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ARTICLE INFO ABSTRACT

The common belief that glass structure is completely frozen-in at room temperature is challenged at both
macroscopic and atomic scales. Here, we demonstrate an analytical method to elucidate the fine details of a
continuous structural change of fused silica (FS) at temperatures below the glass-transition temperature using in-
situ neutron total scattering. We find that the SiO,4 tetrahedron expands through the entire temperature range
with a local coefficient of thermal expansion of 9.1 x 10~® K™, while the average medium-range distance,
derived from the first sharp diffraction peak of the structure factor, expands at a rate of 21 x 10~ ® K™, Such an
expansion difference reflects glass-structure changes within the “rigid-unit mode” model, where each tetra-
hedron behaves as a rigid unit and the flexible rotations between rigid units lead to more than two times higher
medium-range thermal expansion. We further demonstrate that such rotations change the shape of individual
rings, leading to a measurable change in the first sharp diffraction peak (FSDP). This study paves the way to
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measure the structural changes of other silicate glasses, especially through the glass transition.

1. Introduction

It is commonly believed that glass structure is frozen at room tem-
perature. Viscous flow of medieval cathedral glass is a debunked urban
legend and has been quantified to be too slow to be measurable [1].
However, this view is challenged at both macroscopic and atomic
scales. The very first glass-aging phenomenon, referred to as the
“thermometer effect” [2], was reported in the nineteenth century [3],
where the ice-point reading drifted over a period of forty five years due
to the glass dimensional change. A well-controlled room-temperature
dimensional measurement of an industrial silicate glass showed a 10
parts per million (ppm) shrinkage over a 1.5 year period, corresponding
to a daily change of 18 parts per billion (ppb) [4]. Fused silica (FS),
considered as a stable glass, also showed a 0.5 ppb compaction per day
[5]. X-ray photon correlation spectroscopy (XPCS) has directly revealed

the existence of some structural rearrangements in sodium silicate glass
on a length scale of 3-7 A within a few minutes, at a temperature far
below T, [6]. In conclusion, the glass structure can change at low T.
The low-T glass relaxation can only be induced by low-energy
structural deformations, which most likely represent conformational
changes of rings without bond breakage, similar to those observed in
crystalline polymorphs of SiO,. The most obvious candidate for such
low-energy structural deformations is the flexible rotations of SiO,4 rigid
units, defined as the rigid-unit mode (RUM) for framework silicate
crystals [7,8]. The basic idea of the rigid unit is that the intra-SiO4
tetrahedral forces (Si-O stretching and O-Si-O bending) are much
stronger than the inter-tetrahedral forces (the corner-linked Si-O-Si
torsion). A very high-energy penalty is required to distort a tetrahedron;
therefore, it should be treated as a rigid unit. Instead, low-energy de-
formations are achieved by the Si-O-Si rotation, including both bond-
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angle and dihedral torsion-angle changes. For both silicate glasses and
crystals, RUMs can be calculated by molecular-dynamics simulations
with a RUM analysis [8-11], and have been experimentally observed by
inelastic-neutron total-scattering measurements [12]. The RUM model
was originally developed to explain the displacive phase transitions of
crystalline framework silicates [7,8]. A rigid-unit-mode (RUM) study
showed that the a—f3 quartz phase transition involves Si-O-Si rotations
with a preserved bond angle [8]; the torsion between rigid SiO4 units
through flexible Si-O-Si rotations occurs through the whole temperature
range, underlying the dynamic disorder [13].

Later, RUM theory was expanded to silicate glasses, in which RUMs
are called “floppy modes” [14]. The floppy modes are low-energy de-
formations composed of linked rigid units, and can propagate, with
these rigid units rotating relative to each other without distorting.
Further molecular-dynamics simulations and RUM analyses [10] con-
firmed the same flexibility in the glass as in the crystal, which allows
the glass structure to undergo large spontaneous changes through re-
orientations of the SiO4 tetrahedra with a very low-energy cost.
Therefore, we use RUM theory to address the physical origin of the
relaxation of the glass structure below the glass-transition temperature,
a challenging unsolved problem with both fundamental and practical
importance. During the same time frame (2000) when the RUM model
was applied to silicate glasses, Nemilov already proposed the same idea
as ours today, albeit not using the RUM terminology. He attributed the
structural origin of low-T relaxation, also called B-relaxation, to the
displacive movement of bridging oxygen atoms (O in the Si-O-Si
bonding) [15].

In this study, we try to reveal “how glass structure changes with
rigid-unit-mode behavior” using in-situ neutron total scattering for FS
glass. We demonstrate two analytical methods to elucidate the fine
details of the continuous structural change of FS from room tempera-
ture to 950 °C. The short-range structural information is derived from
the nearest Si-O and O-O atom pairs of the pair distribution function in
real space. The medium-range structural information is derived from
the first sharp diffraction peak (FSDP) of the structure factor in re-
ciprocal space. Both nearest Si-O and O-O atom pairs, which form the
basic building block, the SiO, tetrahedron, show similar local coeffi-
cients of thermal expansion (CTE) of 9.1 x 10~ ® K™!, indicating that
the tetrahedron is relatively rigid. In contrast, the average medium-
range distance expands with a CTE of 21 X 107 K™, reflecting the
flexible rotations between tetrahedra, which lead to a more than two
times higher expansion in the medium range. Such rigid SiO4-unit
torsion by flexible Si-O-Si angle rotation leads to nearest-tetrahedra
rearrangements, which eventually causes a change in the shape of the
silicate rings in the medium range. This is reflected in the subtle but
noticeable area and shape change of the first sharp diffraction peak
(FSDP). Using the newly developed RingFSDP method [16], the ring-
structure evolution with temperature can be quantified. This method
paves the way to study through-T, structural changes of other silicate
glasses.

2. Experimental

Fused silica 7940 was core-drilled into a 6 mm diameter and 24 mm
long rod. The glass rod was loaded into a vanadium can, and heated in
an ILL furnace with a 5°C/min ramping rate with a staircase profile,
from room temperature to 950 °C. At each data-collection temperature,
the sample was held isothermally for 25 min, which included 5 min of
hold time followed by 20 min of data collection. A room-temperature
scan was conducted first, the 20-minute scan was performed at every
150 °C interval until 750 °C, and then with 10°C-25 °C intervals till
950 °C. Time-of-flight (TOF) neutron-scattering measurements were
performed on the Nanoscale-Ordered Materials Diffractometer
(NOMAD) at the Spallation Neutron Source (SNS), Oak Ridge National
Laboratory [17]. All the structure factors used in this study were nor-
malized to an absolute scale utilizing the low-r region of G(r) criterion,
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as described in [18].
3. Results

3.1. . In situ high-temperature neutron total scattering

As a prototypical network-forming glass, the temperature-induced
structural change of FS has been studied by in-situ neutron [19,20] and
X-ray [21,22] total-scattering analyses. Although each study has its own
focus, two common structural changes are determined as the tem-
perature increases: as a result of thermal vibration, the nearest-
neighbor Si-O bond length increases and the peak area of the first sharp
diffraction peak (FSDP) decreases. A little-noticed detail is a small
shoulder that forms on the low-Q side of the third peak in the neutron
structure factor at around 4.5 A~', which corresponds to the second
peak in the X-ray S(Q). This shoulder formation is clearly exhibited in
the S(Q) figures of all papers, but is only mentioned in the X-ray studies
without further explanation [21,22]. Similarly, this shoulder is also
present in the in-situ neutron S(Q)’s of more complicated soda-lime
glasses [23].

The reduced structure factor, F(Q) (F(Q)=Q[S(Q)—1]), of FS as a
function of temperature is presented in Fig. 1. The statistical errors of
the measured data points in F(Q) for RT and 950 °C glasses are plotted
in the Extended Data Fig. 1. The statistic errors are relatively low for the
low-Q range but significantly increase for the high-Q range, especially
at 950 °C. As described below, we only use the low-Q FSDP to derive the
medium-range structure information, so that the high errors in high-Q
range do not significantly affect our analytical accuracy. Moreover,
according to the general practice in the diffraction field for crystalline
materials, such statistical errors are not propagated during further
analyses from peak fitting, such as lattice constants, crystallite size, or
residual stress determination.

As shown in Fig. 1, beyond about 4 A~! the structure factor is
dominated by the two sharpest Fourier components representing the
intra-tetrahedron Si-O and O-O correlations. As temperature increases,
the O-O correlation broadens faster than the Si-O correlation. This be-
havior is to be expected, since the O-atoms are separated by two Si-O
bonds. As explained in Section 3.2.2, the observed changes in S(Q) are
reflective of that, leading in particular to the formation of the shoulder
at 4.5 A~1, as shown in the insert of Fig. 1.

The reduced pair distribution functions, G(r), obtained by direct
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Fig. 1. Reduced structure factor functions, F(Q), of FS glass measured at dif-
ferent temperatures. Insert: zoomed first three low-Q peaks, with the 4.5 A™*
shoulder formation highlighted by the red rectangle. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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Fig. 2. Reduced pair distribution functions G(r) of FS glass obtained by Fourier
transformation with Quax = 50 A~1. Insert: zoomed Si-O and 0-O peaks show
broadening as well as a long-tail formation on the high-r side as the temperature
increases.

(Qmax = 50 i\’l), are shown in Fig. 2. The Fourier transform propa-
gation error for RT and 950 °C glasses is plotted in the Extended Data
Fig. 2. Similar to F(Q), the G(r) errors are relatively low for the low-r
range but significantly increase for the high-r range, especially at
950 °C. Since we only use the first two low-r peaks (Si-O and O-O atom-
pair correlation) to derive the short-range structure information, the
high errors in high-r range do not significantly affect our analytical
accuracy. Again the Fourier transformation errors are not propagated
during the further peak fitting as described in Section 3.2.2.

The nearest-neighbor Si-O correlation is asymmetric with a long-r
tail, indicating that some Si-O bonds are under strain. The asymmetry
might also be caused by a second small high-r peak or/and anharmo-
nicity. The average oxygen coordination number around silicon atoms,
ng, obtained from integration of the first Si-O peak in the radial dis-
tribution function, R(r) (R(r) = 4nrp, + rG(r), with p, being the
number density) [24],is 4.1 * 0.2 for all temperatures, indicating that
the SiO, tetrahedra remain intact.

3.2. . Method I tetrahedron expansion for short-range structure

3.2.1. . Reciprocal-space representation of intra-tetrahedral bonds — Is;.
o(Q) and Ip.0(Q)

As shown in the insert of Fig. 2, both nearest-neighbor peaks from
Si-O and O-O correlations become broader and asymmetrical as the
temperature increases. As demonstrated in Extended Data Fig. 1, direct
peak fitting of T(r) (T (r) = 4nrp, + G(r)) can be used to derive correct
mean-square atom-pair distance deviation <u_,> values that match
with reported data [20], but give two times higher (u3_,) values at
elevated temperatures. To derive accurate structural information, we
choose to work with the reciprocal-space representation of atom-pair
correlations since it expands the signal and allows for more reliable
model fitting, as demonstrated in our RingFSDP method [16].

Since our Fourier transformation algorithm only allows us to com-
pute the Fourier transformation of G(r) over the entire range of r values
rather than over the extent of the individual single peaks of G(r), we use
the following procedure to derive the reciprocal-space representation, I
(Q)si.0, for the nearest-neighbor Si-O atom pairs in G(r). As shown in
Fig. 3(a), G(r) (red curve) can be decomposed into two additive com-
ponents: the Si-O nearest-neighbor peak itself, shown in black, and
everything else, denoted as G’(r) and shown in blue. Fourier transfor-
mation of G(r) and G’(r) leads to the corresponding reduced structure

QmEIX
factors, F(Q) and F’(Q), with F(Q) = f G(r)sin(Qr)dr. As shown in
0
Fig. 3(b), Isi.o(Q) is the difference between F’(Q) and F(Q), shown as
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the black dot curve. It is mathematically equivalent to the direct Fourier
transformation of the nearest-neighbor Si-O atom pairs. Is;. o(Q) appears
as a decaying sine wave and it matches perfectly with F(Q) (red) in the
region of Q = 22.5 A7, indicating that this region is determined by the
short-range Si-O bonds. The same procedure, as illustrated in Fig. 3(c)
and (d), is applied to obtain I5.o(Q) for the first O-O atom pairs.

3.2.2. . Fitting for atom-pair lengths and DW factors

To quantify the atom-pair length and DW factor, we use the equa-
tions that describe the contribution of a single atomic pair, ij, to the
partial correlation function, G(r), in real-space (Eq. (1)) [25].

Assuming that an atomic pair, ij, has a Gaussian distribution, with a
mean value r; and a root-mean-square (RMS) deviation in distance,
(uif)“ 2, its contribution to the weighted partial correlation function
T;i(r) (T (r) = 4nrp, + G(r)) is given by Eq. (1):

n/ x Bjj/c; (r —ry)?
’I;J(r) = : \1/2 exp| — 2u2

¥y~ 27 (uj i )
The n;/ are coordination numbers, which are the number of atoms of

cicjbibj
(Zeib)?
atomic fraction and neutron-scattering length of chemical species i,

respectively.
The contribution of the same atomic pair described in Eq. (1) to the
reduced total structure factor, [;(Q), is represented by Eq. (2):

type j around atoms of type i, and B; = with ¢; and b; being the

J e:
1@ = BB G exp (-2 < up > 12)
i} (2

Egs. (1) and (2) illustrate the same physical origin - a Gaussian-
shaped atomic-pair correlation, ij, in different spaces. They contain
exactly the same structural information; therefore, fitting in reciprocal
space does not solve the high-T asymmetric, non-Gaussian peak-shape
issue. Theoretically, fitting either a single Gaussian peak in T(r) or a
decaying sine wave in I(Q) should provide the same structural values,
Tijs (ué) and n/. However, the two Gaussian peak-fitting parameters,
width ((u,-f-)”z) and area (n,-j), are often highly correlated with each
other, leading to unreliable fitting, as shown by the unphysically high
(ud_o) values at high temperature plotted in Extended Data Fig. 3. In
contrast, the Fourier-transformed I(Q) expands the signal and separates
the (uij2 )12 factor from n;/, where n// is directly determined by the height
of the first sine peak and (u,-f-) is the decay rate of the sine wave. It
should be noted that the 1/ determined from the I(Q) fitting is heavily
affected by the r-range chosen for the G(r);—I(Q); transformation;
therefore, it should not be used for coordination-number calculations.
The best practice to determine the coordination number from neutron-
scattering data is still by the peak integration of R(r), as stated in [26].

The advantage of fitting I(Q) instead of T(r) is more discernible for
the high-temperature data, where the atomic-pair correlations become
more asymmetric and depart from a Gaussian shape. This is demon-
strated by the dependency factors of (u,f-) and n;/ generated from fitting.
The dependency factor reflects the correlation between two fitting
parameters and has a value from zero to one [27]. The higher the value,
the more is the derived parameter correlated with the other fitting
parameter and is less reliable. For the Ts;_ o(7) single-peak fitting, the RT
dependency factors of (ui}) and n/ are 0.452 and 0.596, respectively;
they increase to 0.534 and 0.711, respectively, for the 950 °C data. For
the Isio(Q) decayed sine-wave fitting, the RT dependency factors of
(uif) and n/ are 0.361 and 0.357, respectively; they remain almost
unchanged as 0.336 and 0.334, respectively, for the 950 °C data.

The F(Q) and I(Q) curves of Si-O and O-O atom pairs for FS at four
different temperatures are shown in Fig. 4; the fitted curve (dot) mat-
ches well with the measured one (solid), and all the I(Q) fittings show a
reduced mean-square-error x> < 0.006. A Python code “Tetrahedron
Expansion” was developed to batch process the F(Q) files to obtain I(Q)
of Si-O and O-O atom pairs and then profile-fit I(Q). As demonstrated in
Fig. 4, The F(Q) in the range of 4.5 A" is contributed by the positive I
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Fig. 3. Reciprocal-space I(Q)s obtained by Fourier transformation of G(r)s;.0 and G(1)o.oc for fused silica. (a) Real space: original G(r) (red); G’(r) with 1st Si-O pair
subtracted (blue); Gg; o(r) (black), both blue and black curves are shifted down by 2 for clarity. (b) Reciprocal space: F(Q) of original G() (red); F’(Q) of G'(r) (blue); I
(Q) of 1st Si-O pairs (black), where I(Q) = F(Q)-F’(Q). Same notation for O-O pairs in (c) and (d). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 4. Structure factor overlay for FS at four temperatures: (a) F(Q); (b) I(Q)s;.
05 (©) I(Q)o.o- The measured I(Q) curves are shown as solid lines and their fitted
data are plotted by dotted curves in (b) & (c); the difference between measured
and fitted data (dashed curve) is plotted down by —2 for clarity.

(Q)si.o and negative I(Q)o.o. For high-T glass, the negative contribution
from I(Q)o.0 decays much faster than the decaying of positive Si-O
contribution, which leads to a positive shoulder formation compared to
RT glass, as marked by the red rectangle in the insert of Fig. 1.

3.2.3. . SiO, tetrahedron expansion

The Si-O and O-O atom-pair length changes with T, derived from I
(Q) fitting, are plotted in Fig. 5(a) and (b); their thermal expansions are
calculated by the expression Expansiony = "% and are plotted in
Fig. 5(c). Both atom pairs show a similar expansion rate, while the O-O
data are more scattered than the Si-O data due to the relatively weaker
signal. A local coefficient of thermal expansion (CTE), 9.1(9) X 10~°
(K1), is obtained from a linear fitting of the Si-O atom-pair expansion
data with the errors calculated from the Is; o(Q) fitting result. As ex-
plained earlier, the G(r) Fourier transformation error is not propagated
for the CTE error calculation. We also do not consider any systematic
error contribution. First it was minimized by the instrument calibration.
Second, in our study, any systematic error (if any) would have the same
effect on all the atom-pair distances and, hence, would not change the
CTE slope.

The derived CTE value is in the range of reported local CTE results
(6-12.6) x 107° K~ ! of various silicate crystalline materials [28].
These values were calculated by a TLS rigid-body analysis, which has
been applied to crystal-structure refinements of various silicate phases
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Fig. 5. Temperature dependence of Si-O (a) and O-O (b) atom-pair distances
determined by I(Q) fitting and their expansions with temperature (c). The fit-
ting error is much smaller than the symbol size. The CTE slope (black dot line)
is determined by a linear fitting of Si-O expansion data weighted by the Is;.0(Q)
fitting error.

using Bragg-diffraction data [28]. Our result is larger than the local CTE
value determined for SiO, crystalline polymorphs, viz.
2.2(4) x 107% K~! [29]. However, it is comparable with Si-O bond
CTE values of soda-lime silicate glass (6(1) X 107% K=Y [23] and
potassium disilicate glass (9(1) X 107% K™Y [30], both determined
from Si-O bond-length changes measured by neutron scattering.

3.2.4. . Atom-pair distance deviation change

The mean-square atom-pair distance deviations, (u2_o) and (u3_,),
are also derived from I(Q)s;.0 and I(Q)o.o fitting of total scattering data.
As shown by the ball symbols in Fig. 6, they increase linearly with
temperature. For the same temperature, (u3_,) is about three to four
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Fig. 6. Mean-square atom pair distance deviation (ui}) change with tempera-
ture of FS and cristobalite, derived from total scattering. The data for Si-O atom
pairs are shown in black and for O-O atom pairs in red. The (uZ_,) (black ball)
and (ucz,_o) (red ball) of FS are derived from the I(Q)s;.0 and I(Q)o.o fitting,
with error bars (smaller than symbol size) shown for four temperatures. The
(ug_o) (black hexagon) and (u3_,) (red hexagon) for cristobalite are from
[32]. The RT FS data plotted as star symbols are from Ref. [31], and in-situ FS
data plotted as crossed circles are from [20]. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)

Journal of Non-Crystalline Solids xxx (xxxX) Xxxx

times higher than (ug_o).

The in-situ [20] as well as room-temperature data [31] (ué_,) and
(u@_o) of FS have been measured by neutron total scattering. They are
plotted as star and crossed circle symbols in Fig. 6, matching with our
measured data. For comparison, the (uZ_,) and (u3_o) values of cris-
tobalite crystal determined by total scattering [32] are plotted as the
hexagon symbols in Fig. 6. The (u%_o) and (u3_,) values for the crystal
are systematically lower than the corresponding values for the glass.
This is because the atom pair-distance deviation, <u,.]2.>1/ 2 for the
glass is caused by both static disorder and thermal vibration, while the
value for the crystal results predominantly from thermal vibrations
only. The difference between crystal and glass for (u3_o) is larger than
that for (uZ_o). This is also expected because the bond-length variation
of Si-O atom pairs only contains the stretching mode, which is the
length change along the bond direction; in contrast, the pair distance
deviation of O-O atom pairs contains both stretching and weaker an-
gular modes. Our FS data, in line with reported values, indicate that the
I(Q)-fitting method produces accurate values of (u,-jz-), which will pro-
vide important through-T, structural-change information for silicate
glasses.

3.3. . Method II: refined RingFSDP for medium-range — ring-structural
changes

3.3.1. . Refined RingFSDP method

We recently developed a method, RingFSDP, to quantify the ring-
size distribution of silicate glasses from the FSDP of the neutron-scat-
tering structure factor [16]. The FSDP can be deconvoluted into three
Gaussian peaks with fixed positions using a Fourier transformation —
fitting — back-Fourier transformation method. Since a Gaussian peak is
defined by three parameters, position, height and width, a total of nine
parameters is needed for deconvolution of the FSDP into three in-
dividual peaks. However, nine variables are too much for a reliable
fitting. Therefore, we fix the three position values, which are derived
from the mean values of 80 fittings, and only refine six parameters
(three heights and three widths). The real space representation I(r) of
FSDP can be fitted by Eq. (3):

I(r) =A X exp[—(i)ﬁ]
X sin(zr—’f X r) + A4, % exp[—(i)ﬁ]
X sin(zr—z X r) + Az X exp[—(é)ﬁ] X sin(zr—;r X r) 3)

where A;, A, and A3 are the amplitudes, A, A, and A3 are the corre-
lation lengths, f = 2.33, and three constant periodicities (r;, 2 and r3)
are fixed as 3.15, 3.70 and 4.30 A, respectively.

Each peak is ascribed to a certain-sized ring and its integrated area
is proportional to the absolute number of such specified size rings. The
relative ring-size distribution (f,,) is calculated from the ratio of the
integrated peak area (Is,()) to the total FSDP area (Igpp(g)) using
Eq. (4):

_ I
" ISFSDP(Q) @
Then, the average medium-range distance can be calculated using
Eq. (5):
Average medium — range distancegr = f<yying X 3.145 + fSrmg X 3.70

+ f26ring X 4.30 (5)

where f, is the relative ring size distribution, the three fixed r-values of
3.145, 3.70, and 4.30 A being derived experimentally from the fitting of
80 glass data-sets measured at room temperature [16].

For a glass measured at a non-ambient temperature, the basic
building block, the SiO,4 tetrahedron, expands, as shown in Fig. 5. A ring
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Table 1

Refinement description of refined RingFSDP method.
Refinement Position (r) Amplitude (A) Correlation length (A) Purpose
First Fixed by RT values Refined Refined Determine medium-range distance expansion factor ar
Second Refined using constraint o Refined Refined Ring structure evolution

formed by tetrahedra should also expand, which means that the three
fixed positions should also increase accordingly. However, as discussed
above, a direct refinement of a total of nine parameters (three positions,
three heights and three widths) does not lead to a reliable fitting. In-
stead, we modify the RingFSDP method with a two-step refinement —
the Refined RingFSDP method, as summarized in Table 1.

First, we apply the original RingFSDP method by refining six height
and width parameters with three fixed positions. Even though this is not
physically correct, our goal is to determine the average medium-range
distance at that specified temperature (Average medium-range distancer)
using Eq. (5). Then, we can calculate the average medium-range dis-
tance expansion factor ar by referencing the average medium-range
distance at RT using Eq. (6):

ar = Average medium — range distancer/Average medium

— range distancegy 6)

We then carry out a second refinement with three expanded r-po-
sitions refined around r X ar by a constraint of = 0.01. Good fits are
achieved for all 16 diffraction patterns measured at different tem-
peratures with a reduced mean-square-error % < 1.0 X 10~ * Fig. 7(a)
shows the zoomed S(Q) FSDP overlay of RT and 950 °C glass data. In
addition to the peak-area decrease, the other change of note is that the
FSDP shape skews more in the high-Q part for the 950 °C pattern. The
FSDP deconvolution results for RT and 950 °C data are plotted in
Fig. 7(b) and (C). For each data-set, three individual peaks are plotted;
the sum (dotted green curve) is in fair agreement with the experimental
I(r) (solid curve).

The absolute integrated peak area of S,(Q) back-Fourier
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Fig. 7. Room-temperature and 950 °C FSDP and their fitting for FS. (a)
Zoomed S(Q)-FSDP of RT (black) and 950 °C (red); (b) & (¢) RT and 950 °C
deconvolution of the FSDP by Refined RingFSDP. Three periodicities of the RT
pattern were fixed to the values of 3.145, 3.70, and 4.30 A. For the 950 °C data-
set, three periodicities were refined to 3.158, 3.732, and 4.344 Ain response to
thermal expansion. Comparing the RT to the 950 °C data, the absolute areas
(Isnq)) of all sized rings decrease with increasing temperature, but the peak
area of small size <4-ring decreases more rapidly than that of large size rings,
leading to the FSDP shape skewing in the high-Q part. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

transformed from I(r) fitting and their relative fraction f,, I(r) fitting
parameters correlation length A, and periodicity r, are plotted with
temperature in Fig. 8(a)-(d). The average medium-range distance at
each T can be calculated by Eq. (7):

Average medium — range distancer = f .., X F<aring + fying X Voring
+ fzéring X r26ring (7)

where f;, ing is the relative ring size distribution defined by Eq. (4)
plotted in Fig. 8(b), rn.ring is the medium-range distance refined with
constraint arand plotted in Fig. 8(d).

The average medium-range distance change with T, is plotted in
Fig. 8(e) with values shown by left-axis. Its thermal expansion value
calculated by Expansionr = ““—2L is shown by the right-axis of
Fig. 8(e). Since the error of average medium-range distance (8,) is from
the Irspp(r) deconvolution and fitting, it can be estimated approxi-
mately from the fitting merit - reduced x° by \/)(2 X degree of freedom .
Then the error of expansion Sexpansion is calculated as J2 X &, using the
division rule of error propagation. The 8.xpansion €rrors are plotted as the
vertical bar in Fig. 8(e). Therefore, another local CTE, derived by the
linear fitting of expansion data, is 21(2) x 10~ % K~! with the errors
calculated from the Irspp(r) fitting result as discussed above. As ex-
plained earlier, the F(Q) statistic error is not propagated during the CTE
error calculation. This medium-range CTE is more than two times
higher than short-range CTE as 9.1(9) x 10~ ® K~ !. The significant CTE
difference between two distance ranges reflects glass-structure changes
within the “rigid-unit mode” model, where each tetrahedron behaves as
a rigid unit with low short-range CTE and the flexible rotations between
rigid units lead to high medium-range CTE.

As shown in Fig. 8(a)-(d), the most significant structural change is
the correlation length of < 4-membered ring A, which drops sig-
nificantly as temperature increases. This is also reflected by the sig-
nificant area drop of < 4-ring for 950 °C glass compared to RT, as
shown in Fig. 7(b) and (c). The structural evolution derived from area
and shape changes are illustrated in the next two sections.

3.3.2. . FSDP-area decrease

In-situ neutron [19,20] and X-ray [21,22] total-scattering measure-
ments of fused silica show that the peak area of the first sharp dif-
fraction peak (FSDP) decreases with increasing temperature. In agree-
ment with earlier studies that show a 10% FSDP intensity drop from 25
to 1036 °C [20], our data show that the integrated FSDP-area decreases
by 9% at 950 °C relative to the room-temperature (RT) value. It is quite
common in crystals with rigid polyhedral building blocks — e.g., a
molecular crystal, such as CCl, — that the local structure of the building
block deforms very little relative to the motions of the building blocks
relative to each other. While the ‘molecular’ building blocks, the SiO4
tetrahedra, are not completely decoupled in fully networked SiO,, it is
reasonable to assume, and is shown in the following, that the relative
motion of the building blocks is the main reason for the decrease in the
intensity of the FSDP.

In our recently developed method (RingFSDP) [16], the FSDP of a
silicate glass can be deconvoluted into three components, each attrib-
uted to different numbers of ring members. Adopting the general in-
tensity expression for Bragg peaks [33], the FSDP area (Irspp) can be
simplified as Eq. (8):

Irspp = 2 [A Ny rings |Bn—rings |ZeXp(_Qrf—rings<urf—rings>/2)] (8)



Y. Shi, et al.

Journal of Non-Crystalline Solids xxx (xxxX) Xxxx

L2 b c
oof \°\°
T~
.. | o
o8} et o o 9 -'”'\'>o4‘/"‘z
oo —0—0—o—9- [o—o—*

g sk 4 L e 4
2 0sfe—e_, — 15 E’ 25
c T —e-ayr —— 6 ]
§ | —s@ Ry e |2
G |~ S4(Q) L e NI N 3
g 04 - SS(Q) " u"é_' 7 ‘\\‘\
g i ——S6(Q) wl [ 0\\
< [P \‘\

02f 6| \

01 ‘\‘\‘ € 2
o e e !
00 0

a4 d Fig. 8. Deconvolution results obtained by the Refined
e RingFSDP method and the average medium-range

ok P distance change with T. (a) Absolute integrated peak
area of S(Q) and its three deconvoluted peaks; (b) The

——r4 relative ring-size distribution; (c) Correlation length A;

P r5 (d) The refined r-values constrained by the ring-ex-
——r6 pansion factor a. The fitting errors in plot (a) to (d) are
e smaller than symbol size. (¢) The average medium-

e range distance change (left-axis) and its expansion

(right-axis) with T, the vertical bars represent the ex-
pansion errors by Irspp(r) fitting. The CTE slope (red
38 dot line) is determined by a linear fitting of expansion

‘/./‘/"‘"M data weighted by the Irspp(r) fitting error.

N 5 N N N N
800 1000 0 200 400 600 800 1000

T

N N o N N N
0 200 400 600 300 1000 0 200 400 600

30 N N N N
0 200 400 600 800 1000

—_ e 1

[T a c
& <420 % % + +}%}%}+ 0.02 _%
L [
o O
5 416 . _ 6,1 - 0.01 8
- 24 n CTE=21(2)x10"°K <
g5 L (L
< 412 Lm , ! . 1 , 1 , 1 4 0.00

0 200 400 600 800 1000

where A is a scale factor related to the instrument configuration and
should be 1 for a normalized S(Q); Ny.rings represents the number of n-
membered rings; B,.rings is the neutron- scattering length of n-membered
rings, and is dependent on the composition but it cannot be calculated
due to the unclear nature of atomic-pair contributions to the FSDP;
XP(—Qp_ings (Un—rings)/2) is the Debye-Waller (DW) factor, with
(unz_n-ngs) being the mean-squared medium-range distance variation of
n-membered rings.

Eq. (8) can be further simplified to Eq. (9) by using an average
scattering length and DW factor:

Irspp = A IBave.l2 exp(_szve.<uaZve,>/2) X Z Nn—rings 9

For the same glass measured by the same configuration, the A and
Baye, terms in Eq. (9) are constants. It is very unlikely that the total ring
number (3] Ny_ings) can change for a glass below the Ty, as that would
require the breaking and reconnection of Si-O bonds. Then, we should
be able to calculate the FSDP intensity ratios (Ipso/Izy) using Eq. (10):

P 2
Q450 qve. (Uave.)9s0

Ioso exp(— 2 2 2 2
- = ) ~ exp(_QRT ave.((uave4>950 - <uave,>RT)/2)

IRT exp(_ Q}%T ave;”éve.)RT

(10

With a value > 195" = 0.91, and an RT-FSDP position of Q = 1.495 A™",
the difference of mean -squared atom pair distance deviations between
RT and 950 °C ((u2,, Yoso — (2, rr) is 0.0844 A2 whose correctness can
be checked by comparison with (u?)esy — (u?)zr values of short-range Si-
O and O-O atom pairs. As shown in Table 2, as T increases from RT to
950 °C, the short-range Si-O atom pairs expand by 0.85%, with
(u3_,) increasing by 0.0029 A2, whereas O-O atom pairs expand by
0.80%, with (u2_,) increasing by 0.0111 A2 The medium-range
average medium-range distance, calculated from Eq. (7) in the next
section, expands by 1.84%, which is about twice that of the short-range
expansion. But its (u,f,,mgs) value increases by 0.0844 A2, which is 29
times that of the (u%_,) increase, and 7.6 times that of the
(ud_o) increase. Based on the unphysically large (u,f,”-ngs) increase, we
conclude that Eq. (10) is incomplete, and the assumption of a constant
total ring number (3 N, _ings) might need to be reconsidered.

Table 2
Short- and medium-range distance (A) and <u®> (f\z) changes for FS between RT
and 950 °C.

Correlation Length (A) <u?> (A?)
scale RT 950°C Expansion' (%) RT 950°C  Diff.
(950 °C-
RT)
Si-0 1.603 1.616 0.85 0.0020 0.0049 0.0029
0-0 2.619 2.640 0.80 0.0061 0.0172 0.0111
Ave. medium- 4.127 4.203 1.84 NA NA 0.0844
range
distance”
1 Expansion = M x 100%

2 Average medium-range distance calculation is described in Section 3.3.1
using Eq. (7).

First, let us look how the rings can contribute to constructive dif-
fraction leading to the FSDP. A real-reciprocal space analysis, com-
bining a continuous wavelet-transform analysis and molecular-dy-
namics simulations, has demonstrated that the medium-range-order-
related FSDP in FS is manifested by interatomic distances in the region
of r ~ 54, associated with a couple of local “pseudo-Bragg” planes
[34]. Such near-parallel local “planes” are formed by both Si and O
atoms from the second-nearest neighbors. The perpendicular distance
between the parallel planes will result in constructive diffraction,
leading to the FSDP in S(Q). Small-size rings will exhibit shorter dis-
tances between planes while larger-sized rings will correspond to longer
distances. Only near-parallel planes will contribute to the FSDP. If a
ring has a shape that is too skewed or distorted from the averaged ring
shape, it will not contribute significantly to the FSDP, even if the ring
itself is still intact. Therefore, we need to add a ring-shape factor,
Shapen,.ings, to Eq. (9) which leads to Eq. (11):

IFSDP =A IBave.|2 exp(_vae.<u¢fve.>/2) X Z (Shapenfrings X anrings)
11

where the ring-shape factor, Shapey,. i, takes values from 0 to 1. For
same-sized rings, if their shapes are all within a given shape range, the
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corresponding Syings value is 1, indicating that all the rings contribute to
the FSDP. As the temperature increases, some ring shapes can get dis-
torted by flexible Si-O-Si-angle rotations; those rings still exist but will
not contribute significantly to the FSDP. The ring shape factor will
decrease to Shapen.ings = 1-Naisorted n-rings/Nrotal n-rings The ring-shape
factor concept is introduced to explain the FSDP-area decrease and
shape change; an MD-simulation study is underway to verify this and
will be reported separately.

The FSDP decrease with increasing temperature for silicate glasses is
opposite to the behavior exhibited by chalcogenide glasses [35]. Unlike
network silicate glasses with ring structures, chalcogenide glasses have
layered structures and their FSDPs correspond to medium-range se-
parations. As T increases, the intra-layer structure become more dis-
ordered due to thermal vibrations, resulting in smoother layers and a
more ordered medium-range structure, giving an increased FSDP area.
The different temperature behaviors reflect a different origin of the
FSDP.

While we have experimentally demonstrated the FSDP-area de-
crease with increasing temperature, simulations can generate glass
structures with an order-of-magnitude higher change. Sodium silicate
glass models [(Na;0)30(SiO2)70] derived by MD simulations with dif-
ferent cooling rates [36] can be used to further prove the FSDP-area
decrease for more disordered glass structures. Glass models, cooled at
faster rates, have a larger degree of disorder which corresponds to our
high-T glass structure. As shown in Fig. 9, the FSDP area of a rapidly
cooled glass model (100 K/ps) drops by 32% compared to that of a
slowly cooled glass model (0.01 K/ps), while the total ring number only
decreased by 5% as counted by the RINGS package [37]. We propose
that the decrease can be attributed to a ring-shape change.

3.3.3. . FSDP-shape change

As shown in Fig. 8(a), the absolute amounts of all sizes of rings
(Is, (@) contributing to the FSDP decrease as the temperature increases,
which is in line with the Shapep g factor of Eq. (11) changing, as
proposed in the previous section. The small-sized rings decrease more
rapidly than the large-sized rings, indicating that small-sized rings are
more sensitive in responding to temperature changes. This finding is
supported by MD simulations of (Na;0)30(SiO2)7¢ glasses showing that
the small rings are mechanically unstable and experience internal
stress/strain, so their existence is the driving force for the structural
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Fig. 9. MD-simulated neutron structure factor S(Q) of (Nay0)30(SiO2)7¢ glass
prepared with different cooling rates [36]. Three glass models show similar
high-Q range (3rd peak and higher) features, indicating the same short-range
order. In contrast, the medium-range order changes significantly with changes
in cooling rate; as shown in the insert, the FSDP area decreases significantly
with increasing cooling rate.
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relaxation of silicate glasses [38]. This also qualitatively explains why
the FSDP shape skews more in the high-Q part which corresponds to the
small-ring component. Again, the change of the absolute amount of
rings does not mean that rings decompose on heating. Structural
changes below T, should only belong to a low-energy deformation type.
The external energy provided by heating is not large enough to over-
come the high energy barrier necessary to break or switch a bond; in-
stead, the structure changes in a spatially cooperative manner through
torsional motion of SiO, tetrahedra via Si-O-Si flexible rotations. This is
reflected as a ring-shape change referenced to the average ring shape
detected by the neutron S(Q). The ring-shape change with temperature
is revealed by an RMC simulation of the quartz a—f3 phase transition
[13], as well as MD simulation of the cristobalite a—[3 phase transition
[39]. Based on the model that the FSDP results from scattering from
near-parallel planes [34], we hypothesize that such distorted, out-of-
shape buckled rings do not contribute significantly to the FSDP, leading
to a decrease of the FSDP area.

4. Conclusion

In conclusion, we have used a well-developed technique - in-situ
neutron total scattering — to recheck a well-studied, prototypical glass,
fused silica. We propose the SiO,4 rigid unit as the structural origin of
low-temperature structure changes. This is supported by the “Rigid Unit
Mode” behavior observed from the FS structural change with tem-
perature. As shown in Fig. 10(a), the similar slopes of the relative dis-
tance deviation ((u;)/?/r) for Si-O and O-O atom pairs with T de-
monstrate the uniform tetrahedral expansion of SiO4 units, while in
Fig. 10(b), flexible Si-O-Si rotation is reflected by the fact that the ex-
pansion of the medium-range units (characterized by a CTE of
21(2) x 107° K1) is more than two times higher than that of the
short-range Si-O tetrahedra units (characterized by a CTE of
9.1(9) x 107% K™ 1. Since the macro-scale bulk CTE of FS is
0.55 x 10~ ® K~ ! [40], we note that the short-range and medium-range
local CTEs are 15 and 39 times higher than the macroscopic bulk CTE,
respectively. The significant discrepancy between local and bulk CTEs
should not be surprising since there is no physical reason to expect they
are same. As philosophically illustrated by Egami and Billinge to em-
phasize the difference between local (microscopic) and global (macro-
scopic) views of material structure [41], they are like national statistics
and personal reports in describing an event such as a war between
nations. Here, taking event as the heating of a FS glass, we observe that
local (short and medium-range CTEs) and, global views (as dilatometry-
measured bulk CTE) indeed exhibit a striking discrepancy. To reach the
low bulk CTE of FS, there must be some contracting structural features
compensating the positive local expansions. For example, very low or
even negative bulk CTEs are commonly observed in crystalline silicate
materials with open-frameworks, such as cordierite (Mg,Al3SisO1g)
[42] and B-eucryptite (LiAlSiO4) [43]. Their bulk negative CTEs origi-
nate from the anisotropic thermal expansion with positive values (ex-
pansions) in two unit-cell directions compensated by negative values
(contractions) in the third direction. We propose that ring shape dis-
tortions and the ring-network reorganizations may explain the low bulk
CTE of glassy silica. MD simulations might be a way to confirm it.

Although this is the first time that the discrepancy between local
short and medium-range and bulk CTE is qualitatively reported for FS,
this behavior is not a specific to silicate glasses but has also been re-
ported in the case of a polybutadiene polymer [44], where the local CTE
obtained from the main-peak position of S(Q) is smaller than the di-
latometry-determined bulk CTE. A similar discrepancy is also observed
in crystalline a-quartz, wherein the local CTE derived from the Si-O
bond length is 2.2(4) X 107% K~! [29], whereas the bulk CTE is
15 x 107° K~ [45].

Our data show that flexible rotations of Si-O-Si linkages between
SiO4 rigid units occur through the whole temperature range. The
nearest tetrahedra rearrangements lead to ring-shape changes in the
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Fig. 10. The “Rigid-unit mode” behavior of FS structural change with temperature. (a) The behavior of SiO, rigid units is shown by the similar slopes of the relative
distance deviation ((u[f Y1/2)/r) for Si-O and O-O atom pairs with T, indicating uniform tetrahedron expansion; (b) Flexible Si-O-Si rotation is reflected by the two
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Extended Data Fig. 1. Reduced structure factor functions, F(Q), measured at
RT and 950 °C. The vertical bars represent the measured data points with sta-
tistical errors.

medium range. This is reflected by subtle but real changes of the first
sharp diffraction peak (FSDP) in the structure factor. The ring-structure
evolution with temperature is quantified using the Refined RingFSDP
method. This answers “how does glass relax at low-T?”, and it will be
complemented by a study of structural changes through the glass
transition for other silicate glasses. This method paves the way to
measure the structural change of other silicate glasses, especially
through T, to shine light on low-temperature relaxation phenomena in
glasses.

Code availability

Two Python programs were developed for the data analysis.
Tetrahedron Expansion was developed to batch-process F(Q) files to
obtain I(Q) of Si-O and O-O atom pairs and then profile-fit I(Q). Refined
RingFSDP batch-processes F(Q) files for two-step refinements: acquire I
(r) for the FSDP, profile-fit I(r) with fixed r, then calculate the ring-
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Extended Data Fig. 2. Reduced pair distribution functions G(r) obtained by
Fourier transformation with Q. = 50 A~ measured at RT and 950 °C. The
vertical bars represent the propagation errors by Fourier transform.

expansion factor a, profile-fit I(r) with the expanded r X @, inverse
Fourier transform to get F,,(Q), derive S,(Q) and integrate for ring-size
distribution calculations. The code is available from the NOMAD
beamline of ORNL upon request.

Data availability

The datasets generated and analyzed of this study are available from
the corresponding author upon request.
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Extended Data Fig. 3. Mean-square atom pair distance deviation <u®> change
with temperature of FS derived from total scattering. The Si-O pairs are shown
in black and 0-O in red color. The (u_,) (black ball) and (u3_,) (red ball) are
derived from the I;.0(Q) and I 0.0 (Q) fitting, with error bars shown for four
temperatures. The (u2_o) (blue square) and (u3_,) (pink square) are derived
from direct fitting of Ts;.o(r) and To.o(r). The reported in-situ FS plotted by
crossed circles are from [20]. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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