gács’ result. While we would like to nu-
merically verify this possibility, the Gács model is so complex
it is daunting to implement even as a PCA, let alone simulate
via continuous-time Langevin dynamics. However, given that
we conjecture a CDTC is in principle possible, it is tempting
to assume that by writing down a sufficiently general model,
we will find this behavior somewhere in its phase diagram.

Period doubling in the Frenkel-Kontorova model—For con-
creteness, let us consider a parametrically driven Frenkel-
Kontorova model, which describes an array of coupled, non-
linear pendula (Fig. 2a) [57, 58]:

H =
∑
i

1

2
p2
i+[1 + δ cos(ωDt)] (1−cos(qi))+g

∑
〈i,j〉

(qi − qj)2

2
,

(1)
where qi is the pendulum’s deflection from vertical and pi its
momentum, while δ and ωD are the amplitude and frequency
of the parametric driving (Fig. 2a). Such a model can be
realized in many different experimental systems [59]. Note
that we have normalized each pendulum’s natural frequency
to one. When ωD ∼ 2 and g = 0 (decoupled), each pendu-
lum is susceptible to a 2:1 parametric resonance, where the
dynamics are period doubled and the pendulum’s position re-
turns only once every two driving cycles. While this sub-
harmonic response (at ωD/2) is reminiscent of the behavior
expected for a CDTC, the parametric resonance of a single
oscillator does not exhibit the rigidity of a true time-crystal;
rather, as we shall see, this sub-harmonic response of a single
oscillator is destroyed in a smooth crossover for any amount
of noise (T > 0). But, crucially, in the presence of interac-
tions (|g| > 0), the sub-harmonic response of the collective
system can undergo a sharp transition at T > 0 characteristic
of a many-body phase.

We introduce friction η and finite temperature T through
a Langevin force FB(t) which acts independently on each qi.
The pendula then evolve under a combination of this stochas-
tic Langevin force and the ferromagnetic (g > 0) Frenkel-
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FIG. 3. Parametric resonance of a single non-linear pendulum.
a) Equal pseudoenergy contours of the averaged Hamiltonian H̄ in
the θ̃, J plane. The dashed line indicates the contour ∂θ̃H̄ = 0. b)
Effective washboard potential of Eqn. (10). The slope of the potential
arises from the Langevin damping η. c) In region I (F > 1 or u <√

1− F 2), the particle slides and there is no period doubling. In
Region III, F < 1, u > 1 − F 2, only the locked (period doubled)
phase is stable. In region II, F < 1, u2 < 1 − F 2, both the locked
and sliding states are stable, implying bistability.

Kontorova Hamiltonian:

dqi
dt

= pi (2)

dpi
dt

= −(1 + δ cos(ωDt)) sin(qi)

+ g(qi+1 + qi−1 − 2qi)− ηpi + ξi(t). (3)

where ξi(t) is a stochastic force with variance 〈ξi(t)ξj(0)〉 =
δijδ(t)2ηT .

To probe the resulting dynamics, at time t = 0 we initialize
the oscillators in pi(0) = qi(0) = 0, and integrate the equa-
tions of motion using a second-order Langevin time-stepper
[59]. The resulting stroboscopic dynamics, qi(mtD) (where
tD = 2π/ωD), are depicted in Fig. 1. Strikingly, the uni-
form initial condition gives way to a growing bubble of spatio-
temporal “antiferromagnet” in which qi(mtD) ∝ (−1)i+m;
these spatial anti-ferromagnetic correlations are particularly
surprising, since the oscillators are ferromagnetically coupled.
The existence of a growing bubble would seem to suggest the
presence of two distinct dynamical regimes — time crystalline
and not — despite the finite temperature fluctuations.

Analysis of a single non-linear pendulum—To begin, let us
review the parametric resonance of a single non-linear pen-
dulum [7]. Readers familiar with the resulting phase diagram
(Fig. 3), can skip to our discussion of their coupled behav-
ior, though the treatment in action-angle variables is not en-
tirely standard and will prove illuminating [60]. In the action-
angle coordinates of the pendulum, q ∼

√
2J cos(θ), p ∼
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−
√

2J sin(θ), the Hamiltonian [Eqn. (1)] reduces to:

H(t) =J − ε

2
J2 + δJ cos(ωDt) cos2(θ) + · · · (4)

where ε = 1
8 and higher-order terms in J, δ are neglected [61].

In the un-driven case, ω(J) = ∂JH sets the frequency of os-
cillations, so that the non-linearity is encoded in the J2 term.
Because ε > 0, larger amplitude oscillations have lower fre-
quency; however, we can be more general by keeping ε as a
parameter and indeed will later explore the ε < 0 regime.

Near a period-doubled solution, qi ∝ cos(ωDt/2 + θ̃),
where θ̃ varies slowly. To this end, we transform to the ro-
tating frame, θ̃ = θ − ωDt/2, wherein Eqn. (4) becomes

H(t) = (1− ωD/2)J − ε

2
J2 +

δ

4
J cos(2θ̃)

+
δ

4
J
[
cos(2ωDt+ 2θ̃) + 2 cos(ωDt)

]
. (5)

At leading order in a Floquet-Magnus expansion, the average
Hamiltonian over a driving period is given by:

H̄ =
1

tD

∫ tD

0

H(t)dt (6)

= δ(1 + u)J/4− ε

2
J2 +

δ

4
J
(

cos(2θ̃)− 1
)
, (7)

where u = 4(1 − ωD/2)/δ is an effective detuning. The
static H̄ will govern the slow dynamics θ̃. While this treat-
ment is approximate (i.e. we neglect the off-resonant oscilla-
tory terms), for a single pendulum one can in principle apply a
convergent sequence of canonical transformations to bring the
Hamiltonian to such a static form, a consequence of the KAM-
theorem for small δ [60]. The equal-energy contours of H̄ are
illustrated in Fig. 3a. For ε > 0, the landscape is that of an in-
verted double well potential with maxima at J̄ = ε−1(1+u) δ4
and θ̃ = 0, π, which are the two possible phase shifts of the
period-doubled solutions: q(mtD) = ±

√
2J̄(−1)m. Since

these solutions occurs at maxima, perturbations about the
orbit remain bounded, oscillating at an effective frequency,
ω2

eff = δ2(1 + u)/4. For weak driving δ, ωeff/ωD is paramet-
rically small, implying that higher order terms in our Floquet-
Magnus expansion are strongly off resonant, justifying our
approach. We note that period-doubled solutions exist only
when J̄ > 0, yielding the period-doubling criteria u > −1.
Finally, for ε < 0, the above analysis remains essentially iden-
tical except that the period-doubled solutions occur at the min-
ima of H̄ .

The double-well potential has a phase-shift symmetry, θ̃ →
θ̃+π, which is unrelated to the q → −q symmetry of the orig-
inal Hamiltonian, and is actually a more general consequence
of period doubling: in the rotating frame, θ̃ → θ̃ + π must
remain a dynamical symmetry because it corresponds to time
translation symmetry, t → t + tD. In fact, the q → −q sym-
metry of the original Hamiltonian is inessential to the period-
doubling physics we discuss, analogous to quantum case [36].

To understand the effect of the bath, consider the equations
of motion when averaging the Langevin force over one period
[59]:

˙̃
θ = ∂JH̄ (8)

J̇ = −∂θ̃H̄ − ηJ +
√
J̄ξ(t). (9)

In the limit of large detuning relative to the driving (u � 1),
these equation take a particularly simple form (see supple-
mentary information [59] for the general case):

H̄ = −εJ̃
2

2
+ J̄

[
δ

4
cos(2θ̃) + ηθ̃

]
+ · · · (10)

˙̃
θ = ∂J̃H̄ (11)
˙̃J = −∂θ̃H̄ − ηJ̃ +

√
J̄ξ(t), (12)

where J̃ = J − J̄ and J̄ = ε−1u δ4 (1 + O(u−1)). These
equations describe a negative mass particle with “position” θ̃
and “momentum” J̃ subject to Langevin damping and a wash-
board potential with finite slope J̄η, as shown in Fig. 3(b). We
note that such equations of motion are extremely well stud-
ied in the context of RC-shunted driven Josephson-junctions
[62, 63], where they can give rise to fractional Shapiro steps
[21, 22], but our interest will be in their many-body behavior
in the presence of noise.

At zero damping, the barrier height of the washboard po-
tential is J̄δ/2, but as the damping J̄η increases the barrier
height decreases. Thus, to parameterize the damping we con-
sider a dimensionless “force”, F = 2η

δ , defined so that when
F ≥ 1 the stable extrema vanish and the particle slides along
the washboard. In the fully sliding state, ˙̃

θ = δ
4u, which in

the original variables gives θ̇ = 1, e.g. the natural frequency
of the un-driven oscillator [59]. Thus, the “sliding regime” in-
dicates the destruction of period doubling, while the “locked”
regime ( ˙̃

θ = 0) is period doubled.
This point is worth emphasizing. Naively, given that un-

damped Eqn. (7) is the sine-Gordon representation of the
Ising model, it might seem that period doubling is analogous
to the breaking of the internal Ising symmetry generated by
θ̃ → θ̃ ± π, so that the destruction of the CDTC would oc-
cur through something like an Ising transition. But unlike an
Ising model, the friction-induced slope gives π-phase slips a
handedness (i.e. they in fact have a Z character rather than a
Z2 Ising character): θ̃ → θ̃ + π is inequivalent to θ̃ → θ̃ − π,
and the phase prefers to slip one way. The actual dynamical
CDTC phase transition we will observe is a collective ver-
sion of the locked-to-sliding transition at which dθ̃

dt jumps, not
an Ising transition, and hence is fundamentally distinct from
the transition discussed in the context of the quantum MBL
/ prethermal time crystal [37, 64]. In the supplementary in-
formation [59], we demonstrate that this effect is real for the
original driven pendulum.

In the absence of noise (T = 0), a standard stability anal-
ysis [7] reveals three distinct dynamical regimes [Fig. 3(c)]:
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In Region I only the sliding regime is stable, indicating there
is no period doubling. In Region III only the locked regime
is stable, indicating period-doubling. Finally, Region II is a
bistable regime in which both the locked and sliding states are
stable, and the long time behavior depends on the initial state.
This region will show hysteresis as F is varied.

At any finite temperature T > 0, activated processes cause
a single pendulum to transition between the locked and slid-
ing states, by analogy to Kramer’s analysis of noise-activated
tunneling [65–67]. This destroys the bistable Region II, lead-
ing to a smooth (though highly non-linear) crossover between
the locked and sliding regimes as either the force (F ) or tem-
perature (T ) is increased [66]. This crossover in the effec-
tive static model is consistent with our numerical experiments
on the original parametrically driven pendulum [Eqn. 3] [59].
Thus, for g = 0 (i.e. in 0D) and at finite-T there is no sharp
transition between period-doubled and undoubled dynamics.

Collective behavior of coupled non-linear pendula—With
the single pendulum analysis behind us, let us now turn to the
collective behavior of the system at finite coupling strength g.

As before, to analyze the interactions within an effective
static model we average the couplings over one Floquet pe-
riod, H̄g = −g∑i

√
JiJi+1 cos(θ̃i − θ̃i+1) [59], leading to

the effective equations of motion:

H̄ =
∑
i

(
−εJ̃

2
i

2
+ J̄

[
δ

4
cos(2θ̃i) + ηθ̃i

]
(13)

− gJ̄ cos(θ̃i − θ̃i+1)

)
(14)

˙̃
θi = ∂J̃iH̄ (15)
˙̃Ji = −∂θ̃iH̄ − ηJ̃i +

√
J̄ξi(t), (16)

where we have taken Ji ≈ J̄ +O(1/u). Except for the nega-
tive mass and the finite slope ηθ̃i, these equations correspond
to the sine-Gordon representation of the Ising model at finite-
T .

Before exploring the CDTC phase transition in this model,
a few remarks are in order. First, at finite damping and zero-
temperature (η > 0, T = 0), the 1D chain will rather trivially
exhibit many-body period doubling which is inherited from
the period doubling (Region I) of the single oscillator case.
Roughly speaking, if we perturb about the period-doubled so-
lution of a single oscillator q(t), qj(t) = q(t) + ∆qj(t), in the
limit g, δ → 0 the linearized dispersion relation of the pertur-
bation is strongly off-resonant with the drive, ωeff(k)/ωD ∼ δ,
so the finite damping η prevents heating and the system settles
into a period-doubled steady state, as can be analyzed from the
stability of the linearized equations of motion.

Second, the negative mass explains why the ferromagnet-
ically coupled pendula displayed anti-ferromagnetic spatial
synchronization in Fig. 1. Because the period doubled orbit of
a single pendulum occurs at a maximum of H̄ , the volume of
available phase space increases as the quasi-energy decreases.
Interpreting this as a relation between entropy and energy,

the period-doubled solution is at negative temperature, even
though the Langevin bath is at positive temperature. Thus,
the array is entropically driven toward a high quasi-energy
state, reversing the expected effect of the coupling g. To test
this hypothesis, we can change the effective mass to be pos-
itive by changing the non-linearity ε of the pendulum (e.g.,
by replacing cos(q) → 1

2q
2 + 1

24q
4, giving ε = − 1

8 ). The
period doubled solutions now exist at minima of H̄ , corre-
sponding to positive temperature, and analogous simulations
indeed show that the pendula now synchronize ferromagneti-
cally [59]. While negative temperatures are familiar in models
with finite phase space [68–70], the parametric resonance of
a non-linear pendulum provides a novel way to dynamically
generate negative temperatures in a system with an unbounded
phase space. This phenomena is distinct from the dynamically
stabilized inverted position of a Kapitza pendulum, which re-
mains at a minimum of the quasi-energy; indeed, ferromag-
netically coupled Kapitza pendula will synchronize ferromag-
netically [71].

CDTC phase transition—While ε > 0 provides access to an
intriguing negative temperature regime, from the perspective
of time translation symmetry breaking, the sign of ε does not
appear to impact the CDTC. Thus, for the sake of simplicity
and to simplify the visual presentation, we will replace the
oscillator potential cos(q) → 1

2q
2 + 1

24q
4 (leading to ε =

− 1
8 and hence, ferromagnetic spatial synchronization) for the

remainder of the text.
In the absence of a slope, ηθ̃i, in the washboard potential,

the effective model is the sine-Gordon representation of the
equilibrium 1D Ising model, implying that at finite temper-
ature, there will always be a finite density ∼ e−geff/T of π-
domain walls in space, as well as a finite rate of π-phase slips
∼ e−∆eff/T in time, where geff,∆eff are effective quasi-energy
barriers. This is the reason why in 1D one naively expects that
the CDTC phase will exhibit an “activated” autocorrelation
time, τ ∼ e∆eff/T , with only a smooth crossover in T as in 0D.
However, because of the finite slope ηθ̃i in the washboard po-
tential, this equilibrium intuition need not apply. Indeed, there
is evidence that the 1D DC-driven Frenkel-Kontorova model
(DC-driving meaning a finite slope ηθ̃i), shows a first-order
locked to sliding transition at finite temperature [58, 72, 73],
which would map onto a non-equilibrium phase transition be-
tween an activated CDTC and a symmetry unbroken state.

To investigate this possibility numerically, we explore the
system’s behavior as a function of both temperature, T , and
the dimensionless “force”, F , associated with the washboard
slope. To reduce the number of parameters we fix η = 0.005,
set δ = 2η/F , and for each F we adjust ωD, g to keep fixed
ωeff = 0.1 and g = 1.25δ. This choice ensures that throughout
the phase diagram we explore u � 1, F < 1, so that the
oscillators are individually in the bistable regime (Region II).

A quantitative diagnostic of period doubling is given by the
“velocity” parameter, v = 〈 ˙̃θ〉, where the average is taken over
time, space, and different realizations of the stochastic force.
Period doubling corresponds to the locked state where v = 0,
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FIG. 4. Characterizing the CDTC phase transition by measuring
the rate of phase slips, v = 〈 ˙̃θ〉, as a function of damping F and
temperature T . a) High temperature (T = 7). For low damping F ,
v ∼ 0 indicating period doubling, while at large F , v > 0 indicates
that a finite rate of π-phase slips destroys true long-range order in
time. There is a smooth crossover between these two regimes, with
no evidence of hysteresis. b) At lower temperatures, (T = 3.7), we
observe a hysteresis loop that closes into a jump discontinuity as we
increase the simulation time. Curves of different color correspond
to simulations of length nstep ∈ (5k, 30k, 300k, 3m) for each value
of F as we sweep up and down. This suggests a first-order non-
equilibrium phase transition. c) Analogously, we can hold F fixed
and vary T . At F = 0.1, v displays a crossover, while at F = 0.2,
d), there is a sharp transition. Repeating this analysis throughout the
F, T plane allows us to trace out a first-order line which terminates,
yielding the phase diagram in Fig. 2(b).

while v 6= 0 (sliding state) implies a finite rate of phase slips
and (strictly speaking) the destruction of true period doubling.

Several representative cuts of v(F, T ) in the (F, T )-plane
are depicted in Figure 4, which exhibit two regimes. At high
temperatures (Fig. 4a), v(F, T ) varies smoothly with F and
no transition is observed, similar to the zero dimensional case
of a single pendulum. However, at low temperatures (Fig. 4b),
v(F, T ) displays hysteretic behavior as one sweeps the force.
By increasing the time scale of each sweep (e.g. increasing
the number of driving periods at each F from nsteps = 5×103

to 3 × 106), the hysteresis loop closes into a single-valued
curve that exhibits an apparent jump discontinuity. This sug-
gests that the interactions have transformed the bistable Re-
gion II of the individual pendula into a finite-temperature first
order dynamical phase transition of the coupled chain! As an
additional test, one can fix F to its value near the transition
and slowly vary T , reproducing the same discontinuous jump
(Fig. 4d).

While the jump looks sharp to the eye, it is difficult to nu-
merically locate the transition in this manner, because the time
required to close the hysteresis loop diverges at low temper-
ature. To ameliorate this issue, we study the behavior of a
“dynamical” domain wall (DDW) between the period-doubled
and un-doubled states, since presumably it is the nucleation of
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FIG. 5. Competition between period doubled and undoubled dy-
namics near the putative first order transition. By introducing
a dynamical domain wall between the two regimes by hand, a) we
circumvent the exponentially large time scale which leads to hys-
teresis. Similar to Fig. 1, in b) we present qj(2ntD) for nosc = 103

oscillators. We strobe every two driving periods to avoid plotting the
period-doubled oscillations. Thus the red and blue regions indicate
one or the other period doubled orbits, while in white regions there
is no period doubling. At t = 0, we initialize a DDW using an initial
state in which either qj(0) = 0 (left half) or qj(0) ∼

√
2J̄ (right

half), and then evolve for nsteps = 106 periods. If a first order tran-
sition exists at critical force Fc, we expect a sensitive dependence of
the DDW dynamics on F near the transition. Indeed, for F < Fc, the
period doubled region expands and “eats” the non-time-crystalline
region, while for F > Fc, we see the opposite. Meanwhile, close to
the transition point (Fc ∼ 0.2015 for this particular T ), the compe-
tition between the two phases extends for many steps. To locate the
transition precisely, in c) we use a color plot to display the time evo-
lution of the average oscillation amplitude 〈J(t)〉F during the DDW
quench. Since 〈J〉 differs in the two regimes, the long time behavior
converges to one of two possible values as one or the other domain
“wins”.

the first such DDW that requires the largest time. Specifically,
we initialize the left half of the system to be in the symmetry
unbroken state with q, p ∼ 0 and the right half of the system
to be in the period doubled CDTC with q, p ∼

√
2J̄ (Fig. 5a).

We then time evolve for nsteps = 106 to determine which state
“wins.” In Figure 5(b,c), we fix T = 3.7 and repeat this ex-
periment for a very narrow window of F around the putative
transition at Fc. For F < Fc, we observe the CDTC region
expand and “eat” the non-time-crystalline region, while for
F > Fc, we see the opposite behavior. Meanwhile, close to
the critical point, Fc, the competition between the two phases
extends for many steps as the location of the DDW fluctuates,
indicating coexistence [74].

To quantify this competition between the two domains, we
measure the average oscillator amplitude, 〈J(t)〉, as the sys-
tem evolves after the quench [Fig. 5(c)]. Since J differs be-
tween the CDTC and symmetry unbroken states, its spatial av-
erage indicates which domain is winning (although other local
observables would serve just as well). Far from Fc, J con-
verges rapidly in time to the value it takes in either the CDTC
(F < Fc) or symmetry unbroken (F > Fc) state, indicating
that one or the other domain has taken over. As F → Fc, the
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FIG. 6. Depicts the presence of power law correlations at the first
order CDTC transition. a) To probe these correlations, we pin a
pair of dynamical domain walls by spatially modulating F above and
below Fc (note the small white strip on the right, which is the high-
F region), and observe the resulting dynamics qj(2ntD). The DDW
emits a constant stream of π-domain walls into the CDTC region,
visible as boundaries between red and blue domains. Their density
is quantified by the average velocity v(r) = 〈 ˙̃θ(r)〉. b) The density
of π-domain walls follows a power law v(r) ∼ r−α away from the
DDW, where α ≈ 1.13. The exponent appears to be constant over
several temperatures (here T = 0.5, 1).

time required for convergence increases, and we utilize the
long time behavior to accurately determine Fc. One expects
that for larger systems, this convergence time scale will di-
verge, owing to the diffusive dynamics of the DDW, although
we have not investigated this quantitatively [74].

By repeating this analysis as a function of F and T , we
obtain the CDTC phase diagram depicted in Fig. 2(b). We
observe a line of first-order dynamical phase transitions ter-
minating at a point in the (F, T ) plane. As expected, in the
CDTC region of the phase diagram, the rate of phase slips ex-
hibits activated behavior: v ∼ e−∆eff(F )/T [Fig. 2(c)], while
at the first order transition, v jumps discontinuously into a
regime with complete destruction of period doubling.

The nature of the end-point of the first order line is an in-
triguing question for future study. In Fig. 2(d), we show the
magnitude of the jump discontinuity, ∆v, across the first or-
der line for a range of temperatures. The magnitude of the
jump decreases as we approach the end-point of the first order
line, consistent with a scenario in which the phase transition
becomes continuous at the critical end-point. Understanding
this critical point would be a fruitful starting point for a field-
theoretic understanding of the CDTC transition.

If the coarse-grained behavior of the DDWs were governed
by an effective free-energy functional with short-range inter-
actions, then entropic arguments would imply that the putative
transition is in fact rounded-out to a crossover [55]. However,
far from equilibrium, it is unclear that such a free energy based
argument has any relevance. Moreover, a non-equilibrium
system can generically develop power-law correlations which
may mediate power-law interactions between the DDWs. To
explore this, we pin a pair of DDWs by spatially modulating
F slightly above and below its critical value. As depicted in
Fig. 6(a), we find that the DDW boundary between the CDTC
and symmetry-unbroken regions emits a finite density of π-

phase slips. These π-phase slips contribute to a finite velocity,
v(r), that depends on the distance r from the DDW. We ob-
serve v(r) ∼ r−α over almost two decades, where α ∼ 1.13
[Fig. 6(b)]; within the accuracy of our numerics, we obtain
the same exponent α for cuts across the transition at two dif-
ferent temperatures T = 0.5, 1. This power law behavior is
certainly distinct from the expectations for an equilibrium first
order transition.

Finally, we will now consider a diagnostic of the CDTC
phase which is particularly amenable to experiments [59],
namely, the power spectrum of qj ; in the supplementary in-
formation [59], we propose two possible experimental re-
alizations of our model using either a trapped-ion nano-
friction simulator or a coupled array of superconducting
junctions [75–77]. We define the “stroboscopic” Fourier
transform by q(ω, k) ≡ ∑

n,j(−1)nei(ωn−kj)qj(ntD).
In order to estimate the power spectrum, S(ω, k) =
〈q(−ω,−k)q(ω, k)〉/noscnsteps, we utilize Welch’s method
and average over the stochastic noise [78]. A typical spectral
function is illustrated in Figure 7(a) and reveals the dispersion
relation of the effective Hamiltonian in Eqn. (13).

Perfect ferromagnetic period-doubling would manifest as a
δ-function peak at ω, k = 0. A shift in the peak (away from
ω = 0) indicates unlocking from the subharmonic response
ωD/2. Since (−1)nq(ntD) ∼

√
2J̄ cos(θ̃(t)), this shift is pre-

cisely the velocity v = 〈 ˙̃θ〉 we’ve discussed, while the broad-
ening is analogous to a Debye-Waller factor. In Figure 7(b),
we depict S(ω, 0) for a range of temperatures across the phase
transition and observe a qualitative transformation below Tc.
As the temperature decreases even further, the spectral func-
tion has to be averaged over extremely long times in order
to detect the exponentially small shift and broadening of the
peak away from ω = 0; nevertheless, it can be used to experi-
mentally detect the first-order jump in v shown in Fig. 4(d).

Discussion—We have demonstrated that a periodically
driven, one-dimensional system at finite temperature can ex-
hibit a first-order dynamical phase transition between an acti-
vated classical discrete time crystal and a symmetry-unbroken
phase. This behavior depends crucially on an interplay
between interactions and non-equilibrium driving, without
which a transition would be forbidden.

Our work opens the door to a number of intriguing future
directions. First, while the 1D CDTC model studied here is
thermally activated, our understanding of Gács’ result sug-
gests that true CDTCs are in principle possible. If so, is there
a simple “physical” model, like the driven-FK chain studied
here, which exhibits a true CDTC, or is the whole complexity
of the Gács result required?

In d > 1, where ergodicity can certainly be broken with-
out requiring the full complexity of Gács’ result (for exam-
ple in Toom’s model [51]), the possibility of a true CDTC is
still complex. This issue was considered in the context of cer-
tain 2D PCAs, where it has been argued that a higher-order
subharmonic response (e.g. periodic-tripling, k = 3) cannot
have an infinite auto-correlation time, while a period-doubled
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FIG. 7. Probing the CDTC using the stroboscopic spectral
function. a) The stroboscopic spectral function S(ω, k) ∝
〈|DFT [(−1)nqj(ntD)] |2〉. In this convention, the period doubled
component is mapped to ω = k = 0. Since the autocorrelation
time is unmeasurable over the nsteps = 15000 used to take the data,
there is a δ-function peak at the origin we have removed by hand
to preserve the scale. The residual noise spectrum reveals the mode
ωeff(k) of the effective Floquet-Magnus Hamiltonian Eqn. (13). b)
S(ω, 0) as a function of frequency at several temperatures, holding
the other parameters (e.g., F, η, g) fixed. The lowest temperatures
(purple, black) lie below the first-order transition, T < Tc and the
peaks (if resolved) would exhibit a very small shift away from ω = 0
due to the exponentially-rare activated phase slips. For the remaining
curves T > Tc, and the peaks are strongly shifted away from ω = 0
indicating unlocking of the subharmonic response.

response could [54]. The basic argument is that if a fluctu-
ation nucleates a bubble of the neighboring subharmonic or-
bit (the generalization of our π-phase slips), the domain wall
will generically experience a force which causes the bubble
to expand, destroying the CDTC. They argue that this force is
absent for k = 2 because an Ising-like domain wall does not
have an orientation, leading to the distinction between k = 2
and k > 2.

Our mapping to a tilted sine-Gordon model provides a new
perspective on their analysis. For a k-th order subharmonic re-
sponse, as would occur for a k : 1 parametric resonance, one
can generalize our effective Hamiltonian by simply replacing
the period of the washboard potential with cos(kθ̃j). As we
have emphasized, when the domain wall is smooth it still has
a definite handedness even when k = 2, so the distinction
between k = 2 and k > 2 no longer seems so important.
Indeed, in the continuum limit, k drops out of the resulting
sine-Gordon model. For a tilted sine-Gordon model satisfy-
ing detailed balance, the “locked” phase, with true long-range
order at the subharmonic period, is unstable in any dimen-
sion: i.e. for any non-zero tilt there is only a finite energy
barrier to create a phase slip domain, which, once nucleated,
grows rapidly to infinite size due to the tilt. However, nucle-
ation could in principle be prevented by non-equilibrium ef-
fects. Furthermore, the locking to a commensurate frequency
and the existence of spontaneous oscillations are potentially
distinct: even the “sliding” phase may exhibit long-range or
quasi-long-range [79] order at a frequency shifted from ωD/2.
Such “incommensurate” temporal order was discussed in the
context of driven periodic media [20].

Furthermore, while the handedness (and hence force) on
domain walls is well defined in the sine-Gordon continuum
limit, the lattice allows for 2π-vortices at which the orientation
of the domain wall reverses. These vortices cost finite energy
when localized to the domain wall, where they may proliferate
due to fluctuations. This may provide a mechanism which
renormalizes the force on the domain walls to zero, stabilizing
a true CDTC for k = 2 and d > 1.

Another interesting scenario is to consider the η, T → 0
limit of our model, which reduces to closed Hamiltonian dy-
namics. Here, we observe that the dynamics remain period-
doubled out to extremely long time scales (e.g. many millions
of driving cycles). This behavior appears to be the classical
analog [80, 81] of a “prethermal” time crystal and arises from
a mismatch between the driving frequency ωD and the effec-
tive resonance frequency ωeff [31, 64, 80–82].

The existence of a first-order line terminating at a critical
point is reminiscent of the equilibrium liquid-gas transition.
To this end, at the critical point, one might hope to develop
a non-equilibrium field theory for the transition within the
Martin-Siggia-Rose path integral formalism [83, 84]. Such
a field theory might also be used to determine the precise re-
lation between classical and quantum time-crystals by analyz-
ing the semiclassical limit of its Keldysh path integral.

Finally, we comment on the relation of CDTC order to syn-
chronization transitions, which arise, for example, in the Ku-
ramoto model [12]. Adding a weak external periodic drive
to a synchronized model, at a frequency which is a multiple
of the synchronized one, presumably converts the synchro-
nized phase into a rigid subharmonic response [1]. However,
this does not mean the Kuramoto model is an example of a
CDTC. First, the Kuramoto model is usually understood as an
all-to-all model, which is non-local, so one needs to begin by
introducing a geometry to the couplings (chain, array, etc.).
Second, the usual Kuramoto model is dissipative, for which
we have emphasized there are already many examples of rigid
subharmonic responses. So one should either (a) consider the
Hamiltonian realization of the Kuramoto model, with no fric-
tion [85] (the closed case) or (b) couple the model to spatio-
temporal noise [86] e.g. a Langevin force (the open case). The
stability of synchronization, in the sense of an infinite auto-
correlation time, in a local model, is to our knowledge un-
known for both the closed and open cases [86].
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