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ABSTRACT: A proof-of-concept framework for identifying mole-
cules of unknown elemental composition and structure using
experimental rotational data and probabilistic deep learning is
presented. Using a minimal set of input data determined
experimentally, we describe four neural network architectures that
yield information to assist in the identification of an unknown
molecule. The first architecture translates spectroscopic parameters
into Coulomb matrix eigenspectra as a method of recovering
chemical and structural information encoded in the rotational
spectrum. The eigenspectrum is subsequently used by three deep
learning networks to constrain the range of stoichiometries,
generate SMILES strings, and predict the most likely functional
groups present in the molecule. In each model, we utilize dropout
layers as an approximation to Bayesian sampling, which subsequently generates probabilistic predictions from otherwise
deterministic models. These models are trained on a modestly sized theoretical dataset comprising ∼83 000 unique organic
molecules (between 18 and 180 amu) optimized at the ωB97X-D/6-31+G(d) level of theory, where the theoretical uncertainties of
the spectoscopic constants are well-understood and used to further augment training. Since chemical and structural properties
depend strongly on molecular composition, we divided the dataset into four groups corresponding to pure hydrocarbons, oxygen-
bearing species, nitrogen-bearing species, and both oxygen- and nitrogen-bearing species, training each type of network with one of
these categories, thus creating “experts” within each domain of molecules. We demonstrate how these models can then be used for
practical inference on four molecules and discuss both the strengths and shortcomings of our approach and the future directions
these architectures can take.

■ INTRODUCTION

The ability to determine the elemental composition and three-
dimensional structure of an unknown molecule is highly
relevant in nearly all fields of chemistry. Microwave spectros-
copy has many favorable attributes in this regard because its
spectral resolution is intrinsically very high and because
rotational transition frequencies sensitively depend on the
geometry of the molecule. For these reasons, it has been used
with good success in characterizing mixtures containing both
familiar and unknown species. With the development of broad-
band chirped-pulse methods,1−4 microwave instruments can
routinely sample an octave or more of frequency bandwidth
while simultaneously achieving parts per million resolution at
low pressure. Under these conditions it is relatively
straightforward to distinguish between two molecules with
very similar structures, and as a consequence, gas mixtures
containing in excess of 100 different compounds have been

analyzed5 using highly automated experimental techniques and
methodologies.6−11

As the throughput of microwave spectrometers continues to
increase, data analysis rather than acquisition has become the
primary obstacle to translating spectral information into
chemical knowledge. From a scientific and analytical stand-
point, the ability to analyze complex mixtures in real time
would substantially improve the rate of discovery, especially
with respect to identifying unknown species in heavily
congested spectra. Typically, deconvolution of a mixture is
performed by spectrally separating rotational transitions of an
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individual chemical constituent, isotopic species, or excited
state on the basis of the small number of spectroscopic
constants that are needed to reproduce its rotational spectrum.
Most prominent among these are the three rotational constants
(A(BC)), which are inversely proportional to the principal
moments of inertia and thus encode the distribution of mass in
three-dimensional space. Indeed, these parameters are widely
used in experimental molecular structure determination
through a variety of methods.12,13

The conventional process of identifying an unknown
molecule by microwave spectroscopy involves comparing the
magnitudes of the three experimental rotational constants with
those predicted by electronic structure calculations for a series
of candidate molecules, most of which are selected on the basis
of chemical intuition. Intuition, in this case, requires
consideration of the likely elemental composition, starting
precursors, experimental conditions, and well-characterized
molecules with similar rotational constants. For small systems,
where there are relatively few possible combinations, chemical
intuition can often narrow down the list of candidates quickly,
and the number of electronic structure calculations required is
small. For heavier and larger molecules, the number of possible
structures grows rapidly with respect to composition and
structural diversity. In truly unknown analytical mixtures where
information is limitedsuch as those encountered in electrical
discharge experiments5 and astronomical observationsthe
combinatorics becomes intractable, and chemical intuition is
both highly inefficient and incomplete with respect to
capturing the full range of possible outcomes.
Machine learning (ML) is an attractive tool to assist in the

identification of newly discovered molecules. At a high level,
ML methodologies learn a set of parameters, θ, that are then
used to estimate some property y that can help assist with the
identification of a molecule on the basis of its spectroscopic
data x. Here, y ideally represents a three-dimensional molecular
structure, whichusing rare-isotope spectroscopycan be
directly confirmed experimentally on the basis of the expected
shifts in rotational constants. Other discerning factors that can
be substituted for y include possible elemental composition,
presence of functional groups, and the number of non-
hydrogen atoms.
To identify molecules solely from available spectroscopic

information, we require an ML methodology that can satisfy
two criteria: first, it must encapsulate all of the possible
structural and chemical space for a given set of A(BC), as
molecules with different compositions and structures can have
similar rotational constants; second, the method must provide
some estimate of uncertainty. The first criterion ensures that
the method can break the partial degeneracy of A(BC) where
the composition is not necessarily known and may represent
entirely different molecules and structures. The second
criterion is necessary to infer possible carriers; it is impossible
to deterministically know the exact carrier simply from A(BC),
and instead, it must be taken from a distribution of possible
candidates.
Probabilistic neural networks14 are an extremely felicitous

class of ML techniques that provide solutions relevant to both
criteria. Built on top of conventional deep learning models,
which learn from a training set of data and provide the
maximum likelihood estimate, probabilistic approaches ulti-
mately yield a distribution of weighted predictions and their
associated likelihoods. With a sufficiently large and diverse
dataset of information, a probabilistic neural network model

can be trained to transform spectroscopic parameters x into
discerning information y. Formally, the problem of molecular
identification then becomes that of estimating the conditional
likelihood p(y|x, θ)the likelihood that an unknown molecule
with parameters x can be identified with information y on the
basis of learned parameters θ.
As a proof of concept for the usefulness of probabilistic deep

learning in molecule identification, we combine ensembles of
relatively simple neural network architectures with computa-
tionally cost-effective approximations to Bayesian sampling via
dropout layers.15 Each model within the ensemble is trained on
electronic structure calculations comprising a specific chemical
composition (e.g., pure hydrocarbons, oxygen-bearing mole-
cules) as a way to break the chemical/structural degeneracy of
A(BC), such that each respective model becomes an “expert”.
In essence, each model yields conditional predictions that
correspond to a particular composition, for example, predicted
y for a given set of constants x if the molecule is a pure
hydrocarbon. The first model we consider translates
spectroscopic parameters into Coulomb matrix eigenvalues as
a way of decoding spectroscopy data into machine
representations that encode molecular structure and chemical
properties. The predicted eigenspectra are subsequently used
by three independent models that predict the possible
molecular formulas, functional groups present, and SMILES
encoding for a given composition. The ability to determine
composition and functionalization is not only useful for
identification but also deepens the connection with other
analytical techniques such as mass spectrometry and infrared
spectroscopy. We show that the latter, in particular, can only
be accessed through our new deep learning framework and
unlocks a new facet of rotational spectroscopy. The early
sections of this paper will detail the expected results and
performance of each model and, where applicable, comparison
with a baseline ML model. In the last section, we discuss how
the information from these models can be collectively
interpreted in order to infer the identity of unknown
molecules.

■ METHODOLOGY

Molecule Generation. In order to train the deep learning
models, we required a dataset of molecules that span a
sufficiently large volume of structural and chemical space.
Initial structures were generated via two mechanisms: parsing
of SMILES strings published in the PubChem database and
systematic generation with the Open Molecule Generator
(OMG).16 For both cases, we systematically generated
hundreds of formulas pertaining to simple organic species
with an even number of electrons that constitute HwCxOyNz,
where 1 ≤ w ≤ 18, 1 ≤ x ≤ 8, and y, z ≤ 3 with w ≥ x + y + z.
As the number of isomers grows combinatorially with the
number of atoms, many formulas generate up to hundreds of
thousands of possible SMILES strings. Therefore, to keep the
number of quantum-chemical calculations tractable, we
truncated the largest lists and instead randomly sampled up
to 2000 SMILES strings with uniform probability as a method
of taking representative species for a given formula. Over the
course of training we observed that the dataset under-
represented pure hydrocarbon species; subsequently, we
bolstered the hydrocarbon set by generating isomers up to
H20C10 using OMG.
Cartesian coordinates were generated from the SMILES

strings using OpenBabel17 and subsequently refined using
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electronic structure calculations with Gaussian 1618 at the
ωB97X-D/6-31+G(d) level of theory, optimizing the geometry
corresponding to the lowest singlet state. This method was
chosen on the basis of earlier benchmarking from which
Bayesian uncertainties were obtained for several low-cost
methods and basis sets, comparing the theoretical equilibrium
rotational constants with vibrationally averaged experimental
values.19 Those results showed that ωB97X-D/6-31+G(d)
provided an excellent compromise between low theoretical
uncertainty, good accuracy with respect to experimental
constants, and low computational cost. Additionally, as we
shall see later, the uncertainties were also used to augment our
training sets.
Data Preprocessing. Upon completion, the electronic

structure calculation outputs were parsed, extracting relevant
information such as the electronic energy, spectroscopic
constants, harmonic frequencies, electric dipole moments, the
corresponding canonical SMILES string using OpenBabel,17

and the Cartesian coordinates of the molecule in the principal
axis orientation. The results were then filtered to remove
nonconvergent structures, transition state structures, and
duplicate species by comparing the rotational constants and
dipole moments. To facilitate the ensemble of models, we
categorized the molecules in the dataset into four groups on
the basis of their composition: pure hydrocarbons (HC),
oxygen-bearing species (HCO), nitrogen-bearing species
(HCN), and oxygen- and nitrogen-bearing species (HCON).
The optimized Cartesian coordinates were used to calculate

the corresponding Coulomb matrix,20 whose elements Mij are
defined by

=

=

| −
≠

lmoooooonooooooM

Z i j

ZZ
i j

R R

0.5 for

for
ij

i

i j

i j

2.4

(1)

where i and j are atom indices and Zj and Rj are the atomic
number and coordinates of atom j, respectively. The matrix
maps the three-dimensional charge distribution of a molecule
into a symmetric two-dimensional projection of shape n × n,
where n is the number of atoms. This machine representation
of molecular structure simultaneously is unique in representa-
tion (apart from enantiomers) and encodes a significant
amount of chemical information.
Because the experimental data typically consist of only up to

eight parameters, there is a need to reduce the dimensionality
of our molecular representation: a set of rotational constants is
unlikely to effectively sample all possible Coulomb matrix
configurations. Instead, we choose to use the eigenvalues λ =
[λ1 ... λn] of the Coulomb matrix. While the absolute positions
of atoms are lost, the maximum value and decay of the
magnitude of the eigenspectrum reflect the type of atoms
present, as well as the general size of the molecule: smaller
molecules display “shorter” eigenspectra compared with larger
species, and molecules that contain more non-hydrogen atoms
exhibit slower-decaying eigenspectra with larger-magnitude
eigenvalues. Despite a reduction in dimensionality, Figure 1
shows that eigenspectra can still readily differentiate between
even similar moleculesfulvene is a higher-energy isomer of
benzene, pyridine is isoelectronic with benzene, and
benzaldehyde is a functionalized derivative of benzene. While
the magnitudes of the leading eigenvalues are similar, they are
differentiable particularly toward the tail end of the

eigenspectra; for example, the eigenspectrum continues for
benzaldehyde, whereas the eigenspectrum of pyridine truncates
earlier.
Figure 2 compares all of the pairwise Euclidean (L2)

distances between molecules within the dataset. In both the

Coulomb matrix representation and the reduced eigenspec-
trum representation, the distributions peak far from zero and
thus are expected to be readily differentiable by machine
learning models. The distribution of distances is similar to
those seen in other large organic molecule datasets such as
QM9.21,22

In order for the model to process the formula, SMILES
strings, and functional groups, we converted these labels into
corresponding vector representations. For each molecule, the
chemical formula was encoded into a length-4 vector, where
the index corresponds to the atom symbol and the value to the
number of the corresponding atom. With respect to SMILES
strings, we used one-hot encoding similar to that demonstrated
in several other studies:23,24 each SMILES string is encoded in
a two-dimensional matrix where rows correspond to characters
and each column index represents one of the 29 SMILES
symbols within our dataset corpus. The first column index is
reserved for blank spaces, which are used to pad shorter
SMILES strings up to 100 characters. The resulting SMILES
arrays have a shape of 100 × 30. Finally, the functional group
labels are generated on the basis of OpenBabel canonical
SMILES strings by performing functional group substructure
searches with the SMARTS language implemented in RDKit.25

The functional groups within each molecule are subsequently
represented as a multilabel, “multihot” encoding. A full table
summarizing the encodings can be found in the Supporting
Information.

Figure 1. Comparison of the eigenspectra of four structurally and
chemically similar species. The eigenspectra are truncated after the
first 15 nonzero elements.

Figure 2. Pairwise similarities of molecules within the dataset as
measured by the Euclidean (L2) distance.
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Neural Network Details. The neural network models
described in this work were implemented with PyTorch,26 with
training performed on an Nvidia GV100 GPU on the “Hydra”
computing cluster at the Smithsonian Institution High
Performance Computing Cluster (Smithsonian Institution,
https://doi.org/10.25572/SIHPC). In all cases, training was
performed using the Adam optimizer.27,28 Training was
performed on an 80:20 split, where 20% of the dataset was
held for validation between training epochs. At the end of each
epoch, the training set was shuffled, such that each minibatch
was different between passes.
To improve generalization and uncertainty in each of the

models, we also adopted two augmentation strategies. First, it
became apparent during development that the dataset was
extremely imbalanced, despite the random and unbiased
sampling approach we adopted during its creation. This was
a direct consequence of the number of possible isomers for
certain functional groups over others: for example, there are
many more ways to form an amine (i.e., primary, secondary,
tertiary) than a nitrile, which was frequently observed during
inference. This is commonly encountered in multilabel
classification, where there are insufficient examples of under-
represented labels for models to learn from and subsequently
predict. To alleviate this, we duplicated species with functional
groups that had fewer than 5000 samples and added Gaussian
noise to the rotational constants and dipole moments to create
“new” synthetic samples to balance the dataset.
The second augmentation strategy was to apply data

transformations between training epochs, which is done to
mitigate overfitting andof particular importance in our
applicationto decrease model overconfidence. This method
is commonly used in image-based applications, whereby adding
Gaussian noise or random rotations improves the effective
dataset size and prevents overfitting. In our case, the rotational
constants were augmented by the theoretical uncertainty
associated with the electronic structure method used (ωB97X-
D/6-31+G(d)): the values of A(BC) were scaled by a ratio δ

sampled from a posterior likelihood p(δ) that represents the
spread in discrepancy between the theoretical equilibrium
rotational constants and the experimental vibrationally
averaged values.19 In principle, this allowed for model training
to be performed on a “vibrationally-averaged” dataset that
would otherwise be too costly to compute for the entire
dataset. For the Coulomb matrix eigenspectra, we included
Gaussian noise scaled by an exponential decay factor that
preserved the tail seen in eigenspectra.

In all of the architectures explored in this work, each fully
connected layer is paired with a dropout layer: for most cases,
dropout layers act as a method of enforcing regularization
during training by deactivating connections through each pass
according to some probability p.29 As an alternative purpose,
Gal and Ghahramani15 showed that during the prediction
phase dropout layers can empirically approximate Bayesian
sampling in Gaussian processes, provided that p is sufficiently
large to introduce enough stochasticity while maintaining
accuracy. This approach emulates ensemble-based methods,
whereby dropping different neurons with each forward pass
effectively creates a subnetwork. In our regression and
recurrent models, these dropout units remain active during
the prediction phase as a way to estimate the model
uncertainty with p ≈ 0.3 (i.e., each layer drops around 30%
of the units with each pass).
While dropout is a computationally efficient and simple way

of determining uncertainty, this approach is known to
underestimate model uncertainty.30 Consequently, a single
deep learning model with dropouts may not necessarily capture
the full range of possible molecules based only on
spectroscopic constants. As we shall see later, there are
structural and chemical subtleties associated with molecules of
varying compositions (e.g., oxygen-bearing species vs pure
hydrocarbons) that force models to place varying importance
on different parameters. To help alleviate this, we also employ
an ensemble of networksin general applications, this
approach involves dividing the training data among multiple
networks. As each network is exposed to a different dataset, the
trained weights and biases differ, with the joint prediction
having a smaller generalization error than a single network.14,31

In our application, each network is exposed to a specific
composition of molecules that fall under the four categories
mentioned previously, with the goal of preserving domain
specificity; that is, the same set of rotational constants can
result from different chemical compositions, and this needs to
be reflected in the model sampling. The premise is to learn and
predict a given molecular property if the unknown molecule
were to contain a particular composition.
Figure 3 shows the overall flow of data through the network

models considered in this work. A user provides spectroscopic
data that can be experimentally derived, which is then used by
the network to perform inference on the range of possible
molecular formulas, generate viable SMILES strings, and
predict the likelihood of functional groups present. In the case
of the regression models, the architectures are relatively simple

Figure 3. Graph depiction of the models considered in this work, with data flowing from left to right. Nodes represent layer types, with the
corresponding output size written below each node. Blue dotted lines represent the concatenated output of the spectroscopy decoder and the
parameter inputs. The pink line within the SMILES LSTM decoder model corresponds to the time-shifted sequences of eigenvalues (see the text).
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multilayer perceptrons (MLPs), up to seven layers deep and a

maximum of 256 units wide, using leaky rectified linear unit

(LeakyReLU) activation32,33 with a negative gradient of 0.3.

The model training is performed by minimizing the mean

absolute error between the model output and the regression

targets (eigenspectra λ and composition).

For the SMILES decoder, each long short-term memory

(LSTM) cell used hyperbolic tangent and sigmoid functions

for the cell and recurrent activations, respectively. The output

of the SMILES decoder corresponds to an array of shape 100

× 30, with each row corresponding to the likelihood

distribution of a given SMILES character. The model was

Table 1. Summary of Training Parameters for the Four Modelsa

model α Λ N no. of epochs loss no. of parameters

spectroscopy decoder 3 × 10−3 10−1 100 80 MAE 20896

formula decoder 5 × 10−3 2 × 10−2 30 20 MAE 15120

SMILES decoder 10−3 10−1 500 30 KL divergence 579588

functional classifier 1 × 10−5 3 × 10−1 300 50 cross-entropy 668443
a
α and Λ are the learning rate and weight decay, respectively, defined in the Adam model.27,28 N is the minibatch size.

Figure 4. Visualization of the parameter space spanned by the dataset used for model training. Lighter species with rotational constants greater than
20 000 MHz are excluded in the visualization. Diagonal plots are histograms of features, while off-diagonal elements show density contours for pairs
of features. Absolute values of the dipole moments are shown.
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subsequently trained by minimizing the Kullback−Leibler
(KL) divergence:34

∑ ∑ λ
λ

λ
= |

|

|
θ

D p y
p y

p y
( ) log

( )

( )
N M

m
m

m
KL

(2)

where pθ(y|λ) represents the model softmax output and p(y|λ)
the one-hot SMILES encoding for a given eigenspectrum λ.
The loss is calculated by summation over N minibatches
comprising M spectra. To help mitigate model overconfi-
dence,35 we performed label smoothing on the SMILES
encoding36 whereby the one-hot-encoded ground-truth p(y|λ)
(which is a Dirac δ function) is smoothed by weighted uniform
noise εu(k):

λ ε δ ε′ | = − +p y u k( ) (1 ) ( )k y, (3)

where k corresponds to the character label, the uniform noise
u(k) is equal to 1/30, and the weighting value ε is equal to 0.1.
Consequently, the learning targets are no longer binary, forcing
the model to produce higher-entropy/uncertainty predictions.
In the case of the functional groups, the task was to perform

multilabel classification; training was performed by minimizing
the binary cross-entropy loss. The architecture we propose
here includes three one-dimensional (1D) convolution layers,
under the premise that the convolution kernels will learn
characteristic relationships between the eigenspectrum and the
spectroscopic parameters. Indeed, preliminary testing with
simple MLP models (without convolution) performed
significantly worse than the k-nearest-neighbor baseline. In
terms of activation functions, each convolution unit uses
LeakyReLU (α = 0.3), whereas linear layers use parametric
ReLU (PReLU) activations,37 with the exception of the final
output layer, which uses sigmoid activation. To characterize
the classification performance, we computed the F1 score38

across the full validation at the end of training:

=
+

F
PR

P R

2
1 (4)

where P and R are the precision and recall scores; the former
measures the number of times a correct label is applied out of
all attempts, while the latter reports the ratio of the number of
correct labels predicted to the number of all possible examples
of a given label:

=

=
+

P
N

N

R
N

N N

TP

TP

TP FN (5)

where NTP, NFN, and N are the number of true positives, the
number of false negatives, and the total number of samples,
respectively.38

As these models represent a proof of concept, we have not
extensively characterized or optimized either the hyper-
parameters or the architecture, with the exception of
parameters encountered during training such as the learning
rate and the minibatch size. The training parameters used are
organized in Table 1. In terms of the number of training
epochs, each model was trained until the loss appeared to have
effectively converged, and there was no clear evidence for
overfitting in neither the training/validation loss nor the
prediction results. A large value of the weight decay (Λ) was
used for each model, as it drastically decreased the model
overconfidencea known consequence of using dropouts to
approximate Bayesian sampling.39

■ RESULTS AND DISCUSSION

Electronic Structure Calculations. Figure 4 shows a
correlation plot of the dataset parameters. With the exception
of the rotational constants and molecular mass, which are
codependent, we see that all of the parameters are effectively
uniformly distributed and span a representative space along
their respective dimensions. The rotational constants, partic-
ularly B and C, decrease sharply with the molecular mass. The
average species in our dataset is a near-prolate symmetric top
(κ < 0) that is nonplanar (Δ ≪ 0) with nonzero dipole
moments along each axis and a mass of 108 amu.
Table 2 shows the summary statistics for the dataset, which

provide another perspective besides that seen in Figure 4. The
mean and median (P50) are in qualitative agreement: most
molecules in the dataset are near the prolate limit (i.e., A ≫ B
≈ C) according to the asymmetry parameter κ. The average
molecule possesses dipole moments along all three principal
axes, on the order of 1 D for μa and μb. With regard to the
extremities, the lightest molecule in the dataset is CH2, with
the correspondingly largest rotational constants; the heaviest
molecules considered (180 amu) correspond to a formula
H8C8O3N2.

Spectroscopy Decoder. The first step in our approach
involves taking experimental data as input and encoding them
as Coulomb matrix eigenspectra, which are responsible for

Table 2. Summary Statistics for the Parameters Relevant to This Studya

parameter mean std. dev. min. P25 P50 P75 max.

A (MHz) 5623.44 9949.31 820.76 2968.19 4141.94 6169.82 673708.06

B (MHz) 1851.40 1735.75 228.55 1136.62 1592.84 2259.91 337985.92

C (MHz) 1494.23 1199.04 225.28 951.87 1302.37 1823.59 213579.84

μa (D) 1.45 1.53 0.00 0.33 0.93 2.06 17.73

μb (D) 1.17 1.18 0.00 0.25 0.81 1.74 11.81

μc (D) 0.72 0.80 0.00 0.09 0.46 1.14 6.59

κ −0.67 0.37 −1.00 −0.93 −0.81 −0.55 1.00

Δ (amu Å2) −61.47 49.17 −388.87 −91.97 −48.27 −24.57 0.00

M (amu) 108.38 18.72 14.03 96.17 108.18 119.16 180.16
a
κ, Δ, and M are the asymmetry parameter, the inertial defect, and the molecular mass, respectively. P25, P50, and P75 correspond to the 25th,
50th, and 75th percentiles.
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translating spectroscopic constants into structural and chemical
information. On a GV100, training over 80 epochs was
completed for all four models in ∼30 min. Figure 5a shows the
training progress of the decoder model over 80 epochs, where
the color traces represent ensemble subnetworks trained on a
particular composition. The loss profiles appear turbulent,
which reflects the difficulty in conditioning the network
parameters to map the spectroscopic constants to the
corresponding eigenvalues. Presumably, the learning rate
would be a highly critical factor in the ultimate performance
of this decoder modelcurrently, the final mean absolute
errors (MAEs) are on the order of less than 1% of the typical
leading eigenvalues, which we believe provides sufficient
accuracy for the subsequent decoding steps. The loss profiles
suggest that the models are currently neither under- nor
overfitted and thus could be readily extended in learning
capacity.
As a concrete example, Figure 6 compares the ground-truth

eigenspectrum for benzene (C6H6)a highly symmetric (D6h)

oblate top with B ≈ 5700 MHzand the corresponding model
predictions obtained using the spectroscopic parameters of
benzene. The violin plots represent distributions of possible
eigenvalues given the input spectroscopic constants. Qual-
itatively, we see that the pure hydrocarbon model (blue)
provides the closest match to the ground truth, which is
contained within the uncertainty of each eigenvalue. The other

models produce similar eigenspectra, with subtle differences in
the magnitudes of the eigenvalues: for example, the oxygen-
and nitrogen-bearing model (green) systematically predicts
large leading eigenvalues, which reflects the type of molecules
with which this model was trained.
As a point of comparison, the solid squares in Figure 6 show

predictions from a k-nearest-neighbors algorithm as imple-
mented in the Scikit-learn library,40 which acts as a baseline for
accuracy, using the same training process as for the neural
networks. With five neighbors using the L2 distance as the
measure, we attain similar results to the neural network model
means, although in the case of the HCO composition the lead
eigenvalues are overpredicted. Although the accuracies of the
two machine learning techniques are similar, the k-nearest-
neighbors results are deterministic and therefore do not
provide an estimate of uncertainty. Because we are interested
in performing statistical inference, it is important that
uncertainties between steps are propagated appropriately.
The advantage of simpler, supervised machine learning

techniques is often interpretability. However, we show that the
eigenspectrum decoder can still be readily interpreted with
respect to the input parameters. By design, the eigenspectrum
decoder should translate input spectroscopic parameters into
Coulomb matrix eigenvalues, and through unsupervised
training the model learns which parameters are more
important or discriminating than others, which can be
quantified via input gradients. Figure 7a shows the distribution
of gradients for each spectroscopic parameter after repeated
iterations of adding Gaussian noise into the hydrocarbon

Figure 5. Epoch training (solid lines) and validation (dashed lines) losses for each of the models considered averaged across minibatches. Each
color corresponds to a model composition: blue for pure hydrocarbons, red for oxygen-bearing molecules, yellow for nitrogen-bearing molecules,
and green for oxygen- and nitrogen-bearing molecules. Panels (a) and (b) show the MAE loss, while (c) shows the KL divergence and (d) shows
the binary cross-entropy.

Figure 6. Comparison of the eigenspectrum of benzene (red lines)
with predictions by each spectroscopy decoder model (violin plots);
colors represent the same models as those in Figure 5. The thickness
of each violin plot represents the distribution of values predicted after
1000 iterations of sampling. The solid circles represent the
distribution means for each eigenvalue. Black squares represent
predictions using k-nearest-neighbors regression based on five
neighbors.

Figure 7. Violin plots of normalized unsigned gradients computed
through back-propagation of the hydrocarbon model following 3000
iterations. The two panels represent (a) Gaussian and (b) uniform
noise as inputs (x) to the model. Plot colors correspond to the same
compositions as described in Figure 5. In panel b, the input gradients
of each model composition are overlaid to show differences in model
response.
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decoder model. Here the Gaussian noise represents some
semistructured, barely semantic information, and the corre-
sponding gradients provide an indication of how that
information affects the model outputs. We see that the most
informative parameters are κ followed by μc, μb, and μa, with
the dipole moments on average providing more information
than κ. This suggests that the model is most effectively utilized
when the user has knowledge of the axes along which the
dipole moments are nonzero, the asymmetry parameter κ, and,
to a much lesser extent, the inertial defect (Δ).
Whereas Figure 7a focuses on the hydrocarbon distribution,

Figure 7b shows the gradient distributions for each model
composition using uniform noise as inputs, which should
measure the true response of the network absent any
semanticity. While dipole moments and asymmetry parameter
are consistently the most defining features, each model
responds quantitatively differently to each parameter as a
direct consequence of the different types of bonding and
structure within each composition. Perhaps most indicative of
this is the importance of Δ for nitrogen-bearing molecules
(yellow), suggesting that planarity is a much more defining
characteristic and carries more variation for nitrogen molecules
than for the other compositions. The most defining feature of
pure hydrocarbons is the dipole moment along the C principal
axis; structurally, this can be rationalized as an indirect measure
of the number of carbon atoms along the C axis, which act as
the primary source for polarization. Thus, one of the benefits
of using an unsupervised ensemble learning approach is that
each model can fluidly adapt to features best suited for that
particular chemical composition.
Formula Decoder. Among the quantities that we wish to

determine are possible chemical compositions. Following
conversion of the spectroscopic data into eigenspectra, the
formula decoder model seeks to predict which and how many
atoms are possible for a given eigenspectrum. Figure 5b shows
the training loss for the formula decoder over 20 epochs: all
four models show similar loss profiles, which quickly converge
by approximately 10 epochs. On the GV100, this corresponds
to approximately 13 min of training time for all four models. In
contrast to the spectroscopy decoder model, the learning
capacity of the formula decoder model appears to be adequate,
as indicated by the closely matching training and validation
curves. As the models are not overfitted, it is likely that the
learning capacity could be increased, and this should be
considered in future architecture searches. It is important to
note, however, that bias terms in the final layers were found to
dominate the model outputs if unmitigated (or in our case,
removed) and detrimentally affect model generalization.
Continuing with benzene as an example, Figure 8

demonstrates the performance of the combined spectroscopy
and formula decoder models. Each iteration involves predicting
eigenspectra corresponding to the benzene constants, whereby
the spectra are then passed as input into the formula decoder
model. Two general trends can be seen in Figure 8: first, the
largest uncertainty is seen in the number of hydrogens; second,
the number of heavy atoms is effectively conserved across the
modelsremoval of carbon compensates for the inclusion of
oxygen and nitrogen. Both observations can be interpreted in
terms of the physical properties learned by the decoder
models. In the former case, hydrogen atoms are significantly
lighter and therefore do not contribute much to the magnitude
of rotational constants, which is appropriately reflected with a
correspondingly large uncertainty. The latter trend sees that all

four models conserve the effective combined mass of the
molecule: there are a limited number of ways that mass can be
distributed to yield the same set of rotational constants within
the constraints of atomic composition and mass. In all cases,
the expected number of heavy atoms is roughly six, which
matches that of benzene. These two observations not only lend
confidence to the performance of the model but, more
importantly, indicate that the model predictions can be
rationalized with chemical intuition. While the formula
decoder has marginally less accuracy than the baseline k-
nearest-neighbors model (black solid squares), we believe that
the ability to interpret the model uncertainty in terms of
molecular structure is invaluable when identifying unknown
molecules.
A complementary interpretation of the predicted formulas is

to generate synthetic “mass spectra”, as shown in Figure 9,

which can be helpful when assaying unknown mixtures that
have available mass-resolved (e.g., mass spectrometry) data for
comparison. The predicted compositions shown in Figure 8
are quantized and used to calculate the molecular mass. Kernel
density estimation is subsequently used to predict the
likelihood of a given mass. The mass spectra can be interpreted
in two ways: the maximum likelihood estimate (MLE) gives a
point estimate of the most likely mass that corresponds to the
input spectroscopic parameters, while the distribution reflects
the uncertainty in the model. In the case of the pure
hydrocarbon model, the MLE predicts a mass close to the
ground truth (∼79.6 amu vs 78.11 amu), and masses with
more or fewer than six carbons are considerably less likely. The

Figure 8. Predictions of chemical composition by each respective
formula decoder model. Red lines represent the ground truth (C6H6).
Scatter points correspond to the expected values for each atom type
after 2000 samples. Colors refer to the same model compositions as in
Figure 5. Black solid squares indicate predictions from k-nearest-
neighbors regression based on five neighbors.

Figure 9. Simulated mass spectra based on the quantized
compositions in Figure 8 predicted by the (a) pure hydrocarbon,
(b) HCO, (c) HCN, and (d) HCON models. The probability
distributions were obtained by Gaussian kernel estimates with a
bandwidth (σ) of 1.5 mass units. The dashed lines indicate the mass
of benzene (78.11 amu).
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HCO and HCON models yield MLEs near the target but do
not reproduce the mass of benzene exactly; the eigenspectra
encode structure and composition, and the offset masses
pertain to possible structures of a given composition that can
correspond with the specified parameters.
SMILES Decoder. Figure 5c shows the lossas the

minibatch mean KL divergencefor the SMILES LSTM
decoder model training. Each model appears to converge
quickly, reaching an asymptote within several epochs, and
required ∼50 min of computation on a GV100. The ultimate
training and validation accuracy of each model is quite
exceptional: the worst performer, the pure hydrocarbon model,
yields a KL divergence averaged across the entire sequence of
∼0.15, which is close to the minimum possible value of zero.34

Thus, according to this loss metric, the model is able to
reproduce the long sequences of encodings accurately without
under- or overfitting.
Where the composition is a helpful quantity, the ultimate

goal is to determine possible structures that can be assigned to
the spectroscopic parameters. There are a variety of formats in
which this information can be conveyed, for example, as simple
Cartesian structures, or as reconstructions of the Coulomb
matrix based on the predicted eigenvalues, or as string
identifiers such as SMILES41 and InChI.42 The string
representations are particularly attractive encodings because
they are machine- and human-parsable and in certain forms
(e.g., canonical SMILES) can discriminate enantiomers. For
our purposes, we chose canonical SMILES as a target because
of its simplicity: in contrast, the syntax for InChI is extremely
specific and unlikely to be fully reproduced with the limited
amount of experimental information. SMILES strings, even
when incomplete, can be used to infer likely functional groups
and, with programs such as OpenBabel, can be used to
generate initial-guess Cartesian structures for subsequent
optimization with electronic structure methods. Because of
its wide use in cheminformatics for drug discovery and reaction
screening, there have been multiple applications of deep
learning that utilize SMILES; recurrent approaches such as

LSTM43 and GRU architectures44 are best suited for sequence-
to-sequence translation, whereby one SMILES string is used to
predict another.45

In our application, we convert sequences of eigenspectra
into SMILES characters with LSTM units: each window of
eigenvalues is used to predict the likelihood of each symbol
within our SMILES corpus, and through the recurrent nature
of the LSTM architecture, the hidden outputs of each window
are used to predict the likelihoods of following windows. The
rationale is to recover nuances of SMILES syntax; for example,
a closing bracket may appear several or many characters after
an opening bracket, which indicates side branching in a chain.
Similarly, a closing bracket should not appear prior to an
opening one. Figure 10 visualizes the outputs from the
SMILES decoder model based on benzene parameters,
truncated to the first 40 sequence windows: the heat maps
represent the averaged likelihood of a character within our
corpus (abscissa) for a given sequence window (ordinate).
These averages are useful for illustrating what semantics are
learned by the LSTM model. We see that in all four
compositions, the string terminates at a sequence length of
approximately 30 characters, whereby the likelihood maximizes
on the whitespace character. This indicates that the model
learns an appropriate length and complexity of a SMILES
string from its eigenspectrum. Another general observation is
that the most likely character in early windows regardless of
model composition is aliphatic carbon (C)because all
molecules contain mostly carbon, associating a high likelihood
with carbon becomes inevitable. Later in the sequence, other
characters become more likely, including other elements and
bonding specifications. One of the more important features is
that the ordering of parentheses appears to be successfully
learned by the model, whereby the likelihood of a closing
bracket is zero initially and remains zero until an opening
bracket has a nonzero probability of appearancethis is the
intended consequence of using a LSTM model.
The major obvious shortcoming of our model, however, is

that it fails to reproduce the SMILES code of benzene

Figure 10. Heat maps of SMILES character probabilities predicted using the spectroscopic parameters of benzene averaged over 2000 samples,
truncated for the first 40 sequences. The four panels represent the same model compositions as in previous figures, as indicated in the panel titles.
In each panel, the abscissa and ordinate correspond to the SMILES character encoding index and the sequence window index, respectively; the first
SMILES encoding corresponds to an empty character. Progressively darker colors correspond to higher probabilities for a given symbol. Blue circles
indicate the ground-truth encoding for benzene (c1ccccc1).
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(c1ccccc1, indicated by the blue circles). Upon inspection of
our training set, it appears that the aromatic carbon symbol is
significantly underrepresented, as only ∼3200 molecules
contain it, and therefore it is unsurprising that little to no
likelihood is predicted by the models. On a more general note,
the encoding for benzene is highly unique because of its
molecular symmetry (D6h), and thus, it is unlikely that a
generalized LSTM model can successfully reproduce the
specificity required for molecules like benzene; in other
words, there is “no free lunch”.14,46 This example highlights
the limitation of our SMILES decoder model, where highly
symmetricand typically smallmolecules are poorly repro-
duced because of their high specificity and symmetry
compared with large asymmetric species. We contend,
however, that these molecules are the most difficult to identify
and in need of an inferential approach contrasting the smaller
molecules that can be more readily deduced via combinatorial
searches.
Following calculation of the character likelihoods, we

employed a beam search algorithm to decode the sequences
into SMILES strings. This was performed by starting with n of
the most likely characters at the beginning of the sequence and
finding characters along the sequence that maximize the
conditional likelihood. In spite of this, we found many of the
resulting strings to have invalid SMILES syntax, particularly
with respect to the placement and ordering of parentheses, and
often to be chemically vague. Another issue we observed
concerns the coherence time of the sequences: in many
samples, the character likelihoods decay gradually into
approximately uniform likelihoods, as the eigenvalues are
effectively zero and the LSTM model fails to produce any
information. This criterion is used during the beam search,
where the sequence likelihood is compared against a uniform
distribution using the KL divergence: as it approaches zero,
sampling is terminated early to prevent oversampling from
uninformative sequences.
As can be seen in Table 3, the strings with the highest

conditional likelihood are unfortunately chemically and
structurally uninformative. The most striking issue is that
aliphatic carbon is significantly oversampled, most likely
because the dataset contains organic molecules andwith
little information availablethe most likely character within a
SMILES sequence will be carbon. Another problem is the
length of the sequences: even with early termination, the
sequences produced are far too long to match the rotational
constants of benzene. In the models containing oxygen and
nitrogen, we see that these elements are incorporated into the
sequence, albeit with extremely low likelihood (e.g.,
CCCCOOO in the HCON model). To improve this
approach, future attempts should consider changing different
aspects of the problem. For example, the eigenspectrum is not
necessarily an optimal feature representation to decode into
SMILES strings, and decoding could be advanced by
projection onto a more informative space (i.e., principal

components) or other machine-readable representations.47,48

The neural network architecture could also be substantially
improved, for example by using transformer architectures.49

Finally, the information content of SMILES could be encoded
in different ways, such as lossless compression.50 While we
used a one-hot approach that was successfully demonstrated by
other groups24,45,51 for direct SMILES-to-SMILES translation,
it is likely that the uncertainty is too high in our application for
unique and informative mapping. Various forms of SMILES
compression, such as DeepSMILES,45 would greatly simplify
the encoding complexity and decrease the machine learning
requirementsan avenue for future exploration.

Functional Group Classification. As the SMILES LSTM
decoderin its current statewas unable to produce useful
information for molecular identification, we investigated the
possibility of simpler yet indicative sources of information.
Combining 1D convolution and linear layers, we built a model
that uses the eigenspectra and the spectroscopic parameters to
perform multilabel classification, which predicts the likelihood
that selected functional groups are present. This is premised by
the fact that the parameters, in particular the dipole moment
vectors, contain some information about functional groups that
are the primary drivers for polarization in a molecule.
Combined with the eigenspectra, there should be sufficient
information to reliably distinguish between similar yet different
functional groups (e.g., OH groups within carboxylic acids and
primary alcohols).
Figure 5d shows the training and validation binary cross-

entropy profiles over 40 training epochs. On a GV100, model
training took approximately ∼11 min to complete. Once again,
the training and validation losses are nearly identical, indicating
that the models are neither over- nor underfitted. The
hydrocarbon model demonstrates exceptionally low loss,
which is ascribed to low chemical complexity, as few functional
groups are possible. While the HCO and HCON models show
the largest loss values, considering the full breadth of possible
functional groups (15 labels for the former and 23 for the
latter), we believe that each model is performing within the full
capacity of the architecture.
In multilabel classification, the binary cross-entropy alone is

not informative of the model performance. Using k-nearest-
neighbors as an unsupervised baseline classifier, we performed
approximately the same multilabel classification task as with
the neural network model. For comparison, we use the F1
score, which is the harmonic mean of the precision and recall
scores; the former measures the number of times the correct
label is predicted out of the total number of samples, whereas
the latter is equal to the number of times the correct label is
predicted divided by the number of examples of that label. An
F1 score of unity represents the case where every label was
correctly predicted at every possible instance, and not simply
from random chance.
Figure 11 compares the F1 scores calculated by the two

approaches for each functional group within a composition. In

Table 3. Four SMILES Strings with the Highest Conditional Likelihoods for Each Model Based on 2000 Iterations of
Sampling, Decoded with the Beam Search Algorithm (Predictions Are Based on the Spectroscopic Constants of Benzene)

HC HCO HCN HCON

CCCCCCCCCCCC CCCCCCCCCC cCCCCCCCCCCCCC OCCCCOO

CCCCCCCCC OCCCCCCCCC CCCCCCCCCCCCCCC NCCCCOO

CCCCCCCC OCCCCCCCCCCC NCCCCCCCCCCCCCCCC CCCCOOO

CCCCCCCCCCCCCC OCCCCCCCCCCCC nCCCCCCCCCCCCCCC OCCCCONC
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many cases, both classifier models show excellent performance
(top right quadrant) where F1 is close to unity. However, there
are several functional groups within the HCON composition
that are not predicted well by either classification model,
namely, vinyl groups, carbonyls, and alcohol groups. Table 4

shows the worst-performing functional groups with respect to
F1 scores: we see that the neural network has consistently
higher recall scores than precision scores, indicating that these
functional groups are subject to false positives. In comparison,
the k-nearest-neighbors approach results in higher precision
scores, albeit with significantly lower recall scores and more
reluctance to predict these groups. It is likely that the features
are weakly discriminative with respect to these oxygen
functional groups compared with their nitrogen counterparts,
which correspond to much higher F1 scores. This is true for the
allene functional group, which suffers from consistently lower
predictability across all four compositions by both classification
models.
The key observation from Figure 11 is the superior

performance by the neural network classifier. We can conclude
that the neural network approach is better suited for molecular
identification, with three distinct advantages over the baseline
model: (1) improved precision and recall in all except one

functional group, (2) uncertainty quantification through
dropouts, and (3) portability and scalability. The last
advantage is particularly important toward real-time inference;
the k-nearest-neighbor classifier needs to traverse the full
training set (9 GB of data) for inference, thus scaling poorly
with the dataset size and limiting portability. On the other
hand, the neural network classifier is significantly compressed
(∼2.6 MB on disk) and can be used in distributed systems and
GPUs.
In terms of the performance of the neural network, Table 5

shows the top 15 F1, precision, and recall scores with their

respective compositions and functional groups. These metrics
show that in the best-case scenarios, the classifier is able to
predict the presence of a functional group with ∼85% precision
simply from a set of spectroscopic parameters. Most
importantly, it is difficult to establish a human judgment
baseline, as it is highly unlikely that an expert would be able to
derive such information simply by inspecting rotational
constants and dipole moments. This is extended to the vast
majority of the functional groups included in our study: Table
4 shows the worse performers with respect to F1 scores, such
that >75% of the predictors are accurate to 70%.
Figure 12 continues to use benzene as a demonstration,

where each panel shows the predicted functional groups for a
given composition. Because of the large number of labels, we
refer the reader to Table 6 for a list of the labels within each
label group. The output of this classifier, as shown by each bar,
predicts the likelihood that a particular functional group is
present in the molecule given the Coulomb matrix eigenvalues
and spectroscopic parameters. A full ordered list of the
functional groups is given in Table S1. In the case of the pure
hydrocarbon model, the most likely groups predicted are
aliphatic carbon and vinyl groups, followed by aromatic carbon
and then alkyne with much lower probability and allene as the
least likely. Although the model incorrectly ascribes lower
probability to the correct (aromatic carbon) label, it does infer
a high likelihood of unsaturation via the vinyl group. On the
other hand, the nitrogen (yellow) and mixed (green) models
predict a high likelihood of aromaticity. Interestingly, the
oxygen-bearing (red) model predicts a large likelihood for

Figure 11. Comparison of validation F1 scores from the neural
network approach (abscissa) and a k-nearest-neighbors classifier
(ordinate). Each scatter point corresponds to a functional group
encoding, and colors represent the compositions used to train the
respective models. The solid red trace indicates where both models
perform equally well.

Table 4. Lowest 10 F1 Scores for the Neural Network
Approach, Comparing the Precision (P) and Recall (R)
Scores for Both Classification Models

neural network k-nearest-neighbors

model
functional
group P R F1 P R F1

HCON allene 0.08 0.21 0.05 0.78 0.50 0.61

HCON vinyl 0.38 0.63 0.27 0.46 0.01 0.02

HCON ether 0.49 0.56 0.43 0.43 0.02 0.05

HCON amino acid 0.52 0.63 0.45 0.84 0.55 0.67

HCON alkyne 0.67 0.76 0.60 0.86 0.80 0.82

HCON carboxylic
acid OH

0.65 0.69 0.62 1.00 0.01 0.03

HCON peroxide 0.73 0.80 0.67 0.78 0.76 0.77

HCN vinyl 0.70 0.72 0.69 0.67 0.06 0.12

HCO phenol 0.72 0.76 0.69 0.50 0.03 0.06

HCO allene 0.74 0.75 0.73 0.78 0.70 0.74

Table 5. Top 15 Performing Functional Groups and Their
Associated Statistics for Each Neural Network Classifier
Composition, Based on the Validation Dataset

model functional group P R F1

HCN aromatic carbon 0.96 0.93 0.99

HCN alkyne 0.84 0.74 0.98

HCN nitrile 0.98 0.97 0.98

HC allene 0.84 0.75 0.97

HCON aromatic carbon 0.96 0.95 0.97

HCO peroxide 0.96 0.95 0.97

HC alkyne 0.92 0.88 0.96

HCO aldehyde 0.90 0.84 0.96

HCO carbonyl 0.95 0.94 0.95

HCO carbonyl-carbon 0.94 0.93 0.95

HCO ketone 0.88 0.82 0.95

HCON carbonyl 0.91 0.86 0.95

HCO alcohol 0.92 0.90 0.95

HCON carbonyl-nitrogen 0.86 0.79 0.94

HC aromatic carbon 0.92 0.90 0.94
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many functional groups, particularly those pertaining to
carbonyls (between A and B).
The probabilistic approach adopted here allows a user to

consider not only the probability of a functional group but also
the model confidence. Furthermore, because the labeling is
generated by matching SMARTS substructures, one can easily
create arbitrarily specific functional group classification
schemes; in the current implementation we chose to use
quite general SMARTS coding to maximize coverage, but this
could be tuned to produce highly specific labels (e.g.,
heteroatomic ring structures). In the proceeding sections, we
will discuss how predictions from each of the models can be
combined to infer the identity of an unknown molecule or at
least suggest tests to be conducted.
Example Applications. In this section, we will apply the

formula and functional group decoder models to four known

molecules in order to demonstrate our anticipated workflow/
thought process. Generally speaking, the formula decoder sets
the boundaries for viable compositions and, combined with the
predicted functional groups, should significantly limit the
search space. We note that these examples were not chosen on
the basis of their performance but rather as a way to highlight
the strengths and weaknesses of the models outlined in this
work and how the predictions from each model can be
combined to piece together information about an unknown
molecule. Figure 13 shows the predictions for four different
species by the formula decoder and functional group classifier
for each model composition. Inference with all four models
was performed on an Nvidia GV100 GPU with 5000 samples
per molecule at approximately 4−6 s/molecule.
Starting with cyanophenylacetic acid (C9H7NO2), an

aromatic molecule with nitrile and carboxylic groups, we see
that the number of atoms predicted by the HCON formula
decoder (green) is fairly accurate, although the number of
nitrogens is overpredicted and not captured by the model
uncertainty, thereby showing that the model remains over-
confident in spite of data augmentation. The corresponding
HCON functional group classifier correctly predicts six out of
seven groupsmissing only the carboxylic acid group, which
on the basis of the F1 scores in Table 4 is one of the groups
that is poorly captured by the HCON classifier. Additionally,
there are three other false-positive predictions: a vinyl group, a
nitrogen atom α to a carbonyl, and an amide group. This result
reinforces the fact that the current model implementation is
more likely to generate false positives (i.e., low precision
scores).
The next example, aminobutyne, is a typical unsaturated

nitrogen-bearing molecule. In this case, the HCN formula
decoder overestimates the number of nitrogens, although it
captures the number of hydrogens and carbons perfectly. The
functional group classifier correctly predicts the presence of
aliphatic carbon, an alkyne group, although it ascribes a low
likelihood to an amine group. Unfortunately, this is an example
in which the functional group classifier is misleading in its
prediction: from this, we recommend that these classifier
models be used to guide what groups may be present rather
than completely ruling out groups entirely.
Propanediol is an example where both the formula decoder

and functional group classifier provide accurate predictions. In
the latter, both the aliphatic content and alcohol functional
groups are correctly predicted, along with a false-positive ether
group. We see here that each model composition recognizes
the highly saturated nature of the input speciespredicting
low likelihoods for unsaturated groups (e.g., vinyl, alkene, etc.)
and dominated solely by aliphatic carbon. This example
highlights how predictions from each composition can jointly
inform the user what common functional groups are present.
Finally, fulvene is an isomer of benzene (C6H6). The

formula decoder once again captures the number of atoms
well, although the expected number of carbons is slightly
higher than the actual number. In contrast to the benzene
example (Figure 12), none of the models predict a significant
likelihood of aromatic carbon being present and instead see a
high likelihood of unsaturated alkenes (compared with the
propanediol result).
On the basis of the four examples, we can conclude three

aspects that will guide the interpretation of these models. First,
the formula decoders are likely to underestimate the total
number of non-hydrogen atoms, although they constrain the

Figure 12. Predicted mean likelihoods of each functional group by the
four model compositions. Error bars represent 1σ in model
uncertainty. The dotted lines mark an arbitrary cutoff of 50%
likelihood. The absicssa labels represent types of functional groups to
the left of the label (see Table 6): (A) carbon saturation, (B)
carbonyls, (C) nitrile/nitro, (D) alcohol/acid. The last group
corresponds to aromatic carbon.

Table 6. Ordering of the Functional Group Labels

label group functional group

A aliphatic

allene

vinyl

alkyne

B carbonyl

carbonyl-nitrogen

carbonyl-carbon

aldehyde

amide

ketone

ether

C amine

amino acid

nitrate

nitro

D alcohol

carboxylic acid

enol

phenol

peroxide

no label aromatic carbon
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possible formula to within an atom. When considering the
possible range of formulas, it is therefore recommended to test
the mean formula first, followed by modifications to the
numbers of heavy atoms (in particular oxygen and nitrogen)
according to the uncertainty of each atom. Because the
uncertainties are often underestimatedas can be seen in the
nitrogen and oxygen predictionswe recommend extending
the sampling of the number of atoms by ±1 beyond the limits
of the uncertainties. Second, the functional group classifiers
appear to be more likely to produce false positives than false
negatives, on the basis of Figure 13 as well as some of the
precision and recall scores shown in Table 4. Thus in testing of
functional groups, we recommend prioritizing the high-
likelihood functional groups that fall under the composition
constraints and systematically ruling each group out over the
course of the identification process. These can be confirmed
experimentally often by rare isotopic substitution, for example
by shifting alcohol groups with deuterium. Third, when the
composition is unclear, it is important to consider predictions
from all four compositions, in particular functional groups that
are common to other compositions. The most decisive trend
involves saturated/unsaturated species: in Figure 13, unsatu-
rated species are predicted to have unsaturated content
regardless of the model composition, while saturated species

generally result in no unsaturated groups at all (as in the case
of propanediol).

Model Considerations and Limitations. In the examples
provided so far, the models are provided a complete set of
spectroscopic parameters with absolute precision. In real
applications, this may not always be the case, for example,
when combinations of parameters are being used to fit effective
Hamiltonians (e.g., B + C for a prolate symmetric top) or when
the dipole moments are not known. The advantage of our
probabilistic approach is the ability to perform inference even
under these circumstances: because each model provides an
estimate of the conditional likelihood p(y|x), each parameter
within x can simply be varied in proportion to its uncertainty
and with spectroscopic intuition. To pose an example, we
discuss a situation commonly encountered in our laboratory:5

a prolate symmetric top is fit with B + C without immediately
obvious K structure, and only a-type transitions are measured,
thus leaving A poorly constrained and μb and μc unknown. The
parameters can be repeatedly perturbed with Gaussian noise
weighted by the parameter uncertainty in a bootstrap fashion.
Because of the probabilistic nature of our models, the
uncertainties propagate from the input values through the
eigenspectrum to the predicted quantities; each pass is

Figure 13. Mosaic of the predicted distributions of molecular composition (leftmost panels) and likelihoods of functional groups for four selected
species. In each panel, red lines indicate the ground truth. In the functional group predictions, bars represent the mean prediction with 1σ
uncertainties shown in the error bars, and black squares indicate functional groups with likelihoods greater than 0.5. Darker shading corresponds to
the correct model composition. The absicssa labels represent types of functional groups to the left of the label: (A) carbon saturation, (B)
carbonyls, (C) nitrile/nitro, (D) alcohol. The last group corresponds to aromatic carbon.
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equivalent to computing the conditional likelihood of a
formula or functional group with respect to λ and A(BC).
A detail that arose during the training of these models was

the importance of a balanced dataset, which was particularly
apparent in the functional group classifier. Despite our efforts
to balance the dataset prior to training, the models produced
are still susceptible to biases that are created inadvertently by
unbiased sampling as we have done. This was seen, for
example, in our tests on smaller molecules, which are under-
represented with respect to larger species simply because of the
number of possible isomers for the latter case. Future attempts
of these models will need to be highly mindful of these
subtleties at the possible expense of selection bias.
One of the significant drawbacks of our approach toward

probabilistic neural networks is the overuse of dropout layers:
although they are necessary for the probabilistic aspect of our
solution, it is likely that they over-regularize parameter learning
and consequently decrease the full learning capacity of each
model. In principle, one could use a reduced dropout
probability during trainingas long as there is no over-
fittingand use a larger dropout rate for inference. There are
also methods to calibrate uncertainties by empirical scaling52

that could rectify the model uncertainties, thereby mitigating
“overdropping”. Regardless, dropout acts only as an approx-
imation to Bayesian sampling, and for a truly probabilistic
approach inference must be performed by sampling from
posterior distributions of learned parameters. A major difficulty
in implementing true Bayesian deep learning models is the
computational cost associated with training and inference;
every forward pass must involve sampling from hundreds to
thousands of parameter distributions that replace scalar values,
and every backward pass must compute, propagate, and update
gradient information to the same number of parameters.14

Bayesian networks are an active area of study, and attractive
solutions are being developed, including probabilistic back-
propagation,53,54 bootstrap methods,55 and approximate56 and
variational57 inference. The ability to move to a Bayesian
model would remove the need for an ensemble approach,
which would significantly improve the ease of interpretation of
the model. Here an ensemble is required because of the
difficulty for single network models to generalize and be
predictive with a large variety of input parameters, whereas
Bayesian models are resistant to overfitting.
Overall, the proof-of-concept models we have shown here

highlight the viability of probabilistic deep learning models in
molecule identification with rotational spectroscopy. While
there is room for improvement, the approaches we have
described provide a promising framework for performing
inference on unknown molecules: we can reliably constrain the
possible range of compositions and functional groups present
simply f rom a set of eight spectroscopic parameters. These
constraintsin conjunction with user expertisecan be used
to guide systematic electronic structure calculations to provide
possible candidates for identification. The framework
described here has significant implications for the use of
rotational spectroscopy in complex mixture analysis. In
addition to providing a systematic method for identification,
each decoder model connects rotational spectroscopy with
other analytical techniques: through the formula decoder, we
are able to predict mass spectra, and with the functional group
classifier, we unlock an aspect of chemistry that was not
previously accessible solely with rotational spectroscopy, as
functional groups are typically determined using infrared

techniques. We believe that further development of this
methodology will solidify rotational spectroscopy as a universal
analytical tool.

■ CONCLUSIONS

In this work, we have demonstrated a series of proof-of-
concept probabilistic deep learning models that aim to assist
with molecular carrier inference. The architectures we have
described are relatively simple and lightweight neural network
models. In our demonstrations, we have shown that the
approximate formula can be determined and functional groups
that are likely to be present can be identified from
spectroscopic data routinely available from broad-band
chirped-pulse experimentsthe spectroscopy decoder, for-
mula decoder, and functional group classifier can be
collectively used to infer discriminating factors about the
unknown molecule that should systematically lead to its
identification. Although the SMILES LSTM decoder could not
generate sufficiently coherent SMILES sequences, our results
show that the models proposed here are able to learn some of
the semantics, although it is unclear whether there is sufficient
specific information contained within the eigenvalues to
perform a direct translation to canonical SMILES strings.
Instead, it may be worthwhile to consider compressed SMILES
encodings or other representations of molecular structure.
The models we have presented as part of this work are

computationally scalable and, with appropriate algorithmic
optimizations, could provide a step toward near-real-time
unknown molecule inference. Furthermore, the probabilistic
framework we have detailed can be readily accommodated to
“real” situations, particularly those where certain spectroscopic
parameters are highly uncertain, by the use of bootstrapped
parameters during inference. We anticipate that these models
will be highly invaluable in future broad-band assays of
unknown complex mixtures using rotational spectroscopy.
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