Journal of Network and Computer Applications 161 (2020) 102636

Contents lists available at ScienceDirect .
NETWORK &

COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

AN

-

ELSEVIER

journal homepage: www.elsevier.com/locate/jnca

A novel syntax-aware automatic graphics code generation with]

Check for

attention-based deep neural network

Xiongwen Pang ?, Yangiang Zhou ?®, Pengcheng Li® Weiwei Lin"™", Wentai Wu® ",
James Z. WangCl

 School of Computer, South China Normal University, China

Y School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, China
¢ Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom

4 School of Computing, Clemson University, SC, 29631, USA

ARTICLE INFO ABSTRACT

Keywords:

Convolution neural network

Long-short term memory neural network (LSTM
neural Network)

Automatic code generation

Attention mechanism

Syntax awareness

Recent advances in deep learning have made it possible to automatically translate graphical user interface (GUI)
into code by an encoder-decoder framework. This framework generally uses deep convolutional neural network
(CNN) to extract image features, which are then translated into hundreds of code tokens by a code generator
based on a recurrent neural network (RNN). However, there are two challenges in the implementation of this
framework: one is how to make full use of the information contained in the GUI and domain specified language
(DSL) code, the other is how to make generated DSL code conform to syntax rules. To fully leverage the infor-
mation in GUI and DSL code, we first propose a model named HGui2Code that integrates visual attention-enabled
GUI features (extracted by CNN) with DSL attention-enabled semantic features (extracted by LSTM). Besides, we
propose SGui2Code, a novel model that makes use of a ON-LSTM network to generate DSL code that is correct in
syntax. HGui2code pays more attention to semantic information, while SGui2code focuses on grammar rules.
Extensive experimental results show that our models outperform state-of-the-art methods on the web dataset,
yielding 5.5% higher accuracy with the HGui2Code model and 1.5% using the SGui2Code model respectively.
Although our models do not have huge boost on I0S and Android dataset, DSL code generated by our models are
very close to the layout of components in corresponding GUI.

1. Introduction

With the rapid development of engineering methodology, traditional
software development techniques gradually expose their limitations and
inefficiency with common issues such as long development cycles, large
repetitive work, and difficult system maintenance. At the same time,
computer scientists have been trying to use artificial intelligence to
facilitate the efficiency of programmers through new techniques like
automatically generating readable programs. For example, Neelakantan
et al. (2015) (2015) used a Neural Programmer to generalize combina-
torial programs and Balog et al. (2016) (2016) used a deep learning
system to automatically solve the input-output competition-style
programming.

Successful automatic programming techniques can significantly pro-
mote the quality and efficiency of software development and release a

* Corresponding author.
** Corresponding author.

huge of amount of human effort in producing code. A lot of envision has
been outlined with the surging power of Artificial Intelligence (AI),
which has been widely reckoned as a promising solution to perform
server automatic programming tasks including the conversion from
sketches to code, code synthesis, debugging and reconstruction, etc. It is
an emerging trend to use Al in front-end development to converting GUI
to code (Gui2Code) automatically. Researchers have made progress in
this job by using deep neural network. Beltramelli proposed pix2code
(Beltramelli, 2018) (2017) model which generates grammatically and
semantically correct samples. Microsoft used Sketch2Code (Techni-
quesMicrosoft, 2018) (2018) project to convert hand-drawn GUI sketches
into useable HTML code, etc.

Motivated by the trend of Al-aid GUI engineering, in this paper, we
investigate the cutting-edge models/frameworks available for automatic
generation of GUI code, which we believe has a great potential to be the

E-mail addresses: linww@scut.edu.cn (W. Lin), Wentai. Wu@warwick.ac.uk (W. Wu).

https://doi.org/10.1016/j.jnca.2020.102636

Received 18 November 2019; Received in revised form 19 February 2020; Accepted 20 March 2020

Available online 4 April 2020
1084-8045/© 2020 Elsevier Ltd. All rights reserved.

mailto:linww@scut.edu.cn
mailto:Wentai.Wu@warwick.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2020.102636&domain=pdf
www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
https://doi.org/10.1016/j.jnca.2020.102636
https://doi.org/10.1016/j.jnca.2020.102636

X. Pang et al.

driving force of swift GUI programming in practice. On the one hand, the
coming era of “big data” allows us to access a massive volume of code
resources from the Internet as a huge knowledge base for automatic
generation of GUI code, which greatly helps us to build a data-driven
end-to-end GUI code generation model. On the other hand, the onset of
machine learning frameworks provides more opportunities for us to look
for appropriate solution to a specific task in the domain of auto-
programming. Especially, deep learning techniques have been proven
to be effective in capturing complex patterns in big data. More specif-
ically, we can exploit CNN to extract image features with strong
expressiveness and apply RNN to the extraction of refined high-level
semantic information from the context of long sentences, which makes
deep learning possible and promising in automatically generating GUI
code. Currently there exist a number of approaches to automatically
converting GUI into code and most of them use an encoder-decoder
framework with an end-to-end training process. However, there are
two common problems that remain unsolved in previous solutions.
Firstly, a large portion of the information contained in the GUI as well as
the DSL code is hardly fully utilized, which consequently generates poor
codes which loss representation for some components and layout of GUI,
what is worse, it loss representation for grammar rules too. Secondly, in
existing approaches, a lot of DSL code generated by the code generator
does not conform to the grammar rules, making the output of the model
hardly useful for practical GUI engineering.

These problems inevitably limit the performance of Gui2Code model
to generate high quality code. Therefore, in this paper, we propose two
methods to enhance their ability to generate code which result into two
novel models respectively. Our main contributions are as follows:

1. Inspired by the attention mechanism in neural machine translation
and image description, an automatic generation model of GUI code
based on mixed attention (HGui2Code) is proposed. To make the best
of the information in GUI and DSL code. We innovatively integrate
visual attention-enabled extracting GUI features (extracted by CNN)
with DSL attention-enabled exacting semantic features (extracted
from DSL code by LSTM).

2. To make Gui2Code model generate code that are correct in terms of
grammar rules, we use ON-LSTM (Shen et al., 2018) (2018) network
to take grammar rules into account and present SGui2Code model,
which also makes an increase with 1.5% on the web dataset.

3. We conducted extensive experiments on three datasets to evaluate
HGui2Code and SGui2Code. The results show that in the web dataset,
our HGui2Code model promotes code generation accuracy by 5.5%
compared to the baseline methods while a 1.5% improvement is
yielded by the SGui2Code model. As for iOS and Android datasets, our
two models generate high quality DSL code which are better repre-
senting the layout of GUI.

The rest of this paper is organized as follows. Section 2 is arranged to
state related works, we show the general Gui2Code framework in Section
3, then discuss our HGui2Code framework in Section 4 while SGui2Code
in Section 5, and we demonstrate our models outperform baselines by
contrast experiment in Section 6. Finally, we make a conclusion in Sec-
tion 7.

2. Related works
2.1. Neural program synthesis

With the rapid development of deep learning, researchers begin to
consider whether intelligent systems can solve the problem: program
synthesis. Neural program synthesis has a large application market, and
successful program synthesis systems can realize automatic machine
programming in the future. Using machine learning techniques to

Journal of Network and Computer Applications 161 (2020) 102636

automatically generate programs is a new area of research. Recently this
research has made breakthroughs. Researchers have proposed a variety
of models and architectures to meet multiple challenges in neural pro-
grams synthesis.

Graves et al. (2014) (2014) trained a “Neural Turing Machine” (NTM)
model directly by the input and output of the program. This model uses
deep learning network's powerful expressive ability to simulate real
programs and make them behave. Neelakantan et al. (2015) (2015)
proposed a Neural Programmer, which is augmented by a small part of
basic arithmetic and logic operations that can be trained end-to-end using
backpropagation. This neural programmer can call these enhancements
in a few steps to generalize a more complex combinatorial program than
built-in operations.

In actual research, training data is scarce for everyone. The main issue
is how to incorporate prior knowledge into the model. Riedel et al.
(2016) (2016) considered the case of a priori procedural knowledge of
neural network, and propose to provide an end-to-end and differentiable
interpreter, which enables programmers to write draft programs with
intermediate missing, these draft programs can be filled from the
behavior training of input and output data.

Balog et al. (2016) (2016) proposed a deep learning system DEEP-
CODER that will automatically program to solve the basic programming
problems involved in competitions. Parisotto et al. (2016) (2016) pro-
posed a new technique: Neuro-Symbolic Program Synthesis, which can
automatically build computer programs using domain-specific lan-
guages. Gupta et al. (2017) (2017) proposed an end-to-end programming
error solution system DeepFix, which can locate and fix multiple similar
errors in a program without relying on any external tools. Becker et al.
(Becker and Gottschlich, 2017) (2017) proposed the first machine
learning system AI Programmer, which can automatically generate
complete software programs. Based on genetic algorithm, the system is
tightly constrained programming language and minimizes expenses
while searching. Abolafia et al. (2018) (2018) proposed a new method
for program synthesis using a cyclic neural network: Priority Queue
Training (PQT). They train a cyclic neural network model on the
generated best program data sets, then merge new programs and add
them to the priority queue by cyclic neural network sampling. Kant
(2018) (2018) summarized the development of recent neural network
program generation. Firstly, this article discusses problems and chal-
lenges in program synthesis, then reviews the development process of the
program induction model, finally compares the differences in program
synthesis and introduces potential research directions in the future.

In summary, the ability to model complex programming languages is
limited by DSL. Above documents do not consider syntax information in
generated code, which leads syntax errors sometimes. To fulfill the task
of programming language generation, it is very necessary to introduce
grammar rules and syntax into the neural network to obtain a gram-
matical aware sequence generator.

2.2. Automatic GUI code generation

Although these breakthroughs in neural program synthesis indicate
that automatic generation of computer programs is an active area of
research. But using machine learning techniques to automatically
generate GUI code is still an area of research that has hardly been
explored.

Nguyen et al. (Nguyen and Csallner, 2015) (2015) first proposed the
Reverse Engineer Mobile Application User Interfaces (REMAUI). In
reverse engineering, this technology can get the UI code by inferring
from mobile program's screenshots; In the forward engineering, the
problem of converting GUI sketch into corresponding code is solved.
Based on recent advances in image description and optical character
recognition, Deng et al. (2016) (2016) proposed a generic, deep
learning-based model to decompile images into representation marker.

X. Pang et al.

This model does not require any knowledge of underlying markup lan-
guage and only requires end-to-end training on real sample data. Bel-
tramelli (2018) (2017) pioneered attempts to learn latent variables
rather than complex engineering heuristics by machine learning. That
model uses computer vision to understand the GUIL, computer code and
generates grammatically and semantically correct samples. Airbnb
(Wilkins, 2019-03) (2017) introduced code generation from low fidelity
wireframe. This algorithm uses machine learning model to convert
product interface sketch into codes directly, and improves the conversion
efficiency from sketches to code. Kumar (2018) designed a deep neural
network model called Sketch2Code, which translates sketches of web-
site's GUI into code. This model has scored 0.76 on the BLEU. Wallner
(2018) published an article on FloydHub about converting a website
design to code, and shared how he built a powerful front-end code
generation model Screenshot to Code, which based on pix2code and
other papers. Microsoft (TechniquesMicrosoft, 2018), Kabel and Spike
Techniques (2108) have teamed up to release the Sketch2Code project, a
web-based solution that uses Al to convert hand-drawn GUI sketches into
useable HTML code. Ellis et al. (2018) (2018) proposed converting a
simple hand drawing into a graphical program model written with a
subset of LaTeX. This model combines deep learning and program syn-
thesis techniques to train CNN to interpret images' primitives, which are
the specifications that graphics programs need to draw. Zhu et al. (2018)
(2018) proposed a layered code generation model based on attention
mechanism. Tt is called ABHD model in this paper. In order to facilitate
the description of the following chapters, this model first extracts enough
image features by CNN, and then inputs the image features into two
levels of decoders: Block-Level Decoding and Token-Level Decoding.

3. Automatic GUI code generation framework

In the automatic generation of GUI code model, the quality of the
generated codes mainly depends on the objects contained in the image,
the recognition ability of the scene, and the degree of cognition about the
relationship between the objects. Based on encoder-decoder framework,
automatic generation of GUI code model combines CNN and RNN. End-
to-end method is used to train this model. Generally, the structure is
shown in Fig. 1.

Fig. 1 shows the overall model structure in the field of automatic
generation of GUI code based on pix2code (Beltramelli, 2018), Sketch-
Code, and Screenshot to Code. The ABHD (Zhu et al., 2018) model in-
novates on this basis. In this model structure, screenshot I is encoded by
the CNN visual model as V, and DSL code is encoded by the language
model of the RNN as C;. Then, the feature vectors obtained by the two
coding models are fused to obtain h; and fed into the decoder composed
of RNNs. Finally, a DSL tag y; is sampled once using the Softmax layer.
The size of the output dimension of the Softmax layer corresponds to DSL
vocabulary's size.

Rezgs

= ttb deommtdxp qwnog wiou ofmmp
Predicted

DSL
)

Cghxe

wigzssheabaw arka xzapcjdt zxauvx

One-Hot Encoding Generated

GUI

Fig. 1. GUI code auto-generating model structure overview.

Journal of Network and Computer Applications 161 (2020) 102636

As all DSL tags are created, compiler translate DSL code to real source
code by taking the DSL code file and the DSL transformation pattern li-
brary as input, each label in the DSL code is mapped to the program
source code through the pattern analysis framework processing, and the
complete Web/Android/IOS program source code is output through the
code generation module.

In general, given a GUI and all DSL code generated at the current
moment, the model can be optimized end-to-end by gradient descent to
predict the next DSL tag in the sequence. At the compile stage, the
resulting DSL code sequence is compiled into the desire5d target lan-
guage using conventional compiler design techniques. The mathematical
formula is described as follows:

V =CNN(I))
C,=LSTM(X,) 2)
he=(V,C,) 3
v = softmax(LSTM (h,)))
X =i)

The existing automatic generation of GUI code model can learn a
wealth of features, but has three main drawbacks:

(1) Existing models cannot make full use of extracting image features
and DSL code features. Because the atomic structure of the pro-
gram itself has inherent meaning, and the input of the model is not
continuous domain space.

(2) RNN decoders sometimes have grammatical errors in decoding.
Due to the incorrect DSL code input in the compiler, the compiler
will not be able to analyze the source code of the program
correctly. Almost all models do not take controlling DSL code
syntax into account when generating DSL code.

(3) The vocabulary range in the program is very small, and has almost
no semantic relationship between the contexts, which leads to less
features extracted from the deep learning model and cannot
guarantee the generalization ability.

In response to these problems, we propose HGui2Code and SGui2-
Code respectively.

4. Integrating with hybrid attention mechanism

We have successfully applied the attention mechanism in image and
text in automatic generation of GUI code model, in which the weights of
image feature and code semantic vector are automatically determined.
Two weight vectors are initialized for image feature vector and code
semantic vector respectively, then the weight vector multiplied by cor-
responding feature vector, finally we concatenate image feature and code
semantic vector as a hybrid feature vector, with the execution of gradient
descent algorithm, the weight vectors will be adjusted automatically,
more details are shown in Section 4.1 and Section 4.2.

4.1. Attention mechanism

The encoder-decoder model is very classical. Its biggest limitation is
that the only connection between the encoder and decoder is a fixed
length semantic vector. It means that encoders compress information of
the entire sequence into a fixed length vector, two problems occur:

(1) Semantic vectors may not be able to fully represent information of
the entire sequence.

X. Pang et al.

(2) The information carried by the first input sequence may be
covered by the later input sequence. The longer the input
sequence is, the more serious this phenomenon is.

Using a vector to represent all the content of an image can cause a
partial loss of image information, therefore, to extract features efficiently,
we use a soft attention mechanism similar to most image caption and
neural machine translation models, for all image regions and DSL at
specific times. Labels get different attention, so that LSTM decoder can
selectively focus on certain parts of the image by selecting a subset of the
image feature vectors, and automatically adjust the DSL code semantic
vector by weights.

Taking visual attention mechanism as an example, the computational
idea of DSL attention mechanism is similar. The calculation is as follows:

L
=) aw (6)
i=1

where p; represents the feature vector selected by the attention mecha-
nism; V= {1, ..., v}, vi € RP, represents the dimension of the image
feature map, v; represents one pixel in the feature map. L represents the
number of image pixel points; a,; represents the weight corresponding to
the time t.

The visual attention mechanism is to generate a set of weights a, =
{aw, ..., a4, -..,aq } corresponding to the feature map V at time t, which is
generated as follows:

Cii :fuzr (Vi-, Si—1) (7)

= P ®

Etzlexp(e,k)

where s;_; represents the hidden layer state at time t-1 of the LSTM
decoder model. e; represents the correlation between the i feature map
vector and the hidden layer state s;_; of the LSTM decoder at time t-1,
which can be calculated by a multi-layer perceptron. After getting e;;, pass
it to the Softmax function to get the normalized weight value ay;. for is a
multi-layer perceptron, and the mapping relationship is as follow:

Jan :ﬂT tanh(WsH + le,) ©

where W is the weight matrix corresponding to s, 1; U is the weight
matrix corresponding to v;; 7 is the weight matrix corresponding to the
neuron output.

4.2. Construction of HGui2Code

In order to make full use of the information in the image and the DSL

'y

‘}STM\‘ ":LS”’E ": : ‘ ’:"STM\,‘ CNN Feature T

row{

) O .
P ER E T p i . img label
| LSTM b LST™ b |- »{LsTM |
salbadie gl L -
| Enbedding | v Iabel slder,abel
i i |
f !
o { img : row{
R label,switch
. LSTM | v,)
e bt N Decoder)
LST™ — | J footer{
> (btn-more, btn-contact
—

|
|
| btn-search, btn-download
: |
DSL Code i

Xia Generated DSL

Fig. 2. HGui2Code structure diagram.

Journal of Network and Computer Applications 161 (2020) 102636

e, il o
[I. STI\H ST\I]—{ - LSTM

Embedding

T 1T, | T T
(LSTM LSTM H
T T, TTI,Z T T 1,128

I

row img

e
——

Fig. 3. LSTM Encoder network structure.

encoding, we propose this hybrid attention mechanism for decoding
image features and DSL vectors. Combining the semantic features of DSL
attention with each regional feature of visual attention, the decoder is
guided to generate DSL code. As shown in Fig. 2.

As shown in Fig. 2, the main components are CNN encoder, LSTM
encoder, attention mechanism, and LSTM decoder. The working princi-
ples are as follows:

(1) CNN Encoder It uses CNN as visual model to perform unsuper-
vised features learning. A high-level visual representation V acts
as an input to the visual attention component. The CNN encoder
consists of a 6-layer convolution layer, a 3-layer maximum pooling
layer, a 5-layer Dropout layer, and a 2-layer fully-connected layer.
The convolutional layer uses a 3 x 3 convolution kernel with a
step size of 1 to perform a fill-free convolution to get feature map.
The pooling layer uses 2 x 2 pooling window with a step size of 1
to perform the maximum pooling in the feature map without
filling. The Dropout layer sets the probability of random

Fig. 4. Visual attention mechanism.

X. Pang et al.

Yy

!

Fully Connected Layer

t f
[LSTMHLSTM
i i
0t

Fig. 5. LSTM decoder structure.

LSTM

Ta

inactivation of neurons to 0.25 or 0.3. The fully connected layer
uses ReLU as the activation function.

(2) LSTM Encoder It can be used as a language model, encoding tags
vector with an embedded layer, and performing tag-level lan-
guage modeling through discrete input. We use LSTM to model
DSL code associated with input images. The input of LSTM
encoder is the feed-in DSL code at time t, and the output repre-
sents the hidden layer state of the LSTM encoder at each step. We
use a simple lightweight DSL to describe GUI. The simplicity of
DSL not only reduces the size of search space, but also reduces the
size of vocabulary. In our work, we are only interested in the
layout of GUI, the relationship between graphical components,
and ignore the actual text values of components.

The LSTM encoder in the HGui2Code model stacks two LSTM layers,
each layer containing 128 storage units. The network structure is shown
in Fig. 3.

(3) Attention Mechanism It includes visual attention and DSL
attention.

Visual attention can adaptively adjust the image feature vector. The
input of this component is V and s;_1, V is the feature vector extracted
from the image, and s;_; is the hidden state of the LSTM decoder at time t-
1 containing semantic information for all DSL tags generated before time
t. The implicit relationship between V and s;_; is learned by a multi-layer
perceptron, and then a set of weights is generated to automatically adjust
the feature vector to p;. This allows the LSTM decoder to focus on cor-
responding parts in image based on previously predicted DSL code in-
formation, rather than focusing on entire image. The process of
calculating visual attention is shown in Fig. 4.

DSL attention can give more attention to the inside tokens not the
surrounding tokens, adjusting the focus of attention over time. The input
to this component is h; and s;_1, and the output is g;. The calculation
process is consistent with visual attention.

According to the principle of visual attention, we use the self-adaptive
automatic generation of GUI code model AGui2Code, as a baseline model
of HGui2Code to explore the impact of adding visual attention compo-
nents only. The AGui2Code model works are as follows: The DSL features
containing grammar and semantic information are combined with image

Journal of Network and Computer Applications 161 (2020) 102636

features selected by the adaptive visual attention to jointly guide the
decoder to generate the DSL code.

(4) LSTM Decoder: First, multi-feature fusion layer is performed to
connect encoded vector p; from visual attention and the encoded
vector ¢, from DSL attention into a single feature vector r;. It is
then delivered to LSTM decoder. Finally, LSTM decoder predicts
possible DSL label y,. The network structure of LSTM decoder is
shown in Fig. 5.

The working principle of the HGui2Code model can be expressed by
mathematical formulas as follows:

V=CNN(I) (10)

h, =LSTM(X,) 11
L

pPr= Z Vi 12)
i=1
Ty

a= Y ahy a3)
j=1

ry= (anr) 14)

Xe+1 =Vt (15)

The automatic code generation model based on mixed attention has
the following characteristics:

(1) Using deep vision model to extract image features, combined with
a cyclic neural network to build a language model, using end-to-
end methods for training.

(2) When using the cyclic neural network to decode image features,
an adaptive visual attention mechanism is introduced. The
decoder adaptively selects features corresponding to each region
in image and makes full use of the information contained in
image. At the same time, the DSL attention mechanism is intro-
duced too, and LSTM decoder adjusts focus of attention on DSL
semantic vector over time;

(3) Using the multi-feature fusion method, the language model coding
features are combined with features of each region in adaptive
selection image to jointly guide the LSTM decoder to generate DSL
code;

(4) In the decoding stage, the structure of the LSTM decoder is
simplified, avoiding degradation of the entire network and
improving learning ability effectively.

5. Integrating with syntax awareness

The grammar rules of DSL are introduced into the automatic code
generation model through ON-LSTM network. The ON-LSTM decoder
network is base on fusion features constructs and creates the grammar
tree structure of DSL while generating DSL tokens. We can obtain a
sequence generator with syntactic awareness and significantly reduce
search space during the training process.

5.1. ON-LSTM model

Natural language is usually presented in the form as sequences, but
the language's basic structure is not strictly serialized. Linguists (Sandra
and Taft, 2014) believe that serialization structure is controlled by rules

X. Pang et al.

GUI CNN Feature
p—
pmm— . 1 CNN " —
- Encoder m— v
o000
[
- —»
. mekkl x |ON-LSTM —
I‘ Encoder
I
: | DSL Vector
DSL Code |

Journal of Network and Computer Applications 161 (2020) 102636

stack {
row{
img,label

}

Tow {

T, ON-LSTM v, label,switch
Decoder }
footer {

btn-more, btn-contact
btn-search, btn-download

b
}

Generated DSL

Fig. 6. SGui2Code model.

or grammar of words that make up sentences, and that structure is
tree-like. In recent years, deep neural network technology that uses the
potential tree structure to form better natural language sentence repre-
sentation has received great attention. Tai et al. (2015), Chung et al.
(2016) integrated the syntax tree structure into language model by
gradient back propagation. LeCun et al. (2015), Schmidhuber et al.
(Zhang et al., 2018) integrated the tree structure into the language model
to obtain hierarchical representations with increasing levels of abstrac-
tion. The representation is also a key feature of deep neural networks.
Programming languages are very similar to natural languages, and most
programming languages are defined by context-free grammars, so pro-
gramming languages can also be expressed as syntax tree structures. Liu
et al. (2018) proposed a new GAN framework, TreeGAN, which in-
corporates a given context-free grammar into the sequence generation
process. Using TreeGAN to solve the syntactic-aware sequence genera-
tion problem, the machine generates a large number of high-quality SQL
query statements automatically.

Kuncoro et al. (2018) demonstrated that an RNN with sufficient ca-
pacity is potential to encode a syntax tree structure implicitly. Shen et al.
(2018) proposed a new type of Inductive Bias-Ordered Neurons for cyclic
neural networks. This inductive bias enhances the dependence between
neurons and is based on order. A new neural network model is designed
combining the structure of neuron and LSTM, ON-LSTM. It can perform
tree-like composition without destroying sequence form, and the induc-
tive bias is consistent with grammar rules proposed by human experts. In
view of the excellent performance of ON-LSTM in language modeling and
unsupervised component syntax analysis, we introduce the ON-LSTM
model into the field of GUI code automatic generation, and propose a
syntax-aware GUI code automatic generation model SGui2Code.

Inductive bias in ON-LSTM model promotes differentiation in infor-
mation lifecycle stored in each neuron: advanced neurons store long-term
information that is retained over a large number of time steps, while low-
level neurons store short-term information. In order to avoid a fixed di-
vision between high-level and low-level neurons, ON-LSTM proposes a
new activation function cumax() which actively allocates neurons to
store long-term information and short-term information. This function
helps ON-LSTM model to generate a vector of advanced input gates and
advanced forgetting gates, this vector can ensure that when a given
neuron is updated (forgotten), all neurons following it in the sort are also
updated (forgotten). ON-LSTM model can process sequence data con-
taining tree structures.

Table 1
Comparing the error rate of HGui2Code model and other models on test sets.

DataSet Error (%)
pix2code ABHD AGui2Code HGui2Code
Pix2Co Web 12.14 11.50 9.6 6.00
Android 22.34 18.65 18.87 34.24
i0S 22.73 19.00 19.20 35.20

5.2. The working principle of SGui2Code network

In this network, ON-LSTM decoder based on fusion features con-
structs and improves the grammar tree structure of DSL code constantly,
and obtains grammar awareness sequence generator, which greatly re-
duces the search space in the training process. The overall network
structure of the SGui2Code model is shown in Fig. 6.

SGui2Code model is mainly composed of CNN encoder, ON-LSTM
encoder and ON-LSTM decoder. The working principle of each compo-
nent is as follows:

(1) CNN encoder: It performs unsupervised feature learning using a
CNN as a visual model to construct a high-level abstract visual
representation of images. V is an image feature extracted by this
encoder.

(2) ON-LSTM encoder: Language modeling of DSL code associated
with input image using ON-LSTM. The ON-LSTM network learns
complex underlying syntax information and syntax patterns from
the input DSL code. In order to extract from the encoder hidden
layer state h; containing the syntax tree information, the neurons
in ON-LSTM are divided into two parts: high-level neurons and
low-level neurons. Advanced neurons store long-term dependent
information, and low-level neurons store short-term dependent
information.

(3) ON-LSTM decoder: First, multi-feature fusion is performed, visual
encoded vector V and language encoded vector h; are connected into a
single feature vector r;, which is then delivered into ON-LSTM decoder. h,
contains rich syntax and semantic information, corresponding to this, we
also built a syntax-aware decoder. The decoder is affected by DSL lan-
guage knowledge and syntax tree when generating DSL tokens. There-
fore, ON-LSTM network is also used in the decoding process and predicts
possible DSL label y;.

X. Pang et al.
6. Experimental results and analysis of the model

To explore the generality of our models, what codes do they generate
and how close the generated code is to the actual code, in this part, we
analyze the experiment results of our two models in detail. Finally, by
comparing error rate of baselines including pix2pix model (Beltramelli,
2018) (2017), ABHD (Zhu et al., 2018) (2018) model, we prove that our
models are effective.

6.1. Experimental setup

6.1.1. DataSet

We use a common data set provided by Beltramelli et al. (Beltramelli,
2018), which is referred to as Pix2Co hereafter.

Pix2Co is created for research on GUI and the corresponding DSL
code. It consists of three sub-data sets, corresponding to three platforms:
i0S, Android and Web. Each subset has 1500 GUI code pairs for training
and 250 pairs for testing. The GUI in Pix2Co is a screen shot of the
program generated by the boot framework. Each GUI has an average of
65 tags, with 96,925 training samples per sub-data set. Fig. 7 shows
example of the iOS GUI and DSL code in the pix2co sub-data set.

6.1.2. Evaluation metrics

This paper evaluates the proposed models’ effectiveness in generating
DSL code in terms of accuracy based on the metric of error rate.

The error rate is defined as the ratio of the number of samples with
classification errors to the total number of samples. For sample set D, the
classification error rate is defined as:

Error(x,) =52 S F((3),) ae)
" xyeD
Lwl#yl
Flw,y)=4 1 & a7)
_l C(WMYM)VWI =yl
Y5
Clhv) = { ez as)

We assume that x and y is a pair sample of D, x represent GUI while y
is ground truth DSL code. Formula 16 caculates the error rate between
the predicted DSL code f(x) and the groundtruth y, D.Il represent the
number of elements in D. Formula 17 shows caculation's function F, if
predicted DSL code's length w.l ia not equal to groundtruth’ length y.I, F
return 1, else F compare w and y code tag by code tag with function C,
and count the proportion of inconsistent code tags.

This error rate is used for quantitative analysis later, we also have
qualitative analysis by analyzing GUI and DSL code generated by our
models.

6.2. Eyaluating the HGui2Code model

6.2.1. Visual attention analysis

As we can see from Fig. 8, after the HGui2Code model generates a DSL
tag, its attention focus moves. The brighter area in image represents the
current location of interest. Therefore, through visual attention our
model can learn the correct alignment of DSL tags with their corre-
sponding spatial areas in GUI.

6.2.2. Quantitative comparison
We select pix2code model proposed by Beltramelli (2018) and the
ABHD model proposed by Zhu et al. (2018) as the baseline models. These

Journal of Network and Computer Applications 161 (2020) 102636

Table 2
Comparing the error rate of SGui2Code model and other models on test sets.

Dataset Error (%)
pix2code ABHD SGui2Code
Pix2Co Web 12.14 11.50 10.00
Android 22.34 18.65 22.29
i0S 22.73 19.00 22.80

two models use the same CNN encoder network structure to extract
image features and experimental data is based on the Pix2Co data set.

As shown in Table 1, on the Pix2Co data set, the error rates of
HGui2Code model and AGui2Code model in Web data set are 6.0% and
9.60% respectively, which are lower than pix2code model and ABHD
model. The error rates of AGui2Code model in the Android and iOS sub-
data sets are 18.87% and 19.20% respectively, which are lower than
pix2code model and basically at the same level with ABHD model. The
HGui2Code model cannot perform well on the Android and iOS sub-data
sets, producing error rates of 34.24% and 35.20% respectively. The
experimental results show that adaptive visual attention mechanism in
the AGui2Code model can extract useful image feature representations
from GUI and guides LSTM decoder to generate high quality DSL code.
However, the hybrid attention mechanism in the HGui2Code model does
not extract useful feature representations from Android, iOS GUI and DSL
code, resulting in poor quality DSL code generated by the LSTM decoder.

Since HGui2Code model is not as good as AGui2Code model in
Android and iOS sub-data set, it indicates that DSL code and visual
attention are not spatially aligned in that two data sets. Comparing with
web dataset, images in Android and iOS sub-data sets are smaller, which
make it hard to control the alignment. If the time generator pays atten-
tion to a certain graphic area in the GUI, while the DSL attention does not
pay attention to the corresponding area in the DSL code, which causes the
HGui2Code LSTM decoder to input misplaced image and code informa-
tion when generating the DSL token.

6.2.3. Qualitative analysis of experimental results

In order to compare the qualitative results obtained by the HGui2-
Code, pix2code and ABHD models better, we compare real GUI with DSL
code generated by the HGui2Code model, as shown in Fig. 9.

As shown in Fig. 9, the HGui2Code model has problems about
misalignment and some graphic element style errors, but the result is
close to actual sample. This proves that HGui2Code can better learn a
simple GUI layout. Comparing the DSL code or GUI on Android platform
generated by each model in (Beltramelli, 2018) (Zhu et al., 2018), many
complex graphic elements in GUI training sample are hardly appearing in
GUI code generated by HGui2Code. This may be due to the lack of
alignment of DSL attention and visual attention. According to our anal-
ysis, because the two attention use different weight vectors respectively,
and the two weight vectors lack of contact and perform their respective
duties, which may lead to the two attention not being aligned in space.
One possible solution is to increase the contact or share the weight values
for the two weight vectors to achieve synchronous alignment. Based on
current results, the HGui2Code model has no obvious advantages on
mobile platform.

6.3. Evaluating the SGui2Code model

6.3.1. Qualitative analysis of experimental results
The comparison model is similar to Section 6.2.2, All baseline models
use the same CNN network structure and the experimental data is based
on the Pix2Co data set. The experimental results are shown in Table 2.
As shown in Table 2, SGui2Code model outperforms all the baseline
models in the Web sub-data set but struggles on the Android data set with

X. Pang et al.

an error rate of 3.64% higher than that of the ABHD model, and on the
iOS sub-dataset its error reaches 22.80% - higher than the 22.73% of
pix2code model and the 19.0% of ABHD model.

The experimental results show that ON-LSTM encoder in SGui2Code
model can learn complex underlying syntax information and syntax
patterns from DSL code. When encoding DSL code, the internals of the
ordered neurons construct potential syntax tree information. During the
decoding process, ON-LSTM network continuously constructs and refines
grammar tree structure of DSL code. It is possible to have enough syntax
information to decoder to generate DSL tags that conform to syntax
semantics.

6.3.2. Qualitative analysis of experimental results

This section compares real GUI and the GUI generated by models from
a visual perspective. Since the models such as pix2code, ABHD, HGui2-
Code, and SGui2Code ignore the actual text values in the image, the
compiler randomly assigns text content in the label when rendering the
DSL code to the GUL In order to better compare the qualitative results
obtained by SGui2Code and pix2code, ABHD, we render the DSL code
generated by the SGui2Code model into a GUI, as shown in Fig. 10.

Through the generated result in Fig. 10, we can see that the real GUI
contains a long source code sequence, so the cyclic neural network needs
to rely on previously hidden layer state information for a long time in
decoding stage. Because ON-LSTM network in the SGui2Code model can
not only learn the grammatical information in the sequence, but also
determine life cycle of information stored in neurons and enhance
dependence between neurons. This model is superior to the standard
LSTM model in terms of long-term dependency and generalization per-
formance of long sequences. Therefore, it can be concluded that SGui2-
Code model is effective in solving the problem of long-term dependency
of sequences.

7. Conclusion and future work

This paper mainly studies the application of convolutional neural
network and recurrent neural network in the automatic generation of
GUI code. Although ordinary neural network encoders can extract fea-
tures from images and DSL code, interpreting these abstract features into
hundreds of code tokens pose challenges to the decoding capabilities of
decoder. In view of this, On the one hand, the atomic structure of the
program itself has inherent meaning, and the input of the model is not
continuous domain space, original automatic GUI code generation
framework cannot make full use of the hidden information in GUI and
DSL code, therefore we propose the HGui2Code model using attention-
based deep neural network to align DSL code with corresponding GUI
pixels by hybrid attention mechanism. This framework yields an increase
5.5% in web dataset compare to the best baselines. On the other hand, in
contrast to existing automatic GUI code generation frameworks that
generally decode fusion features into DSL code without considering
grammar rules, we take advantage of the ON-LSTM and propose the
SGui2Code model to make the generated DSL code compliant with
grammar rules which results in a 1.5% increase of accuracy in the web

Journal of Network and Computer Applications 161 (2020) 102636

dataset.
We plan to carry out further research in the future mainly in the
following aspects:

(1) The size and position recognition of components in GUIL The
current method can only identify the interface components (such
as button, input box, etc.) in GUI, but cannot the text, color and
their locations.

(2) Alignment issues in attention area. Since there is a correspondence
between GUI and DSL code, their alignment needs more control.

(3) We use a fixed way to mix visual attention and DSL attention, it is
not flexible enough. When using hybrid attention, it is necessary
to study how to dynamically set the fusion method in different
steps in code generation.

(4) Code generator with DSL syntax awareness. RNN can model the
dependencies between components in natural language, but the
dependency between DSL grammatical components is much
longer than the dependency between natural components.
Therefore, we need to study how to introduce DSL syntax rules
into the code generator.

Declaration of competing interest

We declare that we have no financial and personal relationships with
other people or organizations that can inappropriately influence our
work, there is no professional or other personal interest of any nature or
kind in any product, service and/or company that could be construed as
influencing the position presented in, or the review of, the manuscript
entitled"Syntax-aware AutomaticGraphicsProgram Generation with
Attention-based Deep NeuralNetwork".

CRediT authorship contribution statement

Xiongwen Pang: Writing - original draft, Methodology. Yanqiang
Zhou: Data curation. Pengcheng Li: Writing - original draft. Weiwei
Lin: Writing - review & editing, Supervision, Funding acquisition.
Wentai Wu: Writing - review & editing. James Z. Wang: Supervision.

Acknowledgements

This work is supported by National Natural Science Foundation of
China (Grant Nos. 61772205, 61872084), Guangzhou Science and
Technology Program key projects (Grant Nos. 201902010040 and
201907010001), Key-Area Research and Development Program of
Guangdong Province (Grant No. 2020B010164003), Nansha Science and
Technology Projects (Grant No. 2017GJ001), Guangzhou Development
Zone Science and Technology (Grant No. 2018GH17), the Fundamental
Research Funds for the Central Universities, SCUT (Grant No.
2019ZD26), and Major Program and of Guangdong Basic and Applied
Research (Grant No. 2019B030302002). James Z. Wang's is partially
supported by NSF grant #1759856 and NIH grant #2R01HD069374-
0681.

X. Pang et al. Journal of Network and Computer Applications 161 (2020) 102636

Appendix

e o stack {

row {
. V& label, switch

}
Qocthz - @ Stitie row {

img, label
zeccy @))
row {
label, slider, label
}
row {
label, switch
}
}

footer {
btn-more, btn-download, btn-more

@ }

M Downloads More

(a) i0S GUI screenshot (b) DSL code
Fig. 7. 10S GUI with DSL.

(1) switch (2) stack

Fig. 8. Attention to image position that changes over time.

X. Pang et al. Journal of Network and Computer Applications 161 (2020) 102636

stack {
android_gui row {
check
}
O Acixr row {
switch
Bxgbe H
row {
O sawat ; radio
row {
0 temm check
}
Ly @ - -« - -« Winrt row {
label, slider, label
Ktbgn }
row {
Gyl RPMOR switch, btn
}
row {
label
}
}
footer {

btn-notifications, btn-search

A Q }

(a) Real GUI and Generated DSL by HGui2Code in Android

a=]

Pdasj Sgiph Ucbvi Xvml
ol iyt nohkaxim - fymhea

Iixbx Omoxp
idvdbpcigocsxyd bt ryscm iqayotocapok i i g Vizeycuao xDe haarg mkbtfhstzcvcymytivg

Pibk
zomat s vebgiovghacietmitzw e | ytovez pa

© Tony Betrameli 2017

header{
btn-active, btn-inactive
i
row{
quadruple{
small-title, text, btn-orange
¥
quadruple {
small-title, text, btn-orange}
quadruple{
small-title, text, btn-orange}
quadruple{
small-title, text, btn-orange}
H
row {
double{
small-title, text, btn-orange
¥
double {
small-title, text, btn-orange}
¥
row{
single{

small-title, text, btn-orange}

(b) Real GUI and Generated DSL by HGui2Code in Web
Fig. 9. The HGui2Code model generates DSL codes corresponding to the three platform GUIs.

10

X. Pang et al.

Journal of Network and Computer Applications 161 (2020) 102636

corresponding to the three platform GUIs.

android_gui

Gyi RPMOR

N Q

[7] Deoaj

Unwgj

O sysb

[7] Exuhh

lusir SWAJO

2 Q

(a) Real GUI (left) and Generated GUI (right) by SGui2Code in
Android

B] oo] oo

Gnvmg
xg bsviv yk vhgzjeljig] tnj liuxhatamaye gartt tisrekmy

Jobep
bawsjba hiagadzmrofu hohtithasqqaehkstne nir pwecvae
Yo Okmzq
Hofzx Vjcbv
2med hisit uigefsvexiavifijvzgnez wvwa g opuwupgha bifn hipbyy
mitayarkxd fbdpbsn pteanw rwzyaotayfetxp

h—id

Rezgs
1 deomemtcxp qwnog wiou ofmmpybd usc xftonpotvwvekik iz
Cghxe
arka xzapcict Zxauv agm
Rbitf Ibtwl
iMhejebigkns. usxe djipjedv h zxwomtw rgh

ytg yuvauutm kakoamw

Jiolkamz ||
==

© Tony Beltramelll 2017

Crmgj
prqumazig mxeufs Iw augd)zcpzk nik pdkucdiz wexbagkatfp

Whntrl

Vikfi Yhtds

diledm r prigxipfpaa otc sarvbgkt xzos tkhbasoeo fyeue
cawnzgpRxNXtrgo ISnbb jutwbgr vnomodagk cbr baunnb) pr
il [P

Upiaz
w i czrftupkwit biftyx gfapriyviwifr korpcddo mmi

o7

Kueln
ocpiwp w bulvy Irefiyjdhqwanvohalbpzq z pkzye obenidhiz

Jgeze Cuiar

ndaq sisildtwn) haxu vas w mviwl 1g csuskiwdsupuzspsosev ji tszq
yeth nqomdwdowhymyz ebvacohaafiq erbrwimemg
[E— RS,

© Tory Beitrameili 2017

(b) Real GUI (above) and Generated GUI (below) by
SGui2Code in Web

Fig. 10. Comparison of real GUI and SGui2Code model generation GUL

11

X. Pang et al.
References

Abolafia, D.A., Norouzi, M., Shen, J., et al., 2018. Neural Program Synthesis with Priority
Queue training[J] arXiv preprint. 1801.03526.

Balog, M., Gaunt, A.L., Brockschmidt, M., et al., 2016. Deepcoder: Learning to Write
programs[J] arXiv preprint. 1611.01989.

Becker, K., Gottschlich, J., 2017. Al Programmer: Autonomously Creating Software
Programs Using Genetic Algorithms[J] arXiv preprint. 1709.05703.

Beltramelli, T., 2018. pix2code: generating code from a graphical user interface
screenshot[C]. In: Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. ACM, vol. 3.

Chung, J., Ahn, S., Bengio, Y., 2016. Hierarchical Multiscale Recurrent Neural networks
[J] arXiv preprint. 1609.01704.

Deng, Y., Kanervisto, A., Rush, A.M., 2016. What You Get Is what You See: A Visual
Markup decompiler[J], vol. 10, pp. 32-37 arXiv preprint. 1609.04938.

Ellis, K., Ritchie, D., Solar-Lezama, A., et al., 2018. Learning to infer graphics programs
from hand-drawn images[C]. In: Advances in Neural Information Processing Systems,
pp. 6060-6069.

Graves, A., Wayne, G., Danihelka, I., 2014. Neural Turing machines[J] arXiv preprint.
1410.5401.

Gupta, R., Pal, S., Kanade, A., et al., 2017. Deepfix: fixing common c language errors by
deep learning[C]. In: Thirty-First AAAI Conference on Artificial Intelligence.

Kant, N., 2018. Recent Advances in Neural Program Synthesis[J] arXiv preprint.
1802.02353.

Kuncoro, A., Dyer, C., Hale, J., et al., 2018. LSTMs can learn syntax-sensitive
dependencies well, but modeling structure makes them better[C]. In: Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, pp. 1426-1436.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep Learning. Nature 521[J].

Liu, X., Kong, X., Liu, L., et al., 2018. TreeGAN: syntax-aware sequence generation with
generative adversarial networks[C]. In: 2018 IEEE International Conference on Data
Mining (ICDM). IEEE, pp. 1140-1145.

Neelakantan, A., Le, Q.V., Sutskever, 1., 2015. Neural Programmer: Inducing Latent
Programs with Gradient descent[J] arXiv preprint. 1511.04834.

Nguyen, T.A., Csallner, C., 2015. Reverse engineering mobile application user interfaces
with remaui (t)[C]. In: Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on. IEEE, pp. 248-259.

Parisotto, E., Mohamed, A., Singh, R, et al., 2016. Neuro-symbolic Program synthesis[J]
arXiv preprint. 1611.01855.

Riedel, S., Bosnjak, M., Rocktaschel, T., 2016. Programming with a Differentiable Forth
interpreter[J]. CoRR, abs/1605.06640.

Sandra, Dominiek, Taft, Marcus, 2014. Morphological Structure, Lexical Representation
and Lexical Access (RLE Linguistics C: Applied Linguistics): A Special Issue of
Language and Cognitive Processes. Routledge.

Shen, Y., Tan, S., Sordoni, A., et al., 2018. Ordered Neurons: Integrating Tree Structures
into Recurrent Neural Networks[J] arXiv preprint. 1810.09536.

Tai, K.S., Socher, R., Manning, C.D., 2015. Improved Semantic Representations from Tree-
Structured Long Short-Term Memory networks[J] arXiv preprint. 1503.00075.

Techniques, Spike, Microsoft, Kabel. Turn whiteboard UX sketches into working HTML in
seconds [EB/OL]. https://www.ailab.microsoft.com/experiments/sketch2code,%
202018-08-23/2019-03-29.

Wilkins, B., 2019-03-29. Sketching Interfaces Generating Code from Low Fidelity
Wireframes [EB/OL]. https://airbnb.design/sketching-interfaces/.

Zhang, W., Wulan, G., Zhai, J., et al., 2018. An intelligent power distribution service
architecture using cloud computing and deep learning techniques[J]. J. Netw.
Comput. Appl. 103, 239-248.

Zhu, Z., Xue, Z., Yuan, Z., 2018. Automatic Graphics Program Generation Using Attention-
Based Hierarchical Decoder[J] arXiv preprint. 1810.11536.

Xiongwen Pang received his Bachelor from ChongQing Uni-
veristy in 1994, M.S. degrees from Harbin Institute of Tech-
nology in 1996., and the PhD degree in Computer Ap-plication
from South China University of Technology in 2007. Currently,
he is an associate professor in the School of Computer Science,
South China Normal University. His research interests include
ot big data, deep learning and Al application technologies. He has
published more than 20 papers in refereed journals and con-
ference proceedings. He is a senior member of CCF.

12

Journal of Network and Computer Applications 161 (2020) 102636

Yangiang Zhou is a graduate candinate supervised by associate
professor Xiongwen Pang with the Department of Computer
Science South China Normal University. His research interests
mainly include deep learning.

Pengcheng Li received his Bachelor in computer science from
South China Normal University in 2019. Currently, he is a
graduate candinate supervised by associate professor Xiongwen
Pang with the Department of Computer Science South China
Normal University. His research interests mainly include deep
learning.

Weiwei Lin received his B.S. and M.S. degrees from Nanchang
University in 2001 and 2004, respectively, and the PhD degree
in Computer Ap-plication from South China University of
Technology in 2007. Currently, he is a professor in the School of
Computer Science and Engineering, South China University of
Technology. His research interests include distributed systems,
cloud computing, big data computing and Al application tech-
nologies. He has published more than 80 papers in refereed
journals and conference proceedings. He is a senior member of
CCF.

Wentai Wu received his Bachelor and Master degrees in com-
puter science from South China University of Technology in
2015 and 2018, respectively. Currently, he is a Ph.D. candidate
supervised by Dr. Ligang He with the Department of Computer
Science, the University of Warwick, United Kingdom. His
research interests mainly include parallel and distributed
computing, distributed learning, energy-efficient computing
and predictive analytics.

James Z. Wang received his B.S. and M.S degrees in Computer
Science from University of Science and Technology of China. He
obtained his Ph.D. degree in Computer Science from University
of Central Florida. He is currently a professor in the School of
Computing at Clemson University, South Carolina. His research
includes storage network, database system, distributed system,
cloud computing and multimedia technologies. Dr. Wang is a
senior member of IEEE and ACM. IEEE and ACM.

http://refhub.elsevier.com/S1084-8045(20)30110-7/sref4
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref4
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref4
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref7
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref7
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref7
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref7
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref9
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref9
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref11
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref11
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref11
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref11
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref11
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref12
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref13
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref13
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref13
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref13
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref15
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref15
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref15
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref15
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref17
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref17
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref17
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref18
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref18
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref18
https://www.ailab.microsoft.com/experiments/sketch2code,%202018-08-23/2019-03-29
https://www.ailab.microsoft.com/experiments/sketch2code,%202018-08-23/2019-03-29
https://airbnb.design/sketching-interfaces/
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref23
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref23
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref23
http://refhub.elsevier.com/S1084-8045(20)30110-7/sref23

	A novel syntax-aware automatic graphics code generation with attention-based deep neural network
	1. Introduction
	2. Related works
	2.1. Neural program synthesis
	2.2. Automatic GUI code generation

	3. Automatic GUI code generation framework
	4. Integrating with hybrid attention mechanism
	4.1. Attention mechanism
	4.2. Construction of HGui2Code

	5. Integrating with syntax awareness
	5.1. ON-LSTM model
	5.2. The working principle of SGui2Code network

	6. Experimental results and analysis of the model
	6.1. Experimental setup
	6.1.1. DataSet
	6.1.2. Evaluation metrics

	6.2. Evaluating the HGui2Code model
	6.2.1. Visual attention analysis
	6.2.2. Quantitative comparison
	6.2.3. Qualitative analysis of experimental results

	6.3. Evaluating the SGui2Code model
	6.3.1. Qualitative analysis of experimental results
	6.3.2. Qualitative analysis of experimental results

	7. Conclusion and future work
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgements
	AppendixAcknowledgements
	References

