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ABSTRACT: With an ever-increasing usage of electronic structure
programs by the microwave spectroscopy community, there is a
growing need to assess the performance of commonly used, low-
cost quantum chemical methods, particularly with respect to
rotational constants because these quantities are central in guiding
experiments. Here, we systematically benchmark the predictive
power afforded by several low-level ab initio and density
functionals combined with a variety of basis sets that are commonly
employed in the rotational spectroscopy literature. The data set in
our analysis consists of 6916 optimized geometries of 76
representative species where high-resolution experimental gas-
phase rotational constants are available. We adopted a Bayesian
approach for analyzing the performance of each method and basis
set combination, employing Hamiltonian Monte Carlo sampling to determine the uncertainty in theoretical predictions of rotational
constants and dipole moments. Our analysis establishes a hierarchy of accuracy and uncertainty, with commonly used methods in the
rotational spectroscopy literature such as B3LYP and MP2 yielding lower accuracy and higher uncertainty than newer-generation
functionals such as those from the Minnesota family, and ωB97X-D, which, when paired with a modestly sized 6-31+G(d) basis,
provides optimal performance with respect to computational cost. Additionally, we provide statistical scaling factors that can be used
to empirically correct for vibration−rotation effects, as a means to further improve the accuracy of rotational constants predicted
from these relatively low-cost theoretical methods. As part of this, we demonstrate that the uncertainties can be used in simulations
of rotational spectra to cross-correlate with broadband spectra, a methodology that could be used to quickly and efficiently survey
experimental spectra for new molecules.

■ INTRODUCTION

Rotational spectroscopy is a powerful analytical tool whose
usage has grown in recent years; it has been applied in many
fields, ranging from the analysis of complex mixtures,1

measurement of chirality,2,3 molecular structure determina-
tion,4,5 in addition to its central role in molecular astrophysics
and astrochemistry. The allure of rotational spectroscopy lies
in its highly selective nature; the observed patterns in spectra
depend sensitively on the three rotational constants, which, in
turn, are inversely related to the principal moments of inertia
of a molecule. Furthermore, spectrometers, either in a
laboratory or on a telescope, routinely provide a high spectral
resolution on the order of parts per million, meaning that the
assignment of a molecule based on a rotational spectrum is
normally unambiguous.
Despite being a long-standing measurement technique, the

discovery space for rotational spectroscopy remains extra-
ordinarily large. A recent example from our group is the
analysis of an electrical discharge of benzene, which resulted in
the detection and spectroscopic characterization of nine new
hydrocarbon species,1 a number that has since grown to a
dozen.6 While these discoveries were facilitated, in part, by an

efficient workflow, this work highlights the relative ease with
which new species can be detected in a broadband spectrum,
provided the tools are in place to analyze complex chemical
mixtures in an unbiased and exhaustive fashion. Using
automated experimental techniques7,8 in tandem with
automated fitting approaches,9,10 in principle, and increasingly
in practice, multicomponent mixtures can be rapidly
decomposed and rotational constants determined for unknown
molecules.
Determining the elemental composition and molecular

structure from a set of experimental rotational constants,
however, remains challenging. The most common procedure is
to perform electronic structure calculations to optimize
chemically intuitive structures and to include corrections that
progressively improve the accuracy of the theoretical structure.
Nevertheless, the high accuracy of the rotational constants
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necessitates extremely accurate electronic structure meth-
ods11−13 to meaningfully constrain the number of possible
molecular carriers. One such approach is composite extrap-
olation schemes by Barone et al.,13−15 which rely on geometry
optimizations performed with coupled-cluster methods com-
bined with extrapolations to the complete basis set limit of the
correlation contribution to the molecular geometry. Vibra-
tion−rotation coupling is usually calculated with perturbation
theory (e.g., second-order vibrational perturbation theory16) or
with variational solutions (e.g., vibrational self-consistent
theory17,18) to the nuclear Schrödinger equation. Although
this approach typically yields highly accurate rotational
constants (to 0.1% or better), it comes at a considerable
cost, i.e., well in excess of the time needed to perform the
laboratory experiment for a single molecule. Moreover, this
level of sophistication is intractable for all but the smallest
molecules due to the need for higher-order coupled-cluster
terms [e.g., CCSDT(Q)] and large basis sets that not only
include many shells but also specifically tuned to incorporate
scalar relativistic contributions,11 core−valence interac-
tions,19,20 and so on to the molecular structure.
For these reasons, it is highly desirable to accurately predict

rotational constants with a reduced computational cost to
better match the cadence of spectral acquisition and analysis.
Determination of empirical scaling factors, such as those widely
adopted to correct for anharmonicity in harmonic frequency
analysis,21,22 would appear to be an attractive approach,
provided the electronic structure of a molecule is treated
equally well for a given theoretical method and basis set and
that discrepancies between experiment and theory are captured
within some statistical model.
To assess the usefulness of this approach, it is essential to

benchmark equilibrium rotational constants of various
electronic structure methods relative to experimental data.
While there are many examples of systematic benchmarking of
structures in the literature (e.g., Martin et al.,23 Spackman et
al.,24 Bak et al.,25 Coriani et al.,26 and Jensen27), the motivation
is usually to demonstrate “state-of-the-art”: the focus is toward
small and relatively light (2−4 nonhydrogen atoms) species;
comparisons are based on bond lengths, and high-accuracy and
computationally expensive ab initio methods such as coupled-
cluster theory are employed. A somewhat different comparison
is the ROT25 benchmark of Grimme and Steinmetz,28 where
experimental rotational constants of nine (bio)organic
molecules were compared to dispersion-corrected density
functional theory (DFT) calculations. This study, however,
specifically targeted fairly large, asymmetric molecules, with all
but one being close to the prolate limit (A ≫ B ≈ C).
Furthermore, given the small size of this data set, it is difficult
to derive scaling factors with statistical confidence.
To robustly establish the performance of low-cost methods,

the ideal sample set should contain molecules whose structures
range from the prolate to the oblate limit (−1 ≤ κ ≥ 1, where κ
is Ray’s asymmetry parameter)29 and include many calcu-
lations to derive statistically meaningful results. With this in
mind, the aim of the present study is to assess the performance
of commonly used, low-cost electronic structure methods and
basis sets, specifically with respect to their ability to predict
rotational constants. The intent is to provide a guide for
experimentalists in choosing a cost-effective method and basis
set combinations with minimal compromise in accuracy and
precision. By employing a Bayesian approach to our analysis,
we have also sought to quantify statistical uncertainties and, in

turn, to determine the most reliable methodology. Compared
to conventional frequentist statistics, Bayesian modeling
provides statistical estimates by integrating over possible
parameter space, as opposed to simple least-squares fits over
a limited set of observations. The result is a robust model of
method uncertainty, in other words, how likely the predicted
equilibrium value of a given method and basis set deviates from
the experimental vibrationally averaged one. Based on these
models, scaling factors can then be derived that effectively
correct for vibration−rotation interaction under the assump-
tion that it is the dominant source of error, without the need to
explicitly compute vibration−rotation interaction terms. As a
demonstration, we detail a workflow of how these uncertainties
can be used to predict rotational spectra, either to constrain
the frequency range of a targeted experimental search for a new
species or to search through broadband spectra in a high-
throughput fashion for evidence of undiscovered molecules.

■ THEORETICAL METHODS

Electronic structure calculations were performed using the
Gaussian ’16 suite of programs.30 The methods we considered
are commonly used in the rotational spectroscopy literature,
including Møller−Plesset second-order perturbation theory31

(MP2) and the Becke-3−Lee−Yang−Parr (B3LYP) hybrid
density functional.32 As a point of comparison, we also
considered a range of functionals, including the local
generalized gradient approximation (GGA) functional with
empirical dispersion corrections B97-D3,33 the long-range
corrected hybrid GGA ωB97X-D functional from Head-
Gordon and co-workers,34 and the hybrid meta-GGA
Minnesota functionals from the Truhlar group,35,36 which
have been engineered to produce reliable structures, energetics,
and in some of the cases include dispersion or long-range
corrections that are non-negligible for a balanced treatment of
many kinds of systems.37,38 The basis sets considered here
include split-valence basis sets of Pople39,40 (i.e., X−YZG,
where X = 6, Y = (3,2), and Z = 1) and the correlation-
consistent basis sets of Dunning (cc-pVXZ, where X = D, T,
Q).41,42 For the Pople basis sets, we also considered a
minimum amount of additional polarization and diffuse
functions. Table 1 summarizes the methods and basis sets
used in our calculations.

Table 1. Electronic Structure Methods and Basis Sets
Considered in This Worka

method basis

ab initio density functional Pople Dunning

HF43,44 B3LYP32 3-21G

MP231 BLYP45 6-31G cc-pVDZ

M05-2X36 6-31G(d) cc-pVTZ

M06-2X46 6-31+G(d) cc-pVQZ

M0536

M0646

ωB97X-D34

PW6B95-D335

PBEPBE47

B97-D333

O3LYP48

aReferences for the density functionals employing Grimme’s D3
dispersion correction; refs 49 and 50 refer to the original publications.
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Calculations of the molecular structure were automated
using a set of Python scripts in which molecules are first
specified using the SMILES representation, and OpenBabel51

is then used to generate the corresponding three-dimensional
Cartesian coordinates, followed by rudimentary optimization
with universal force field (UFF) molecular mechanics.52 The
coordinates are used as an initial guess for a chain of geometry
optimizations, starting with the least-sophisticated method,
Hartree−Fock (HF), and 3-21G basis. Subsequent calculations
use the previous geometry as the starting point, which is
typically the same electronic structure method with a smaller
basis set. Geometries are considered to be converged when the
root-mean-squared value for the change in gradient is less than
10−6 Hartrees/Bohr. The integration grid used for all
calculations is the standard “ultrafine” setting implemented in
Gaussian. No symmetry constraints were artificially imposed in
any of the calculations.
We have attempted to select an unbiased group of molecules

for this study; it consists of 76 molecules with a variety of
structures (i.e., linear, symmetric, and asymmetric tops; Figure
2) and a large distribution of masses (from roughly 20 to 120
amu; Figure 1), for which experimentally derived rotational

constants have been reported in the literature. In the vast
majority of cases, constants were determined by pure rotational
spectroscopy, although some species (e.g., benzene) are highly
symmetrical and therefore possess neither a permanent dipole
moment nor a rotational spectrum. In these instances,
rotational constants were determined by other high-resolution
techniques, typically at infrared wavelengths. For this same
reason, Figure 1 appears slightly skewed toward smaller
molecules (∼50 amu), which simply reflects that the rotational
spectroscopy is far more common for relatively light species. A
complete list of molecules, rotational constants, dipole
moments, and references is provided in the Supporting
Information (Table S1).
In selecting the data set, however, we have chosen to exclude

classes of molecules with complicated electronic structure and
nuclear motion. Examples include weakly bound or nonrigid
molecules where vibrational coupling can be nonperturbative
(e.g., van der Waals complexes, large amplitude motion) and
species that have significant competition between dynamic and
static correlation effects (e.g., heavy transition metals, radicals).
For these systems, it is very likely that the low-cost methods
investigated here would fail,25,53,54 and more sophisticated
calculations would be required. Because our approach requires

on statistical inference, where these complicated species are
likely to be outliers, our modeling focuses on well-behaved,
stable species that are typical to those observed in broadband
assays of electrical discharge mixtures.1

We estimated the performance of each method and basis set
combination in predicting rotational constants as a signed
percentage difference δA(BC)

A BC A BC

A BC
100

( ) ( )

( )

e0,exp ,theory

0,exp

δ = ×
−

(1)

where A(BC)e,theory denotes theoretical values, and A(BC)0,exp
are the experimental ones. For a given method/basis, the
probability mass function, Pr(δ), is computed by histogram-
binning the values of δ across all of the molecules studied.
Treating the three rotational constants as independent
observations equates to a total of 228 observations (with 76
molecules) for each method-basis set combination.
Comparisons between theoretical equilibrium dipole mo-

ments and experimental values were made by absolute
differences (Δμ). While dipole precision is rarely a requirement
in laboratory searches, the same is not true in predicting
intrinsic line strengths (Sijμ

2) since this quantity is important in
radiative transfer modeling and for deriving column density
estimates from astronomical observations. Since line strengths
depend on the square of the dipole moment, uncertainties in
units of Debye, rather than percentage differences, are more
relevant. We note that the dipole moment data is limited
somewhat by experiment: among the 76 molecules, exper-
imental dipole moments along the a-axis have been reported
for 42, 15 along the b-axis and 3 along the c-axis. Among the 16
remaining species, 3 do not possess permanent dipole
moments and the remaining 13 have not yet been measured.
In this work, we apply a Bayesian approach to model the

distributions Pr(δ) and Pr(Δμ) by approximating the
observations as Student’s t-distributions, f(ν, μ, σ)

( )
( )

f s
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p
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1 ( )
1
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2

2 1/2ikjjjjj y{zzzzzν μ
ν ν

μ
= +

−
ν

ν

ν+ − +

(2)

where Γ is the γ function, μ and σ have the conventional
definitions of mean and standard deviation, and ν determines
the decay rate of the distribution tail. The parameter ν allows
for better flexibility in the modeling of data and thus not
constrained as normally distributed observations; we believe
that this is a reasonable approach since not every molecule can
be equally well described by a given method and basis set.
Equation 3 expresses our model in terms of Bayes’ theorem,

comprising the observed data Pr(y) (which is substituted for δ
or Δμ) and the prior Pr(ν, μ, σ), and the likelihood Pr(y|ν, μ,
σ). The joint prior distribution Pr(ν, μ, σ) is estimated by
sampling from typical probability distributions: for μ and σ, we
chose to use normal distributions while ν is taken from a
uniform distribution; tests with different distributions showed
that the posteriors are insensitive to the choice of priors. The
objective is to determine the posterior distribution, Pr(ν, μ, σ|
y), by integration over all possible model values of ν, μ, and σ.
Samples can then be drawn from the posterior distribution to
predict the likelihoods of interest: for example, the probability
of a given method/basis is offset from the experimental value
by δ.

Figure 1. Distribution of molecular masses considered in this work.
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To perform the integration, we used the Markov chain Monte
Carlo (MCMC) methods implemented in the PyMC3
package.55 The MCMC sampling was carried out with the
Hamiltonian-based no-U turn sampling (NUTS) algorithm,
which has been shown to improve the rate of convergence over
sampling methods such as the canonical Metropolis−Hastings
algorithm.56 The sampling was distributed among four
parallelized Markov chains, where the first 2000 simulations
(“burn-in”) are discarded to ensure equilibration, with 5000
samples taken thereafter from each chain, and the results are
combined to give a total of 20 000 samples per run.

■ RESULTS AND DISCUSSION

Electronic Structure Calculations. In general, the
electronic structure results for rotational constants and dipole
moments between combinations of methods and basis sets are
all in qualitative agreement with one another. There are,
however, some fringe cases that warrant extra discussion,
where the combined method and basis give qualitatively
incorrect results. Perhaps most serious is when the M05 and
M06 methods are used with a 6-31G basis set, which predicts a
planar equilibrium structure for NH3, a finding that was
confirmed by harmonic frequency analysis (i.e., no imaginary
frequencies). The addition of diffuse and polarization functions
in the split-valence basis set alleviates this issue, and there are
no other issues based on the current data set with the M05 and
M06 functionals. This occurrence does indicate that significant

deviations from statistical behavior are possible for low-cost
theoretical calculations even for simple molecules like NH3,
although such cases appear to be fairly isolated and infrequent,
as highlighted in this case, it appears best to avoid basis sets
without diffuse and polarization functions for all calculations
Figure 2.
Another isolated nonstatistical result was found for cyclo-

propenylidene (c−C3H2): the three methods BLYP, B97-D3,
and MP2 combined with the minimal split-valence basis set 3-
21G predict the permanent electric dipole moment lies along
the a-axis, whereas other method-basis set combinations
predict the dipole moment along the b-axis, in agreement
with the experiment. In this instance, the dipole axes are
switched due to small differences in the mass distribution:
distances within the 3-membered carbon ring change with the
degrees of dynamic electron correlation, resulting in exchange
of the a and b principal inertial axes. Since the effect of
correlation here is subtle, it highlights the need for
sophisticated treatments of electron correlation, particularly
with reactive species including carbenes such as c−C3H2.
To illustrate typical results, Figure 3 shows three histograms

of δ, the percentage difference between the theoretical and
experimental rotational constants, for the MP2/cc-pVQZ and
B3LYP/6-31G calculations. In this example, MP2/cc-pVQZ
represents an ab initio method with the largest correlation-
consistent basis set used in this study, whereas the B3LYP/6-
31G result is indicative of a commonly used functional, paired
with a modest split-valence basis set without diffuse or
polarization functions. The former demonstrates an ideal
statistical case: each rotational constant is predicted with

Figure 2. Distribution of rotational constants for the 76 nonlinear molecules considered in this benchmark study. Each data point corresponds to
an experimentally determined combination of rotational constants, and its color represents Ray’s asymmetry parameter (κ), which varies from the
prolate (κ = −1) to the oblate (κ = 1) limit.

Figure 3. Deviations (δ, in percentage) of equilibrium rotational constants computed at the MP2/cc-pVQZ (left) and B3LYP/6-31G (right) levels
of theory relative to the experimental constants. In both plots, each rotational constant is indicated by a different color. The dashed line indicates
zero error; the bin spacing is roughly 0.4%.
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similar accuracy and precision, and the distribution peak
overestimates by 0.7%, with a spread of ∼3% and a distribution
that appears Gaussian-like. The latter case is qualitatively
different; the A rotational constant is predicted with greater
accuracy than either B and C, both of which are significantly
less precise than the MP2/cc-pVQZ results. The distributions
of Pr(δB) and Pr(δC) appear to be shifted toward larger values
of δ, whereas the spread in Pr(δA) is roughly centered near
zero. In contrast to the MP2/cc-pVQZ results, the B3LYP/6-
31G histograms do not appear to conform to a normal
distribution.
Figure 4 makes a similar comparison to Figure 3 but, instead,

shows the absolute differences in theoretical equilibrium dipole
moments relative to the experimental values. Notwithstanding
limited experimental data, as with the comparison of rotational
constants, the MP2/cc-pVQZ predictions are both more
accurate and precise than the B3LYP/6-31G counterparts. In
the former case, <Δ> is close to zero with a spread of ±0.2 D,
whereas the latter <Δ> is roughly 10 times larger with a much
larger spread. Once again, the MP2/cc-pVQZ results appear to
have a well-defined statistical distribution, while the B3LYP/6-
31G histograms lack a simple obvious pattern.

Bayesian Analysis. Probability distributions of rotational
constants and dipole moments allow one to perform MCMC
simulations to determine the posterior distribution Pr(ν, μ, σ|
y). Since the model integration is performed with a sampling
(as opposed to variational) method, initial testing was done to
ensure convergence of the model parameters with respect to
the number of samplesfor this, we use the MP2/cc-pVQZ δ

results as a representative example of the full data set to
demonstrate convergence.
Figure 5 shows the posterior distributions for the three

parameters used in Student’s t-distribution, as a function of the
number of MCMC samples. As the number of samples
increases, the three distributions become progressively
smoother but no qualitative shifts occur; the expectation
values and the central position of the peak do not change
significantly beyond 8000 samples, and the overall shape
closely resembles that of a normal distribution. Additionally,
errors arising from the Monte Carlo sampling (Table 2) are
∼0.1% of the mean values and well within the 95% highest
posterior density (HPD).
In addition to a qualitative inspection of convergence, we

computed two commonly used quantitative indicators: the

Figure 4. Absolute deviations (in Debye) of equilibrium dipole moments computed at the MP2/cc-pVQZ (left) and B3LYP/6-31G (right) levels
of theory relative to the experimental values. The three projections of the dipole moment are binned separately and indicated in different colors.
The dashed line indicates zero error.

Figure 5. Posterior distributions of the model variables μ, σ, and ν for δ as a function of the number of samples, on the MP2/cc-pVQZ data set for
a fixed burn-in of 2000 samples. Values in the legend correspond to the total number of samples, summed over four Markov chains. The dashed
curve indicates the distribution corresponding to 20 000 samples, which is the amount used for inference.

Table 2. Representative Parameter Statistics Obtained from the Posterior Distributions Shown in Figure 5a

parameter mean sampling error % error 95% HPDb R̂ − 1

μδ −0.5693 0.0005 0.0816 −0.6741:−0.4650 1.2 × 10−4

σδ 0.5691 0.0006 0.1058 0.4496:0.6990 1.7 × 10−5

νδ 1.5059 0.0024 0.1621 1.0468:1.9577 9.2 × 10−5

aThe sampling error and percentage error correspond to the uncertainty associated with the Monte Carlo sampling, the latter as a percentage of the
mean. bHighest posterior density; 95% credible interval.
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Geweke z-score diagnostic57 and the Rubin−Gelman R̂
statistic.58 The former measures convergence as the difference
in z-scores of the Markov chains at early and late intervals of
sampling, with small differences indicating convergence. The
latter R̂ statistic uses the ratio of intra- and interchain sampling
variances to assess convergencea converged simulation
should yield similar values of both types of variance (i.e., a
ratio close to one). A plot of the Geweke z-score diagnostics is
given in the Supporting Information, and the Rubin−Gelman
statistics for each variable are given in Table 2, with both
metrics indicating convergence. Full unabridged tables of the
parameter statistics can be found in Tables S1 and S2.
Having established MCMC sampling of the parameters

converged, samples from the posterior distribution Pr(ν, μ,
σ|δ) can now be used to make predictive (model)
distributions. As seen in Figure 6, the model successfully

captures both the peak and the shape of the observed Pr(δ)
distribution, and the expectation value of δ obtained from the
model (−0.77%) is also in quantitative agreement with the
observed value (−0.73%). The unique aspect of adopting a
Bayesian approach to the analysis is the ability to derive
meaningful uncertainties given the observed data: for MP2/cc-
pVQZ, we obtain a 95% highest posterior density (HPD)
range of −4.1−2.9%, meaning that our model statistics state
that 95% of rotational constants predicted at this combination
of theory and basis set should be captured within this δ range,
similar to a frequentist confidence interval, with the most
probable result, <δ>, being −0.77% of the experimentally
determined value. There is a nuanced difference between a
frequentist confidence interval and a Bayesian posterior density
that should be emphasized: the former is usually determined
by fitting observations to scalar values of parameters, assuming
that the central limit theorem is valid; as we see in Figures 3
and 4 an assumption that is not necessarily valid. The latter is
determined by sampling and therefore integrating over
parameter space (i.e., the posterior distribution, Pr(ν, μ, σ|
y)), with the only assumption being that the model posterior
faithfully reproduces the observations.
Moving on from the MP2/cc-pVQZ results, we now seek to

make comparisons of modeled precision (uncertainty as HPD
range) and accuracy (<δ> proximity to zero) between different

method/basis combinations. For brevity, Figure 7 provides a
qualitative overview of the model and observed δ results for
every method and basis considered; an unabridged version of
the modeling results can be found in Table S2. The first point
of comparison is uncertainties, which are represented by the
top bars in Figure 7. For the sake of simplicity, comparisons of
basis sets are averaged across all methods.
Within the split-valence basis sets, there are two main

observations. First, a minimal basis (3-21G) and to a lesser
extent double-ζ quality basis (6-31G) yield extremely large
uncertainties. Second, increasing basis set size decreases
uncertainty for all methods except HF. The most substantial
decrease is gained by adding polarization functions [6-31G →

6-31G(d)]; on average, the addition of polarization functions
halves the 95% HPD range (from 18.5 to 8.5%) for a modest
increase in cost. The addition of diffuse functions [6-31G(d)
→ 6-31+G(d)] decreases the average uncertainty only slightly,
by 0.2%. For correlation-consistent basis sets, the smallest basis
(cc-pVDZ) yields a similar average 95% HPD range as the 6-
31G(d) results (9.3 and 8.5%, respectively). Increasing the
basis set up to triple-ζ (cc-pVTZ) and quadruple-ζ (cc-pVQZ)
quality basis results gradually decreases in the average
uncertainty range, from 9.3 to 8.5 to 8.2%, while the
expectation value shifts toward negative values of δ. This is
attributed to the systematic improvement of the equilibrium
structure predicted by a given correlation method: the
equilibrium rotational constants converge toward the complete
basis set limit, which acts to lower their uncertainty and
“overestimate” the experimental values due to the lack of
vibration−rotation interactions. Interestingly, from a statistical
perspective, there does not appear to be a clear precision
advantage using either basis set families: the 6-31G(d) (8.5%)
results are of comparable uncertainty to those obtained with
the cc-pVQZ (8.2%) basis, despite the latter being significantly
more computationally expensive.
There are a few notable trends that can be gleaned from the

methods sampled here. The first concerns overall uncer-
taintythe low-level ab initio methods (HF and MP2)
generally do not perform well, even when paired with a large
basis set, e.g., cc-pVQZ. In this context, it is noteworthy that
for the HF method, distributions do not change significantly
when comparing the cc-pVXZ (X = D, T, Q) results. The
implication is that the so-called “HF limit” is reached at least in
a qualitative sense even without quadruple-ζ quality basis sets.
A similar observation was made by Bak et al.25 in their study of
bond length convergence; they found that HF/cc-p(C)VTZ
bond lengths do not significantly differ from the quadruple-ζ
counterparts. This finding suggests that composite methods
requiring basis set extrapolation of the HF contribution to
structures could be truncated, thereby avoiding the need for
large basis sets. For instance, in the composite scheme
presented by Puzzarini,15 the HF/CBS contribution is
obtained by performing a geometry optimization at the HF/
cc-pV6Z level: this work, and that of Bak et al.,25 suggests that
the HF structure and therefore rotational constants converge
quickly.
Our results also suggest that some of the more widely

adopted methods in the rotational spectroscopy literature such
as B3LYP, BLYP, and MP2 are neither necessarily the most
precise nor accurate electronic structure methods for
determining rotational constants. Table 3 shows the 10
method and basis set combinations that result in the lowest
uncertainty in the theoretical rotational constants. The meta-

Figure 6. Comparison of the probability density function Pr(δ) from
the theoretical MP2/cc-pVQZ data set (blue bars) and the posterior
predictive distribution following 20 000 samples. Both observed and
model data are histogram-binned into ∼12 MHz bins. The vertical
lines represent expectation values calculated with the model (dashed)
and observations (solid).
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GGA functionals M05-2X and M06-2X and the hybrid

functional ωB97X-D are consistently the most precise, with

PW6B95-D3/cc-pVQZ only marginally less uncertain than the

ωB97X-D/cc-pVQZ results. These observations are in agree-

ment with the recent benchmarks of other properties such as

thermochemistry.37,38 Within the Minnesota functionals, M06-

2X provides a convenient albeit confusing hierarchy of

performance and computational cost: cc-pVTZ contains

Figure 7. Visualization of the δ posterior predictive distributions (red curves) and histogram-binned observations (bars) for each method (rows)
and basis set (columns). Basis sets increase in size from left to right but no particular order has been used for the various methods. The scatter
points above distributions indicate the expectation value, while bars represent the 95% HPD interval. The full scale of δ ranges from −10 to 10%,
and the dashed line indicates zero.
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more basis functions than 6-31+G(d) and, for this reason,
perhaps not surprisingly yields a smaller uncertainty range. It is
unclear as to why the M06-2X/cc-pVQZ results are slightly
more uncertain and less accurate than when the cc-pVTZ basis
set is used instead. The difference, however, is not large
enough to suggest where the fault may lie, either in the
statistical analysis or in the electronic structure.
From Table 3, it is possible to put forth a semiquantitative

hierarchy of sophistication, which compromises between
computational cost and performance, the overall theme of
this paper. While PW6B95-D3/cc-pVQZ and ωB97X-D/cc-
pVQZ provide the lowest uncertainty, they are also among the
most costly, due to the large basis sets employed. M06-2X/6-
31+G(d) and ωB97X-D/6-31+G(d), however, employ sig-
nificantly smaller basis sets while yielding only a slight increase
in the average uncertainty; compared to using cc-pVQZ basis
sets, the HPD range and average δ increase by less than 0.5%
and roughly 1%, respectively, while requiring approximately
four times fewer basis functions. Comparing the two
functionals, while M06-2X is more precise, ωB97X-D is
more accurate, although in both cases, the expected deviation
(<δ>) from the experiment is only ∼0.3% and thus are the
most accurate methods considered in this work.
More generally, the precision and accuracy obtained here are

comparable to those reported using state-of-the-art methods
despite requiring a fraction of the computational cost
qualitatively, a difference between minutes and days or even
weeks. For example, Puzzarini59 reports the mean frequentist
errors on the order of 0.2% while including complete basis set
extrapolation, core−valence interaction, vibrational correc-
tions, and perturbative quadruple excitations in the coupled-
cluster expansion, albeit with much smaller uncertainties. The
comparable average accuracy from these low-cost method/
basis set combinations would therefore appear to be attractive
and statistically reliable ways of predicting rotational constants.
Dipole Moments. A similar analysis has also been

performed for the theoretical dipole moments. Figure 8
provides a qualitative overview of Δμ for each method and
basis set; the full set of modeling results can be found in Table
S3. As with the rotational constants, the smallest split-valence
(3-21G and 6-31G) basis sets result in the largest uncertainty
averaged across the methods, with the average 95% HPD range
spanning over 1 D. The addition of polarization and diffuse
functions decrease the uncertainty substantially, from an

average of 1.3 D (6-31G), to 0.9 D (6-31G(d)), to 0.7 D
(6-31+G(d)). The <Δμ> calculated using the 6-31+G(d) basis
set consistently overestimates dipole moments regardless of the
method used.
Correlation-consistent basis sets generally outperform the

split-valence basis sets, in terms of both precision and accuracy.
The average uncertainty ranges from cc-pVDZ to cc-pVQZ are
0.8, 0.6, and 0.5 D, respectively, with cc-pVDZ performing
marginally better than the 6-31G(d) basis set. Analogous to
that done for the rotational constants, Table 4 summarizes the
10 method and basis set combinations with the lowest
predicted uncertainties in dipole moment. In contrast to the
results from the previous section, no split-valence basis sets
appear on this list, which is instead dominated by those that
are at least triple- or quadruple-ζ quality. We thus conclude
that no obvious compromise in basis set is possible to
accurately and precisely predict dipole moments (approx-
imately ±0.2 D), although it does appear that different
electronic structure methods are relatively invariant with
respect to these two factors.

Predicting Rotational Spectra. By deriving uncertainties
for low-cost electronic structure methods and basis sets, one
can begin to make informed predictions for rotational spectra
based on the equilibrium theoretical rotational constants. The
probability distributions in Figure 7, or at a reduced level, the
95% HPD, can be used to determine the upper and lower
limits for every transition frequency predicted, which will
provide experimentalists with statistically meaningful con-
straints of the required search ranges. In the former case, the
distributions in Figure 7 represent Pr(ν, μ, σ|δ): the posterior
probability that any given value of A(BC)e is offset from the
experimental value by δ (eq 1). Here, δ effectively acts as a
statistical correction for vibration−rotation interaction, with
the assumption that the method and basis set adequately
describe a given molecule. If A̅(BC)0 represents the statistical
“experimental” rotational constants of a new molecule, which
we wish to identify, then eq 1 can be rearranged to scale the
theoretical values

A BC
A BC

d
( )

100 ( )

100

e

0
,theory

̅ ≈
×

− (4)

For simple use, δ in eq 4 can be substituted by the expectation
value and the lower and upper bounds in Table 3 to obtain
estimates. A more powerful way to utilize the statistics is to
perform predictive sampling of δ and obtain distributions of
Pr(A̅(BC)0) from scalar theoretical predictions of A(BC)e. The
combinations of A̅(BC)0 can subsequently be used to simulate
rotational spectra using a standard Hamiltonian model, e.g.,
with SPCAT, PGopher, or analytic expressions, and the
corresponding transition frequencies histogram-binned to yield
probability distributions for every transition. This approach
differs from the conventional practice of predicting rotational
spectra based on theoretical values, which assumes scalar
values for A(BC)e,theory, perhaps including some treatment of
zero-point vibrational effects, and predicts singular values for
every frequency, resulting in a stick spectrum with transitions
represented as delta functions. With the method described
here, we obtain a spectrum where the simulated line intensity
can be convolved with the probability distribution, thereby
obtaining a line width based on the statistical uncertainty of a
given transition.

Table 3. Performance of 10 Method and Basis Set
Combinations with the Lowest Modeled Uncertainty (HPD
Range), Sorted in Ascending Order of HPD Rangea,b

method basis set
HPD
range <δ>

lower
bound

upper
bound

PW6B95-D3 cc-pVQZ 6.48 98.16 95.11 101.59

ωB97X-D cc-pVQZ 6.49 98.66 95.60 102.08

M06-2X cc-pVTZ 6.57 98.78 95.70 102.26

cc-pVQZ 6.61 98.67 95.58 102.19

6-31+G(d) 6.73 99.65 96.50 103.23

ωB97X-D cc-pVTZ 6.91 98.72 95.46 102.38

PW6B95-D3 6-31+G(d) 6.93 99.29 96.03 102.96

ωB97X-D 6-31+G(d) 6.98 99.71 96.42 103.40

M05-2X cc-pVQZ 7.01 98.48 95.17 102.18

MP2 cc-pVTZ 7.01 99.61 96.31 103.32
aValues are given as percentages. bUpper and lower bounds
correspond to the 2.5 and 97.5% HPD boundaries, respectively.
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As a demonstration, we can produce an experimental
simulation by convolving a Gaussian line shape (with widths
of 50 kHz) with experimentally determined frequencies, in
which white noise has been added to the resulting spectrum. A
“prediction” using equilibrium rotational constants can be

created by assuming the molecule as a rigid rotor: for a prolate
top with a nonzero dipole moment along the A inertial axis, the
fundamental a-type transition frequencies are approximated by
ν(J′) = (B + C)J′. We take the ωB97X-D/cc-pVQZ
predictions for A(BC)e,theory, which are shifted by values of δ

Figure 8. Visualization of the Δμ posterior distributions and histogram-binned observations for each method (rows) and basis set (columns). The
scatter points above distributions indicate the expectation value, while bars represent the 95% highest posterior density. The full scale of Δμ ranges
from −1 to 1 D, and the dashed line indicates zero.
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based on 10 000 random samples drawn from the posterior
distribution. The result is shown in Figure 9 with the predicted

spectrum (in blue) overlaid with the experimental simulation
(in red) up to J′ = 10. The highest probabilities in the
prediction are coincident with the experimental lines at low-J.
Comparing the J = 1 → 0 transition frequencies, the
experimental value is 2734.6970 MHz compared to the
predicted expectation value <ν(J′ = 1)> of 2721.4033 MHz,
an offset of −13 MHz. For reference, if the equilibrium values
were used without scaling with δ, the transition frequency is
overestimated by 28 MHz. Beyond the J = 3 → 2 transition,
the prediction becomes worse relative to the experiment and is
shifted to higher frequency owing to the neglect of centrifugal
distortion.
Since the predicted spectrum has a finite width, which is

related to its uncertainty, in principle, it can be cross-correlated
with an experimental spectrum to systematically and automati-
cally target a molecule, which has yet to be detected
effectively, the matched filter approach used frequently in
digital signal processing. The left-most panel in Figure 10
shows the cross-correlation of the two spectra in Figure 9, in
which the predicted spectrum has been arbitrarily scaled by an
exponential factor that deweights the predicted probability
toward higher frequencies; in this instance, we scaled the
predicted spectrum by e−νk, where k = 3 × 10−4, a value tuned
empirically as to minimize the contribution from high J
transitions (J′ = 4). The peak of the cross-correlation spectrum
determines the optimal overlap between the prediction and the
experiment, and as the line widths are relatively narrow, they
should contain few distinct maxima. In our example, we obtain
a peak shift value of 6.9 MHz for the entire spectrum (left
panel, Figure 10), which corresponds quite closely to the −13
MHz offset between the experiment and theory for the J = 1→
0 transition. Because the cross-correlation includes contribu-
tions from higher-frequency transitions, however, there is a
small, but non-negligible difference between the peak shift and
one-half the frequency offset (6.5 MHz).
Although the example illustrated in Figure 10 appears

somewhat trivial, the primary use of this approach would be
instances where the rotational spectrum of multiple species is
overlapped (such as the case in astronomical or laboratory
spectra). The shift determined by the cross-correlation
approach could be used to assess whether the target molecule
is present in a mixture and whether the spectroscopic
prediction needs to be revisited perhaps with higher-level ab
initio methods. With the low-cost methods, we have surveyed

Table 4. Performance of 10 Method and Basis Set
Combinations with the Lowest Modeled Uncertainty (HPD
Range) in Dipole Moment Deviation (Δμ), Sorted in
Ascending Order of HPD Rangea,b

method basis set <Δμ> × 103
HPD
range

lower
bound

upper
bound

M06-2X cc-
pVQZ

−3.51 0.46 −0.18 0.28

MP2 cc-
pVQZ

−33.89 0.48 −0.22 0.26

PW6B95-
D3

cc-
pVQZ

−27.07 0.49 −0.22 0.27

ωB97X-D cc-
pVQZ

−3.73 0.49 −0.20 0.30

M06-2X cc-pVTZ −4.72 0.49 −0.20 0.30

PW6B95-
D3

cc-pVTZ −47.23 0.50 −0.25 0.26

M06 cc-
pVQZ

−47.77 0.51 −0.25 0.26

ωB97X-D cc-pVTZ −17.69 0.52 −0.22 0.29

B3LYP cc-
pVQZ

−12.91 0.53 −0.23 0.30

cc-pVTZ −32.89 0.53 −0.25 0.29
aValues are given in units of Debye. bUpper and lower bounds
correspond to the 2.5 and 97.5% HPD boundaries, respectively.

Figure 9. Simulated experimental spectrum (red trace) and predicted
(blue regions) a-type rotational spectra for phenylacetylene over the
2−26 GHz range. The predicted blue regions represent 95% HPD for
the prediction.

Figure 10. Left panel: cross-correlation spectrum of the predicted and experimental spectra, with a lag step size of 300 kHz. The dotted vertical line
marks zero. Center and right panel: the unshifted predicted spectrum (blue region) compared with the same spectrum shifted by the optimal lag
(green region, dotted trace) overlaid on top of the experimental spectrum (red) for J = 1−0 (center) and J = 2−1 (right).
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in this paper, geometry optimizations of relatively large species
(more than 10 heavy atoms) could be performed quickly and
used to rapidly assay broadband spectra. Alternatively, the
predicted spectrum could be used to set statistically meaningful
constraints on search ranges for deep surveys with cavity-based
methods, where frequency coverage and integration dwell time
represent competing constraints (owing to discharge stability,
sample consumption, etc.). The latter case is particularly
relevant for targeted searches of transient species since the
laboratory experiment is often a multivariate optimization
problem (more often than not solved with stochastic
sampling), the approach we have outlined here ensures time-
efficient spectral line surveys, allowing more time to be spent
on assaying experimental conditions.

■ CONCLUSIONS

In this work, we have quantified the statistical accuracy and
uncertainty of 13 common, low-cost electronic structure
methods combined with 7 basis sets, using a representative
sample of 76 molecules for which accurately determined gas-
phase spectroscopic data is readily available. The results show
that commonly used methods in rotational spectroscopy
literature, such as MP2 and B3LYP, have higher uncertainties
and lower accuracies than density functionals such as PW6B95-
D3, ωB97X-D, and M06-2X. For accurate predictions, these
functionals should be paired with a quadruple-ζ quality (cc-
pVQZ) basis set, which produces the most statistically reliable
rotational constants. We also recommend the same functionals,
paired with the 6-31+G(d) basis set, which provides
comparable performance at a substantial reduction (approx.
four times fewer basis functions) in basis set cost, an important
factor when considering large molecules with little to no
symmetry. In general, basis functions without diffuse/polar-
ization functions should be avoided (e.g., 3-21G and 6-31G),
as the performance of these bases is highly nonstatistical,
regardless of the method used.
For dipole moments, we find that basis set choice is the

largest contributing factor; dipole moments calculated with
split-valence basis sets have very high uncertainty; so to
achieve satisfactory accuracy, the cc-pVQZ basis is required.
With the exception of HF, dipole moment calculations are
relatively invariant to the electronic structure method used.
Thus, for astronomical modeling studies where the absolute
value of the dipole moment is critical, we recommend
calculations with correlation-consistent basis sets. For labo-
ratory studies, where only the relative values of dipole
moments are often important, the most cost-efficient approach
is to employ PW6B95-D3, ωB97X-D, or M06-2X functional
with a 6-31+G(d) basis set.
Finally, we have also demonstrated a method of using the

Bayesian uncertainties for predicting rotational spectra, which
act as a statistical approach to correcting vibration−rotation
interaction, as well as providing informed constraints on the
frequency ranges needed to identify transitions. By cross-
correlating predicted spectra with broadband experimental
data, it may be possible to perform computational assays to
infer the presence of entirely new molecules. When combined
with low-cost quantum chemistry, laboratory and even
astronomical rotational spectra might then be rapidly and
exhaustively screened for large numbers of calculated
molecules in this manner.
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■ NOTE ADDED AFTER ASAP PUBLICATION

This paper was originally published ASAP on January 28, 2020.
Due to a production error, eq 3 was incorrect. The revised
version was reposted on January 29, 2020.
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