
World Wide Web
https://doi.org/10.1007/s11280-019-00727-4

Co-Detection of crowdturfingmicroblogs
and spammers in online social networks

Bo Liu1 ·Xiangguo Sun1 ·Zeyang Ni1 · Jiuxin Cao2 · Junzhou Luo1 ·Benyuan Liu4 ·
Xinwen Fu3,4

Received: 1 March 2019 / Revised: 6 June 2019 / Accepted: 4 September 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The rise of online crowdsourcing services has prompted an evolution from traditional
spamming accounts, which spread unwanted advertisements and fraudulent content, into
novel spammers that resemble those of normal users. Prior research has mainly focused on
machine accounts and spams separately, but characteristics of new types of spammers and
spamming make it difficult for traditional methods to perform well. In this paper, we inte-
grate the study of these new types of spammers with the study of crowdturfing microblogs,
investigating the mechanism of crowdsourcing and the close relationship between crowd-
turfing spammers and microblogs in order to detect new types of spammers and spams
more precisely. We propose a novel semi-supervised learning framework for co-detecting
crowdturfing microblogs and spammers by comprehensively modeling user behavior, mes-
sage content, and users’ following and retweeting networks. In order to meet the challenge
of sparsely labeled datasets, we design an elaborate co-detection target optimal function
to minimize empirical error and to permit the dissemination of sparse labels to unlabeled
samples. The advantage of this framework is threefold. First, through a deep-level min-
ing of new-type spammers, we aggregate a number of new-found features that can help us
make significant distinctions between normal users and new-type spammers. Secondly, by
modeling both following networks and retweeting networks, we characterize the essence
of the crowdsourcing mechanism abused by spammers in crowdturfing microblog diffu-
sion to markedly increase detection performance. Thirdly, through our optimal function
based on semi-supervised methods, we overcome the problem of label sparseness, thus
obtaining a more reliable capacity to deal with the challenges of big, sparsely labeled data.
Extensive experiments on real datasets demonstrate that our method outperforms four base-
lines in various metrics (Precision-Recall, AUC values, Precision@K and so on). We also
develop a robust system, the functions of which include data collection and availability anal-
ysis, spam and spammer detection, and visualization. To render our experiments replicable,

This article belongs to the Topical Collection: Special Issue on Trust, Privacy, and Security in
Crowdsourcing Computing
Guest Editors: An Liu, Guanfeng Liu, Mehmet A. Orgun, and Qing Li

� Bo Liu
bliu@seu.edu.cn

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-019-00727-4&domain=pdf
http://orcid.org/0000-0002-2224-4634
mailto: bliu@seu.edu.cn

World Wide Web

we have made our dataset and codes openly available at https://github.com/sunxiangguo/
Crowdturfing.

Keywords Crowdsourcing · Spammer detection · Semi-supervised learning ·
Online social networks

1 Introduction

Crowdturfing is a relatively new phenomenon; the term combines the familiar “crowd-
sourcing” and “astroturfing”. Crowdturfing gathers large numbers of users to artificially
support products, companies, organizations, or opinions. Crowdturfing microblogs are
sales microblogs created by some advertisers and disseminated widely in online social net-
works (OSNs) with the help of spammers. In most situations, advertisers place their spam
messages in a crowdsourcing platform such as Mechanical Turk1, Freelancer2, or Sandaha3

and hire people dubbed the “Water Army” to spread the message by retweeting, liking,
and commenting on various OSNs. Figure 1 depicts how crowdturfing microblogs spread
in the Sina platform. These astroturfers are paid according to the amount of work they do;
over time, related spams suffuse the OSNs, causing normal users considerable trouble. For
example, spammers may simply retweet tremendous numbers of spams in a topic group,
even occupying the whole screen of users’ smartphones when they swipe to browse news;
the platform managers too suffer from these crowdturfing microblogs because the spam
messages destroy the quality of the content and may lead to the loss of valuable users.

Unlike the traditional machine-driven spam accounts, these novel spammers are real
users similar to normal accounts[23]. Recently, attention has turned to this new type of
spammers, but traditional methods of detection mainly focus on machine accounts. In order
to detect the new type of spammers and crowdturfing microblogs, there is a critical need for
deep-level mining of crowdsourcing mechanisms and clearly understanding the close rela-
tionship between crowdturfing spammers and microblogs. A further complication is that
most existent datasets are sparsely labeled, which means that supervised learning methods
are not equal to the challenges of big data with sparse labels.

Accordingly, we propose a co-detection model to detect both crowdturfing microblogs
and spammers. Considering that most datasets are sparsely labeled, we here use a semi-
supervised learning method so that our model can fit the current situation better and will
have more potential to overcome the challenges of big data. To sum up, the contributions of
this work are as follows:

– We detect both spammers and spams (crowdturfing microblogs) based on a semi-
supervised strategy. Our co-detection target function guarantees the spread of sparse
labels to unlabeled samples so that we can more reliably deal with the challenges of big
data with sparse labels.

– We significantly improve performance by integrating retweeting and following net-
works as well as newfound features embedded in users and content. By means of
a deep-level analysis, we uncover a number of useful phenomena in crowdturfing
microblogs and spammers.

1https://www.mturk.com
2https://www.freelancer.com
3http://www.sandaha.cc

https://github.com/sunxiangguo/Crowdturfing
https://github.com/sunxiangguo/Crowdturfing
https://www.mturk.com
https://www.freelancer.com
http://www.sandaha.cc

World Wide Web

Figure 1 How crowdturfing microblogs spread information. Three kinds of crowdturfing accounts exist:
a Employers, which originate spam messages and place them into crowdturfing microblogs; b the “Water
Army,” which accepts a task and spreads a message created by employers; and c normal users, which as a
consequence of spam spread, become the “trash bin” of spams

– Diverging from previous research on traditional spammers, we investigate the new type
of spammer to find useful features that will help us significantly distinguish between
normal users and spammers.

– Finally, we develop a robust system include multiple social networks data collecting,
crowdturfing microblogs and spammer detection, and interface. We also extensively
evaluate the performance of our method compared with the most popular baselines.
Our results indicate that our model outperforms other baselines in the detection of both
spammers and crowdturfing microblogs.

The rest of this paper is organized as follows. Section 2 provides an overview of the
related work on spam and spammer detection. Section 3 introduces the processes by which
we collected data and conducted the needed analysis. Section 4 formalizes our co-detection
problem and explains how we constructed our model. Section 5 presents the CMSC
(Crowdturfing Microblogs and Spammers Co-detection) algorithms we used to obtain our
solutions. Section 6 illustrates the experimental setup. Our experimental results are exten-
sively reported in Section 7. Then we discuss stability in Section 8 and develop a robust
prototype system in Section 9. Section 10 concludes the paper.

2 Related works

Anomaly detection is an emerging and broad area. In online social networks, anomaly detec-
tion has two important branches: spammers and spams. Many researches treat spammers
as machine accounts[1], volowers (followers providing following services)[15], rumormon-
gers, the water army, and so on. Spams in online social networks often exist in the form
of rumors[3, 21], clickbaits[17], and advertisements. In this paper, our target spammers

World Wide Web

are advertisement posters in the crowdturfing background, and our target spams are those
crowdturfing microblogs.

Early researchers broadly studied spammers, which are mostly machine accounts in
online social networks [1, 2, 26]. Machine spammers are usually created and controlled by
script programs in batches; hence their published spams are also distinguished by normal
contents. With the rise of crowdsourcing services, a new type of spammers, those are real
users instead of machine accounts, have gradually emerged [9, 10, 22]. These accounts often
have very normal profiles with more hidden features than machine accounts have, making
their detection much harder. In order to solve this problem, researchers have tried to detect
spams or spammers from three angles: the users’ individual attributes, the users’ retweeted
contents, and following/retweeting links.

Users’ attributes are widely employed as the input features for downstream spammer
classifiers; such attributes include the number of friend requests [19], logging information,
check-ins [11], and sentiment scores [7]. For example, Yuan et al. [27] used a well-designed
similarity function to cluster similar accounts into several groups; then they sent users some
golden questions and analyzed their responses by comparing them with others in groups.
However, this method is insufficient to detect new-type users because they are often orga-
nized well and are able to answer questions as normal users would; that is, their individual
attributes are often close to those of normal users [6]. Therefore, many related studies have
combined users’ attributes with content features such as text features, hashtags [14], and
the click rate of target tweets. For spam detection, Song et al. [18] considered such user
attributes as retweeting time, content features, retweeting users, classifying the messages
according to whether they were crowdturfing messages or not. For spammer detection,
Yang et al. [25] clustered similar accounts based on their microblog contents and leveraged
the topic distribution to isolate suspicious accounts exhibiting characteristics indicative of
spammers.

In addition to content features, network link structures are also important clues for spam-
mer detection. Related research [28] has found that spammers often disguise themselves by
changing their profiles and their patterns of posting contents. Taking aim at this problem,
some studies have tried to integrate a content-based method with link features to make the
detection performance more robust. One of the clearest manifestations for following links
is malicious following activity [15], meaning abnormal following activities provided by the
follower market. In this situation, some users turn to the follower market to buy followers
so that they can raise their popularity in a short time. In this vein, Jiang et al. [8] found that
there exist some clear distinctions between spammers and normal users in the properties of
their following networks, but the structures of following networks in spammers were simi-
lar. Therefore, they offered an unsupervised method to model the links features, sending the
features to downstream tasks to calculate the degree of suspiciousness. In our earlier works
[12, 13], we studied retweeting behaviors in Sina microblogs and constructed a retweeting
network such that spammers could be detected based on their retweeting behaviors. In spam
detection, researchers also try to integrate users’ features, contents features and network fea-
tures. One of the most useful methods is the graph-based scan approach[20]. For example,
Nguyen et al. [20] compute the anomaly scores on entities and relations based on the fea-
tures of users, contents, and links; then they construct an anomaly graph and translate rumor
detection into the task of finding a connected subgraph with maximal anomalousness.

Although a number of meaningful studies have been conducted, there is still consid-
erable potential for improved performance. First, traditional methods have yielded only
limited performance in detecting new-type spammers. Second, the mechanism of spam-
mer crowdsourcing still requires much more intensive analysis, especially with relation to

World Wide Web

the characteristic topologies of spammers, spams, and normal users. We also notice that
most related work on the detection of crowdturfing microblogs and spammers treats them
separately, ignoring the close connection between users and their microblogs. In the fol-
lowing sections, we introduce a co-detection model capable of detecting mutual impact
between spammers and their spams. Additionally, we consider the attributes of accounts and
contents, allowing the method to perform better.

3 Data collection

This section describes our robust system for collecting data from the crowdsourcing and
Sina microblogs platforms. We analyze the availability of collected data and implement the
work of annotation. The dataset is provided open access at our website for related research.

3.1 Brief description of Sandaha and Sina

As previously mentioned, our “target spammers” are those taking crowdturfing tasks in
order to spread advertisements, and the term “spams” refers to the crowdturfing microblogs.
In order to collect reasonable data, we investigate the crowdturfing mechanism as it occurs
between Sandaha and Sina (see Figure 2). Sandaha is a well-known crowdsourcing web-
site on which many tasks are organized into detailed categories, such as “Sina advertising
promotion” and so on. A number of overlapping users exist across these two websites; they
can be easily detected because many of them give their corresponding Sina account links in
their Sandaha homepages. From one specific category in Sandaha, “advertising promotion
for Sina”, we collect overlapping users who accept this kind of crowdturfing task. They nat-
urally are spammers we want to research. In contrast to the automated accounts that have
been used successfully in the past, these are real users who disguise themselves as nor-
mal users to escape detection as spammers. Because spammers are becoming more adept at
passing for actual users, a more thorough analysis is urgently needed so that the detection
of spammers can be further improved. In the rest of Section 3, we introduce our data collec-
tion system and then describe our process of data annotation, followed by our availability
analysis.

Figure 2 Relations between sandaha and sina in the crowdturfing situation

World Wide Web

Figure 3 Data collecting system

3.2 Data collection system

Figure 3 presents our data collection system. Basically, multiple tasks were run concurrently
in module spiders, allowing the collection of target data from the Internet via proxy service.
In case of Internet breakdown, an exception handler module was capable of analyzing the
breakpoint, reporting the causes, and regenerating responding tasks. We used Redis to man-
age the global tasks generated from the collected data, which were stored in Mongodb and
MySql. The Module Dispatcher extracted the next task link from the stored data and sent it
to Redis.

Using this framework, we first collected 843 spammers and 1,075 crowdturfing
microblogs from Sina. We then randomly selected 200 accounts from these spammers
and mixed them with another 200 normal accounts to serve as seeds for further data col-
lection. From these seed accounts, we got their friend lists and used the breadth first
search method to enlarge our dataset. In the end, we obtained 14,774 user accounts,
more than 1,500,000 microblogs published in the preceding three months with 3,680,000
corresponding comments (see Figure 4).

3.3 Data annotations

As shown in Figure 4, in our dataset, we treated all accounts collected from the crowdsourc-
ing platform as spammers. For the remaining unannotated accounts, we randomly selected
3,000 accounts and manually annotated their categories. Basically, if users commented on
or retweeted spams several times, and if the contents they commented on or retweeted were
very similar to spams, this user was annotated as a spammer. Except for these spammers,
we treated other accounts as normal users. In the end, we had 3,883 accounts, including 903
spammers and 2,980 normal users.

The method of spam annotation was similar to that of spammer annotation. Firstly,
the microblogs from the crowdsourcing platform were treated as spams. Secondly, we
reserved the microblogs with which the above 3,843 accounts interacted, filtering out the
messages that had less than 10 retweets or comments. After manual annotation, we had
4,706 microblogs with 479,947 comments. The microblogs included 1,206 crowdturfing
microblogs and 3,423 normal microblogs.

World Wide Web

Figure 4 Data collection and annotation with multiple online social. (The process of spams annotation is as
same as the spammers, which is not depicted here for simplicity)

3.4 Availability analysis

We investigated the sample distributions with respect to one’s following number, followee
number, and microblogs’ number. In addition, we visualized the fluctuation in the number
of microblogs over one week. According to our analysis, our dataset obeys the basic law
presented in all social media.

Following behaviors Figure 5a describes the frequency of accounts with regard to their
following numbers, from which we can observe that these samples had a long-tailed distri-
bution. It should be noted that this distribution shifts to the right slightly because on the Sina
platform, users tend to follow others in order to obtain new messages. A user with almost
no following accounts is usually not an active account. A similar pattern is also reflected in
Figure 5b, which depicts the frequency of accounts with regard to their follower numbers.

Publishedmicroblogs Figure 5c shows the relationship between the frequency of accounts
and the numbers of their published microblogs, as well as the power-law distribution. From
this relationship, it is clear that most users are not content creators; instead, they tend to

World Wide Web

Figure 5 The following number, followee number and blogs number all follow the law distribution

read or retweet microblogs generated by a small number of users. Figure 6 shows statis-
tical results from the dataset, from which we have three observations: Firstly, there is an
obvious periodicity in the number of users’ published microblogs from Monday to Sunday.
Secondly, there are fewer published microblogs on weekends than there are on weekdays,
probably because users have more entertainment options than simply surfing on microblog
platforms. Thirdly, there are three minor peaks over the course of a day, at 11 a.m, 2 p.m,
and 10 p.m. Evidently, people are typically relaxed during these periods, as shown by their
Internet activity.

From the analysis above, we can demonstrate that our dataset is reasonable and is
consistent with widely recognized conclusions in the field of complex social networks.

4 Co-Detectionmodel

In this section, we formally define the problem of the co-detection of crowdturfing
microblogs and spammers; we then define four primary tasks: abstracting user features,

Figure 6 Data distribution of posting messages in a week

World Wide Web

abstracting contents features, modeling following networks, and modeling retweeting
networks. Finally, we integrate them by optimizing proposed target function.

4.1 Problem definition

For the co-detection of crowdturfing microblogs and spammers, we can construct a hetero-
geneous network G = (V, E, Tv, Te,F) from the given dataset in OSNs. Here V denotes
the set of vertices and E denotes the edges in the network. In this scenario, we consider two
kinds of vertices: users and messages. Thus the type set of vertex Tv = {user,message} and
V = Vm∪Vu,Vm∩Vu = ∅, where Vu and Vm denote user set and message set, respectively.
The types of edges here include users’ following edges, and retweeting edges between users
and messages. Thus Te = {f ollowing, retweeting} and E = Ef ∪Er , Ef ∩Er = ∅. We use
Ef and Er to denote the following edges and retweeting edges. In addition to the network,
each vertex has its own features. Formally, for each u ∈ Vu, its own features are denoted as
a vector ϕu = [ϕu

1 , ϕu
2 , · · · , ϕu

p]T . Similarly, the individual features of each vertex m ∈ Vm

are ϕm = [ϕm
1 , ϕm

2 , · · · , ϕm
q]T . Here, F = {ϕu|u ∈ Vu} ∪ {ϕm|m ∈ Vm}.

The problem in this paper can be defined as a classification task where the input is G

and the outputs are each vertex’s classes. Specifically, for each user vertex u ∈ Vu, we use
xu to denote its predicted label. xu = −1 means user u is normal account while xu = 1
means this account is a spammer. For each message vertex m ∈ Vm, we use ym to denote its
predicted label. ym = −1 means that message m has normal content while ym = 1 means
that this message is a crowdturfing microblog.

In order to solve the problem defined above, we propose our research framework in
Figure 7. Firstly, we quantize some individual features and messages attributes that are
highly related to the detection so that we can calculate a priori category for users and mes-
sages. Secondly, we consider the following and retweeting networks, and integrate them
with users’ attributes and microblogs attributes. Thirdly, we put forward an optimal objec-
tive that can cause the labels to spread to unlabeled samples. After that, the final category
of users and microblogs can be predicted by the downstream classifier.

Because most datasets are sparsely labeled, we split each type of vertex set into two
disjointed subsets, that is, Vu = ˜U ∪ U , and Vm = ˜M ∪ M. Here ˜U and ˜M denote
users and messages with explicit labels, and U and M denote users and messages without
labels. Finally, the complete network discussed is depicted as Figure 8. In the following

Figure 7 The research framework. In the first stage, some basic features are extracted. Based on these fea-
tures, we calculate a prior category for users and messages. After that, we fuse the features with the following
network and retweeting network, which is the main task in the second stage. In the third stage, an optimal
objective is put forward so that the labels can be guided to spread to unlabeled samples. Finally, the system
output the final category of users and messages

World Wide Web

Figure 8 The complete network of users and their messages

subsections, we first calculate a priori category for each vertex by extracting its own features
asF . Then for user vertex ui , its priori category can be denoted as x

p
i and the priori category

of message vertex mi can be denoted as y
p
i .

4.2 Features extraction for users andmessages

In order to calculate the priori category for users and messages, we first extract related
features from datasets. For users, we consider their account life times, following behaviors,
and retweeting behaviors.

Life time In the Sina microblogs platform and many other similar microblogs platforms, a
spammer can be reported by normal users, and that account will be closed by the admin-
istrator. The registration time of an account can be used to describe the possibility of an
account’s being a spammer because if an account “survives” for a long time and is still not
be closed, the account is less suspected and is more likely to be a normal user. We use ϕu

l to
denote the lifetime of user u starting from the time of registration, calculated as:

ϕu
l = log(lif etime(u))

Following Behaviors In order to obtain greater rewards, spammers often need to have a
large number of “friends” in their friend list. Following normal users is easier than being
followed by normal users for these spammers. Therefore spammers often follow each other.
Taking these into consideration, we use ϕu

f e, ϕ
u
f r , and ϕu

re to denote the number of followees,
followers, and mutual friends for account u, respectively. To be specific, calculated as:

ϕu
f e = log(f ollowee(u))

ϕu
f r = log(f ollower(u))

ϕu
re = e↔(u)

e(u)

World Wide Web

where e(u) is the number of links between u and other users, and e↔(u) is the number of
mutual following links between u and other users. We calculate ϕu

re for spammers and nor-
mal users separately in the Sina dataset. The empirical cumulative distribution is drawn in
Figure 9a, from this distribution, we can observe that about 20% of spammers have fewer
than 20% mutual friends, while about 60% of normal users have fewer than 20% mutual
friends. This phenomenon suggests that spammers have a higher percentage of mutual
friends than normal users do.

Retweeting Behaviors Compared with normal users, spammers have some distinctive
retweeting behaviors. These differences are evident in the statistical results from the real
social dataset in Figure 9b, c, and d. Figure 9b shows that more spammers intend to publish
spams by third-party applications, while Figure 9c shows that spammers are more likely
to retweet messages from their followees. As Figure 9d reports, compared with normal

Figure 9 Empirical cumulative distribution concerning retweeting behaviors and following behaviors

World Wide Web

contents, most spams are retweeted mostly in one hop. Taking these differences into consid-
eration, we define three indexes: ϕu

thi , ϕ
u
r , and ϕu

oh, to denote the features above. All these
three indexes are elaborated in the following.

The first feature, ϕu
thi is the ratio of tweets that are retweeted by user u via third-party

applications. Let wblog(u) be the number of microblogs published by user u, and let
wblogT hi(u) be the number of tweets which are retweeted via third-party applications by
user u. Then ϕu

thi can be calculated as follows:

ϕu
thi = wblogT hi(u)

wblog(u)

The second feature, ϕu
r , is the percentage of tweets that are retweeted from user u’s fol-

lowees in his or her total retweets. Let re(u) be the number of tweets retweeted by u, and
let ref o(u) be the number of tweets retweeted from u’s followees. Then we have

ϕu
r = ref o(u)

re(u)

The third feature, ϕu
oh, describes the percentage of tweets retweeted in one hop. That is,

ϕu
oh = onehop(u)

re(u)

where re(u) is the number of tweets retweeted by user u, and onehop(u) refers to the
number of tweets retweeted in one hop.

For microblogs, we consider their comments in terms of similarity of content, sentiment
polarity, and interaction among different comments.

Content Similarity For the contents of microblog comments, we use ϕm
sim to denote the

average similarity of comment texts under the same microblog.

ϕm
sim = 2

|C|(|C| − 1)

∑

ck,cl∈C

cosine(ck, cl)

where C is the set of comments in the given microblog, and cosine(ck, cl) is the cosine
similarity between text ck and text cl in comments set C.

Sentiment Polarity As comments posted by spammers are very similar, their sentiment
polarities are also very stable. Therefore, we use ϕm

sen to denote the standard deviation of all
comment sentiment polarities, which can be calculated by

ϕm
sen = ST D(Sc1 , Sc2 , · · · , Scn)

where Sck
refers to the sentiment polarity in comment ck , and ST D(·) means the standard

deviation of the given samples.

Comments Interaction Since most users that retweet crowdturfing microblogs are spam-
mers, interactions among these microblogs comments are very rare, which is demonstrated
particularly by two characteristics: Firstly, the communications between comments (usually
meaning responses to comments) are scarce; secondly, the number of likes in these com-
ments is also very low. As Figure 10 depicts, the percentage of normal tweets with comment
communication or likes is much higher than it is in crowdturfing microblogs. Based on this
observation, we use reply(m) to denote the number of responses to the comments C in a

World Wide Web

Figure 10 Interaction frequency for normal microblogs and crowdturfing microblogs

given microblog. Let like(m) be the total number of likes in all of the comments of a given
microblog. Then we have

ϕm
int = reply(m)

|C|
and

ϕm
like = like(m)

|C|
Having derived these features, we arrive at the user feature set as

ϕu = {ϕu
l , ϕu

f e, ϕ
u
f r , ϕ

u
re, ϕ

u
r , ϕu

oh, ϕ
u
thi}

and the message feature set as

ϕm = {ϕm
sim, ϕm

sen, ϕ
m
int , ϕ

m
like}

For ϕu
i ∈ ϕu, the item can be normalized by Z-score standardization thus:

ϕu∗
i = ϕu

i − μ

δ

where μ and δ are the mean and variance of all items in ϕu respectively. Then the user
feature vector can be deduced as ϕu∗ = [ϕu∗

1 , ϕu∗
2 , · · · , ϕu∗

p]T , p = |ϕu|. Similarly, the

message feature vector can be deduced as ϕm∗ = [ϕm∗
1 , ϕm∗

2 , · · · , ϕm∗
q]T , q = |ϕm|.

We now calculate the priori category for users and messages by the logistic regression
method. For user u, the probability of being a spammer is

Pr(u = spammer) = exp(ω · ϕu∗ + b)

1 + exp(ω · ϕu∗ + b)

when Pr(u = spammer) > 0.5, and the priori category for user u is “spammer”, which
means x

p
u = 1. Otherwise, the priori category for user u is “normal account”, which means

x
p
u = −1. Similarly, we can also calculate the priori category for message m, and get its

priori category as y
p
m.

World Wide Web

4.3 Modeling retweeting networks

The term “retweeting networks” refers to a graph where the vertices are users and messages,
and the edges are the links between users and messages they retweet. As Figure 11 depicts,
we can define the retweeting network as Gr = (Vu,Vm, Er). Apparently, Gr is a subgraph
of G defined in Section 4.1. Let Rn∗k ∈ R

|Vu|×|Vm| be the adjacent matrix of Gr , where
Rij = 1 if user ui ∈ Vu retweets the message mj ∈ Vm and Rij = 0 if ui does not retweet
mj . In the rest of this subsection, we propose three guidelines for modeling the retweeting
network, and we build the corresponding optimization objective as components of the final
objective.

Guideline R-1: A user and a message are more likely to be in the same category (xi =
yi = 1 or xi = yi = −1) if a link exists between them In the situation of crowdturfing,
if a user is a spammer, his retweeting tweets are more likely to be spams. At the same time,
a crowdturfing microblog is more likely to be retweeted by spammers. Therefore the edge
connecting a user and a message is an important clue to judging their categories. In other
words, the following target needs to be minimized:

Φr = −
n

∑

i=1

k
∑

j=1

Rij xiyj (1)

where n = |Vu|, and k = |Vm|.

Guideline R-2: There is a positive correlation between users’ categories and users’ asso-
ciation strength Users’ association strength is defined as Su ∈ R

|Vu|×|Vu|, where Su
ij is

calculated by

Su
ij =

∑

mh∈Vm

Rih=1
Rjh=1

1

dm
h

(2)

where mh is a message retweeted both by user ui and user uj , and dm
h is the degree of

vertex mh in Gr . Studying our dataset, we calculate Su. Our results show that the average

Figure 11 Retweeting network
modeling

World Wide Web

association strength when users are in the same categories is 0.0994 while the value declines
to 0.0067 if users’ categories are not the same. Based on these observations, the following
target should to be minimized:

Φu
s =

n
∑

i=1

n
∑

j=1

Su
ij (

xi
√

du
i

− xj
√

du
j

)2 (3)

Guideline R-3: There is a positive correlation between messages’ categories and mes-
sages’ association strength Like users, the messages also have their association strength,
as with Sm ∈ R

|Vm|×|Vm|, where Sm
ij is calculated by

Sm
ij =

∑

uh∈Vu

Rhi=1
Rhj =1

1

du
h

(4)

where uh is a user who retweets both message mi and message mj , and where du
h is the

degree of vertex uh in Gr . We also calculate Sm in our dataset, from which we found
that the average association strength when messages are in the same categories is 0.0774
while the value declines to 0.0298 if messages’ categories are not the same. Based on these
observations, the following target should be minimized:

Φm
s =

k
∑

i=1

k
∑

j=1

Sm
ij (

yi
√

dm
i

− yj
√

dm
j

)2 (5)

4.4 Modeling following networks

The term “following networks” refers to the graph where vertices are all users, and edges
represent following relationships between users. As Figure 12 depicts, the following net-
work can be denoted as Gf = (Vu, Ef), which is also a subgraph of G. Let Fn∗n ∈
R

|Vu|×|Vu|, where Fij = 1 if user ui ∈ Vu follows user uj ∈ Vu and Fij = 0 if ui does not
follow user uj . One guideline to model the following network is as follows:

Guideline F-1: Two users are more likely to be in the same category if a following edge
exists between them in Gf This guideline reflects the observation that spammers often

Figure 12 Following network
modeling

World Wide Web

follow each other so that their “friends” number will be larger. At the same time, however,
normal users do not ordinarily follow spammers. According to this, the following target
should be minimized:

Φf =
∑

[i,j]∈Ef

π(i)Pij (xi − xj)
2 (6)

where Pij = Fij

dout
i

, dout
i is the out-degree of vertex ui , and π(i) measures the importance of

ui . In the Sina platform, a user with a bigger value of π(·) tends to be a VIP account. π(i)

can be calculated by various methods. In this paper, we use Pagerank[16] to calculate π(i),
thus:

π(i) = η
∑

[i,j]∈Ef

π(j)

dout
j

+ 1 − η

|Vu|
where η is the damping factor in the PageRank algorithm.

4.5 Co-detection optimal target

Based on previous work in 4.2, 4.3 and 4.4, the optimal co-detection objective for the
problem defined in 4.1 can be deduced as

argmin
x,y

F(x, y) =
n

∑

i=1

(xi − x
p
i)2 +

k
∑

i=1

(yj − y
p
j)2

+α

2
Φu

s + β

2
Φm

s + γΦr + θΦf

s.t . ∀ui ∈ ˜U , xi = x
p
i

s.t . ∀mj ∈ ˜M, yj = y
p
j (7)

Note that for the vertex with explicit labels, xi or yj is constant, and the corresponding item
(xi − x

p
i)2 or (yj − y

p
j)2 is also fixed. Therefore these items are only valid for vertices

without labels. In order to simplify the calculation, we add two constraint conditions. Let
x

p
i = xi if user ui has been labeled and let yp

j = yj if message mj has been labeled. In the
following section, we rewrite (7) in matrix form and infer the optimal solution of this target.
Then we design an algorithm to solve our target problem.

5 Inference

In this section, we infer the optimal solution of (7), which can be changed in matrix form as:

argmin
x,y

F(x, y) = ‖x − xp‖22 + ‖y − yp‖22
+α‖Ax‖22 + β‖By‖22
−γ xTRy + θxTLx

s.t . Cx = xp

s.t . Dy = yp (8)

where:

– x = [x1, x2, · · · , xn]T .
– xp = [xp

1 , x
p

2 , · · · , x
p
n]T .

World Wide Web

– y = [y1, y2, · · · , yn]T .
– yp = [yp

1 , y
p

2 , · · · , y
p
n]T .

– xTRy = ∑n
i=1

∑k
j=1 Rij xiyj .

– Cn∗n ∈ R
|Vu|×|Vu| is a diagonal matrix where:

Cii =
{

1 i ∈ [1, lu]
0 i ∈ (l, n]

Without loss of generality, we number the user vertice with explicit labels from 1 to lu and
the user vertice without labels from lu + 1 to n. Similarly,

Dii =
{

1 i ∈ [1, lm]
0 i ∈ (l, k]

where lm is the number of message vertice which have explicit labels.
As for ‖Ax‖22, notice that in (3), Su

ii = 0, Su
ij = Su

ji . Let UniqueSu = {Su
ij |1 ≤ i < j ≤

n, Su
ij �= 0} and ns = |UniqueSu|. Let Su

kikj
be the kst element Su

ij in UniqueSu. Then A
is a ns × n matrix and ∀Akt , 1 ≤ k ≤ ns, 1 ≤ t ≤ n:

Akt =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

√

Su
ij√
du
i

if t = ki

−
√

Su
ij

√

du
j

if t = kj

0 otherwise

Finally, the (3) can be rewritten as matrix form like:

Φu
s =

n
∑

i=1

n
∑

j=1

Su
ij (

xi
√

du
i

− xj
√

du
j

)2 = 2‖Ax‖22

Similarly, let UniqueSm = {Sm
ij |1 ≤ i < j ≤ k, Sm

ij �= 0} and nm = |UniqueSm|. Let
Sm

kikj
be the kst element Sm

ij in UniqueSm. Then B is a nm × k matrix and ∀Akt , 1 ≤ k ≤
nm, 1 ≤ t ≤ k:

Bkt =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

√

Sm
ij√

dm
i

if t = ki

−
√

Sm
ij

√

dm
j

if t = kj

0 otherwise

Finally, the (5) can be rewritten as matrix form like:

Φm
s =

k
∑

i=1

k
∑

j=1

Sm
ij (

yi
√

dm
i

− yj
√

dm
j

)2 = 2‖By‖22

Let Π be a diagonal matrix where Πii = π(i), then L is the laplacian matrix:

L = Π + ΠP + P T Π

2
According to [4], L is a symmetric matrix. Therefore:

xTLx =
∑

[i,j]∈Ef

π(i)Pij (xi − xj)
2

World Wide Web

Having transformed the final optimal target as matrix form in (8), we now infer the opti-
mal solution. According to[5], the final target can be solved by the strategy of alternating
iterative. That is, when solving xt+1 in the t + 1 iteration, we fix y as yt . Then target (8) is
equivalent to:

argmin
x

F(x) = ‖x − xp‖22 + α‖Ax‖22
−γ xTRy + θxTLx

s.t . Cx = xp (9)

Equation (9) is the convex function. We can get the optimal solution by the Generalized
Lagrange multiplier method. The augmented Lagrangian function of (9) is:

Lσ (x, λ) = ‖x − xp‖22 + α‖Ax‖22 − γ xTRy

+θxTLx + λT (Cx − xp)

+σ

2
(Cx − xp)T (Cx − xp) (10)

Based on the alternating direction method of multipliers (ADMM), (10) can be update
alternately. For simplicity, let ω = λ

σ
, the update strategy is:

xk+1 = argmin
x

‖x − xp‖22 + α‖Ax‖22 − γ xTRy

+θxTLx + σ

2
‖Cx − xp + ωk‖22 (11)

ωk+1 = ωk + Cxk+1 − xp (12)

As (11) is a convex function, xk+1 can be derived from its first-order derivative. Let F(x) =
argmin

x
‖x − xp‖22 + α‖Ax‖22 − γ xTRy + θxTLx + σ

2 ‖Cx − xp + ωk‖22, then we have:
dF(x)

dx
= (2I + 2αATA + 2θL + σCTC)x

−(2xp + γRyt + σCTxp − σCTωk) (13)

Let dF(x)
dx = 0, then we have:

xk+1 = (2I + 2αATA + 2θL + σCTC)−1

(2xp + γRyt + σCTxp − σCTωk) (14)

Notice that (2I + 2αAT A + 2θL + σCT C) can be a nonsingular matrix when α, θ , and σ

change to the appropriate values.
Similarly, when solving yt+1, we can fix x as xt+1, then (8) is equivalent as:

argmin
y

F(y) = ‖y − yp‖22 + β‖By‖22 − γ xTRy

s.t . Dy = yp (15)

The solving process is very similar with the above. From (15), we have:

yk+1 = (2I + 2βBTB + σDTD)−1

(2yp + γRTxt+1 + σDTyp − σDTωk) (16)

ωk+1 = ωk + Dyk+1 − yp (17)

World Wide Web

Based on the inference above, we design an algorithm on Crowdturfing Microblogs and
Spammers Co-detection, which is elaborated in Algorithm 1. Line 1-6 calculate the priori
categories for users and messages. In line 7, we initialize x as xp and y as yp so that the
algorithm can be converged faster. From line 8 to line 21 the algorithm alternately calculate
x and y and for either of them, the algorithm update the value of x or y iteratively until their
values become stable. At last, the algorithm return the final results of xt , yt .

6 Experimental setup

We extensively evaluated our method with related well-known baselines in various met-
rics. All experiments were implemented on a PC with Intel Core i7-4770 CPU @3.40GHz
and 12GB memory. The development languages used were Python and Java which are
editable in platforms such as JetBrains, PyCharm, and IntelliJ IDEA. The dataset is elab-
orated in Section 3. In the rest of this section, we introduce the experimental metrics and
baselines, and then we present the performance in the detection task. Lastly, we analyze the
contributions of each factor in our method.

World Wide Web

6.1 Evaluationmetrics

Evaluation metrics are the Precision-Recall Curve, the ROC Curve, and Precision@K.

Precision-Recall Curve The precision-recall curve shows the relationship between preci-
sion and recall where the x-axis shows recall value and the y-axis shows precision value.
The area under the precision-recall curve measures an average precision (AP), which is
defined as

AP =
∫ 1

0
P(R)d(R)

where P is precision and R is recall. The larger the AP value, the better this method
performs.

ROC Curve The x-axis of a ROC curve represents the false positive rate (FPR) and the
y-axis of a ROC Curve is the true positive rate (TPR). The area under this curve can be
calculated as follows:

AUC =
∫ 1

0
T (F)d(F)

where T is the true positive rate and F is the false positive rate.

Precision@K We also use the Top-K Ranking metric, Precision@K, to denote the percent-
age of positive samples after ranking them by the predicted scores. Basically, Precision@K
can be calculated as

Precision@K = TP

K
where TP is the number of positive samples in all Top-K samples.

6.2 Baselines

We compared our proposed method CMSC algorithm with the following baselines:

– S3MCD: S3MCD is put forward by [24]. It combines the relationships of users vs.
users, messages vs. messages, and users vs. messages, and a target optimal objective
based on these relations is then constructed.

– LR: Logistic regression is a common basic classification method that has been widely
applied to various classification tasks.

– DetectVC: DetectVC [15] focuses on the relationship between crowdturfing spammers
and their employers in the crowdsourcing platforms; it then uses a random walk method
to detect spammers.

– CrowdTarget: CrowdTarget [18] focuses on the detection of crowdturfing microblogs.
It combines features from the message contents, publishing time, and participants; it
then uses the AdaBoost algorithm to detect the spams.

6.3 Parameter settings

All parameter values are selected by the grid search method. Specifically, for our CMSC
method, related parameters are set as follows: α = 0.15, β = 0.75, γ = 0.04, θ = 1650.
For the S3MCD method, parameters are set as: α = 0.1, β = 0.1, γ = 0.5, λ = 0.4. In the
following section, we report the performance of our method and other baselines in various
metrics (Table 1).

World Wide Web

Table 1 The performance of spammer detection or spam detection w.r.t different factors

Algorithm AP(spammers) AUC(spammers) AP(spams) AUC(spams)

CMSC 0.7621 0.9069 0.7844 0.8966

CMSC-XP 0.6746 0.8386 0.7841 0.8966

CMSC-YP 0.7535 0.9057 0.5004 0.5766

CMSC-XYP 0.6715 0.8320 0.4965 0.5694

CMSC-SU 0.7196 0.8713 0.7844 0.8966

CMSC-SM 0.7617 0.9060 0.6392 0.8385

CMSC-R 0.7078 0.8953 0.7504 0.8897

CMSC-F 0.7354 0.8869 0.7841 0.8966

CMSC-C 0.7325 0.8980 0.7823 0.8956

CMSC-D 0.7525 0.9040 0.7126 0.8466

6.4 Learning process

We first split the dataset into two disjointed subsets (about 4 : 1). The data in the first subset
are fed into our algorithm with labels, while the data in the second subset are fed into our
algorithm without labels. We also experimentally change the ratios of these two subsets and
analyze the sensitivity in Section 8.

7 Results and analysis

According to the basic setup mentioned in Section 6, we compare our method with other
baselines in the Precision-Recall Curve, the ROC Curve, and Precision@K. As reported by
these metrics, our method outperforms the others in the dataset.

7.1 Convergence analysis

First, we evaluate the computing time of our method from its start to the convergence. The
results are reported in Table 2, where the outer loop refers to the Execute Count of line 8
in Algorithm 1, the inner loop of users refers to the Execute Count of line 10 in Algorithm
1, and the inner loop of messages refers to the Execute Count of line 16 in Algorithm 1.
We repeat the program several times and get five rows in Table 2, from which we can find
that our method can converge in a small number of outer loops and inner loops. The total
computing time is also acceptable (from 58s to 75s).

Table 2 Convergence of CMSC Algorithm

Test Outer loop Inner loop(users) Inner loop(messages) Computing time

1 4 158 87 65s

2 5 132 80 72s

3 4 137 79 58s

4 7 97 40 64s

5 6 109 68 75s

World Wide Web

Figure 13 The Precision-Recall Curve for users and messages

World Wide Web

Table 3 AP values of different methos

AP CMSC S3MCD LR DetectVC CrowdTarget

Users 0.7621 0.6249 0.6889 0.4935 −
Messages 0.7844 0.7345 0.5425 − 0.6604

7.2 PR curve

The Precision-Recall Curve is shown in Figure 13, where Figure 13a shows the performance
in spammer detection and Figure 13b shows the performance in spam detection. From the
above figures, we are also able to calculate the corresponding AP values, which are listed
in Table 3. Note that the DetectVC method is only used for spammer detection and the
CrowdTarget method is only used for spams detection. These values demonstrate the distinct
superiority of our method. Figure 13 and Table 3 yield the following observations: First,
in terms of spammer detection, our method outperforms compared baselines by an average
28.8% in AP values. In terms of spam detection, ours lead the other baselines by an average
13.9%.

Specifically, CMSC performs much better than LR, which suggests that considering the
topological properties in retweeting networks and following networks can truly improve the
performance in the given task, since in this experiment, the LR method only considers user
features and message features, ignoring the network topological properties.

As for the S3MCD method, it primarily considers users’ individual features and content
features; however, the new types of spammers and crowdturfing microblogs are insensi-
tive to these traditional features, so the final results are not quite as good. In addition, in
the curves of S3MCD in Figure 13a and b, especially in the spans where the Recall val-
ues ranges from 0-0.2, the curves both have low ebbs and then come up. This phenomenon
occurs because in S3MCD needs ranked users or messages and returns top-k results; how-
ever, some normal users or messages also have relatively high ranks. With K values enlarge,
this shortcoming is gradually alleviated, and the performance then recovers somewhat.

The DetectVC method performs the worst in spammer detection, which suggests that
considering the following relationship only, as is done in the DetectVC method, is not suffi-
cient for final detection results. In addition, if our method is compared with the CrowdTarget
method, it is clear that considering only messages without spammers is also not sufficient
for optimum results.

7.3 ROC curve

We also calculate the AUC values and draw ROC curves for the different methods. In
Table 4, CMSC gets 0.9069 for spammer detection and 0.8966 for spam detection, lead-
ing by 2% and 3% over the second, respectively. As depicted in Figures 13c and d, CMSC

Table 4 AUC values for different methods

AUC CMSC S3MCD LR DetectVC CrowdTarget

Users 0.9069 0.8528 0.8800 0.6628 −
Messages 0.8966 0.8684 0.8095 − 0.7863

World Wide Web

Table 5 Precision@K for spammers (%)

Top-K 10 20 30 40 50 100 150 200

CMSC 100 100 97 95 88 80 71 64

S3MCD 80 80 80 80 78 68 64 56

LR 90 90 87 80 80 74 69 62

DetectVC 90 90 87 78 78 56 48 44

performs best both for spammer detection and for spam detection. The LR method comes
in second for spammer detection and S3MCD comes in third. For spam detection, S3MCD
performs better than the other baselines but worse than our method.

7.4 Precision@K

In this subsection, we calculate the Precision@K values when K ranges from 10 to 200 for
spammer detection and from 10 to 300 for spam detection. The results are shown in Tables 5
and 6. According to these results, we draw the corresponding trend charts in Figure 13e and
Figure 16h.

For spammer detection, when K is less than 20, CMSC performs at 100% in precision
and then gradually declines when K gets bigger. This means that when K becomes larger,
some normal users and messages sneak into our ranks. Even so, our method is still ahead of
the other methods. For spams detection, the S3MCD and LR methods both improve sharply
when K ranges from 0 to 50, which suggests that the results from these methods consist
of some normal messages, but S3MCD and LR rank them very high. When K ranges from
100 to 180, we notice that S3MCD performs better than our CMSC method, which reflects
that these microblogs contain a large number of advertisements and that S3MCD does better
in features extraction from contents. CrowdTarget initially performs better than CMSC,
because CrowdTarget explores the characteristics of this part of marketing microblogs more
fully. However, when K > 60, its performance declines substantially, showing that the
features CrowdTarget extracts are not suitable for all the crowdturfing microblogs and the
method is not robust enough. Notably however, our CMSC method perform relatively well
in the whole range of K , especially when k > 200, demonstrating that our method is more
robust. Besides, it reliably stays ahead of LR, showing that considering the topological
properties of retweeting networks is truly useful for improving the method’s performance.

Table 6 Precision@K for spams (%)

Top-K 10 20 30 40 50 100 200 300

CMSC 100 100 97 93 92 90 78 67

S3MCD 70 85 87 85 84 90 74 61

LR 30 50 53 58 64 61 59 60

CrowdTarget 100 100 100 100 96 84 64 54

World Wide Web

7.5 Contributions of different factors

Finally, we analyze the contributions of different factors in our method. To review, in our
method, we consider the following aspects: the prior categories of users (xp) and messages
(yp), users’ association strength (defined in (3)), messages’ association strength (defined in
(5)), the relationship between users and their retweeted messages (defined in (1)), users’ fol-
lowing relationships (defined in (6)), and the constraint conditions of labeled users (defined
as Cx = xp in (8)) and labeled messages (defined as Dy = yp in (8)). We remove some of
them and get the following variants of our method:

– CMSC: the complete method combining all aspects mentioned above.
– CMSC-XP: removing users’ prior categories.
– CMSC-YP: removing messages’ prior categories.

Figure 14 The contribution results of different aspects in the detection of spammers and spams

World Wide Web

– CMSC-XYP: removing both users’ and messages’ prior categories.
– CMSC-SU: removing users’ association strength.
– CMSC-SM: removing messages’ association strength.
– CMSC-R: removing the relation between users and their retweeted messages.
– CMSC-F: removing users’ following relationships.
– CMSC-C: removing the constraint conditions of labeled users.
– CMSC-D: removing the constraint conditions of labeled messages.

We repeat the test for all of the variants and their performances are listed in Table 1.
According to these results, we draw Figure 14 to visualize the importance of the differ-
ent aspects in the detection of spammers and spams; from that we draw the following
observations:

– For spammer detection, when the priori category is removed from the CMSC, the
method’s performance goes down by 12% (from 0.7621 to 0.6715 in AP value), and
7.5% (from 0.9069 to 0.8386 in AUC value). Similarly, this decline is observed for
spam detection (from 0.7844 to 0.5004 in AP value and from 0.8966 to 0.5766 in AUC
value). This observation suggests that only considering relationships embedded in the
following or retweeting networks in far from addresses the target task. It is therefore
importance to combine the features of users and messages.

– The association strengths (messages vs. messages, and users vs. messages) proposed in
this paper are also essential for spammer or spam detection because when we remove
the association strength, the corresponding performance also go down significantly.

– When the relationship between users and their retweeted messages is removed,
the method also performs worse than the original version, which suggests that the
retweeting behaviors can reflect the categories of both uses and messages.

– In our method, the constraint conditions of labeled messages and users lead to faster
convergence. However, from the results, we also notice that they are helpful for a better
performance by reducing noise in the dataset.

From above analysis, we demonstrate that our method is truly valid for both spammer
and crowdturfing microblogs detection.

8 Sensitivity analysis

In real-world scenarios, spammers/spams usually take a small portion of the total number
of users/blogs. For our collected data, labeled spammers make up only 6% of all users, and
labeled spams only 0.08% of all messages, which coincides well with the reality. However,
our previous experiments used a portion of the dataset in which the percentage of spammers
reached up to 23% and that of spams was 26%. Although the new percentages of spams and
spammers are still relatively small, we strongly believe that it is very important to check
whether our method still retain its outstanding performance when the proportion is reduced.

In this section, we further evaluate our method using different spammer percentages,
spam percentages, and training percentages. We compared our method with previous base-
lines in terms of Precision, Recall, F1 score, AP value, and AUC value. From the total
results reported, our method still remains the best in the detection of both spams and spam-
mers, again confirming that our method has stability of performance. This is especially
meaningful when datasets lack dense annotations.

World Wide Web

Figure 15 Detection performance w.r.t changing SPAMMER percentage

World Wide Web

Figure 16 Detection performance w.r.t changing SPAM percentage

World Wide Web

Figure 17 Detection performance w.r.t changing the percentage of Labeled Data

World Wide Web

Different Spammer Percentages We adjusted our dataset, reducing the spammer percent-
age from 23% to only 3%. As depicted in the right column of Figure 15, our method
performs relatively better than other spammer detection methods in which the spammer per-
centage ranges from 3% to 23%. The superiorities of the F1 and AP values are even more
obvious when the percentage goes down. For the other metrics, our method still keeps its
competitive performance. As may be seen in the left column of Figure 15, reducing the
spammer percentage did not have much side effect on the final result of the spam detection.
Thus our method also generally performed the best in spam detection.

Different Spam Percentages We reduced the spam percentage from 26% to only 2% by
random selection. The detection performance can be seen in Figure 16, from which we can
observe that our method still keeps its superior performance in various metrics regarding
both spam and spammer detection. The results of spam detection is getting better along
with the enlarging spam percentage and beat the competing methods. Changing the spam

Figure 18 The framework of the prototype system

World Wide Web

percentage also has a very limited impact on the spammer detection performance, which
confirms again that our outstanding performance is very reliable in all of the above cases.

Different Percentage of Labeled Data In addition to changing the spammer or spam per-
centages, we here changed the proportion of labeled data. The proportion of labeled data
was thus reduced from 90% to only 10%. The results are reported in Figure 17, from
which we find that even in sparsely labeled cases, our method still beats the other methods.
This is very meaningful because in practice, the cost of data annotation is often very high,
so most datasets are sparsely labeled. Compared with traditional supervised methods, our
semi-supervised method is better adapted to online social applications.

9 Prototype system

Finally, we develop a prototype system with our integrated work. The framework of our
system can be seen in Figure 18 and includes three function layers: the data collection layer,
the spammers and spams detection layer, and the interface layer.

In the data collection layer, we integrate our previous data collection engine, shown in
Section 3, and construct a unified interface for Sandaha and Sina platforms (Figure 19).
There are three primary modules in the first layer: a) a task scheduling module, which is
designed for the distributed collecting task; b) a data crawler module, which is the core mod-
ule for data collection; and c) a raw data module, which comprises our complex databases,
including MySql, Mongodb, and Redis. The details of this layer has already been elaborated
in Section 3.2.

Figure 19 Data collection interface

World Wide Web

Figure 20 Snapshots of the prototype system

World Wide Web

Based on these data, we introduce the core codes of our method and build the sec-
ond function layer. The system first automatically extracts users’ and contents’ features,
and meanwhile constructs both the following networks and the retweeting networks. The
related results are then fed into our co-detection model and the system starts its learning and
prediction process.

The final results, as well as other interesting visualization charts, are generated and
sent into the third layer, which is developed by html/css/javascript and partly depicted in
Figure 20a, b, and c.

The prototype system has good scalability. For example, the data collection module is
designed as a distributed architecture. Users can temporarily add new crawlers through
Figure 19 without breaking up on-going processes. We develop and preserve a number of
APIs based on the data collected, such as users’ following topologies, their retweeting net-
works, and so on. These results are organized in json format and can be used not only in our
research, but also in related studies on community discovery, maximization of influence,
and information diffusion. Our prototype system is available by request through the first
author of this paper.

10 Conclusion

This paper propose a semi-supervised method to co-detect spammers and crwodturfing
microblogs in the Sina platform. We combine users individual features, messages content
features and the properties of following networks and retweeting networks. We also develop
a robust system to collect data and analyze them. We extensively evaluate our method with
related famous baselines, and the results report that our method performs much better both
in spammers detection and microblogs detection. In the end, we develop a robust prototype
system to further test the practicability of our method.

Acknowledgments This work is supported by National Key R&D Program of China 2017YFB1003000,
National Natural Science Foundation of China under Grants No. 61972087, No. 61772133, No. 61472081,
No. 61402104. Jiangsu Provincial Key Project BE2018706. Key Laboratory of Computer Network Tech-
nology of Jiangsu Province. Jiangsu Provincial Key Laboratory of Network and Information Security under
Grants No. BM2003201, and Key Laboratory of Computer Network and Information Integration of Ministry
of Education of China under Grants No. 93K-9.

References

1. Benevenuto, F., Magno, G., Rodrigues, T., Almeida, V.: Detecting spammers on twitter. In: Collabora-
tion, Electronic Messaging, Anti-Abuse and Spam Conference (CEAS), Vol. 6, p. 12 (2010)

2. Brown, G., Howe, T., Ihbe, M., Prakash, A., Borders, K.: Social networks and context-aware spam. In:
Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work, pp. 403–412.
ACM (2008)

3. Chen, T., Li, X., Yin, H., Zhang, J.: Call attention to rumors: deep attention based recurrent neural
networks for early rumor detection. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pp. 40–52. Springer (2018)

4. Chung, F.: Laplacians and the cheeger inequality for directed graphs. Ann. Comb. 9(1), 1–19 (2005)
5. Ding, C.H., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern

Anal. Mach. Intell. 32(1), 45–55 (2010)
6. Ghosh, S., Viswanath, B., Kooti, F., Sharma, N.K., Korlam, G., Benevenuto, F., Ganguly, N., Gummadi,

K.P.: Understanding and combating link farming in the twitter social network. In: Proceedings of the
21st International Conference on World Wide Web, pp. 61–70. ACM (2012)

World Wide Web

7. Hu, X., Tang, J., Gao, H., Liu, H.: Social spammer detection with sentiment information. In: 2014 IEEE
International Conference on Data Mining (ICDM), pp. 180–189. IEEE (2014)

8. Jiang, M., Cui, P., Beutel, A., Faloutsos, C., Yang, S.: Catching synchronized behaviors in large networks:
a graph mining approach. ACM Trans. Knowl. Discov. Data (TKDD) 10(4), 35 (2016)

9. Kim, H.J., Chae, D.K., Kim, S.W., Lee, J.: Analyzing crowdsourced promotion effects in online social
networks. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 820–823.
ACM (2016)

10. Lee, K., Webb, S., Ge, H.: The dark side of micro-task marketplaces: characterizing fiverr and
automatically detecting crowdturfing. In: ICWSM (2014)

11. Li, H., Chen, Z., Mukherjee, A., Liu, B., Shao, J.: Analyzing and detecting opinion spam on a large-scale
dataset via temporal and spatial patterns. In: ICWSM, pp. 634–637 (2015)

12. Liu, B., Luo, J., Cao, J., Ni, X., Liu, B., Fu, X.: On crowd-retweeting spamming campaign in social
networks. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)

13. Liu, B., Ni, Z., Luo, J., Cao, J., Ni, X., Liu, B., Fu, X.: Analysis of and defense against crowd-retweeting
based spam in social networks. World Wide Web, pp. 1–23 (2018)

14. Liu, L., Jia, K.: Detecting spam in chinese microblogs-a study on sina weibo. In: 2012 Eighth
International Conference on Computational Intelligence and Security (CIS), pp. 578–581. IEEE (2012)

15. Liu, Y., Liu, Y., Zhang, M., Ma, S.: Pay Me and I’ll follow you: detection of crowdturfing following
activities in microblog environment. In: IJCAI, pp. 3789–3796 (2016)

16. Page, L., Brin, S., Motwani, R., Winograd, T.: The Pagerank Citation Ranking: Bringing Order to the
Web. Tech. rep., Stanford InfoLab (1999)

17. Shu, K., Wang, S., Le, T., Lee, D., Liu, H.: Deep headline generation for clickbait detection. In: ICDM,
pp. 467–476. IEEE Computer Society (2018)

18. Song, J., Lee, S., Kim, J.: Crowdtarget: Target-based detection of crowdturfing in online social networks.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 793–804. ACM (2015)

19. Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In: Proceedings of the
26th Annual Computer Security Applications Conference, pp. 1–9. ACM (2010)

20. Tam, N.T., Weidlich, M., Zheng, B., Yin, H., Nguyen, Q.V.H., Stantic, B.: From anomaly detection to
rumour detection using data streams of social platforms. In: Proceedings of the Forty-fifth International
Conference on Very Large Data Bases (VLDB’19). CEUR-WS.org (2019)

21. Thanh Tam, N., Matthias, W., Hongzhi, Y., Bolong, Z., Quoc Viet, H.N., Bela, S.: User guidance for
efficient fact checking. In: Proceedings of the Forty-fifth International Conference on Very Large Data
Bases (VLDB’19). CEUR-WS.org (2019)

22. Wang, G., Wilson, C., Zhao, X., Zhu, Y., Mohanlal, M., Zheng, H., Zhao, B.Y.: Serf and turf: crowd-
turfing for fun and profit. In: Proceedings of the 21st International Conference on World Wide Web,
pp. 679–688. ACM (2012)

23. Wang, T., Wang, G., Li, X., Zheng, H., Zhao, B.Y.: Characterizing and Detecting Malicious Crowd-
sourcing. In: ACM SIGCOMM Computer Communication Review, Vol. 43, pp. 537–538. ACM
(2013)

24. Wu, F., Shu, J., Huang, Y., Yuan, Z.: Social spammer and spam message co-detection in microblogging
with social context regularization. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pp. 1601–1610. ACM (2015)

25. Yang, X., Yang, Q., Wilson, C.: Penny for Your Thoughts: Searching for the 50 Cent Party on Sina
Weibo. In: ICWSM, pp. 694–697 (2015)

26. Yang, Z., Wilson, C., Wang, X., Gao, T., Zhao, B.Y., Dai, Y.: Uncovering social network sybils in the
wild. ACM Trans. Knowl. Discov. Data (TKDD) 8(1), 2 (2014)

27. Yuan, D., Li, G., Li, Q., Zheng, Y.: Sybil defense in crowdsourcing platforms. In: Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, pp. 1529–1538. ACM (2017)

28. Zhu, Y., Wang, X., Zhong, E., Liu, N.N., Li, H., Yang, Q.: Discovering spammers in social networks. In:
AAAI (2012)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

World Wide Web

Affiliations

Bo Liu1 ·Xiangguo Sun1 ·Zeyang Ni1 · Jiuxin Cao2 · Junzhou Luo1 ·Benyuan Liu4 ·
Xinwen Fu3,4

Xiangguo Sun
sunxiangguo@seu.edu.cn

Zeyang Ni
nizy@seu.edu.cn

Jiuxin Cao
jx.cao@seu.edu.cn

Junzhou Luo
jluo@seu.edu.cn

Benyuan Liu
bliu@cs.uml.edu

Xinwen Fu
xinwenfu@cs.ucf.edu; xinwenfu@cs.uml.edu

1 School of Computer Science and Engineering, Southeast Univerisity, NanJing, 211189, China
2 School of Cyber Science and Engineering, Southeast Univerisity, NanJing, 211189, China
3 Department of Computer Science, University of Central Florida, Orlando, FL, USA
4 Department of Computer Science, University of Massachusetts Lowell, Lowell, MA, USA

http://orcid.org/0000-0002-2224-4634
mailto: sunxiangguo@seu.edu.cn
mailto: nizy@seu.edu.cn
mailto: jx.cao@seu.edu.cn
mailto: jluo@seu.edu.cn
mailto: bliu@cs.uml.edu
mailto: xinwenfu@cs.ucf.edu
mailto: xinwenfu@cs.uml.edu

	Co-Detection of crowdturfing microblogs and spammers in online social networks
	Abstract
	Introduction
	Related works
	Data collection
	Brief description of Sandaha and Sina
	Data collection system
	Data annotations
	Availability analysis
	Following behaviors
	Published microblogs

	Co-Detection model
	Problem definition
	Features extraction for users and messages
	Life time
	Following Behaviors
	Retweeting Behaviors
	Content Similarity
	Sentiment Polarity
	Comments Interaction

	Modeling retweeting networks
	Guideline R-1: A user and a message are more likely to be in the same category (xi=yi=1 or xi=yi=-1) if a link exists between them
	Guideline R-2: There is a positive correlation between users' categories and users' association strength
	Guideline R-3: There is a positive correlation between messages' categories and messages' association strength

	Modeling following networks
	Guideline F-1: Two users are more likely to be in the same category if a following edge exists between them in Gf

	Co-detection optimal target

	Inference
	Experimental setup
	Evaluation metrics
	Precision-Recall Curve
	ROC Curve
	Precision@K

	Baselines
	Parameter settings
	Learning process

	Results and analysis
	Convergence analysis
	PR curve
	ROC curve
	Precision@K
	Contributions of different factors

	Sensitivity analysis
	Different Spammer Percentages
	Different Spam Percentages
	Different Percentage of Labeled Data

	Prototype system
	Conclusion
	References
	Affiliations

