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Abstract

A steady-state, analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray
viscosity is explored, including particle scattering both into and out of the shear flow acceleration region. This
involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The spectrum of
the accelerated particles is harder than the free-escape case from the edge of the jet. The flow velocity u=u(r) ez
is along the axis of jet (the z-axis). u is independent of distance z along the jet axis, and u(r) is a monotonically
decreasing function of cylindrical radius r from the jet axis. The scattering time ( ) ( )t t= ar p p p, 0 0 where p is the
particle momentum in the fluid frame in the shear flow region 0<r<r2, and ( ) ( ) ( )t t= ar p p p r r, s

0 0 2 outside
the jet (r>r2). Green’s functions are obtained for monoenergetic injection of particles with momentum p=p0 at
radius r=r1 (0<r1<r2). The Green’s function and Green’s formula are used to determine solutions for a
general spectrum of particles at = ¥r . Solutions are obtained corresponding to a monoenergetic spectrum at
infinity. We discuss the implications of these results for the acceleration of ultra-high-energy cosmic-rays in active
galactic nucleus jet sources. Leaky box models of particle acceleration in shear flows, including synchrotron losses
and particle escape, are used to describe the momentum spectrum of accelerated particles. The use of the relativistic
telegrapher transport equation model is discussed.

Unified Astronomy Thesaurus concepts: Cosmic rays (329); Ultra-high-energy cosmic radiation (1733); Radio jets
(1347); Relativistic jets (1390)

1. Introduction

The origin and acceleration of high-energy cosmic-rays is an
ongoing quest in cosmic-ray astrophysics (e.g., Axford 1981,
1994; Hillas 1984; Biermann & Strittmatter 1987; Protheroe &
Szabo 1992; Rachen & Biermann 1993; Rachen et al. 1993;
Dermer 2007; Blandford et al. 2014).
The acceleration of cosmic-rays to ultra-high energies by

cosmic-ray viscosity in astrophysical shear flows has been
investigated by a number of authors (e.g., Berezhko 1981,
1982, 1983; Berezhko & Krymsky 1981; Earl et al. 1988; Jokipii
et al. 1989; Webb 1989, 1990; Jokipii & Morfill 1990;
Ostrowski 1990, 1998, 2002; Webb et al. 1994, 2018a, 2019;
Rieger & Mannheim 2002; Stawarz & Ostrowski 2002; Rieger &
Duffy 2004, 2005a, 2005b, 2006, 2016, 2019; Ohira 2013;
Liu 2015; Liu et al. 2017; Kimura et al. 2018; Rieger 2019).

Other particle acceleration mechanisms in astrophysical
fluid flows include second-order Fermi acceleration (e.g.,
Achterberg 1979; Bicknell & Melrose 1982; Schlickeiser 2002)
and first-order Fermi acceleration at shocks (e.g., Axford et al.
1977; Krymsky 1977; Bell 1978a, 1978b; Blandford &
Ostriker 1978; Drury 1983; Malkov & Drury 2001). Some
models of particle acceleration by shock waves also include the
effect of second-order Fermi acceleration (e.g., Webb 1983;
Krülls 1992; Schlickeiser 2002). First-order Fermi acceleration
at relativistic shocks using the pitch angle focusing transport
equation was developed by Kirk & Schneider (1987a, 1987b).
Particle acceleration at relativistic shocks were reviewed by
Kirk & Duffy (1999), Achterberg et al. (2001), and Pelletier
et al. (2017). Acceleration mechanisms for energetic particles
in reconnecting magnetic flux ropes and magnetic fields
(Drake et al. 2013; Zank et al. 2014, 2015; Guo et al. 2015;

le Roux et al. 2015, 2016, 2019; Li et al. 2017) have been
developed to explain spacecraft observations of particles in the
heliosphere (e.g., Khabarova et al. 2017).
Lemoine (2019) has developed a statistical approach to

generalized Fermi acceleration in which the affine connection
coefficients describing non-inertial and gravitational forces are
included in the Lorentz force equation (see also Webb 1985,
1989; Achterberg & Norman 2018a, 2018b) and has applied
the formalism to determine the systematic acceleration rate and
the second-order moments describing the particle acceleration,
with application to a variety of scenarios (e.g., first-order
Fermi acceleration at both nonrelativistic and relativistic
shocks; shear acceleration, centrifugal acceleration in rotating
flows, unipolar induction, and to particle energization in black
hole applications).
Matthews et al. (2019) and Bell et al. (2019) argue that the

acceleration of ultra-high-energy cosmic-rays (UHECR) can be
produced by diffusive shock acceleration (DSA) by shocks in
the back-flowing material of radio-jet galaxies lobes (e.g., in
Faranoff–Riley type II jets). Araudo et al. (2016, 2018) argue
that observations of radio-jet hotspots suggest that jet
termination shocks are not likely to accelerate cosmic-rays to
Eev energies.
In this paper, we obtain generalized versions of the solutions

of the relativistic diffusive transport equation for particle
acceleration in radio-jet shear flows obtained by Webb et al.
(2018a, 2019). In these solutions, the flow velocity profile has
the form u=u(r) ez along the axis of the jet (the z-axis) in
which u(r) is a monotonically decreasing function of
cylindrical radius r about the z-axis. The solutions of Webb
et al. (2018a, 2019) assumed that the particles were accelerated
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by the shear flow in the region 0<r<r2 and free escaped
through the boundary at r=r2, or alternatively entered the
inner region through r=r2. In this paper, the Green’s function
solution and other solutions of the diffusive transport equation
obtained by Webb et al. (2018a, 2019) are generalized to take
into account particle scattering in the region r>r2. This is
achieved by solving a Dirichlet–Von Neumann boundary value
problem at the edge of the jet at r=r2, which takes into
account a finite scattering time ( )t r p, in the region r>r2. The
solutions are obtained for the case ( )t t= ap p0 0 in the region
0<r<r2 and ( ) ( )t t= ap p r r s

0 0 2 in the region r>r2
where s is a positive constant. It turns out that the family of
possible solutions can be parameterized by a single parameter ò
in which ò=0 recovers the solutions of Webb et al. (2019)
corresponding to a free-escape boundary at r=r2. For ò?1,
the particles exiting the inner region have a high probability of
reentry into 0<r<r2 leading to enhanced particle accelera-
tion to higher energies compared to the free-escape case
with ò=0.
The parameter ò=k/s, where ( ) ( )t= ¶ ¶s rln ln in the

outer region r>r2, and k is a positive constant proportional to
the velocity shear gradient, i.e., ( ) ( )b b= ¶ ¶k g rln where g
(β) is a complicated, monotone function of β defined in the
region 0<r<r2, and β=u/c where c is the speed of light.
Thus, ò measures the ratio of the velocity shear gradient
modified by the factor g(β) in 0<r<r2 divided by the the
parameter s, which depends on the diffusion coefficient
gradient in r>r2. The form of the flow velocity profile
β=β(r) has a very specific form, chosen to be a monotonic
function of r that allows the transport equation to be written in
a separable form (compare with a similar transformation choice
used by Drury et al. 1982 in the analysis of particle momentum
spectra for a smooth cosmic-ray modified shock).

Section 2 introduces the basic relativistic transport equations
for cosmic-rays in relativistic flows obtained by Webb (1989).
The mixed Dirichlet–Von Neumann boundary conditions
involve both f0 and ¶ ¶f r0 at the boundary r=r2. The
boundary conditions are derived by matching the solution
forms on both sides of the boundary.

Section 3 derives the Green’s function solution in the inner
region 0<r<r2 satisfying the Dirichlet–Von Neumann
boundary condition by using a Fourier–Bessel solution ansatz
similar to that used in Webb et al. (2019) to derive the free-
escape boundary Green’s function.

In Section 4, Green’s formula for the transport equation is
used in conjunction with the Green’s function from Section 3,
satisfying the mixed Dirichlet–Von Neumann boundary
condition at r=r2 to obtain solutions in which the distribution
function spectrum is specified as  ¥r as ( )¥f p,0 . The
Green’s formula gives the solution of the boundary value
problem in the region 0<r<r2, and the solution form in
r>r2 is readily obtained once f0(r2, p) is calculated. The
specific case of a monoenergetic spectrum as  ¥r , i.e.,

( ) ( ) ( )d p¥ = -f p N p p p, 4g0 0 0
2 is given in closed form as a

Fourier–Bessel series.
Section 5 gives estimates of the shear acceleration process

and its modification by particle losses and escape from the
acceleration region. Astrophysical applications are discussed.
Section 5.1 provides a discussion of the shear acceleration
transport equation, and it is generalized to include telegrapher
equation terms that take into account the cosmic-ray inertia.
Section 5.2 calculates the mean time ( )á ñt p p; 0 for particles to

be accelerated (decelerated) from p=p0 to momentum p at
time t, based on the time-dependent Green’s function for
particle acceleration in a shear flow obtained by Berezhko
(1982; see also Rieger & Duffy 2006). It is shown that

( )á ñt p p; 0 for the Green’s function in Berezhko (1982), implies
that particles can be accelerated from p=p0 up to an infinite
momentum in a finite time. This unphysical result is possibly
due to neglecting particle escape from the acceleration region
or due to the neglect of the cosmic-ray inertia, which is present
in the generalized diffusive, telegrapher transport equation
alluded to in Webb et al. (2018a, 2019). The telegrapher
transport equation characteristics provide a formula that
predicts a finite particle momentum at a finite time t.
Section 5.3 studies leaky box models for particle acceleration,
including synchrotron losses and particle escape and its relation
to the solutions in Sections 3 and 4. Section 5.4 gives estimates
of timescales and of the steady-state asymptotic spectral index
m¥. Details of the calculations are relegated to the appendices.

Section 6 concludes with a summary and conclusions.

2. Model and Equations

The basic model for particle acceleration in a relativistic jet
shear flow is essentially the same as that used by Webb et al.
(2018a, 2019). The particle scattering is assumed sufficiently
strong that an isotropic scattering and diffusion model may be
used, and it uses the diffusive transport equation for cosmic-
rays in relativistic flows obtained by Webb (1989; see also
Achterberg & Norman 2018a, 2018b for similar formulations).
The scattering wave frame for the particles is taken as
coincident with the background plasma flow frame (i.e., the
co-moving fluid frame). We neglect the effects of second-order
Fermi acceleration. The transport equation for the isotropic
distribution function of the particles ( )af x p,0 ( =ax
( )ct x y z, , , is the spacetime position four-vector of the particle)
has the form (Webb 1989):

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

[ ( )

( )

( )

( )







k

k

t

 - +

´
¶
¶

-
¶
¶

+
¶
¶

- +

´
¶
¶

-
¶
¶

- G
¶
¶

=

a
a ab a b

b b

b
b b

b b

cu f g u u

f

x
u

p

p

f

p

p p

p
cu f p

p

p
u

f

x
u

p

p

f

p

p
f

p
Q

1

3

. 1

0

0
0 2

0

2

3

; 0
3

0 2

0
0 2

0

4
0

In the case of strong scattering (ωτ=1 where w = qB m is
the gyro-frequency and τ is the scattering time), the viscous
momentum coefficient Γ is given by

( )s sG = ab
abc

30
, 2

2

where sab is the relativistic shear tensor of the fluid (see, e.g.,
Webb et al. 2019 for more detail).

( )( ) s = + + + - +ab a b b a b a a b g
g

ab a b 3u u u u u u u g u u
2

3
; ; ;

2
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is the shear tensor of the background flow (a more conventional
form of the shear tensor is one-half of the tensor in (3)). More
general forms of the transport equation for both weak and
strong scattering are described in Webb (1989).

We use the model of Webb et al. (2018a, 2019), in which the
jet fluid velocity is assumed to be of the form

( ) ( )=u eu r , 4z

where u(r) is a monotonically decreasing function of r. For the
fluid velocity profile (4), the acceleration vector of the fluid
 =au 0, and the divergence of the fluid velocity four-vector

º  =b
b

b
bu u 0; . The net result is a model in which the

particles are accelerated solely due to cosmic-ray viscosity and
shear of the background flow.

The scattering time τ(r, p) for particles with momentum p as
measured in the fluid frame has the form ( )t t= ap p0 0 in the
shear flow region 0<r<r2 about the jet axis, and

( ) ( )t t= ap p r r s
0 0 2 in the region r>r2.

From Webb et al. (2018a, 2019), the viscous shear
acceleration coefficient for the model is given by

⎜ ⎟ ⎜ ⎟⎛
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For steady-state solutions of Equation (1), we assume there
is no z-dependence to the solution. In this case, Equation (1)
reduces to the form
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where β=u/c, and the source term Q has the form

( ) ( ) ( )
p

d d= - -Q
N

p r
p p r r

8
, 70

2
0
2

1
0 1

in the case of monoenergetic injection of particles from r=r1
with p=p0.

2.1. Mixed Boundary Conditions

In this subsection, we discuss a modified boundary condition
to apply to the particle momentum spectrum f0(r, p) and ¶ ¶f r0
at the edge of the jet at a cylindrical radius r=r2. The
boundary condition used in Webb et al. (2018a, 2019) was that
f0(r2, p) is specified at the edge of the jet at r=r2. This
boundary condition does not explicitly address the particle
transport in the region r>r2. It could be interpreted as the
solution of the transport Equation (6), with k  ¥ in r>r2.

If one assumes there is no particle acceleration in r>r2, but
the diffusion coefficient is given in r>r2, then the particle
transport Equation (6) in r>r2 reduces to

⎛
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r r
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1
0, 80

where, for simplicity, we assume that ( ) =Q r p, 0 in r>r2.
The solution of Equation (8) in r>r2 has the form
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2

where C(p) and D(p) are “integration constants”, and we
assume that the integral in Equation (9) is finite. Note that
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¶
¶

=r
f

r
C p 100

is a first integral of Equation (8). From Equation (10), it follows
that

( ) ( )
( )
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C p r r p

f r p

r
,

,
112 2

0 2

may be identified as the diffusive particle flux at r=r2.
Letting  ¥r in solution (9), we obtain
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for the unknown function D(p). Using Equations (11) and (12)
for C(p) and D(p), we obtain the solution for f0(r, p) in r�r2
as
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Setting r=r2 in Equation (13) gives the boundary condition at
r=r2 as
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The boundary condition of Equation (14) is central to the
present paper. It is a mixed Dirichlet–Von Neumann boundary
condition on the solution for ( )f r p,0 describing particle
acceleration by shear in the jet. In Webb et al. (2018a, 2019),
it was assumed that k  ¥ in the region r>r2. In that case,
the boundary condition becomes a Dirichlet boundary condi-
tion in which f0 is specified on the boundary at r=r2. In the
more general case, when particle scattering outside the jet in the
region r>r2 is taken into account, then it is essential to also
take into account the spatial gradient of f0 at r=r2 via the
¶ ¶f r0 term at r=r2. It was speculated by Webb et al. (2019)
that the modified boundary condition of Equation (14) would
give rise to harder accelerated particle spectra at momenta
p?p0 because particles that had exited the system at r=r2
could now reenter the region and become further accelerated by
the shear flow in r<r2.
In order to get a better feel for the implications of the

boundary condition of Equation (14), consider the case where
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Using Equation (15) in Equation (13), we obtain
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for f0 in r>r2.
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The boundary condition of Equation (14) then becomes

( )
( )

( ) ( )+
¶

¶
= ¥f r p

r

s

f r p

r
f p,

,
, . 170 2

2 0 2
0

The boundary condition of Equation (17) is a mixed Dirichlet–
Von Neumann boundary condition. For s?1, Equation (17)
is approximately the Dirichlet boundary condition

( ) ( ) ( )» ¥f r p f p, , , 180 2 0

which is the free-escape boundary condition used by Webb
et al. (2018a, 2019). In the opposite limit (s→0), the
boundary condition of Equation (17) appears to reduce to an
approximate Neumann boundary condition,

( )
( ) ( )
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¶

» ¥
r

s

f r p

r
f p

,
, . 192 0 2

0

Intuitively, we expect that the boundary condition of
Equations (14) or (17) will lead to harder particle spectra,
because particles crossing r=r2 into the region r>r2 may
now return back into the region r<r2 to be further accelerated
by the shear flow inside r=r2.

It is clear that one could also include a source term Q(r, p) on
the right-hand side of Equation (6) in the region 0<r<r2.
Similarly, one could include sources of particles in the region
r>r2. A slightly more general version of the boundary
condition (17) for the case of a separable diffusion coefficient

( ) ( ) ( )k k k=r p p r, 0 1 is given in Appendix B.

2.2. Boundary Conditions as r→0

The steady-state Green’s function of Equation (6) describes
the particle transport and acceleration in the region 0<r<r2,
where particles are injected monoenergetically into the flow
with momentum p=p0 at radius r=r1 (0<r1<r2). It is
assumed that there are no sources of particles on the axis of the
jet at r=0. The boundary condition on the solution for f0(r, p)
as r→0 (see Paper I) is

⎛
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 rS r p
f

r
r4 0 as 0. 20d

2 0

The source term of Equation (7) describes the steady injection
of particles with momentum p=p0 at radius r=r1. The
model can be applied to the case of a “naked” jet in which there
is no back-flowing cocoon (u(r)>0), or with a back-flowing
cocoon with u>0 near r=0 and monotonically decreasing
with u<0 at large r (i.e., the case of a back-flowing cocoon;
e.g., Webb et al. 2018a).

2.3. Transport Equation (6) Reduction for 0<r<r2

To obtain analytical solutions of the transport Equation (6),
we use the new independent variables
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and assume a scattering mean free time τ(r, p) of the form

( ) ( ) [ ( )] ( )t t x x= ap p g r d dr , 220 0

where g(ξ) is an arbitrary function of ξ, and α is constant
determining the momentum dependence of mean scattering
time τ. Note that ξ is a monotonically increasing function of β.

With these choices, the transport Equation (6) with the source
term of Equation (7) reduces to
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Here, ( )x xº r1 1 is the value of ξ at r=r1 (see Webb et al.
2018a).
At this point, we choose an appropriate functional form for g

(ξ), which determines the scattering time τ(r, p) in
Equation (22). As in Webb et al. (2018a), we consider only
ultra-relativistic particles for which the particle speed v∼c in
the fluid frame, where c is the speed of light, and the particle
diffusion coefficient k t~ c 32 . We choose

( ) ( ) ( )x x x= -g k . 240

In the case of Equation (24), we choose ξ so that

( ) ( )
( )x

x
x x
x

=
-

=
g

rd dr

k

rd dr
1, 250

where k is a positive constant. For these choices, we obtain

⎛
⎝⎜

⎞
⎠⎟ ( )t t=
a

p

p
. 260

0

Integrating Equation (25) leads to the class of shear flows, for
which

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )x x x x b x= - - =

r

r
r, tanh . 27

k

0 0 2
2

If we choose k>1, then dξ/dr→0 as r→0, but if
0<k<1, then x  ¥d dr as r→0. For the case k=1,
x x -d dr r02 2 as r→0 where x x x= -02 0 2. We choose
the cases k�1, which ensures that dξ/dr is bounded as r→0.
For the above choice of g(ξ), ξ, and τ(r, p), the transport

Equation (23) reduces to the form

⎛
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⎞
⎠⎟( )

( ) ( )
( )

( )

h h h
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d d x x
p t x
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where

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( ) ( )

( )

h x x x

x x x x x x

= - =

= - = -

=

r r
r

r

g k

T
p

p

,

, ,

ln . 29

k

0 02
2

02 0 2 1 1 0

0

Figure 1 shows a plot of the fluid velocity ( ) ( )b =r u r c
versus r/r2 based on the transformation in Equation (21) (see
Webb et al. 2019), namely

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )b x x x x= = -r r

r

r
tanh , , 30

k

0 02
2
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for k=0.5, 1, 2, 5 for a jet with β0=0.5 and β2=0. The
fluid velocity profile has a finite nonzero radial derivative dβ/
dr at r=0 for k=1. Also note that dβ/dr=0 for k>1 at
r=0 and b  -¥d dr as r→0 for k<1 (i.e., a cusp for
0<k<1). The fluid velocity profile for large k is relatively
flat at small r but develops a steep shear layer near r=r2 for
the larger k cases. This turns out to be an interesting feature of
the fluid velocity profile when we consider the effects of
scattering on the particle acceleration in r>r2 in which ò=k/
s ( t=s d d rln ln in r>r2) is a key parameter determining
the hardness of the particle momentum spectrum of the
accelerated particles.

In Sections 3 and 4, we obtain solutions of the transport
Equation (28) for f0(r, p) that use the mixed boundary condition
of Equations (14) or (17) for f0. These solutions illustrate a
substantially more effective acceleration of the particles
because particles that have exited the shear flow region
0<r<r2 may be scattered back into the shear flow region
to be further accelerated by the flow.

3. Mixed Boundary Conditions Green’s Function

In order to solve the mixed Dirichlet–Von Neumann
boundary value problem of Equation (17), i.e.,

( )
( )

( ) ( )+
¶

¶
= ¥f r p

r

s

f r p

r
f p,

,
, , 310 2

2 0 2
0

for the transport Equation (28) for f0(r, p), and also requiring that
the diffusive particle flux rSd→0 as r→0 (Equation (20)), it
turns out that it is useful to find the solution fG of the transport
Equations (6) or (28) with a delta function source in Equation (7)
satisfying the homogeneous version of the boundary condition
of Equation (31) with ( )¥ =f p, 00 , i.e., fG satisfies the

boundary condition

( )
( )

( )+
¶

¶
=f r p

r

s

f r p

r
,

,
0, 320 2

2 0 2

at the edge of the jet at radius r=r2. This generalizes the
homogeneous boundary condition ( ) =f r p r p, ; , 0G 2 1 used by
Webb et al. (2018a, 2019) in solving the transport equation in
which f0 is specified on the boundary at r=r2.

3.1. The Green’s Function Solution

To obtain the Green’s function solution satisfying the mixed
boundary condition (32) at r=r2, we search for solutions of
the transport Equation (28) in (η, T) coordinates. We assume a
scattering mean free time

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )t t t= - + -

a a
p

p
H r r

p

p

r

r
H r r . 33
s

0
0

2 0
0 2

2

We use the variables η and T to describe the solution, i.e.,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )h x x h h x= - = º =

r

r
T

p

p
, , ln . 34
k

0 2
2

2 02
0

Following the approach of Webb et al. (2019, their Appendix
A), (144) et seq., suggests that we use the ansatz

( ) ( ) ( )å l h=
=

¥

f J h T , 35G
n

n n
1

0

where the values of λn are chosen to ensure that the boundary
condition of et seq. (32) is satisfied and that fG satisfies the
transport Equation (28).
Substitution of the solution ansatz of Equation (35) into the

mixed boundary condition of Equation (32) at r=r2 and
equating the coefficients of hn(T) to zero gives the eigenvalue
equation

( ) ( ) ( ) ( ) ( )l l h l h l h= - =F J
k

s
J 0, 36n n n n0 2 2 1 2

where we have used the result

( ) ( ) ( )¢ = -J x J x , 370 1

(Abramowitz & Stegun 1965, formula 9.1.28, p. 361). The
eigenvalue Equation (36) can also be expressed in the forms

( ) ( ) ( ) ( )
( )

- º + ¢ =
= ¼

 J j j J j J j j J j

n

0,

1, 2, , 38
n n n n n n0 1 0 0

where we use the notation

( )l h= =j
k

s
and . 39n n 2

In the limit as ò→0 (e.g., as  ¥s ), the eigenvalue
Equation (38) reduces to the equation J0( jn)=0. This case
corresponds to the Dirichlet boundary condition f0=0 at
r=r2, which is the free-escape boundary condition used by
Webb et al. (2018a, 2019) in which it is implicitly assumed that
k  ¥ in r>r2.

It is instructive to note that for small ò (0<ò=1),
Equation (38) can be written approximately in the form

( ) ( ) ( )+ + = J j j O 0. 40n n0
2

Figure 1. Velocity profile of β(r)=u(r)/c vs. r/r2 for jet shear acceleration
problem. Parameter k=0.5, 1, 2, 5 controls the u(r) profile of the jet.
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Hence, for small ò,

( ) ( )+ » »
+




j j j
j

1 or
1

, 41n n n
n

0,
0,

where ( ) =J j 0n0 0, defines the real positive zeros{ }j n0, of J0(z).
In Equation (41), <j jn n0, , and in particular <j j1 0,1, which,
from Equation (52) for the asymptotic spectral index, m¥
implies hardening of the momentum spectrum of the
accelerated particles compared to the free-escape bound-
ary case.

The parameter ò=k/s in Equation (41) depends on the
constant k, where

( )h g
h

b
=

¶
¶

º -
¶
¶

k
r r

ln

ln ln
, 42

2

where

⎛
⎝⎜

⎞
⎠⎟ ( )x

b
b

h x x=
+
-

= -
1

2
ln

1

1
and . 430

Thus,

( ) ( )
( ) ( )

( )h
t

= º
¶ ¶ -
¶ ¶ -

 k

s

r H r r

r H r r

ln ln

ln ln
. 442

2

The mixed Dirichlet–Von Neumann boundary condition of
Equation (31) expressed in terms of η(r) has the form

⎡
⎣⎢

⎤
⎦⎥ ( ) ( )h

h
+

¶
¶

= ¥
=

f
f

f p, . 45
r r

0
0

0

2

The Green’s function solution of the steady-state transport
Equation (28) in the shear flow region 0<r<r2 corresp-
onding to monoenergetic injection of particles with momentum
p=p0 at radius r=r1, in which the scattering mean free times
in the region 0<r<r2 and in the region r>r2 are given by
Equation (33), and with no sources of particles on the axis of
the jet at r=0, can be expressed in the form

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ∣ ∣)
[ ( ) ( ) ]

( )å
l h l h c

c
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-
+
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f D
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J j J j
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( )
p t h

a
= = =

+D
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8
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3

2
. 470

2
0
3 2

0 2
2

The parameters η1=η(r1) and η2=η(r2). J0(z) and J1(z) are
ordinary Bessel functions of the first kind. The eigenvalues jn
satisfy the eigenvalue Equation (38), and the parameters λn and
χn are related to the jn via the equations

( )l h c l= = +j a, and 5 . 48n n n n2
2 2

The term in the denominator in Equation (46) involving Bessel
functions may also be simplified using the eigenvalue
Equation (38), namely,

( ) ( ) ( ) ( )

( ) ( ( ) ( )

+ º +

º +





J j J j J j j

J j j

1

1 1 . 49

n n n n

n n

0
2

1
2

1
2 2 2

0
2 2 2

The limit as ò→0 recovers the free-escape Green’s function
solution of Webb et al. (2019). An outline of the derivation of

the Green’s function solution of Equation (46) is given in
Appendix A.
In the region r>r2, the solution for f0(r, p) has the form

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )= -f r p f r p

r

r
H r r, , . 50
s

0 0 2
2

2

Thus, in the region r>r2, the particle momentum spectrum
has the same form that it has at r=r2, and f0→0 as  ¥r .
The spectrum f0(r2, p) is obtained by setting r=r2 in the
solution of Equation (46).
From Equation (46), it follows that the asymptotic

momentum spectrum f0(r, p) as  ¥p has the form

⎛
⎝⎜

⎞
⎠⎟ ( )µ  ¥

m- ¥

f
p

p
pas , 510

0

where

( ) ( )m c h= + º + +¥ a a a j5 . 521
2

1
2

2
2 1 2

For small ò, ( )» + j j 11 0,1 (see Equation (41)) and
Equation (52) gives

{ [ ( ) ]} ( )m h~ + + +¥ a a j5 1 , 532
0,1
2

2
2 2 1 2

which shows there is a spectral hardening of f0 compared to the
free-escape boundary case of Webb et al. (2019) for which
ò=0. In Equations (46) and (52)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

h x x x
b
b

h x
b
b
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= - =
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+
-
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-

,
1

2
ln

1

1
,

1

2
ln

1

1
,

1
, 54

0

2 02
02

02
02

0 2

0 2

where β0=β(0) and β2=β(r2). Thus, the asymptotic spectral
index in Equation (52) depends on the central velocity of the jet
β0 and also on the velocity of the jet at r=r2 (in most
applications, we set β2=0 to simplify the discussion). The
spectral index m¥ also depends critically on the parameter ò
occurring in the eigenvalue Equation (38), which describes the
effect of scattering outside the jet in the region r>r2 (ò also
depends on the shear velocity gradient of β(r) or u(r) in
0<r<r2). Notice that β02 in Equation (54) is the relativistic
relative velocity of the central jet velocity β0 to the fluid
velocity β2 at the edge of the jet at r=r2.
In the limit as ò→0, the spectral index m¥ is the same as

that given by Webb et al. (2019), in which j1 is the first zero of
J0(x). In the opposite limit as  ¥ , Equation (52) gives

( ) ( )m a º +¥ a2 3 55

(here for large ò, the eigenvalue Equation (38) gives ( ) »J j 01 1 ,
which implies j1→0 as  ¥ ). The spectral index

( )m a= +¥ 3 is that obtained by Berezhko (1981), Berezhko
& Krymsky (1981), and also by Rieger & Duffy (2006) for the
case of space independent solutions for particle acceleration in
shear flows. The case where ò=0 corresponds to a Dirichlet
boundary condition applied at r=r2, and the case where
 ¥ corresponds to a Von-Neumann boundary condition at

r=r2. In the latter case, the spectral index of the accelerated
particles at large momenta p?p0 corresponds to the spectral
index ( )m a= +¥ 3 . In general, the spectral index m¥ lies
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between the ò=0 limit and the  ¥ cases, and m¥
decreases (harder momentum spectra) as ò increases, and m¥
depends both on β0 (the jet speed) and on ò.

Figure 2 shows the solution of the eigenvalue Equation (38)
for the first eigenvalue j1 as a function of ò. For ò=0,

º =j j 2.40481 0,1 , which is the first positive zero of J0(z), i.e.,
( ) =J j 00 0,1 . As ò increases, j1 decreases to zero as  ¥ .
( )j1 plays an important role in determining the asymptotic

spectral index m¥ in Equation (52) in encapsulating the
dependence of the spectral index on the effects of diffusive
scattering of particles outside the jet in r>r2, providing a
mechanism for the particles to reenter the shear flow in
0<r<r2.

Figure 3 shows the asymptotic spectral index of particles
accelerated in the shear flow as a function of the jet speed β0
(we assume that β2=0 for simplicity), for different values of
the parameter ò. The case ò=0 corresponds to the case where
particles freely escape from the shear flow. This means either
f=0 at r=r2 or ( ) ( )= ¥f r p f p, ,2 , and this is a Dirichlet
boundary condition where k  ¥ in r>r2. In the limit as
 ¥ , m a +¥ 3 , which is the spectral index obtained by

Berezhko (1982) and Rieger & Duffy (2006) from the analysis
of the space independent Green’s function solution at large
times t. This case corresponds to the limit as s→0 where

( ) ( )t t= ap p r r s
0 0 2 in r>r2. This, at first glance, seems

innocuous, but it effectively means that particles cannot escape
to infinity for s=0. For each finite ò, the curve of m¥ versus β0
asymptotes to 3+α as β0→1. For decreasing β0, there is a
value of β0 for which m¥ becomes very large, and acceleration
by shear is not very effective at producing high-energy
particles. However, the hardness of the accelerated particle
spectrum increases (i.e., m¥ decreases) as ò increases.

It is useful to keep in mind the behavior of the fluid velocity
u(r) dependence on the parameter k in Figure 1. It appears that
for k?1, the fluid velocity profile steepens and is relatively
flat for most r in the region 0<r<r2 but then falls steeply
near r=r2 (i.e., for large k there is a relatively thin shear layer

at the edge of the jet in which u(r) falls precipitously to
b= =u u c2 2 at r=r2 (in Figures 1 and 3, β2=0)). Thus,

one can obtain hard spectra for ò=k/s?1 in the cases
(i)k?1 and s≈1 say or if (ii) k∼1 and s∼0. Of course,
ò?1 if k?1 and s is small will give the largest possible ò.
One should also keep in mind that the diffusion approximation
used in the derivation of the diffusive transport equation
assumes that the particle mean free path λ=L, where L is the
characteristic scale of variation of the background flow.

3.2. Rieger & Duffy (2019) Leaky Box Model

Rieger & Duffy (2019) have discussed the spectral index m¥
of cosmic-rays in relativistic radio-jet shear flows on the basis
of a leaky box model of particle acceleration and escape from
the leaky box. In the leaky box model, the particle distribution
function is assumed to be space independent. The escape of the
particles from the box on a characteristic timescale tesc takes
into account the loss of particles from the box and represents
particle transport out of the box due to advection or diffusion.
In the steady-state case, Rieger & Duffy (2019) use the leaky
box transport equation:

⎛
⎝⎜

⎞
⎠⎟ ( )t-

¶
¶

G
¶
¶

= -
p p

p
f

p

f

t

1
, 56

2
4 0 0

esc

where -f t0 esc represents particle escape from the leaky box.
An estimate for the escape time in the present case can be
obtained from the formula

⎛
⎝⎜

⎞
⎠⎟

( ) ( )k k k k k
t

º =
D
D

= =
a

^ ^
r

t

p

p

c

2
, ,

3
, 57

2

0
0

0

2
0

Figure 2. Eigenvalue j1 vs. ò for eigenvalue Equation (38), which determines in
part the asymptotic spectral index m¥ in Figure 3.

Figure 3. Spectral index m¥ for f0(r, p) as  ¥p ( µ m- ¥f p0 ), for α=1
(τ∝pα) vs. flow speed β0 at r=0 for a range of ò (ò=0, 1, 5, 10, 103, ¥)
(we assume β2=0). The curve for  ¥ is m a= +¥ 3 .
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from which it follows that

⎛
⎝⎜

⎞
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3

2
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. 58esc esc

0

0
esc
0 2

2

2
0

Here, we take Δr=r2, and º Dt tesc , which is obtained by
solving (57) for Δt. For particle acceleration in a shear flow
described by Equation (56), we may write
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where

( ) ( ) ( )t t
D
D

= G
D
D

=
¶
¶
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p

t
p

p

t p p
p

2
,

1
, 60

2
2

2
4

give the momentum space diffusion (dispersion) coefficient
( ) ( )á D D ñp t22 and the mean momentum gain coefficient
áD ñ Dp t as measured in the local fluid frame. From
Equation (60), we obtain the formula

( )
( )

a t
=

áD D ñ
=

+ G
t

p

p t

1

4
. 61acc

Equations (58) and (61) give

( )
( )

a t
=

+ G
t

t t

1

4
, 62acc

esc 0 esc
0

as the ratio of the mean acceleration time to the escape time for
the leaky box model in Equation (56).

For effective acceleration, we require tacc/tesc=1 (i.e., fast
acceleration and slow escape). In the opposite case, tacc/tesc?1,
the particles escape the system before they can be accelerated,
and one then expects a very steep momentum spectrum (soft
spectrum) of particles. However, if tacc/tesc=1, one expects
a hard spectrum of particles accelerated by the shear. By
substituting the solution ansatz µ m-f p0 in Equation (56) and
using Equation (62), we obtain the quadratic equation

( ) ( ) ( )m a m a- + - + =t t3 4 0, 632
acc esc

with solutions

[ ( ) ] ( )

( )

m a
a

=  + + =
+

a a t t a4 where
3

2
.

64

2
acc esc

1 2

From Equation (64), we obtain the asymptotic spectral index
m¥ for large p?p0 as

[ ( ) ] ( )m a= + + +¥ a a t t4 , 652
acc esc

1 2

which resembles the formula (52) for m¥ obtained from the
Green’s function solution (46).

From Equations (5) and (58), we obtain

( )
( )

( )a
t g b

+ =
G

=
t

t t r d dr
4

1 10
. 66acc

esc 0 esc
0

2
2 4 2

This expression is slightly different from that used by Rieger &
Duffy (2019), as we have not approximated bd dr as they did.
To proceed further, it is necessary to find an averaged value of

( )g bd dr4 2 across the jet. We use the physically intuitive
approximation
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where the angle brackets denote a spatial average across the jet.
We obtain
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Using Equations (66) and (68) in Equation (65) gives
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( )m m
b
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+
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a a 40 ln
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1
, 69RD 2 02

02
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which is essentially the expression for m¥ obtained by Rieger
& Duffy (2019; they set β2=0 in their analysis).
The expression in Equation (69) for m¥ is similar to the

expression for m¥ obtained by Webb et al. (2018a), Equation
(67) (which used a different prescription for the scattering time
τ(r, p) than that used in the present paper), namely,

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
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⎫
⎬
⎭

( )( )m p
b
b

= + +
+
-¥

-

a a 5 ln
1

1
. 7018 2 2 02

02

2 1 2

The results of Equations (69) and (70) have the same functional
dependence on β02 and give approximately the same values
(see, e.g., Rieger & Duffy 2019). The results of Webb et al.
(2018a, 2019) assumed that there was no particle scattering
outside the jet shear flow region 0<r<r2. The results of
Equations (69) and (70) have a similar form to the result for m¥
in Equation (52), which can be written in the form

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫
⎬
⎭

( ) ( )m
b
b

= + +
+
-¥

-

a a j20 ln
1

1
. 712

1
2 02

02

2 1 2

This expression differs from Equations (69) and (70) for m¥ in
that it depends on the parameter ò, which describes the effect of
particle scattering outside the shear flow region 0<r<r2 (ò
also describes in part the effect of the gradient of the shear flow
in 0<r<r2). For the case of no scattering in r>r2, ò=0.
In this case, ( )ºj j 01 1 is the first zero of J0(x), i.e.,
j1∼2.4048, and 20j1(0)

2=115.66. This value of the constant
in front of the log term is about three times that in
Equation (69).
By comparing the expressions in Equation (65) for m¥ in the

leaky box model with the expression for m¥ from Equation (71),
we obtain the expression

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥
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b
b a h
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º
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- t

t

j j20

4
ln

1

1

5

4
, 72acc

esc

1
2

02

02

2
1

2

2
2

for the ratio of the acceleration time tacc to the escape time tesc
for particle acceleration in radio-jet shear flows.
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3.2.1. The Parameter ò

The parameter = k s represents both acceleration and
escape or confinement effects. The parameter k

( )h
=

¶
¶

k
r

ln

ln
, 73

describes the velocity profile in the shear flow region
0<r<r2. Note that

⎛
⎝⎜

⎞
⎠⎟ ( )g

h
b

h x x x
b
b

= = - =
+
-

k r
d

dr
, ,

1

2
ln

1

1
74

2

0

depends on the flow velocity gradient ∣ ∣bd dr and also on β(r).
The parameter s depends on the radial dependence of the

diffusion coefficient or the mean scattering time τ in the region
r>r2. If we define

( )
( ) ( )

( )ò òn
t k

á ñ =
¢

¢ ¢
º

¢
¢ ¢

r p R
dr

r r p

c dr

r r p
, ;

, 3 ,
, 75

r

R

r

R

2

2

2 2

and use the ansatz ¯ ( )t t= ap r r s
0 2 in r>r2 in Equation (75),

we obtain

⎧⎨⎩( )
¯

( )[ ( ) ]
( )

( )

n
t

á ñ =
- >

=a

-
r p R

p

s R r s
R r s

, ;
1 1 1 if 0,

ln if 0
.

76

s

2
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2

2

From Equation (76),

( ) ( ¯ ) ¯ ( )n
t

á ¥ ñ = =a-r p
s

p p
p

p
, ;

1
where . 772

0 0

where we assume >s 0. Hence,

( )
( )

( )n
t n t

á ¥ ñ = =
á ¥ ñ

r p
s

s
r p

, ;
1

and
1

, ;
. 782 0

0 2 0 0

Thus, we can identify t t= á ñs 0 where t ná ñ = á ñ1 is the
mean scattering time in r>r2 at momentum p=p0. Thus,
small s corresponds to strong scattering in r>r2. In other
words, s→0 as tá ñ  0 corresponds to strong scattering in
r>r2. This also implies that for a fixed k,  ¥ as s→0.
Note that in Equation (76), ( )ná ñr p R, ;2 0 is well defined for
s=0 and ( )ná ñ  ¥r p R, ;2 0 as  ¥R .

For fixed k, ò=k/s measures how the particle mean free
path and diffusion coefficient increase with distance r outward
from r=r2 due to a dying off of the turbulence scattering the
particles with increasing r. Thus, ò in this formulation describes
the evolution and decay of turbulence outside the shear layer,
which presumably can be quantified by observations of radio
jets. Furthermore, it should be possible, based in part on
observations comparing the flow kinetic energy of the jet, and
whether it is sufficient to power the cosmic-rays (see
Axford 1981), for a similar calculation carried out to determine
if the galactic cosmic-rays can be powered by supernova
remnant shocks in the hot interstellar medium. Axford (1994)
discusses acceleration mechanisms for the UHECR spectrum.

To sum up, the Rieger & Duffy (2019) analysis yields
physical insight into the role of the acceleration time tacc and
the escape time tesc on the asymptotic spectral index m¥ of
shear accelerated particles in radio jets, but the details of the
exact value of m¥ change depending on the detailed form of the
particle scattering and the shear velocity profile of the jet.
We investigate further the above leaky box model for the

spectral index m¥ in Section 5, where we include the effects of
synchrotron losses on the asymptotic particle momentum
spectrum of the particles for the case α=1 and use the
analysis to discuss active galactic nucleus jet examples.

3.3. Green’s Function Characteristics

Figure 4 shows plots of ( )f DLog 0 versus ( )p pLog 0 for the
Green’s function solution in Equation (46) at the source radius
r=r1, β=β1=0.1. In the left panel, β0=0.3, 0.4, 0.6, 0.8
and 0.99, and ò=0 (free escape at r=r2). The left panel is the
same as that in Figure 4 of Webb et al. (2019). In the right
panel, β0=0.3, 0.4.0.6, 0.8, 0.99 and ò=1. The parameters
β2=0 and α=1. The main point to note is the spectral
hardening of the solution as ò increases from ò=0 (left panel)
to ò=1 (right panel).
Figure 5 shows plots of ( )f DLog 0 versus ( )p pLog 0 for the

Green’s function solution in Equation (46) on the axis of the jet
(β=β0=0.5) for a range of injection radii (β1=0.001, 0.01,
0.2, and 0.5). The parameters β2=0, α=1, and ò=1. The
left panel corresponds to the ò=0 case studied by Webb et al.
(2019) with a free-escape boundary at r=r2. The right panel
corresponds to ò=1, which is a mixed Dirichlet–Von
Neumann boundary condition case, in which particles can
scatter back into the shear flow from the region r>r2. Note
the harder momentum spectra for the ò=1 case (right panel).
The spectra on the right panel for different β1 lie very close
together compared to the spectra in the left panel with ò=0,
indicating perhaps that the particles find it more difficult to
escape for the ò=1 case. The particle spectra for momenta
p<p0 are also more decelerated for the ò=1 case compared
to the ò=0 case.
Figure 6 shows log ( f0/D) versus log(p/p0) at radius r=r2

where β2=0, for the Green’s function solution in
Equation (46) for a jet with β0=0.6 and α=1, for the cases
ò=1 and ò=5. The left panel is for the case β1=0.1, and
the right panel is for the case β1=0. Note that the right panel
spectrum (Figure 6(b)) is sharply peaked about p=p0, because
in this case, the source is located on the boundary at r=r2,
whereas the spectra in Figure 6(a) is slightly rounded, because
the source at β=β1=0.1 (i.e., at r=r1) is not located on the
boundary at r=r2 where β2=0. Note the hardening of the
spectrum as ò increases. The case ò=0 (not shown)
corresponds to f0=0 at r=r2.

4. Boundary Value Problems

In this section, we use Green’s formula (Webb et al.
2018a, 2019) to solve boundary value problems of the steady-
state transport equation

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )

k t= -
¶
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¶
¶

-
¶
¶

G
¶
¶

= f
r r

r
f

r p p
p

f

p
Q r p

1 1
, .

79

0
0

2
4 0
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From Webb et al. (2018a), the differential form of Green’s
theorem for the transport Equation (79) is the identity

( ) ( ) ( ) ( )†y y y- =  f f f, . 800 0 0

For the transport Equation (79), the adjoint transport equation
operator † is equivalent to , i.e.,

( )† = . 81

The bilinear concomitant ( )y f, 0 is given by

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )

( )

y k
y

y

t
y

y

=
¶
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+
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¶
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 f
r r

r f
r

f

r

p p
p f

p

f

p

,
1

1
, 82

0 0
0

2
4

0
0

(e.g., Morse & Feschbach 1953, Vol. 1, p. 527–528). Note that
( )y f, 0 is a pure divergence expression in (r, p)-space.
To obtain Green’s formula, we introduce the adjoint Green’s

function

( ) ( ) ( )yG ¢ ¢ º ¢ ¢r p r p r p, ; , , , 83

where Γ satisfies the adjoint equation

[ ( )] ( ) ( ) ( )d d
¢ G ¢ ¢ =

¢ - ¢ -
 r p r p

r r p p

rp
, ; , , 84

2

where we used the fact that  is self adjoint. In Equation (84),
the operator ¢ acts on the ( )¢ ¢r p, variables, and (r, p) are the
source variables. We choose ( )G ¢ ¢r p r p, ; , to satisfy the

boundary conditions

( ) ( ) ( )k¢ ¢ ¢
¶G ¢ ¢

¶ ¢
 ¢ r r p

r p r p

r
r,

, ; ,
0 as 0, 85

( ) ( ) ∣ ( )G ¢ ¢ +
¶G ¢ ¢

¶ ¢
=¢=r p r p

r

s

r p r p

r
, ; ,

, ; ,
0. 86r r

2
2

The boundary condition of Equation (86) is the same as the
Dirichlet–Von Neumann boundary condition of Equation (32)
used in obtaining the Green’s function in Equation (48) of
Section 3. The boundary condition of Equation (85) as r→0 is
the same as in Equation (20), corresponding to no particles
sources as r→0.
Following the approach of Webb et al. (2018a), Green’s

formula for the transport Equation (79) follows by integrating
the differential Green’s theorem of Equation (80) over the
region

{( ) } ( )= < < < < ¥ r p r r p, : 0 , 0 , 872

(i.e., over the variables ( )¢ ¢r p, in , with respect to
( )¢  ¢ ¢r dr p dp2 ). The net result is Green’s formula for f0(r, p)

for ( ) Î r p, , namely,
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Figure 4. Plots of log ( f D0 ) vs. log (p/p0) distribution function spectra for the Green’s function of Equation (46) at the source radius r=r1 where β=β1=0.1.
Left panel: β0=0.3, 0.4, 0.6, 0.8, 0.99, ò=0. Right panel: β0=0.3, 0.4, 0.6, 0.8, 0.99 and ò=1. The other parameters are β2=0, α=1. Notice that the spectrum
hardens as ò increases.
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In the following, we assume that the spatial integral with limits
from ¢ =p 0 to ¢ = ¥p representing particle transport across
the momentum boundaries is zero.

To proceed further with Green’s formula in Equation (88),
notice that by using the boundary condition of Equation (86)
that
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Thus, the above integrand term in Equation (88) can be
represented as ( )¥ ¢f p,0 multiplied by either a ( )G ¢ ¢r p r p, ; ,
term or by a ( )¶G ¢ ¢ ¶ ¢r p r p r, ; , term at r’=r2.

Assuming that there are no sources of particles in the region
0<r<r2, we set ( )¢ ¢ =Q r p, 0 and obtain the Green’s

formula solution
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Both formulas in Equation (90) are equivalent because of the
mixed Dirichlet–Von Neumann boundary conditions in
Equation (86) at ¢ =r r2. In Equation (90), we assume that
there is no contribution to the solution in Equation (88) for f0(r,
p) from the lower boundary as ¢ r 0. The second form for
f0(r, p) in Equation (90) corresponds to the Green’s formula for
f0(r, p) given by Webb et al. (2019), Equation (60), for the
case ò→0.
To find the explicit form of the Green’s function

( )G ¢ ¢r p r p, ; , in Equation (90), we use the map

( )
p

  ¢  ¢  
N

r r p p r r p p
8

1, , , , , 910
2 1 0

in the Green’s function solution of Equation (46), to obtain the
formula

( ) ˜ [ ( )]

( ) ( ) ( ∣ ( )∣)
[ ( ) ( ) ]
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l h l h c
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Figure 5. Plots of log ( f0/D) vs. log (p/p0) distribution function spectra for the Green’s function in Equation (46) at r=0 where β=β0=0.5, for a range of
injection radii r=r1 specified by β1 (β1=0.001 , 0.01, 0.2, and 0.5). The parameters β2=0 and α=1. The left panel corresponds to the free-escape boundary case
ò=0 (see Webb et al. 2019). For the right panel, ò=1. Note the harder spectra for ò=1.
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where
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Here, the map in Equation (91) implies the transformation
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As an example of the use of the Green’s formula solution
form in Equation (90) for f0(r, p) in the region 0<r<r2,
consider the case where

( )
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-
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4
, 95

g
0

0

0
2

corresponding to a monoenergetic momentum spectrum of
particles as  ¥r . Substitution of Equations (92)–(95) into
the Green’s formula of Equation (90) gives the solution for f0(r,
p) for the region 0<r<r2 corresponding to a monoenergetic
spectrum in Equation (95) at infinity of the form
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The solution of Equation (96) in the limit as ò→0 reduces to
the free-escape boundary monoenergetic spectrum solution
obtained by Webb et al. (2019), Equation (58). In the solution

of Equation (96), the eigenvalue Equation (40) applies, i.e.,

( ) ( ) ( )- = = ¼J j j J j n0, 1, 2, . 98n n n0 1

Note that the values of jn in Equation (98) depend on the
parameter ò=k/s where h= ¶ ¶k rln ln in 0<r<r2 and

k= ¶ ¶s rln in the region r>r2.
Using Equations (16) and (17), the solution for f0(r, p) in the

region r>r2 has the form

⎛
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-

f r p f p f p f r p
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r
, , , , , 99
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2

where ( )¥f p,0 is given by Equation (95), and f0(r2, p) is
obtained by setting r=r2 in Equation (96).

4.1. Examples

Figure 7(a) shows a plot of ( )f Dlog 0 1 versus ( )p plog 0 for
the monoenergetic spectrum solution of Equation (96) for the
case ò=0, in which ( ) ( )d p -f N p p p4g0 0 0

2 as  ¥r .
The central jet velocity β0=0.6. The particle spectra are
shown at the locations β=0.01, 0.1, and 0.5. β2=0 and
α=1. For ò=0, the boundary r=r2 is a free-escape
boundary in which ( ) ( )d= -f r p N p p, g0 2 0 at r=r2.
β2=0 at r=r2. The curve β=0.01 is close to the boundary
r=r2. The number of particles increases as r decreases toward
r=0. Figure 7(b) shows similar plots of f0 versus p/p0 using a
log scale on both axes, for the case ò=1. Notice that the
distribution function curves are now much closer together,
presumably because scattering outside the jet allows particles to
reenter the shear flow acceleration region (0<r<r2) with
concomitant enhanced particle acceleration. For ò=1, there is
now a much harder power-law spectral index of the accelerated
particles with p>p0. Figure 7(c) shows similar plots for the
case ò=5 and for β0=0.6 and β=0.01, 0.1, and 0.5. Again,
f0 increases with increasing β as one moves toward the center
of the jet.

Figure 6. Plots of log ( f0/D) vs. log (p/p0) for the Green’s function in Equation (46) at r=r2 where β=β2=0. β0=0.6, and ò has the values ò=1 and ò=5.
α=1. Left panel: β1=0.1; right panel: β1=0.0.
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Figures 8(a) and (b) show plots of f0 versus p/p0 using a log
scale on both axes. Figure 8(a) shows the change in the
distribution function at the shear flow boundary at r=r2 where
β2=0. The central jet flow velocity β0=0.6 and the
parameter ò=0.05, 0, 5, 1, 3 in Figure 8(a). Figure 8(b)

shows a similar plot of f0 versus p/p0 at r=r2 for the case
ò=0.05, 0.5, 1, 3 and β0=0.8. The lowest amplitude for f0 is
obtained for ò=0.01. As ò increases to ò=1, there is a
dramatic increase of the number of particles observed at the
boundary r=r2, but as ò increases further to ò=5, there is a
decrease of f0 at the boundary. The increase in f0 for ò=1
occurs because the particles do not freely escape from the
region 0<r<r2 and are more effectively trapped because of
scattering in r>r2, which reflects the exiting particles back
into 0<r<r2. However, one needs to keep in mind that the
particles in these solutions originate with momentum p=p0 as
 ¥r . As ò increases to ò=5, the distribution function

Figure 7. Plots of log ( f0/D1) vs. log (p/p0) distribution function spectra for a
jet with a central velocity of β0=0.5 at r=0. The spectra are shown at the
locations β=0.01, 0.1, and 0.5 (note that β(r) decreases with increasing r. Top
panel: ò=0 corresponds to the free escape of particles at r=r2 where β=0.
Middle panel: nonzero scattering in r>r2 with ò=1. Bottom panel: ò=5
(scattering in r>r2 increases as ò increases).

Figure 8. Top panel: plot of log( f D0 1) vs. log(p/p0) on the shear flow
boundary at r=r2 for a jet with central velocity β0≡β(0)=0.6 at r=0, and
β2=β(r2)=0. ò=0.05, 0.5, 1, 3. Bottom panel: same as the top panel,
except that β0=0.8.
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amplitude decreases, because for large enough ò, the particles
are strongly scattered in the outer region r>r2 and find it
much harder to reach r=r2 from infinity. Thus, it appears that
for particles to be effectively accelerated by the shear flow,
there is an optimum value of ò for particles to reach r=r2 from
infinity. Note also from Figure 3 that the accelerated particle
spectrum hardens with increasing ò, but the particle number
density on the r=r2 boundary decreases for very large values
of ò.

5. Discussion and Estimates

In this section, we discuss applications of the results
obtained in Sections 3 and 4 to the acceleration of UHECR
due to cosmic-ray viscosity and fluid shear in radio jets. It turns
out that there are three timescales. To discuss the timescales
involved, it is useful to study in more detail the time-dependent
relativistic transport equations for cosmic-rays, based on the
moment equations of Webb (1989). A derivation of the
telegrapher transport equation obtained by Webb et al. (2018b;
because of space limitations) will be provided elsewhere.

Section 5.1 describes the relativistic telegrapher equation and
its form for cylindrical symmetry about the jet axis. Section 5.2
develops a leaky box model for particle acceleration in a
relativistic jet shear flow, based in part on the work of Rieger
& Duffy (2019). Section 5.3 discusses in the acceleration
timescale tacc, the escape timescale tesc, and the synchrotron
loss timescale and their role in determining the spectrum of the
accelerated particles in the leaky box model. Section 5.4
provides timescale estimates for particle acceleration, synchro-
tron losses and particle escape, in the context of the leaky box
model for particle acceleration by fluid shear and cosmic-ray
viscosity.

5.1. Relativistic Transport Equations for Cosmic-Rays

Consider the relativistic transport equation for cosmic-rays,
including telegrapher equation effects, for particle acceleration
in a relativistic shear flow, which was discussed at the 2018
AGU meeting by Webb et al. (2018b).
The derivation of the diffusive transport Equation (1) is

based on the first three moments of the relativistic Boltzmann
equation (Webb 1989). By including cosmic-ray inertia terms
in the analysis of the first and second moment equations
implies that the diffusive transport Equation (1) can be
generalized to the telegrapher transport equation (Webb et al.
2018b):
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is the advective time derivative (Lagrangian time derivative)
following the flow, and
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is the relativistic diffusive flux of particles, and kab is the
diffusion tensor.
An alternative form of Equation (100) that has a more

covariant form is
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The derivation of Equations (100) or (103) is an approximation,
which depends on the ordering of the different terms in the
moment equations.
For the case of particle acceleration in a cylindrically

symmetric shear flow about the axis of the jet, the transport
Equations (100) or (103) reduce to the equation
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where ˜ ( )g g b= -1 32 2 2 , and γ is the relativistic γ of the flow.
In Equation (104), we have included the effects of synchrotron
losses, which are not present in Equations (100)–(103).
If one uses a leaky box model for the spatial diffusive

transport term in Equation (104) in which the spatial diffusion
term is replaced by f0/τesc where τesc(p) is the escape time from
the box, then the resultant transport equation resembles a
wave equation in t, and ( )z = p pln 0 for the highest derivative
terms. The resultant leaky box equation has characteristic
manifold ( )f =t p, const. that corresponds to the wave front in
(t, ζ)-space, where f satisfies the first-order partial differential
equation

[ ˜ ] ( ) ( )t g f f zº - G = =zG p p0 where ln 105t
2 2 2

0

(Webb et al. 2018a, Appendix E; Webb et al. 2019, Appendix D;
Sneddon 1957). The Cauchy characteristics of Equation (105)
(i.e., the bi-characteristics of the corresponding telegrapher
equation for f0), are

˜
( )

g
= 

Gdp

dt

p
, 106

(Webb et al. 2018a, 2019). Taking the positive sign character-
istic in Equation (106) and integrating Equation (106) gives the
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formula
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for the maximum particle momentum for the leaky box,
telegrapher equation model. The result of Equation (107) can
be written in the form
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which gives the minimum time for particles to be accelerated
from momentum p=p0 up to momentum p. In the above
analysis, we have assumed that Γ and g̃ are constants.

More generally, one can determine the characteristic
manifold ( )f =t p r, , const. that represents the leading wave
front for the spatial diffusive telegrapher Equation (104). The
bi-characteristic equation solutions in that case are described in
Webb et al. (2018a), Appendix E. In the Section 5.2, we look at
the mean momentum ( )á ñp t obtained from an analysis of the
Berezhko (1982) shear acceleration Green’s function. It gives
the unphysical result that the particles can gain an infinite
momentum in a finite time. This is due to the neglect of the f0,tt
term in the telegrapher transport equation, which takes into
account the finite cosmic-ray inertia.

5.2. The Berezhko (1982) Green’s Function

Berezhko (1982) and Rieger & Duffy (2006) derived a
Green’s function solution for particle acceleration in a shear
flow due to cosmic-ray viscosity. They solved the time-
dependent version of the transport Equation (104) for the
Green’s function solution of the equation
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for the case of nonrelativistic flows (γ→1). The scattering
time τ(p) was of the form
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For the sake of simplicity, they neglected the diffusive and
convective transport and took the shear acceleration coefficient
Γ as constant. They considered the case of nonrelativistic flows
for which γ→1. However, their solution also applies for
relativistic flows if one notes that tm=t/γ is the time in the
frame moving with the flow. In Equation (109), γ is the
relativistic gamma of the flow (assumed to be constant).

As already pointed out in Equation (59), Equation (109) can
be written in the form
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From Equation (112), one obtains an instantaneous momentum
drift acceleration timescale
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where we assume ( )t t= ap p0 0 .
However, there is another method that can be used to extract

an acceleration timescale ( )á ñt p for the acceleration (decelera-
tion) of particles with momentum p=p0 at time t=0 up to
momentum p, which can be derived using the Berezhko (1982)
Green’s function solution of Equation (109). The Berezhko
(1982) Green’s function can be written in the form
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where ∣ ∣n a= +1 3 . Here, we identify ( )ºt t m with the time
as measured in the co-moving frame. The time ( ) ( )g=t tI m is
the time in the fixed inertial frame (i.e., one can easily
transform the time between frames). The mean acceleration
time ( )á ñt p for the Green’s function in Equation (114) is
formally defined by the equation
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where f0(p, t) is given by Equation (114).
Straightforward evaluation of the integrals in Equation (115)
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(see Appendix C). A similar calculation gives
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where ( )m
nP z is the standard associated Legendre function (e.g.,

Erdelyi et al. 1954, Vol. 1, Appendix, p. 370: see also
Abramowitz & Stegun 1965, Ch. 8. p. 332 et seq.). The
detailed derivation of Equation (118) is given in Appendix C.
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Using Equations (116) and (118), we obtain
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The function ( )n
mP x is given by
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(Erdelyi et al. 1954, Vol. 1, Appendix, p. 370), where
( )F a b c z, ; ;2 1 is Gauss’s hypergeometric function (see also

Abramowitz & Stegun 1965, p. 332, formula 8.1.2). Using
Equation (120), we obtain
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for the ( )Wn
-
-P 2 term in Equation (119).

Equations (119)–(121) give
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For p>p0, Equation(122) may be inverted to give the
equation
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which implies that
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which seems to suggest that particles can be accelerated to an
infinite momentum in a finite time. This unphysical, noncausal
behavior was also noted by Webb et al. (2019) based on
integrating Equation (113) with respect to p. Webb et al. (2019)
argued that this noncausal behavior of the Fokker Planck
Equation (109) could be corrected in part by including a
second-order time derivative term in Equation (109) represent-
ing the cosmic-ray inertia.

The acceleration timescale á ñpd t dp for p>p0 deduced
from Equation (122) is
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Comparing Equation (113) with Equation (125), we obtain
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Thus, the two timescales ( )á ñpd t p dp and ( )t macc are of
approximately the same value for 0<α<1 (the ratio (126)
is unity for α=1).
The timescale ( )á ñt p in Equation (122) gives the mean time

for particles to be accelerated from momentum p=p0 up to
momentum p. This timescale is clearly different from the
timescale ( )t macc in Equation (113). Note that ( )t macc is an
instantaneous timescale representing the mean drift in the
particle momentum as occurs, for example, in a stochastic
differential equation formulation of the Fokker Planck equation
(i.e., it does not represent a global timescale). The acceleration
time ( )á ñt p is an average over all possible times weighted by
the Green’s function in Equation (114). The mean timescale for
acceleration ( )á ñt p is analogous to the acceleration timescale
for particles to be accelerated from momentum p=p0 up to
momentum p in the theory of DSA by the first-order Fermi
mechanism at astrophysical shocks as obtained by Axford
(1981) and Drury (1983). Also note that ( )á ñt p applies to
decelerated particles with p<p0 in Equation (119).

5.3. Leaky Box Models of Particle Acceleration

The leaky box model of particle acceleration due to cosmic-
ray viscosity in radio-jet shear flows developed by Rieger &
Duffy (2019) can be modified to include synchrotron losses of
electrons at TeV energies (and above) and also for protons at
EeV energies. The basic leaky box model in Equation (56)
modified to take into account synchrotron losses and inverse
Compton losses has the form
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The basic leaky box Equation (127) can be derived by using the
steady-state version of the relativistic diffusive transport
Equation (104), including the effects of synchrotron losses
(Webb et al. 1984), in which the first and second time
derivatives are set equal to zero. The spatial diffusion term is
replaced by -f t0 esc representing particle escape from the
leaky box.
The timescales of the different terms in the leaky box model

in Equation (127) refer to timescales in the co-moving plasma
frame, and this should be kept in mind in the analysis below.
The timescale Δt I in the fixed inertial frame is related to the
corresponding timescale Δt(m) in the flow frame by the Lorentz
transformation

( ) ( ) ( )( )gD = Dt t . 128I m

In this section, we will use timescales as calculated in the
moving frame (i.e., in the fluid frame). It is straightforward in
principle to transform to timescales to the fixed frame.
A version of this leaky box model is described in Webb et al.

(2019, their Appendix E), where the case  ¥tesc was studied
in detail. Following the analysis of Section 3, we take the
escape time tesc, in the region < <r r0 2 to be related to the
diffusion ( )k = D D^ r t22 , which gives the escape time
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Here, m0 denotes the particle rest mass and ( )g b= - -1p p
2 1 2

is the particle Lorentz factor; b = v c;p σT is the Thomson
cross-section (m0=me for electrons and m0=mp for protons).
Formulas in Equation(130)–(131) are in cgs units.

Using the normalized particle momentum ¯ =p p p0, the
leaky box Equation (127) reduces to the ordinary differential
equation
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1
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The dimensionless parameters χ and δ are given by the
formulae

( ) ( ) ( )c a d a= + = +
t

t

t

t
4 , 4 , 134acc
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0

esc esc
0

sync
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Equation (132) in general can be integrated (either numerically
or analytically).

5.3.1. The α=1 Case

Below, we consider the special case α=1 and later the
cases 0<α<1 and α>1 separately. The case α=1
corresponds to Bohm diffusion, and we set the source term
Q=0 since we are interested mainly in the balances between
particle acceleration, synchrotron losses, and particle escape in
shaping the particle momentum spectrum. For the case α=1,
Equation (132) reduces to the equation

¯ ¯ ¯
[ ]

¯
[ ] ( )a c c d+ + + + - =

d f

dp p

df

dp

f

p

1
4 4 0. 136

2
0
2

0 0
2

Searching for a solution of Equation (136) for µ m-f p0 , we
obtain the quadratic equation

( ) ( ) ( )m m c c d- + + - =4 4 0, 1372

for the spectral exponent μ.
The roots μ± of the quadratic Equation (137) are given by

the quadratic formula

{ [( ) ( )] }

( ) [( ) ] ( )

m c c c d

c c d

= +  + - -

º +  - +


1

2
4 4 4 4

2 2 2 2 . 138

2 1 2

2 1 2

Standard results for the roots of a quadratic equation give

( )m m c d m m c= - + = ++ - + -4 , 4 . 139

There are three cases to consider:
Case (i)(4χ−δ)<0.
Using Equations (134) and (135), we find

⎛
⎝⎜

⎞
⎠⎟ ( )c d d- = - < <

t

t

t

t
4

4
1 0 if

1

4
, 140esc

synch

esc

synch

which means that the escape time is less than one quarter of the
synchrotron loss time.
In this case, μ+μ−<0 and only the positive root μ+ is

applicable to describe the spectrum µ m- ¥f p0 where

( ) [( ) ] ( )m m c c d= = + + - +¥ + 2 2 2 2 . 1412 1 2

Note that this case includes the case of no losses with χ=0,
which corresponds to the Green’s function solution and
monoenergetic spectrum solutions of Sections 3 and 4 for the
case α=1. Note m m=¥ + and that the root μ=μ−
presumably applies at smaller momentum.
Case (ii)(4χ−δ)=0.
In this case, the roots of the quadratic Equation (137) for μ

are

( )m m m c= º = +¥0, 4 . 142

Clearly, m c= +¥ 4 in this case, and the μ=0 root
corresponds to the spectrum at low momenta (however, the
model only applies to relativistic particles).
Case (iii)(4χ−δ)>0.
This is the case of strong synchrotron losses compared to

the effects of particle escape. Both μ+ and μ− are positive. The
general solution of the homogeneous differential Equation
(136) is of the form

( ¯ ) ( ¯ ) ( )= +m m- -- +f a p a p , 1430 1 2

where a1 and a2 are arbitrary constants. As  ¥p , the
spectrum is dominated by the softest power law in (143), i.e.,

µ m- ¥f p0 where

( ) [( ) ] ( )m m c c d= = + + - +¥ + 2 2 2 2 . 1442 1 2

Synchrotron losses dominate the particle escape in determining
the spectrum. In the limit of no particle escape (δ→0 and
t  ¥esc
0 ), Equation (144) gives

⎧⎨⎩ ( )m
c

c c
=

<
>¥

4 if 4,
if 4.

145

Thus, ( )m c=¥ max , 4 . Notice that the μ+ root is continuous
as χ increases through χ=δ/4. The μ− root in all cases
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represents the low momentum part of the spectrum, and μ+
represents the high momentum end of the spectrum. The
spectrum is convex in all cases (i)4χ−δ<0, (ii)4χ−
δ=0, and (iii)4χ−δ>0. In case (iii), there is a strong fall
off (steep spectrum) due to the dominant synchrotron losses.
We do not expect the spectrum to suddenly flip from convex to
concave as one passes through the different regimes and
transition point (i)–(iii) as χ increases.

Case ¯t µ n-pesc where ν=α+2.
Other functional forms for ¯ ( ¯)f p are obtained as ¯  ¥p for

different choices of ( ¯)t pesc . For example, for the case

( ¯ ) ( ¯ ) ( )t t= n-p p , 146esc esc
0

with

( )a n a= = + =1, 2 3, 147

so that ( ¯) ( ¯)( )d d n a- - -p p2 2 in Equation (132), then the
modified, homogeneous Equation (132) has solutions

¯ ( ¯ ) { ( ¯ ) ( ¯ )}
( )

( )
∣( ) ) ∣ ∣( ) ∣d d= +c

c c
- +

- -f p a I p a K p ,

148
0

4 2
1 4 2 2 4 2

where Im(z) and Km(z) are modified Bessel functions of the first
and second kind. Choosing a1=0 (so that f0→0 as ¯  ¥p ),
one then obtains

¯ ( ¯ ) ( ¯ ) ¯ ( )( ) d~ -  ¥c- +f a p p pexp as . 1490 2
5 2

In this case, f̄0 has the form of a power law times an
exponential fall off as ¯  ¥p (i.e., f̄0 does not need to be a
power-law fall off as ¯  ¥p ).

Case: ¯t µ ap , ¯t µ a-pesc , c d<4 (weak synchrotron
losses).

For 4χ<δ (weak synchrotron losses), we obtain

( ) [( ) ] ( )m c c d c= + + + + -¥ a a2 2 4 , 1502 1 2

as the asymptotic spectral index of particles at large momenta
(p?p0), where a=(3+α)/2 as in (64) and α=1.

The formula of Equation (150) for m¥ can be written in
terms of the ratios tacc/tesc and tacc/tsync where tacc, tesc, and
tsync are the characteristic acceleration time, escape time, and
synchrotron loss time, respectively, using Equations (134)
and (135).

In the limit as χ→0 (  ¥tsync ), the formulas in
Equations (150) and (134) gives

[ ( ) ] ( )m a= + + +¥ a a t t4 , 1512
acc esc

1 2

which is the Equation (64) that was originally derived by
Rieger & Duffy (2019) for shear acceleration in the absence of
synchrotron losses. This formula holds for a ¹ 1 as well as for
α=1. The formula encapsulates the formulas for m¥ in
Equations (70)–(72), which take into account the complicated
dependence of m¥ on β0, β2, and the scattering confinement
parameter ò that describes the effect of particle scattering
outside the jet (i.e., in r>r2). Formula (150) generalizes the
formula (151) to take into account synchrotron losses for the
case α=1.

5.3.2. The 0<α<1 Case

For the α<1 case, we search for solutions of the leaky box
Equation (132) with leading order term f0∝p−μ. Note that this

analysis implies that there is a power-law dependence of f0 on p
as  ¥p , which in turn may possibly be multiplied by an
exponential fall off with p as  ¥p . A more detailed analysis
is needed to investigate the problem. The largest terms in the
balance of powers in Equation (132) in this case require

( ) ( )c m m- + = =m a- - -p 4 0, with solution 4. 1521

5.3.3. The α>1 Case

Similarly, for the case α>1, we we seek solutions with
f0∝p−μ as  ¥p (as in 0<α<1 analysis, there may also
be an exponential fall-off term modifying the power-law fall off
for large p). The largest terms are proportional to m- -p 2, and
balance of these terms in Equation (132) with Q=0, gives the
equation:

( ) ( )m a m d- + - =3 0, 1532

with solution:

[ ]
[ ( ) ] ( )

m m d
a

º = + +

º + + +
¥ a a

a a t t4 , 154

2 1 2

2
acc esc

1 2

which is equivalent to the formula in Equations (65) or (151)
for m¥ that is obtained in the case of no synchrotron losses.

5.4. Timescale Estimates and m¥ Estimates

A naive approach to the evaluation of tesc based on
Equation (135) needs to be modified to take into account that
tesc
0 and τ0 should depend on the effects of scattering outside the
jet in r>r2. The ratio of tacc/tesc in Equation (72) does not
need to be modified since it takes into account scattering in
both 0<r<r2 and in r>r2. We take the formula in
Equation (72) to be applicable in its present form. The escape
time tesc, and the acceleration time tacc in principle should
depend on the scattering in both 0<r<r2 and in r>r2.
Based on these heuristic considerations, we suggest that the

acceleration time formula tacc should be modified to the form
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1

2

2
2

2
2

2
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where we have used Equations (76)–(78) for ( )ná ñr p R, ;2 , and
¯t t= ap1 0 is the scattering time in the region < <r r0 2. This

formula for tacc differs from the formula for tacc in
Equation (135) by the extra factor of (1+1/s). Using
Equation (155) for tacc and Equation (72) for tacc/tesc, we
obtain the modified formula for tesc (in the case  ¥R ) as

⎜ ⎟⎛
⎝

⎞
⎠( )

( ¯ ) ( )
t

= + a-


t

j

r

c s
p

3
1

1
. 156esc

1
2

2
2

2
0

The modified Equation (155) and (156) take into account the
heuristic physical arguments given above.
Notice that in the case of free escape of particles from the

region 0<r<r2,  ¥s , and the timescale tacc does not
depend on the scattering in r>r2. In the limit of very small s
( ¹s 0), the boundary condition at r=r2, (31) becomes a Von
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Neumann boundary condition. In this case, all particles that
attempt to cross the boundary at r=r2 are reflected back into
the region 0<r<r2. In this limit, the mean scattering
frequency is dominated by the scattering in r>r2. Put another
way

( )

n n n
t t t

t
t t

t t
= + = + =

+
,

1 1 1
or ,

157

12 1 2
12 1 2

12
1 2

1 2

where ν1=1/τ1 and ν2=1/τ2. Thus, the mean scattering
time τ12 is half the harmonic mean of τ1 and τ2 where τ1 is the
mean scattering time in 0<r<r2 and τ2 is the mean
scattering time in r>r2. The harmonic mean H(τ1,
τ2)=2τ1τ2/(τ1+τ2). The same rule describes the effective
resistance R of two resistors R1 and R2 in parallel in an
electronic circuit, i.e., ( )= +R R R R R1 2 1 2 .

However, a more exact analysis may well differ in the details
for the estimation of the timescales tacc and tesc. Notice that the
escape time  ¥tesc as  ¥ because ( ) j 01 as
 ¥ . This effectively means that the particles are strongly

confined to the vicinity of the jet for strong scattering in the
region r>r2 in the limit as  ¥ .

The other timescale of interest in applications is the
synchrotron loss timescales ( )t esynch and ( )t p

synch for protons. The
synchrotron loss timescale for species α is given by

( )( ) t
g

a= =a a

a
t p e, , . 158r
synch

Straightforward calculations using Equation (129)–(130) give
the formulae

⎛
⎝⎜

⎞
⎠⎟

( )

t
p
s m

t
t

t

= = ´

= = ´

-

-

m c

B

B6
4.79 10

10 G
s

1836
1.6158 10 . 159

rp
p

Tp

re
rp

rp

2
28

2

3
10

Thus,
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Then, using Equation (131) and setting βp∼1 and βe∼1, we
obtain the formulae
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for the synchrotron loss timescales for the protons and the
electrons. The synchrotron loss timescales in Equation (161)

can also be written as
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Next, consider Equation (155) for tacc. It can be written in the
form
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where ( )k t=p c 32 is the particle diffusion coefficient in the
jet in the region 0<r<r2. Thus, the acceleration time is of
the order of kr2

2 and, hence, depends on the half-width of the
jet r2 and on the diffusion coefficient κ(p), which in turn
depends on the power spectrum of the turbulence scattering the
particles. The acceleration time also depends on the parameter
η2. Note that η2 increases as β0 increases and, hence, the
acceleration time decreases as the β0 increases, (i.e., relativistic
jets accelerate the particles on shorter timescales as β0
increases). Also note the dependence of tacc on the particle
scattering parameter s in the region outside the jet. Recall

k= ¶ ¶s rln ln in r>r2. As s→0, formula, Equation (163)
implies that  ¥tacc . The net upshot is that if there is strong
scattering (s→0 in r>r2), one obtains a very hard spectrum
for the accelerated particles, but it takes a very long time tacc for
the particles to be accelerated to a particular momentum p. Note
that =  ¥ k s as s→0 in the plot for m¥ in Figure 3. In
the opposite limit, as  ¥s , ò=k/s→0, the spectrum of
accelerated particles is much softer, as the boundary r=r2 is a
free-escape boundary in this limit.

5.4.1. Bohm Diffusion Case (α=1)

For the case α=1 (i.e., for κ∝p),
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It is useful to note the formulae
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Thus, for γe=γp, then
( ) ( ) =r r 1836g
p

g
e . Thus, protons and

electrons with the same speed result in the electrons having a
gyroradius of 1/1836 that of the protons (note =m m 1836p e

for rest mass ratio of the two species). However, if one uses the
total energy of the particles, one obtains the formula
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1

for the gyroradius of the particles. This formula works for both the
electrons and protons. These results are useful when evaluating
the Bohm-like diffusion coefficient in Equation (164).
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Equation (163) for tacc for both protons and electrons reduces
to the formula
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The escape time tesc for both protons and electrons is given by
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From Equations (162)–(168), we obtain
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We also obtain the ratios
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Note that [ ] [ ] ( )( ) ( ) =t t t t m me p
p eacc synch acc synch

4. Using Equations
(168)–(170) in Equations (150)–(134) gives the formula for m¥ in
the form
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From Equation (171), we obtain,
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From Equation (172), one can show m c >¥d d 0 for χ>0,
i.e., the spectrum softens with increasing synchrotron losses.
Equation (172) determines m¥ in terms of t tacc synch and
t tacc esc, for the case where α=1 (Bohm diffusion case). For
α<1, m =¥ 4, and synchrotron losses dominate the spectrum.
For α>1, m¥ is determined by α and by t tacc esc.

From Equation (170), the acceleration time for protons is
much less than the synchrotron loss timescale, and one can
usually neglect the effect of synchrotron losses for protons. It is
clear from Equation (170) that synchrotron losses are much
more important for electrons. However, for nonrelativistic jets
η2∼β02 as β02→0. In this case, it is possible for the proton
synchrotron loss time to become comparable to the acceleration
time, but this corresponds to a nonrelativistic shear flow in

which case the spectral index m¥ will be large, and the
acceleration process will not be effective.
Figure 9 shows plots of m¥ versus β0 using Equations (170)–

(172), which apply for the case of Bohm diffusion (α=1,
τ∝p). The figure is for electrons with: s=0.1, k=1, i.e.,
ò=10, r2=100 pc, α=1 so that a=2. P0=0.01 and B/
(10 μG)=0.1. The blue curve shows m¥ versus β0 for the case
including synchrotron losses and for the case of no synchrotron
losses (the black curve). Clearly, the synchrotron losses lead to a
softer spectrum (larger m¥) than the case without losses. Note that
the the accelerated particles in the leaky box model should in
general be constrained to have a gyroradius rg that is less or much
less than the width of the box. For the above parameters, the
electron gyroradius of an =E 10 eV16 electron, from
Equation (166) is ~ ´r 3 10 cmg

19 , and the width of the jet
r2∼3×1020 cm, i.e., rg/r2∼0.1. However, the analysis cannot
presumably be applied to Ee=1018 eV electrons because in that
case, the gyroradius of the particles is greater than the width of the
jet (i.e., rg∼3×1021 cm in that case). However, the model
includes particle scattering outside the width of the jet, so that
restricting the particle gyroradius to be less than the width of the
jet does not necessarily apply. Clearly, an acceleration model that
includes the space variable r as an independent variable is
important in such cases (i.e., a time and space dependent and
momentum dependent solution of the problem may be necessary
in conjunction with theory to resolve these problems). Much
steeper spectra (larger m¥) for the synchrotron loss case are
obtained for larger B.
It turns out (Section 5.3) that for the asymptotic momentum

spectrum of the particles in the leaky box model for the case
0<α<1, synchrotron losses dominate shear acceleration and

µ -f p0
4 as  ¥p . However for α>1, µ m- ¥f p0 as

 ¥p where m¥ is given by Equations (65) or (154), which

Figure 9. Plots of m¥ vs. the jet velocity β0 from Equation (170)–(172), for the
case of Bohm diffusion (α=1 and τ∝p) for electrons, for case (i)including
synchrotron losses (blue curve) and for case (ii)with no synchrotron losses
(black curve with χ=0). β2=0, s=0.1, k=1, ò=k/s=10, r2/
(100 pc)=1, B/10 μG=0.1, and P0=0.01.
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corresponds to the case with no synchrotron losses. To get a
better idea of the combined effect of synchrotron losses,
particle energy gains due to shear acceleration, and the effects
of particle scattering outside the shear flow, the spectrum
should be investigated in more detail at lower and intermediate
energies.

6. Conclusions

In this paper, we have re-visited the problem of particle
acceleration by cosmic-ray viscosity in relativistic radio jets. In
previous papers (Webb 1990; Webb et al. 2018a, 2019), we
considered the case where particles freely escape from the shear
flow region < <r r0 2 after interacting with the flow. This
case corresponds to imposing a Dirichlet boundary condition at
the edge of the jet (either ( ) =f r p, 00 2 or ( )f r p,0 2 is specified
at r=r2) and that the diffusion coefficient k  ¥ in r>r2.

It was pointed out by Webb et al. (2019) that more general
boundary conditions can be imposed on the solutions in the
form of a mixed Dirichlet–Von Neumann boundary condition
at r=r2 (see also Section 2.1 and Appendix B). This boundary
condition allows for particle scattering in the outer region
r>r2 where we assume that there is no particle energization
by shear acceleration, and the particle distribution function
satisfies the cylindrical radial diffusion equation. The net effect
of the particle scattering in r>r2 results in a harder
momentum spectrum of particles compared to the free-escape
case. This is because particles exiting at 0<r<r2 can now be
scattered back into the shear flow region and can thus be further
energized by the shear flow in 0<r<r2.

Green’s function solutions for the mixed, Dirichlet–Von
Neumann boundary conditions at the edge of the jet at r=r2
(Section 3) were used in conjunction with Green’s formula to
obtain solutions of boundary value problems in which the
spectrum of particles, ( )¥f p,0 , is specified as  ¥r . The
Green’s function solutions correspond to the case of steady-
state injection of particles with momentum p=p0 at radius
r=r1 inside the jet shear flow (0<r1<r2). Green’s formula
(Section 4) was used to obtain monoenergetic spectrum
solutions with ( ) ( ) ( )d p¥ = -f p N p p p, 4g0 0 0

2 as  ¥r .
The solutions in Sections 3 and 4, illustrate the hardening of the
spectrum compared to the free-escape boundary condition
solutions of Webb et al. (2018a, 2019), due to the effects of
particle scattering outside the jet in the region r>r2.

The asymptotic power-law spectral index of shear acceler-
ated particles m¥ ( µ m- ¥f p0 as  ¥p ) is shown in Figure 3
as a function of the jet speed β0 at r=0 (we assumed that
β2=0 in Figure 3; more generally β0 should be replaced by
the relative velocity β02=(β0−β2)/(1−β0β2) if b ¹ 02 ).
The effect of particle scattering outside the shear flow region
0<r<r2 is parameterized by a single parameter ò=k/s
where k characterizes the fluid velocity profile and gradient in
0<r<r2 and t= ¶ ¶s rln ln where ( ) ( )t t= ap p r r s

0 0 2
in r>r2.

Harder momentum spectra are obtained as ò increases. For
= 0, one obtains the free-escape boundary spectral index

obtained by Webb et al. (2019; Rieger & Duffy 2019 obtain a
similar result for m¥ by using a leaky box model). In the limit
as  ¥ , the spectral index m a +¥ 3 , which is the
spectral index for shear acceleration obtained by Berezhko
(1982) and Rieger & Duffy (2006) for the case of space
independent solutions of the particle transport equation due to
shear acceleration (these authors noted that ( )µ a- +f p0

3 as

 ¥t in their time-dependent Green’s function solution at
sufficiently large p). The curves of m¥ versus β0 in Figure 3
converge to the asymptote m a= +¥ 3 for relativistic jets as
β0→1. Harder spectra are obtained as ò increases, verifying
the idea that shear flows with adjacent regions in which the
particles can scatter back into the shear flow are better for
particle acceleration. However, one should also keep in mind
that if the particles originate at large distances from the jet (i.e.,
at r?r2), then these particles will be impeded from entering
the shear flow region 0<r<r2 if there is strong scattering
(small τ(r, p)) in r>r2. Strong shear gradients of the flow
inside 0<r<r2 also lead to effective particle acceleration.
In Section 5, an overall discussion is given of viscous shear

acceleration in radio jets. Section 5.1 presents a generalized
telegrapher equation for cosmic-rays derived by Webb et al.
(2018b). The equation is an extension of the diffusive cosmic-
ray transport equation of Webb (1989), including the effects of
cosmic-ray inertia. The diffusive telegrapher equation for a near
isotropic distribution function was not derived here (because of
length) but will be addressed in a separate paper. Section 5.2
gives a calculation of the mean time ( )á ñt p p; 0 for particles to
be accelerated from =p p0 to momentum p, based on the time-
dependent Green’s function for shear acceleration obtained by
Berezhko (1982) and by Rieger & Duffy (2006). For p>p0,
we find for reasonable values of α ( ( )t µ ap p0 ) that

( )á ñ ~ áD D ñp d t p p dp p p t; 0 , where áD D ñp t is the sys-
tematic momentum drift term in the momentum diffusion
transport equation. Section 5.3 discusses the use of leaky box
models of particle acceleration similar to Rieger & Duffy
(2019) and Webb et al. (2019) including viscous shear
acceleration, synchrotron losses, and particle escape. The
model is used to discuss the steady-state power-law index m¥
of shear accelerated particles (Sections 3 and 4) and how it is
modified by synchrotron losses and particle escape. Section 5.4
discusses timescale estimates for the particle transport and
acceleration and losses and the role of these processes in
determining m¥.
Liu et al. (2017), Webb et al. (2019), and Rieger & Duffy

(2019) give constraints on the acceleration of UHECR (e.g.,
E=1018 eV protons), in extragalactic radio jets by the viscous
shear acceleration in extragalactic radio sources. The con-
straints are as follows: (i)the width of the jet ΔL needs to be
greater than the mean free path λ and the particle gyroradius;
(ii)the particle acceleration time tacc needs to be less than the
synchrotron loss time tsynch; and (iii)tacc needs to be less than
the dynamical advection time tdyn along the jet axis, limiting
the possible values of the magnetic field strength B and jet
width ΔL for particles with energy E in relativistic jets by the
cosmic-ray viscosity acceleration mechanism. For example, it
was found that to obtain protons with = =E 10 eV 1 EeV18

requires that ΔL must lie in the range 1 kpc<ΔL<105 kpc
for the case where B=1 μG for a radio jet with a Lorentz
factor γj=1.1 (i.e., β0=0.4166). It was suggested that the
sources MKN501 and MKN421 (Dermer 2007; Sahayanathan
2009; Abbasi et al. 2014; Caprioli 2015) are possible sources
of EeV protons accelerated by the cosmic-ray viscosity
mechanism.
The telegrapher equation formula ( )= =p p tmax

( ˜ )gGp texp0 for the maximum particle momentum, based
on the telegrapher equation characteristics (i.e., (107)), implies
a lower limit to the time required to accelerate particles in
a jet shear flow. Taking p0=1 GeV c−1 and ΔL=1 kpc,
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p=pmax=1 EeV c−1 implies the particles are accelerated on
a minimum timescale of 105–106 yr for a mildly relativistic jet,
which is about 100 light-crossing times across the jet (Webb
et al. 2019). Thus, the telegrapher equation characteristics and
bi-characteristics can be useful in putting constraints on the
acceleration time for particles initially with momentum p=p0.

le Roux et al. (2019) use the nonrelativistic flow analog of
Equation (100), (103), or (104) to model energetic particle
acceleration in the solar wind due to contracting and
reconnecting small-scale flux ropes in the vicinity of the Earth
(their Equation (3)), which contains other transport and
acceleration processes than those given by Equations (100) or
(103). le Roux et al. (2019) refer to their transport equation as
the telegrapher Parker transport equation, which is a modifica-
tion of the diffusive transport equation for cosmic-rays
obtained by, e.g., Parker (1965), Krymsky (1964), Gleeson &
Axford (1967), Dolginov & Toptygin (1966, 1967), Jokipii &
Parker (1970), and Skilling (1975). le Roux et al. (2019) show
causality constraints on the particle transport and acceleration,
which depend on the second-order derivatives and character-
istics of their equation. Similar ideas on the constraints on the
particle transport and acceleration by shear flow energization
were also investigated by Webb et al. (2018a, 2018b, 2019),
but further work on this problem is needed. However, this issue
will not be investigated further here as it lies beyond the scope
of the present investigation.
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Appendix A

In this appendix section, we outline the derivation of the
Green’s function solution of Equation (46) using the Fourier–
Bessel series approach described in Appendix A of Webb et al.
(2019), Equation (144) et seq. We use the Fourier–Bessel
solution ansatz of Equation (35).

To obtain the Green’s function, we first write δ(η−η1) in
the form

( ) ( ) ( )åd h h l h- =
=

¥

c J , A1
n

n n1
1

0

which is a Fourier–Bessel expansion for δ(η−η1). By using
Bessel’s equation, we obtain the relations

( ) ( ) ( ) [ ] ( )òl l h l h l h h h- =
h hJ J d W , A2m n m n mn

2 2

0
0 0 0

2
2

where

( ) ( ) ( ) ( )

( )

h
h

h
h

h l h= - =W g
dg

d
g

dg

d
g Jand .

A3

mn m
n

n
m

n n0

Here, Wmn is the Wronskian of ( )hgm and gn(η). Note that the
eigenvalues jn=λnη2 satisfy the eigenvalue Equation (38),
which depends crucially on the parameter ò=k/s, and in
general ¹ 0.
Using the eigenvalue Equation (38), we find

( ) [ ( ) ( ) ( ) ( )] ( )h
h

h h h h= - =


W g g g g
1

0. A4mn n m m n2
2

2 2 2 2

Similarly, [ ( )]h h =h Wlim 0mn0 . Thus, Equation (A2) implies
the orthogonality relations

( ) ( ) ( )ò h h h h d=
h

g g d N , A5m n n mn
0

2

where

[ ] ( )
l l

h=
-l l

h


N Wlim

1
. A6n

m n
mn2 2 0

m n

2

Using the eigenvalue Equation (38) to evaluate Nn in
Equation (A6), we obtain

[ ( ) ( ) ]

[ ( ) ( ) ]

( ) ( ) ( )

h

h

h

= ¢ +

º +

º + 

N J j J j

J j J j

J j j

1

2
1

2
1

2
1 . A7

n n n

n n

n n

2
2

0
2

0
2

2
2

0
2

1
2

2
2

1
2 2 2

The case where r=r2 is a free-escape boundary was treated by
Webb et al. (2019). It corresponds to the limit ò→0 in
Equations (38) and (A7).
To determine the cn coefficients in the delta function

expansion of Equation (A1), pre-multiply Equation (A1) by η
J0(λmη) and integrate over η from η=0 to η=η2 and use the
orthogonality relations in Equation (A5) to obtain

( ) ( )h l h=c J N , A8n n n1 0 1

for the constants {cn} in Equation (A1). Next, substitute the
eigenfunction expansion in Equation (A1) into the transport
Equation (28) and use the representation of Equation (A1) for
δ(η−η1) in the source term in Equation (28). Equating the
J0(λnη) terms equal to zero in the equation gives the ordinary
differential equation

( ) ( ) ( )l d+ - = -
d h

dT
a
dh

dT
h T Ac T2 5 5 . A9n n

n n n

2

2
2

Here, the source term in Equation (28) is written in the form
( ) ( )d d h h- -A T 1 where

( )
p t h

=A
N

p c k

3

8
. A100

2
0
3 2

0 1

The homogeneous Equation (A9) has independent solutions

[ ( ) ] [( ) ] ( )c c= - + = -y a T y a Texp , exp A11n n1 2
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where

( )c l= +a 5 . A12n n
2 2

The Wronskian of y1 and y2 is given by

( ) ( ) ( )c= ¢ - ¢ = -W y y y y y y aT, 2 exp 2 . A13n1 2 1 2 2 1

The general solution of the inhomogeneous ordinary
differential Equation (A9) is given by the general formula

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )

( )

( ) ( )
( )

( )

ò

ò

= -
¢ ¢

¢

+ +
¢ ¢

¢

¢

¢

h T y c
Q T y T

W y y
dT

y c
Q T y T

W y y
dT

,

,
, A14

n
T

T

T

T

1 1
2

1 2

2 2
1

1 2

(Morse & Feschbach (1953), Vol. 1, p. 530, 5.2.19), where
( ) = -W y y y dy dT y dy dT,T 1 2 1 2 2 1 is the Wronskian of the

two independent solutions y1 and y2 of the homogeneous
Equation (A9), which are listed in Equation (A11). Q is the
source term in Equation (A9). Using Equation (A14) to solve
the inhomogeneous Equation (A9) and requiring hn(T) to be
bounded as  ¥T , we obtain the required solution of
Equation (A9) in the form

( ) [ ∣ ∣) ( )
c

c= - -h T
Ac

aT T
5

2
exp . A15n

n

n
n

Using A from Equation (A10) and using Equations (A7) and
(A8) to obtain cn gives hn(T) in Equation (A15). Using these
results in Equation (35) gives the Green’s function solution in
Equation (46).

Appendix B

In this appendix section, we note that for a separable
diffusion coefficient of the form

( ) ( ) ( ) ( )k k k=r p r p, , B11 2

the boundary condition of Equation (14) at r=r2 reduces to

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )

( ) ( )òk
k

+
¢

¢ ¢
¶

¶
= ¥

¥
f r p r r

dr

r r

f r p

r
f p,

,
, . B2

r r
0 2 2 1 2

1

0
0

2 2

More simply, this boundary condition can be written as

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )+

¶
¶

F = ¥f r p r
f

r
r f p, , , B3

r
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2 0

2
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( ) ( )
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( )ò
k
k
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¥
r

dr r

r r
. B4

r
2

1 2

12

For the case ( ) ( )k =r r r s
1 2 , we obtain

⎛
⎝⎜

⎞
⎠⎟( ) ( )òF =

¢
¢

¢
=

¥ -

r
dr

r

r

r s

1
, B5

r

s

2
22

which reproduces the boundary condition of Equation (17) in
this case.

Appendix C

In this appendix section, we derive the formula (119) for the
mean time ( )á ñt p for particles to be accelerated from
momentum p=p0 up to (or down to) momentum p due to
particle acceleration by cosmic-ray viscosity in shear flows,
based on the Green’s function of Berezhko (1982), i.e.,
Equation (114). To evaluate ( )á ñt p requires that we determine
the two integrals given below

( ) ( ) ( )ò ò= =
¥ ¥

K f p t dt K tf p t dt, , , , C10
0

0 1
0

0

and their ratio

( ) ( )á ñ =t p
K

K
, C21

0

where f0(p, t) is the Green’s function of Berezhko (1982), i.e.,
Equation (114).
We first note that the Green’s function in Equation (114) can

be expressed in the form

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )l l
= - nf

A p

t t
I

t
exp , C30

1 2

where

( ) ( ¯ )
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a t
a

l
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l
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G
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a
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-
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Q

p
p a

p
p
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3

2
,

1
,

2
. C4

a0

0 0

1 2
0

2 2
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2

Using the change of integration variable ˜ =t t1 , the
integrals K0 and K1 reduce to

( ) ˜ ( ˜)
˜

( ˜)

( ) ˜ ( ˜)
˜

( ˜) ( )
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ò

l l
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I t
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0
0

1 2
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Notice that K0 and K1 are Laplace transforms with respect to
λ1.
Using the Laplace transform

⎡
⎣⎢

⎤
⎦⎥( ) ( ) [ ( ) ]

( )
ò a

n
a a- = + -n
n n

¥
-st

t
I t dt s sexp

1 1
,

C6
0

2 2 1 2

( ( ) ∣ ( )∣a>sRe Re with s→λ1 and α→λ2: Erdelyi et al.
1954, Vol. 1, formula 4, p. 195), we obtain

( ¯ ) [( ¯ ) ( ) ( ¯ ) ( )] ( )= - + -- -K A p p H p p p H p p , C7a a a
0 0

2
0

2
0
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Similarly, K1 can be evaluated by using the Laplace
transform
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(Erdelyi et al. 1954, Vol. 1, p. 196, formula 8, where
Re(μ+ν)>−1, ( ) ∣ ( )∣a>sRe Re ). Using the transform of
Equation (C9) with s→λ1, α→λ2, μ=−2 in Equation (C5),
we obtain

⎛
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Equation (C6) is equivalent to Equation (116), and
Equation (C10) is equivalent to Equation (118). The formula in
Equation (119) for ( )á ñt p follows from Equation (C2). Note
that the existence of K1 requires 0<α<3 (we assume that
α>0, but Jokipii et al. (1989) studied the case where the mean
free path λ∝p−2).

The moment

( ) ( )ò=
¥

K t f p t dt, , C11n
n

0
0

can also be calculated using the transform of Equation (C9),
provided that 0<α<3/n. In that case, we obtain
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The condition 0<α<3/n implies that for a fixed α,
n<3/α.

A more standard approach to calculating the moments is to
introduce the Laplace transform of f0(p, t) as
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Also note that
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From Equation (C14), we obtain
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Similarly,
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In the present application,
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The Laplace transform ¯ ( )f s p, in Equation (C18) may be
evaluated by using the transform
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(Erdelyi et al. 1954, Vol. 1, p. 200, formula 4: Re(s)>0,
( ˜ ) ( ˜ )a b> >Re Re 0). To evaluate Equation (C18), we set
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which allows us to determine ¯ ( )f s p,0 and its derivatives at
s=0, which in turn leads to expressions for the moments

( )á ñt pn by using Equation (C17).
From Equation (C20), we obtain
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Using Equations (C19) and (C21) in Equation (C18) gives
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=
G
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0

The general moment ( )á ñt pn can now be determined by using
Equation (C22) in Equation (C17).
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