
Novel and Practical SDN-based Traceback Technique
for Malicious Traffic over Anonymous Networks

Zhen Ling∗, Junzhou Luo∗, Danni Xu∗, Ming Yang∗, and Xinwen Fu‡
∗Southeast University, Email: {zhenling, jluo, dannyxu, yangming2002}@seu.edu.cn

‡University of Central Florida, Email: xinwenfu@ucf.edu

Abstract—Diverse anonymous communication systems are
widely deployed as they can provide the online privacy protection
and Internet anti-censorship service. However, these systems are
severely abused and a large amount of anonymous traffic is
malicious. To mitigate this issue, we propose a novel and practical
traceback technique to confirm the communication relationship
between the suspicious server and the user. We leverage the
software-defined network (SDN) switch at a destination server
side to intercept target traffic towards the server and alter
the advertised TCP window sizes so as to stealthily vary the
traffic rate at the server. By carefully varying the traffic rate,
we can successfully modulate a secret signal into the traffic.
The traffic carrying the signal passes through the anonymous
communication system and reaches the SDN switch at the user
side. Then we can detect the modulated signal from the traffic
so as to confirm the communication relationship between the
server and the user. To validate the feasibility and effectiveness
of our technique, extensive real-world experiments are performed
using three popular anonymous communication systems, i.e., SSH
tunnel, OpenVPN tunnel, and Tor. The results demonstrate that
the detection rates approach 100% for SSH and Open VPN and
95% for Tor while the false positive rates are significantly low,
approaching 0% for these three systems.

Keywords—Anonymous communication systems, traceback
technique, software-defined network

I. INTRODUCTION
Various anonymous communication systems (e.g., Tor and

VPN) have been developed and deployed around the world
to protect users’ communication privacy and fight against the
Internet censorship [24]. For example, one of the most popular
anonymous communication systems, Tor, employs more than
6000 Tor relay servers. It serves more than 2 million users and
relays around 1 petabyte of traffic daily.

Unfortunately, the anonymous communication systems are
wildly abused. For example, CloudFlare claims that 94%
of Tor traffic toward the CloudFlare network is malicious
[1]. Illegitimate users exploit Tor to send spams, download
copyrighted or illegal materials such as child pornography
[8], and even deploy botnet Command and Control servers
(C&C) [12]. Black markets and C&C servers of ransomware
(e.g., WannaCry) are deployed via Tor hidden service so as to
avoid being discovered and taken down. Thus, it is of vital
importance to have the capability of on-demand traceback
of the malicious traffic transmitted from the server to the
client in the Tor network. However, since the anonymous
communication systems leverage one-hop or multi-hop proxy
servers to establish an anonymous and encrypted tunnel so
as to relay the users’ traffic, the destination server can only
observe the IP address of the last hop proxy server, making
the tracebacking work complicated. Therefore, it is nontrivial
to trace the communication between the user and the server.

To address this issue, active watermarking techniques [5],
[6], [10], [13] are adopted to confirm the communication

relationship between the user/client and server. The crucial idea
of the techniques is to actively modulate a specific signal into
the user’s traffic at one communicating party and recognize
the demodulated signal at the other side so as to confirm the
communication relationship between the two communicating
parties. However, the existing techniques highly rely on the
special protocol features of different anonymous communi-
cation systems to design specific watermarking schemes that
are hard to be widely deployed. Fortunately, the emerging
software-defined network (SDN) provides us an opportunity
to design a more general and robust traceback technique that
can be applied for diverse anonymous communication systems
as the control plane is decoupled from the data plane in
networking equipment (e.g., switches and routers). OConnor
et al. [16] leverage the SDN to trace the source of the
APT traffic using stepping stones (i.e., the proxy servers) by
labeling the Type of Service (ToS) field of the IP header in
the kernel of each host and then detect the labeled packets
at the SDN switch. However, a customized kernel should be
installed in each host so as to achieve the accurate labeling-
based traceback. Consequently, it can just be applied in a small
controlled network environment.

In this paper, we propose a novel and practical SDN-
based traceback technique to trace the malicious traffic over
different anonymous communication systems including SSH
tunnel, OpenVPN tunnel, and Tor. We design a new and
more universal traceback technique and take full advantages
of SDN to quickly and accurately confirm the communication
relationship between the server and the client. To this end,
we leverage the SDN controller that approaches a suspicious
destination (e.g., server Bob) to intercept traffic towards the
server. Then the advertised TCP window size of the packets is
changed at the controller so as to force the server to change
the traffic rate. In this way, we can modulate a randomly
generated signal (i.e., a sequence of binary bits) by varying
the server’s outgoing traffic rate. To enhance the robustness
of our signal, repetition error correcting codes are applied
to modulate the original bits multiple times. Then the traffic
carrying the signal traverses the anonymous communication
system and arrives at the client (e.g., Alice). The SDN switch
that approaches the client can record the timestamps and packet
sizes of the traffic and demodulate the repetition bits. In light
of the repetition scheme, we can derive the recovered signal
and then determine if it is the original signal embedded at the
server side SDN controller. We have implemented the SDN-
based traceback technique and conduct extensive real-world
experiments to validate its feasibility and effectiveness.

Our major contributions are summarized as follows.

• We leverage SDN to intercept the target traffic towards
a suspicious destination and deliberately vary the
advertised TCP window size of the traffic. In this

1180

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on May 12,2020 at 13:21:05 UTC from IEEE Xplore. Restrictions apply.

way, we can stealthily vary the outgoing traffic rate of
the destination on demand so as to modulate a secret
signal into the target traffic. We are the first to regulate
the advertised TCP window size and embed a signal
into traffic for traceback. This approach can be easily
deployed over SDN.

• We carefully analyze TCP sliding window mechanism
and calculate the minimum and maximum values of
the regulatable advertised window size so as to exert
minimal effects on the target traffic rate. Moreover, we
employ repetition error correcting codes to enhance
the robustness of our embedded signal.

• Our traceback technique is evaluated using three major
anonymous communication systems including SSH
tunnel, OpenVPN tunnel, and Tor. The real-world
experimental results demonstrate that the detection
rates can approach 100% for SSH tunnel and Open-
VPN tunnel and 95% for Tor while the false positive
rates for all the three communication systems are
approximately 0%.

The idea of confirming the communication relationship
between Alice and Bob can be generalized to perform full
fledged traceback in a complicated network like Tor, where
there are three hops between Alice and Bob in general. If SDN
is pervasively deployed, the confirmation can be performed
hop-by-hop starting at one side of the communication. Each
time, the SDN is used to determine the next hop along the
path until the other side of the communication is reached.

The rest of this paper is organized as follows. We intro-
duce anonymous communication network and the software-
defined network in Section II. Then we present the SDN-based
traceback technique, including the basic idea and the detailed
design of our system in Section III. In Section IV, we perform
theoretical analysis on the selection of TCP window size and
performance metrics. In Section V, we conduct extensive real-
world experiments to demonstrate the feasibility and effec-
tiveness of the traceback technique. We review related work
in Section VI. Finally, we conclude this paper in Section VII.

II. BACKGROUND
In this section, we briefly introduce the anonymous com-

munication network and the software defined network.

A. Anonymous communication network
Diverse low-latency anonymous communication network

systems are pervasively deployed around the world for pro-
tecting users’ communication privacy and providing anti-
censorship services. In light of the length of the anonymous
communication connections, they can be categorized into two
classes: single-hop and multi-hop anonymous communication
network systems. In the single-hop anonymous network sys-
tems (e.g., SSH and OpenVPN), only one proxy server is
used to relay a user’s traffic to a destination server. Since the
server can only observe the IP address of the proxy server, it
cannot know the user’s real IP address. However, the user’s
communication privacy can be exposed if the proxy server
is compromised. In the multi-hop anonymous communication
network systems (e.g., Tor), a user first communicates with
the directory servers in the Tor network and downloads the
information of Tor relay servers. Then the user chooses three
relay servers and establishes a three-hop path hop by hop.
Finally, she commands the last relay server along the Tor path

���������	
���
��	��

����
����	
���
������� ������
����	
���
�������

����	�����	
���
��	��

���
���	��
������� ���������	
�������������

��
���������

���������	

�������
����	

�������

Fig. 1. Workflow of the SDN-based traceback technique

to build a TCP connection to the destination server. In this
way, the user can anonymously communicate with the server.
Since the Tor relay servers in the path can only know the IP
addresses of their adjacent relay servers in the path, one single
compromised server can hardly confirm the communication
relationship between the user and the server.

B. Software Defined Network
The software-defined network provides network pro-

grammability for dynamically managing and controlling the
network via open APIs and protocols. The architecture of a
software-defined network consists of three layers, including the
data plane, control plane, and application plane. The data plane
is composed of networking devices, e.g., SDN switches, used
for forwarding network traffic. The flow entries in flow tables
are stored at the switches and work as the forwarding rules.
These flow entries are configured by the SDN controller. The
control plane is composed of SDN controllers that control a set
of networking devices in the data plane. The SDN controllers
execute the requests from the SDN applications and make the
low-level network services, e.g., network topology, available
to the application plane via open APIs. The application plane
is composed of a set of applications that can access the low-
level network services provided by the SDN controllers. The
applications can send high-level policies to the control plane
that implements the policies as flow entries and sends them
to the flow table on the networking devices. Since the SDN
controllers are responsible for configuring all of the flow
entries, they play a crucial role in managing and controlling
the network.

III. SDN-BASED TRACEBACK TECHNIQUE
In this section, we first present the basic idea of the SDN-

based traceback technique. Then we elaborate on the crucial
steps of our technique.

A. Basic Idea
Our goal is to determine the communication relationship

between the Alice (client) and the Bob (server) who are
communicating with each other through anonymous network
systems (e.g., VPN or Tor). It is assumed that the SDN
switches are pervasively deployed over the Internet in the
near future. Ideally, if the suspicious traffic traverses all of
the SDN switches controlled by ourselves, we can trace back
the traffic hop by hop to discover all servers in the entire
path. However, it is resource-consuming to completely discover
all the proxy servers. Instead, just by controlling two SDN
switches that respectively approach the client and the server,
we can observe the traffic from the client and the server via
these two SDN switches. The SDN switch that observes the
traffic from the server Bob is referred to as the server-side

2

1181

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on May 12,2020 at 13:21:05 UTC from IEEE Xplore. Restrictions apply.

SDN switch and the one that observes the traffic from the
client Alice is referred to as the client-side SDN switch. Then
we can design traceback techniques in an attempt to confirm
the communication relationship between the Alice and the Bob.
The traceback can be performed on either the server-side SDN
switch or the client-side SDN switch. In the rest of the paper,
we focus on the traceback just using the two SDN switches
while our techniques can be used to perform the traceback
hop-by-hop. In addition, it is assumed that the traceback is
initiated at the server-side SDN switch.

Figure 1 illustrates the workflow of our SDN-based trace-
back technique. We first select target traffic at the server-side
SDN switch and leverage the server-side controller to send a
flow entry to the switch so as to force the switch to forward
the traffic to the controller. Then we modify the TCP packets
towards the server by changing the advertised TCP window
size in the TCP packet header in order to alter the send window
size of the server Bob. According to the TCP protocol, Bob has
to change the send window size in light of the advertised TCP
window size from the proxy servers (e.g., Tor relay servers
and SSH proxy servers) so as to vary the server’s traffic rate.
As a result, we can generate a signal (i.e.,a series of signal
bits) and modulate it into the traffic by carefully regulating the
traffic rate sent from Bob. The traffic traverses the anonymous
network and arrives at the client-side SDN switch. The client-
side SDN switch can demodulate the traffic and discover a
signal based on the demodulation. If the discovered signal is
the same or similar to the original one, we can confirm the
communication relationship between Alice and Bob.

B. Step 1: Generating the signal
We inspect traffic towards Bob using the SDN controller

and intercept it as our target traffic. The controller at the server-
side SDN switch can observe the flow information in the flow
table of the SDN switch. Once the controller discovers a flow
entry in the flow table including the IP address of the known
server Bob, the controller sends a new flow entry to the SDN
switch. The new flow entry is used to forward the target TCP
traffic transmitted towards the server to the controller.

Once we discover the target traffic, we intend to generate
an original signal for the traffic. We use the repetition error
correcting codes to send the same original signal bits multiple
times so as to add redundancy into the original signal and
ensure the reliable signal delivery. We randomly generate the
original signal (i.e., a sequence of binary bits) as

S = {S1, . . . , Si, Si+1, . . . , Sn}, (Si ∈ {0, 1}), (1)

where n is the total number of original signal bits. Denote the
number of redundancy for each original bit as r. Then we have
the total length of the repetition signal as N , where N = r×n
bits. Finally, we derive the sequence of repetition bits as

s = {s1, . . . , sm, sm+1, . . . , sN}, (sm ∈ {0, 1}), (2)

and then modulate the signal into the traffic in Step 3. Note
that all of the repetition signal bits are randomly distributed
in the signal sequence s. Let Lj

i (j < r and 1 < Lj
i < N) be

the index of the jth redundant bit for the original bit Si in the
repetition signal sequence s. Then we obtain a set of indexes
in the repetition signal sequence for the original signal Si as

Li = {L1
i , . . . , L

j
i , . . . , L

r
i }. (3)

C. Step 2: Modulating the traffic
We regulate the rate of traffic sent from the server Bob so as

to modulate the signal into the traffic. For the synchronization
purpose between the server-side and client-side SDN switches,
we wait for a time offset o and then initiate our signal
modulation. To regulate the traffic rate of the server, we alter
the advertised window size in the TCP packets sent from the
proxy server by modifying the value of the window size field
of the TCP header. According to the TCP sliding window
protocol, the sender (i.e., the server) varies the send window
size in light of the advertised window size of the receiver (i.e.,
the proxy server). In this way, we can vary the traffic rate of the
server in a time interval to modulate a signal bit into the traffic.
The time interval TI is divided into a pair of equal subintervals,
i.e., < TI,1, TI,2 >. Specifically, to modulate the “1” bit of the
signal, we reduce the traffic rate of the server by decreasing
the value of the advertised window size of the proxy server in
the first subinterval TI,1. Then, we use the original advertised
window size of the proxy server in the second subinterval TI,2.
As a result, the server increases the send window size and
raises the traffic rate during TI,2. To modulate the “0” bits
of the signal, we keep the original window size in the first
subinterval TI,1 and reduce the window size in the second
subinterval TI,2. Thereforem the traffic rate sent by the server
decreases in TI,2. Finally, we can modulate a sequence of
binary repetition bits (e.g. “01010”) into the target traffic by
varying the advertised TCP window size of the proxy server.
We have all of the repetition bits modulated in a sequence of
time intervals as

T = {< TI,1(1), TI,2(1) >, . . . , < TI,1(m), TI,2(m) >,

. . . , < TI,1(N), TI,2(N) >},
(4)

where the interval < TI,1(m), TI,2(m) > corresponds to the
mth repetition bit, i.e., sm.

D. Step 3: Demodulating the traffic
We demodulate the traffic at the client-side SDN switch so

as to recover the modulated signal. The target traffic that carries
the original signal passes through the anonymous network and
reaches the client-side SDN switch. The client-side switch can
deploy a flow entry on the SDN switch so as to forward the
traffic transmitted towards the client Alice to the controller.
After receiving the target traffic, the controller can record
the timestamp and size of each packet towards the client
Alice. Then the traffic is sent back to the server-side SDN
switch and transmitted to the Alice. Recall that the signals at
the server-side switch are modulated into the traffic after a
time offset. After a one-way delay between Alice and Bob,
the traffic reaches the client-side SDN switch through the
anonymous network. Therefore, to correctly demodulate the
traffic, we should start at a time offset equal to the one-
way delay. However, we cannot accurately predict the one-
way delay between Alice and Bob due to the dynamic nature
and complexity of the Internet and anonymous proxy servers.
Denote the worst case one-way delay between the client and
the server as D. Then the traffic carrying the signal can
arrive at the client during the period (o, o + D]. We use a
sliding window Wi to accurately determine the time offset for
demodulating a signal. The sliding window should be carefully
selected. Smaller the sliding window is, more accurate the
found start time of the signal is. Therefore, we skip the traffic
heuristically by using different time offsets o+Wi ∗ q where q

3

1182

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on May 12,2020 at 13:21:05 UTC from IEEE Xplore. Restrictions apply.

is the step of the sliding window and stop the skipping as long
as the signal is detected. We discuss the practical selection of
the sliding window and its step in Section V in detail. The
traffic starting at o + Wi ∗ q is divided into segments using
half of the time interval TI/2. A traffic rate time series can
be obtained by calculating the traffic rate in each time interval
TI/2. Denote a pair of traffic rate in the mth time interval
TI(m) as < x1(m), x2(m) >, where x1(m) and x2(m) are
the traffic rates in the first and the second subinterval, i.e.,
TI,1(m) and TI,2(m), respectively. Then we can obtain the
time series of traffic rate by

X(TI) = {< x1(1), x2(1) >, . . . , < x1(m), x2(m) >,

. . . , < x1(N), x2(N) >}.
(5)

To determine the signal demodulated from the traffic, we use
a decision rule as

s′m =

{
1, x1(m) < x2(m)
0, x1(m) > x2(m)

. (6)

Finally, we can derive a series of demodulated repetition bits
as

s′ = {s′1, . . . , s
′
m, s′m+1, . . . , s

′
N}, (s′m ∈ {0, 1}). (7)

We determine if the above discovered signal is modulated by
ourselves in Step 4.

E. Step 4: Recognizing the signal
Once we derive the demodulated repetition signal, we

enters the phase of recognizing the original signal. Since
we have the indexes of the repetition bits for the original
signal, the original signal can be recovered by accumulating
the demodulated repetition bits as

S′
i =

{
1, 1

r

∑
m∈Li

s′m > 0.5

0, 1

r

∑
m∈Li

s′m < 0.5
. (8)

Then we can have the recovered signal S′ = {S′
1, . . . , , S

′
n}.

To determine if the recovered signal is embedded by ourselves,
we compare the recovered signal S′ with the original one S
by using the Hamming distance H(S′, S). If the Hamming
distance between these two signals is smaller than a threshold
h (0 � h < n), we can determine that the original signal is
recognized and the communication relationship between Alice
and Bob can be confirmed.

IV. ANALYSIS
In this section, we first analyze the regulatable range of

TCP window size and then define the performance metrics for
measuring the feasibility and effectiveness of our SND based
traceback technique.

A. Selection of TCP Window Size
We set an appropriate advertised window size of TCP

packets from the receiver (i.e., the proxy server) at the server-
side switch in order to change the TCP transmission rate of the
sender (i.e., the server Bob). Since the selective-repeat sliding
window protocol is pervasively used in various modern operat-
ing systems, we take this protocol as an example to perform the
theoretical analysis in this paper. The send window (SWND) is
used to control the amount of data transmitted under the limit
of the minimum of the sender’s congestion window (CWND)
and the receiver’s advertised window (AWND). Denote SWND,

Fig. 2. 4 categories of data in the TCP buffer of the sender

AWND, and CWND as Ws, Wa, and Wc, respectively. Then
we can have

Ws = min(Wc,Wa), (9)

where CWND controlled by the TCP slow start algorithm is
used for the sender’s flow control to avoid overloading network
traffic, and AWND is used by the receiver to inform the sender
how much data can be sent so as to avoid overloading receiver
buffer. The CWND size is multiples maximum segment size
(MSS). The default maximum segment size (MSS) is 1460
bytes. According to the slow start algorithm, the CWND size
can significantly increase in a few seconds at the beginning of
the TCP connection and grow larger than that of AWND. At
this point, CWND has no effect on the transmission of data at
the sender side and the size of SWND relies on that of AWND.
Since the size of AWND is set in the window size field of the
TCP header by the receiver, we can intercept the TCP packets
from the receiver on the server-side SDN controller and modify
the value of AWND so as to control the SWND.

By reverse-engineering the TCP protocol stack, we dis-
cover that the range of AWND depends on the remaining size
of the receive buffer at the receiver side. The current AWND
size at the receiver side is calculated in terms of the total
size and the remaining size of the TCP receive buffer at the
receiver side. By reverse-engineering the kernel source code,
we summarize the method as shown in Algorithm 1. According
to the algorithm, we can have the range of AWND by

min{
3

4
γ,Rs} − MSS < Wa < min{

3

4
γ,Rs}, (10)

where γ is the remaining size of the receive buffer and Rs is
the threshold of the AWND size. Rs is dynamically adjusted
to control the growth of the AWND size. When the amount of
the received data is less than half size of the receive buffer, it
can be set by

Rs � min{α,
3

4
β}, (11)

where α is the maximum AWND size that can be advertised
and β is the maximum receive buffer size. The default value
of α and β is 32,767 B and 512 KB, respectively. When the
amount of the received data exceeds the half size of the receive
buffer, the maximum of Rs is 5,840 bytes.

In addition to the remaining size of the receive buffer at the
receiver side, the remaining size of the SWND at the sender
side can affect the range of AWND. As shown in Figure 2, the
data in the TCP buffer of the sender can be classified into 4
categories: 1) the data is sent and acknowledged. 2) the data is
sent but not acknowledged yet. 3) the data is not sent and the
receiver is ready to receive it. 4) the data is not sent and the
receiver is not ready to receive it. The size of SWND covers
the sizes of both the 2nd and the 3rd category data. Thus, the
remaining size of the SWND is the size of the 3rd category
data that can be sent by the sender. Denote the size of the 3rd
category data as Wu. The sender chooses the maximum of the
AWND and Wu as the current SWND size to determine the

4

1183

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on May 12,2020 at 13:21:05 UTC from IEEE Xplore. Restrictions apply.

size of the data that can be sent. Therefore, the size of AWND
should be larger than the remaining size of the SWND as

Wu � Wa. (12)

Algorithm 1 Calculating a new advertised window size
Require:

(a) δ: the total receive buffer size,
(b) θ: three quarters of the remaining receive buffer size,
(c) ε: a window scaling.

Ensure: a new advertised window size Wn

1: δ = min{α, 3
4
β}

2: θ = 3

4
γ

3: if MSS > δ then
4: MSS ← δ
5: end if
6: if receiving buffer is half full then
7: if memory has pressure then
8: limit Rs under 5840 bytes
9: end if

10: if θ < MSS then
11: return 0
12: end if
13: end if
14: if θ > Rs then
15: θ ← Rs

16: end if
17: Wn ← Wa

18: if ε �= 0 then
19: Wn ← θ
20: else if |Wa − θ|==MSS then
21: Wn ← (θ/MSS)×MSS
22: else if θ==MSS and θ > Wa + (δ >> 1) then
23: Wn ← θ
24: end if
25: return Wn

According to Equation (10), (11), and (12), we can derive
the range of AWND by

max{min{
3

4
γ,Rs} − MSS,Wu} < Wa < min{

3

4
γ,Rs}.

(13)

In practice, the first regulated AWND should be smaller than
the latest unregulated AWND so as to reduce the size of
SWND and the sender’s transmission rate. Therefore, we can
obtain

Wa < W ′
a, (14)

where W ′
a is the latest unregulated AWND. Finally, we can

refine the range of AWND by

max{min{
3

4
γ,Rs} − MSS,Wu} < Wa < min{

3

4
γ,Rs,W

′
a}.

(15)

B. Performance Metrics
To validate the detection of the signal modulated into the

target traffic, we leverage two metrics, i.e., detection rate and
false positive rate. Pd is the probability that an original signal
bit is correctly recognized. Recall that there are r (repetition)
bits in one original signal bit. If �r/2� + 1 repetition bits

are correctly recognized, the original signal can be identified.
Denote the number of correctly recognized repetition bits as
Y . We can obtain

Pd = P (Y � �r/2�+ 1)

= 1− P (Y < �r/2�+ 1)

= 1−

�r/2�∑
i=0

Ci
rP

i
r(1− Pr)

r−i,

(16)

where Pr is the probability that one repetition signal bit is
correctly recognized. Since Pd is a monotonously increasing
function with respect to the number of redundancy r, we can
raise the detection rate by increasing r.

The detection rate PD,n,h is defined as the probability that
the number of the unrecognized original signal bits cannot
exceed the threshold h of Hamming distance. Denote the
number of unrecognized original signal bits as Z . Given Pd

for 1-bit original signal, we can derive

PD,n,h = P (Z � h)

=

h∑
i=o

Ci
nP

n−i
d (1 − Pd)

i.
(17)

The false positive rate PF,n,h is the probability that a
signal is found in unmodulated traffic. The traffic that does
not carry the signal is referred to as the clean traffic. Denote
the probability that the original signal bit 0 is detected in the
clean traffic as Pd,0 and the probability that the original signal
bit 1 is detected in the clean traffic as Pd,1. Then the false
positive rate can be computed by

PF,n,h = P (Z � h)

=

h∑
i=0

Ci
n(

Pd,0 + Pd,1

2
)n−i(1−

Pd,0 + Pd,1

2
)i,

(18)

where n is the original signal length. As we can see from this
equation, we can effectively decrease the false positive rate by
raising the original signal length. However, the false positive
rate can grow by raising the Hamming distance threshold h.

V. EXPERIMENTAL EVALUATION
We implement the SDN-based traceback system in the

real-world network environment. In this section, we evaluate
the feasibility and effectiveness of our technique using three
different anonymous communication systems including SSH,
OpenVPN, and Tor. All the experiments are performed in a
controlled manner. To avoid legal issues, the TCP traffic used
for experiments is generated by our ourselves.

A. Experimental Setup
In our experimental setting, we deploy a client, a web

server, a remote proxy server, two SDN switches and two SDN
controllers. At the web server side, an Apache web service is
installed and a file is put on the web server located on our
campus. To evaluate the effectiveness of our trackback tech-
nique for different anonymous systems, we install two types
of single-hop anonymous systems (i.e., SSH and OpenVPN)
and a multi-hop anonymous system (i.e., Tor) at the client
side. In addition, the setting of the socks5 proxy is configured
in a Firefox browser as the SSH and Tor client provides the
socks5 local proxy. For the single-hop anonymous systems,

5

1184

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on May 12,2020 at 13:21:05 UTC from IEEE Xplore. Restrictions apply.

���	�������
�������	������

�����

����	�������

���	
������

���	

���������

���������	
������

���	

���������

���	�������

�����	������

 �������

����	�������

Fig. 3. Experiment setup

both SSH and OpenVPN services are installed in a single-
hop anonymous server located in North America. The client
leverages the SSH or VPN tunnel to download the file on the
server. For the multi-hop anonymous network, the Tor client
first chooses three Tor relay servers around the world in terms
of the Tor path selection algorithm [4] and establishes a three-
hop path in the Tor network. Then we can download the file
using the firefox through the Tor client.

A pair of a Pica8 SDN switch [19] and a Floodlight
controller [21] is deployed at the server side and the other
pair is installed at the client side. Since the setup at both the
client side and the server side is the same, we take the setup at
the server side as an example. We use a Pica8 P-3297 switch
that contains a serial console port, 2×1Gb management ports,
48× 1Gb ethernet ports, and 4× 10Gb SFP+ ports. The Pica8
P-3297 switch runs an open network operating system that
supports Open-vSwitch (OVS) and OpenFlow protocol. We
use a computer equipped with two Ethernet interfaces as the
SDN controller and install Floodlight on the machine. One
Ethernet interface on the computer is connected to the serial
console port of the SDN switch so as to configure the switch.
The other Ethernet interface on the computer is connected
to a management port on the SDN switch in order to allow
the controller to communicate with the SDN switch using the
OpenFlow protocol. We first configure the setup of the SDN
switch through the serial console port. We set the mode of
the SDN switch as OVS and the version of the OpenFlow
protocol as 1.3. Then we configure a bridge on the switch and
add two Ethernet ports to the bridge. These two Ethernet ports
in the switch are used to connect our campus network and the
server. In addition, the IP address of the controller and the
Floodlight service port are set to allow the OVS in the SDN
switch to connect to the Floodlight service in the controller
through the management port. Once the configuration is done,
the controller can communicate with the SDN switch. Then
a flow entry is sent to the SDN switches so as to force the
switch to forward the target traffic to our controller. The same
process goes through at the client side. Finally, we modify the
packet message processing module of the Floodlight source
code in the controller to implement the functionalities of the
signal modulation at the server side and signal recognition at
the client side, respectively.

B. Experimental Results
To evaluate the effectiveness of the traceback technique, the

client downloads the file 50 times using SSH tunnel, Open-
VPN, and Tor, respectively. At the server-side SDN switch,
we generate a random signal with 24 bits. Upon completing
the TCP 3-way handshake between the proxy server and the

web sever, we set the time offset o as 10 seconds. After
that, we initiate to modulate the signal into the traffic by
varying the TCP advertised window size of the packets from
the proxy server. At the client-side SDN switch, we record the
timestamps and packet sizes of the rest of the TCP packets
from the proxy server after the TCP 3-way handshake between
the client and the proxy server. The default values of the ratio
of the current AWND size Wa to the latest unregulated AWND
size W ′

a, the time interval TI , redundancy r, Hamming distance
threshold h, and signal length n used in the experiments are
3/4, 800 ms, 6, 7, and 24 bits, respectively. The default sliding
window size for SSH and OpenVPN is 50 ms, while the
default sliding window size for Tor is 200 ms. We evaluate the
detection rate by varying the value of one of these variables
while keeping other variables at the default values.

To validate the false positive rate, we let the client respec-
tively downloads 50 files using SSH tunnel, OpenVPN, and Tor
again. However, no signal is modulated into the traffic at the
server-side SDN switch this time. Then we generate random
signals and demodulate signals from the traffic at the client-
side switch. By computing the number of signal bits detected
in the traffic, we can derive the false positive rate.

Figure 4 illustrates the relationship between the detection
rate and the sliding window size for Tor. In light of the
empirical cumulative distribution function of the one-way
delay over Tor [20], the longest one-way delay is around 2
seconds. Since an end-to-end anonymous communication path
in the Tor network includes four TCP connections, the average
longest one-way delay between two hosts in a TCP connec-
tion is around 500 microseconds in the Tor network. After
determining the longest one-way delay in the Tor network,
we should carefully choose the step of the sliding window
to check when the traffic carrying the signal arrives at the
client-side switch. As shown in Figure 4, the detection rate is
the highest by using the sliding window size Wi as 200 ms.
Therefore, we set the sliding window size Wi at 200ms in
order to determine the time delay. The results of the detection
rates for Tor are shown in Figure 5 by varying the step of
the sliding window. According to the figure, when the step of
sliding window reaches 5, that is, the time delay is 1000 ms,
we can obtain the best detection rate. Note that, the time offset
o is set at 10 seconds. It reveals that the signal can be detected
after 11 seconds due to the large one-way delay for the Tor
network. Moreover, no matter what the time delay is, the false
positive rates are very low (less than 0.5%).

Figure 6 demonstrates the relationship between the detec-
tion rate and the sliding window size for SSH and OpenVPN. It
can be observed that the detection rates for SSH and OpenVPN
are almost the same given the same sliding window sizes.
When we set the sliding window size Wi at 30 ms or 50
ms, the corresponding detection rates reach the peak, 100%.
Therefore, we set the sliding window size Wi at 50 ms so as
to determine the time delay. The results are shown in Figure
7 by varying the step of the sliding window. Recall that the
average longest one-way delay between two hosts in a TCP
connection is around 500 microseconds in the Tor network.
The longest one-way delay of the communication through the
SSH and OpenVPN can be around 1 second as there are two
connections in their paths. After determining the longest one-
way delay in the SSH and OpenVPN, we select the step of
sliding window with which the highest detection rate can be

6

1185

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on May 12,2020 at 13:21:05 UTC from IEEE Xplore. Restrictions apply.

200 300 400 500 600 700

Sliding Window (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

 Detection Rate (Tor)
 False Positive Rate (Tor)

Fig. 4. Detection rate for Tor versus Sliding
Window

0 1 2 3 4 5 6 7 8 9 10

Step of Sliding Window

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e Detection Rate (Tor)
 False Positive Rate (Tor)

Fig. 5. Detection rate for Tor versus Step of
Sliding Window (200 ms)

30 50 70 90 110 130

Sliding Window (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

 Detection Rate (SSH)
 Detection Rate (OpenVPN)
 False Positive Rate (SSH)
 False Positive Rate (OpenVPN)

Fig. 6. Detection rate for SSH and OpenVPN
versus Sliding Window

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Step of Sliding Window

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

 Detection Rate (SSH)
 Detection Rate (OpenVPN)
 False Positive Rate (SSH)
 False Positive Rate (OpenVPN)

Fig. 7. Detection rate for SSH and OpenVPN
versus Step of Sliding Window (50 ms)

100 300 500 700 900 1100 1300 1500

Time Interval (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e Detection Rate (SSH)
 Detection Rate (OpenVPN)
 Detection Rate (Tor)
 False Positive Rate (SSH)
 False Positive Rate (OpenVPN)
 False Positive Rate (Tor)

Fig. 8. Detection rate versus time interval

1 2 3 4 5 6 7 8 9 10

Redundancy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e Detection Rate (SSH)
 Detection Rate (OpenVPN)
 Detection Rate (Tor)
 False Positive Rate (SSH)
 False Positive Rate (OpenVPN)
 False Positive Rate (Tor)

Fig. 9. Detection rate versus redundancy

3 4 5 6 7

Hamming Distance Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e Detection Rate (SSH)
 Detection Rate (OpenVPN)
 Detection Rate (Tor)
 False Positive Rate (SSH)
 False Positive Rate (OpenVPN)
 False Positive Rate (Tor)

Fig. 10. Detection rate versus Hamming dis-
tance threshold

16 18 20 22 24 26 28 30 32

Signal Length (bit)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e Detection Rate (SSH)
 Detection Rate (OpenVPN)
 Detection Rate (Tor)
 False Positive Rate (SSH)
 False Positive Rate (OpenVPN)
 False Positive Rate (Tor)

Fig. 11. Detection rate versus signal length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The ratio of W
a
 to W

a
'

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e Detection Rate (SSH)
 Detection Rate (OpenVPN)
 Detection Rate (Tor)
 False Positive Rate (SSH)
 False Positive Rate (OpenVPN)
 False Positive Rate (Tor)

Fig. 12. Detection rate versus the ration of Wa

to W
′

a

obtained. As shown in Figure 7, the detection rate for SSH and
OpenVPN in our experiments can approach 100% when setting
the step of sliding window at 3. Accordingly, the optimal time
delay is 150 ms. Note that, the time offset o is set at 10
seconds. Therefore, the traffic carrying the signal arrives at
the client-side switch after 10.15 seconds. Since the optimal
time delay is 150 ms, when the sliding window size is 130
ms, the detection rate is just a little bit lower than 100% as
shown in Figure 6. Moreover, no matter what the time delay
is, the false positive rates are very low (less than 0.5%).

Figure 8 gives the detection rate in light of time interval
used for modulating the signal. As shown in this figure, the
detection rate can significantly rise when the time interval
slightly increases. The detection rates for both SSH and
OpenVPN are almost the same given the same time intervals.
When the time interval is 800 ms, the detection rates for
both SSH and OpenVPN can approach 100%. However, the
detection rates for Tor are comparatively lower given the same

time intervals since the Tor traffic rate is unstable as Tor uses
a three-hop path to transmit the data between the client and
the server. Consequently, the detection rate for Tor is around
94.2% using the time interval 800 ms and it can reach 96.7%
using the time interval 1500 ms. Moreover, as we can see
from this figure, the false positive rates are fairly low (less
than 0.5%) and slightly decrease by raising the time interval.

Figure 9 illustrates the correlation between the detection
rate and redundancy. As illustrated in the figure, the detection
rates grow by increasing the number of redundant signal
bits. The detection rate can approach 100% when we use 6
redundant signal bits to encode one original signal. Further-
more, the false positive rates for the three distinct anonymous
network systems are almost the same by varying the number
of redundancy.

Figure 10 shows the relationship between detection rate
and Hamming distance threshold. By using larger Hamming
distance threshold, the detection rate can significantly rise.

7

1186

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on May 12,2020 at 13:21:05 UTC from IEEE Xplore. Restrictions apply.

When we use Hamming distance threshold of 7, the detection
rates for SSH and OpenVPN can approach 100%. However,
due to the unstable network performance of Tor, the detection
rate for Tor is 94.2% using Hamming distance threshold of 7.
Furthermore, the false positive rates for the three anonymous
network systems are very low (less than 0.5%) although they
slightly grow by increasing the Hamming distance threshold.

Figure 11 depicts the correlation between the detection
rate and signal length. As shown in the figure, the detection
rates for the three anonymous network systems are almost the
same given the same signal lengths. However, the false positive
rates are considerably decreased. The false positive rates are
below 0.5% using a 24-bit signal, while the false positive
rates approach zero using a 32-bit signal. This matches our
theoretical analysis in Section IV-B. Since it requires more
time to modulate a longer signal, we use the 24-bit signal as
the default signal length in our experiments.

Figure 12 illustrates the relationship between the detection
rate and the ratio of the current AWND size Wa to the latest
original AWND size W ′

a. We vary the ratio of Wa to W ′
a

to empirically evaluate the maximum and minimum values of
regulatable advertised TCP window size in Equation (15). As
we can see from the figure, when the range of the ratio of
Wa to W ′

a is between 0.5 and 0.8, the detection rates are
optimal (100% for SSH and OpenVPN and 94.2% for Tor) and
the false positive rates are fairly low (less than 0.5% for the
three anonymous network systems). It matches our theoretical
analysis in Section IV-A. However, smaller the ratio is, lower
the traffic rate is. To avoid considerably reducing the traffic
rate and keep our traceback more stealthy, we use 3/4 as the
ratio of Wa to W ′

a.

VI. RELATED WORK
We are the first to vary the advertised TCP window size and

embed a signal into the traffic to confirm the communication
relationship between a user and a server. Since we just modify
the TCP window size on the SDN controller, this technique
can be easily implemented and deployed over SDN. Extensive
real-world experimental results demonstrate the feasibility and
effectiveness of this technique.

End-to-end Traffic analysis technique is a major means to
trace the communication between the sender and the receiver
who are communicating with each other using anonymous
communication systems. The traffic analysis technique can be
classified into two categories: passive traffic analysis [9], [31]
and active watermarking techniques [10], [13], [18], [27]–
[29]. To perform the passive traffic analysis, sniffers should
be deployed at both the client side and the server side so as
to passively record the inbound and outbound traffic of the
client and server. By comparing the similarity of the patterns
of the traffic between the client and the server, the operator
can determine their communication relationship. However, to
enhance the detection rate and reduce false positive rate, the
operator should monitor the traffic for a reasonably long time.
The active watermarking technologies are to actively manipu-
late various characteristics of the network traffic so as to embed
a secret watermark into the traffic at the server/client side.
Then the traffic carrying the watermark traverses the anony-
mous communication system and arrives at the client/server
side. If the watermark can be identified, the communication
relationship between the client and server can be confirmed.
Such techniques can significantly reduce the false positive rate

using a sufficiently long signal, and they do not require the
very long training on the traffic, which is generally required
in passive traffic analysis.

Different features of network traffic can be used as wa-
termark carriers. For example, Ramsbrock et al. [23] varies
the length of packets at the application layer and embedded
the watermark by inserting characters in the packet. Since the
content of the packets is modified, the embedded watermark
could be easily discovered by the user or the server. Ling
et al. [10] proposes packet size-based covert channel attacks
against a single-hop anonymous communication system, i.e.,
Anonymizer. The attacker changes the size of packets trans-
mitted between the malicious website and the anonymous
server so as to embed the watermark into the traffic. Another
attacker sniffs the traffic and recognizes the signal to confirm
the communication relationship between the malicious website
and the client. Yu et al. [29] develops an invisible traceable
watermarking technique based on Direct Sequence Spread
Spectrum (DSSS) using pseudo-noise (PN) codes. Jia et al.
[7] proposes a single-stream scheme to detect malicious DSSS
watermark blindly.

The packet timing information is also used as a watermark
carrier. Wang et al. [28] propose a watermarking technique
based on inter-packet delay (IPD). The basic idea of this
technique is introducing a watermark by slightly adjusting the
IPD of the selected packets. Based on the analysis of [28],
Peng et al. [18] propose an IPD-based watermarking detection
approach using adjacent intermediate agents. Experimental
results show that this countermeasure scheme can effectively
identify the watermark. Moreover, when the parameters used
for encoding the watermarking are not carefully selected, the
entire watermarking can be correctly recovered. To reduce the
impact on network delay disruption, Wang et al. [27] propose
a watermarking technique for tracking P2P anonymous VoIP
phones over the Internet. Experimental studies shown that this
technique can effectively be applied to any P2P anonymous
VoIP phone that lasts longer than 90 seconds.

Houmansadr et al. [2] design the RAINBOW watermarking
scheme, which uses a non-blind watermarking approach to
manipulate IPD and use spread-spectrum techniques to reduce
latency. June et al. [22] and Wang et al. [26] propose two wa-
termarking schemes based on the interval of time respectively.
The two schemes adjust the number of packets falling in the
interval or change the arrival time of packets in the interval in
order to embed the watermark. Such schemes can effectively
reduce the impact of network flow conversion problems, and
they have good robustness, but require more packets.

To combat multi-stream attacks, Houmansadr et al. [5]
design the SWIRL watermarking scheme. It was the first blind
watermarking that can be used for large-scale traffic analysis.
It uses a stream-dependent approach to resist multi-stream
attacks and Tor network congestion and mark each stream
in different modes. SWIRL is robust to loss of packet and
network jitter and it is invisible to users and attackers.

These watermarking technologies can exist under con-
frontational network conditions and can evade the existing
detection methods. Therefore, Luo et al. [14] propose a new
detection system named BACKLIT, based on the change of
inherent timing features of TCP streams to detect the wa-
termark. The program had been tested on the PlanetLab and
the results show that BACKLIT can detect the most advanced

8

1187

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on May 12,2020 at 13:21:05 UTC from IEEE Xplore. Restrictions apply.

watermarking schemes based the arriving time of packets with
high accuracy and low error rates.

Research efforts also presented how to trace the Tor hidden
service [3], [11], [15], [17], [30]. For example, Ling et al.
propose a protocol-level Tor hidden server traceback technique.
The attacker actively forces the hidden server to produce a
protocol feature and tries to discover the feature at the Tor
entry node. Once the feature is confirmed, the IP address of
the hidden server can be identified. Tian et al. [25] investigate
how to perform traceback over the Freenet.

VII. CONCLUSION
In this paper, to address the increasingly serious abuse

issues of anonymous communication systems, we introduce a
novel and practical SDN-based traceback technique to confirm
the communication relationship between users and servers. At
the server-side SDN switch, we leverage the SDN controller
to intercept the traffic and change the advertised TCP window
size of the packets which are transmitted towards the target
server. In this way, we can modulate a secret signal into the
traffic by varying its traffic rate at the server. Repetition error
correcting codes are applied to enhance the robustness of the
modulated signal. Furthermore, based on the comprehensive
theoretical analyses, we perform extensive empirical experi-
ments to discover the regulatable range of the advertised TCP
window size so as to exert a minimal impact on the traffic
rate. Finally, extensive real-world experiments are conducted
using three anonymous communication systems, i.e., SSH,
OpenVPN, and Tor to verify the feasibility and effectiveness
of our traceback technique.

ACKNOWLEDGMENTS
This work was supported in part by National Key R&D

Program of China 2018YFB0803400 and 2017YFB1003000,
National Science Foundation of China under Grant 61572130,
61532013, and 6163200, by the US National Science Foun-
dation under Grant Nos. (1642124 and 1547428), Jiangsu
Provincial Key Laboratory of Network and Information Se-
curity under Grant BM2003201, Key Laboratory of Computer
Network and Information Integration of Ministry of Education
of China under Grant 93K-9, and Collaborative Innovation
Center of Novel Software Technology and Industrialization.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] 94% of Tor Traffic is Malicious, According To CloudFlare. https://
darkwebnews.com/anonymity-tools/tor/tor-malicious-cloudflare/, 2018.

[2] N. B. Amir Houmansadr, Negar Kiyavash. RAINBOW: A Robust And
Invisible Non-Blind Watermark for Network Flows. In Proceedings of
the 16th Network and Distributed System Security Symposium (NDSS),
February 2009.

[3] A. Biryukov, I. Pustogarov, and R.-P. Weinmann. Trawling for Tor
Hidden Services: Detection, Measurement, Deanonymization. In Pro-
ceedings of the 34th IEEE Symposium on Security and Privacy (S&P),
2013.

[4] R. Dingledine and N. Mathewson. Tor Path Specification. https://gitweb.
torproject.org/torspec.git/tree/path-spec.txt, 2018.

[5] A. Houmansadr and N. Borisov. SWIRL: A Scalable Watermark to
Detect Correlated Network Flows. In Proceedings of the 18th Annual
Network and Distributed System Security Symposium (NDSS), 2011.

[6] A. Houmansadr, N. Kiyavash, and N. Borisov. Non-Blind Watermarking
of Network Flows. 2014.

[7] W. Jia, F. TSO, Z. Ling, X. Fu, D. Xuan, and W. Yu. Blind detection
of spread spectrum flow watermarks. In Proceedings of the 28th IEEE
International Conference on Computer Communications (INFOCOM),
Rio de Janeiro, Brazil, April 2009.

[8] B. N. Levine, M. Liberatore, B. Lynn, and M. Wright. Statistical
Detection of Downloaders in Freenet. In Proceedings Third IEEE
International Workshop on Privacy Engineering, pages 25–32, May
2017.

[9] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright. Timing Attacks in
Low-Latency MIX Systems. In Proceedings of Financial Cryptography
(FC), February 2004.

[10] Z. Ling, X. Fu, W. Jia, W. Yu, and D. Xuan. Novel Packet Size Based
Covert Channel Attacks against Anonymizer. 2013.

[11] Z. Ling, J. Luo, K. Wu, and X. Fu. Protocol-level Hidden Server
Discovery. In Proceedings of the 32th IEEE International Conference
on Computer Communications (INFOCOM), 2013.

[12] Z. Ling, J. Luo, K. Wu, W. Yu, and X. Fu. TorWard: Discovery
of Malicious Traffic over Tor. In Proceedings of the 33rd IEEE
International Conference on Computer Communications (INFOCOM),
2014.

[13] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia. A New Cell
Counting Based Attack Against Tor. In Proceedings of ACM CCS,
November 2009.

[14] X. Luo, P. Zhou, J. Zhang, R. Perdisci, W. Lee, and R. K. Chang.
Exposing Invisible Timing-Based Traffic Watermarks with BACKLIT.
In Proceedings of the 27th Annual Computer Security Applications
Conference (ACSAC), 2011.

[15] S. J. Murdoch. Hot or Not: Revealing Hidden Services by Their Clock
Skew. In Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS), November 2006.

[16] T. OConnor, W. Enck, W. M. Petullo, and A. Verma. PivotWall:
SDN-Based Information Flow Control. In Proceedings of the ACM
Symposium on SDN Research (SOSR), 2018.

[17] L. Øverlier and P. Syverson. Locating Hidden Servers. In Proceedings
of the IEEE Security and Privacy Symposium (S&P), 2006.

[18] P. Peng, P. Ning, and D. S. Reeves. On the Secrecy of Timing-based
Active Watermarking Trace-back Techniques. In Proceedings of the
IEEE Security and Privacy Symposium (S&P), May 2006.

[19] Pica8 Inc. Pica8 C Open Enterprise Networking Solutions. https://
www.pica8.com/, 2018.

[20] R. Pries, W. Yu, S. Graham, and X. Fu. On Performance Bottleneck of
Anonymous Communication Networks. In Proceedings of the 22nd
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), April 14-28 2008.

[21] Project Floodlight. Floodlight OpenFlow Controller. http://www.
projectfloodlight.org/, 2018.

[22] Y. J. Pyun, Y. H. Park, X. Wang, D. S. Reeves, and P. Ning. Tracing
Traffic through Intermediate Hosts that Repacketize Flows. In Proceed-
ings of IEEE INFOCOM, May 2007.

[23] D. Ramsbrock, X. Wang, and X. Jiang. A First Step Towards
Live Botmaster Traceback. In Proceedings of the 11th International
Symposium on Recent Advances in Intrusion Detection (RAID), 2008.

[24] The Tor Project, Inc. Tor: Anonymity Online. https://www.torproject.
org/, 2018.

[25] G. Tian, Z. Duan, T. Baumeister, and Y. Dong. Traceback Attacks on
Freenet. 2017.

[26] X. Wang, S. Chen, and S. Jajodia. Network Flow Watermarking Attack
on Low-Latency Anonymous Communication Systems. In Proceedings
of the IEEE Symposium on Security & Privacy (S&P), May 2007.

[27] X. Wang, S. Chen, and S. Jajodia. Tracking Anonymous Peer-to-Peer
VoIP Calls on the Internet. In Proceedings of ACM CCS, November
2005.

[28] X. Wang and D. S. Reeves. Robust Correlation of Encrypted Attack
Traffic Through Stepping Stones by Manipulation of Inter-packet De-
lays. In Proceedings of ACM CCS, November 2003.

[29] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao. DSSS-Based Flow
Marking Technique for Invisible Traceback. In Proceedings of the 2007
IEEE Symposium on Security and Privacy (S&P), 2007 May.

[30] L. Zhang, J. Luo, M. Yang, and G. He. Application-level attack against
Tor’s hidden service. In Proceedings of the 6th International Conference
on Pervasive Computing and Applications, 2011.

[31] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On Flow Correlation
Attacks and Countermeasures in Mix Networks. In Proceedings of
Workshop on Privacy Enhancing Technologies (PET), May 2004.

9

1188

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on May 12,2020 at 13:21:05 UTC from IEEE Xplore. Restrictions apply.

