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Exploiting Bi-Directional Channel Reciprocity in Deep Learning for
Low Rate Massive MIMO CSI Feedback

Zhenyu Liu

Abstract—Channel state information (CSI) feedback is impor-
tant for multiple-input multiple-output (MIMO) wireless systems
to achieve their capacity gain in frequency division duplex mode.
For massive MIMO systems, CSI feedback may consume too
much bandwidth and degrade spectrum efficiency. This letter
proposes a learning-based CSI feedback framework based on
limited feedback and bi-directional reciprocal channel charac-
teristics. The massive MIMO base station exploits the available
uplink CSI to help recovering the unknown downlink CSI
from low rate user feedback. We propose two deep learning
architectures, DualNet-MAG and DualNet-ABS, to significantly
reduce the CSI feedback payload based on the multipath
reciprocity. DualNet-MAG and DualNet-ABS can exploit the bi-
directional correlation of the magnitude and the absolute value
of real/imaginary parts of the CSI coefficients, respectively. The
experimental results demonstrate that our architectures bring
an obvious improvement compared with the downlink-based
architecture.

Index Terms—Massive MIMO, CSI feedback, multipath reci-
procity, deep learning.

I. INTRODUCTION

ODERN wireless communication systems have made
tremendous strides in utilizing the spatial diver-
sity afforded by multiple-input multiple-output (MIMO)
transceivers to improve radio link performance against poor
channel conditions. In particular, massive MIMO systems have
shown great promise for delivering high spectrum and energy
efficiency for 5G wireless communication systems. To fully
utilize the spatial diversity and multiplexing gains, however,
massive MIMO transmitters must rely on sufficiently accurate
channel state information (CSI). In a cellular network, this
means that the base station (eNB or gNB) needs to acquire
the downlink CSI in an accurate and timely manner.
In practice, gNBs in time division duplex (TDD) networks
can rely on strong reciprocity between downlink and uplink
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channels to estimate the downlink CSI. However, in frequency
division duplex (FDD) systems, there often exists a weaker
reciprocity in different frequencies. Consequently, gNB would
require user equipment (UE) to provide downlink CSI feed-
back. For massive MIMO, such feedback can be substantial.
Moreover, to cope with rapidly changing environment, UEs
have to feed back CSI frequently, thereby consuming precious
bandwidth resource.

The strong need for reducing massive MIMO CSI feedback
in FDD systems has motivated a number of important stud-
ies. Generally, these works belong to three broad categories:
1) directly quantized CSI feedback; 2) compressed sensing
(CS)-based feedback; 3) deep learning-based feedback. In
directly quantized CSI feedback, UE quantizes its estimated
downlink CSI into information bits for gNB [1], [2]. However,
direct quantization requires too much uplink spectrum resource
in massive MIMO. For CS-based feedback, it exploits the
potential sparsity exhibited by massive MIMO CSI in cer-
tain transform domain to reduce feedback overhead [3], [4].
However, most CS-based approaches impose the strong chan-
nel sparsity and are often iterative, which causes additional
delay.

The recent resurgence of artificial intelligence techniques
offers some attractive alternatives. In fact, deep learning (DL)
methods have already found applications in several aspects
of wireless communications and networks, including resource
allocation [5], channel estimation [6], signal classification [7],
and low rate CSI feedback [8]. In particular, Wen et al. [8]
developed a CSI feedback mechanism suitable for massive
MIMO downlink and demonstrated effective improvement in
downlink CSI reconstruction accuracy.

We aim to further investigate more effective downlink CSI
feedback. We note that RF uplink and downlink channels in
a wireless link are functions of physical environment such
as multipaths and scatters. Even for FDD, existing works
have demonstrated that certain of correlation exists between
bi-directional channels. Thus, exploiting uplink CSI of FDD
systems can potentially improve the estimation accuracy of
downlink CSI. As shown in [9], the directional properties of
radio channels are correlated in uplink and downlink FDD
channels. Multipath delays in downlink and uplink frequency
bands are same in [10]. In [11], it is illustrated that the cor-
relation of shadowing effects also exists between uplink and
downlink in FDD. Downlink channel covariance estimation
can in fact benefits from its observed uplink covariance [12].

In this letter, we develop two enhanced DL network archi-
tectures, named as DualNet-MAG and DualNet-ABS, for
estimating the downlink CSI based on low rate UE feed-
back by exploiting the multipath correlation between uplink
and downlink channels in massive MIMO systems. Our basic
principle is to utilize both the uplink CSI estimation avail-
able at the gNB and the low rate uplink feedback from the
UE to recover the unknown downlink CSI. We apply both
uplink CSI and downlink feedback to train the DL networks
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for decoding the efficient feedback codeword. The novelty of
this letter is to establish that the bi-directional channel cor-
relation can bring substantial performance improvement for
downlink CSI estimation in FDD systems with limited uplink
feedback.

II. SYSTEM MODEL

We examine a single-cell massive MIMO system, in which
the gNB has N, > 1 antennas and UEs have a single antenna.
The system applies orthogonal frequency division multiplexing
(OFDM) over N. [ subcarriers, for which the downlink received
signal at the n-th subcarrier is

n nH n n n
OO LN} W

(n)

where h 4 € CNvX1 denotes the channel vector of the n-

(n)

th subcarrier, w,
x(n)
d

€ CNv*1 denotes transmit beamformer,

€ C is the transmitted symbol, and n((in) € C denotes the

additive noise. ()H denotes conjugate transpose. The uplink
received signal of the n-th subcarrier is given by

(n) _ (my(n) (n)

Yu =~ = Wp u Ty
where Wg%n) e CMox1 denotes the receive beamformer, and
subscript u denotes uplink signals and noise, similar to (1).
The downlink and uplink CSI matrices in the spatial frequency
domain are denoted as Hy = [hsjl), . ,h&Nf 17 e CNrxNs

and H, = [hgl), . ,hq(le)]H e CNr >Ny | respectively.

In this letter, we focus on downlink CSI feedback. Hence,
we assume that H; and H,, have been perfectly acquired by
UE and gNB, respectively. Since CSI matrix Hy is Ny X Ny,
CSI feedback payload becomes huge for massive MIMO
system with large Np. To reduce feedback load, we take
advantage of the important property that subchannel CSIs in
uplink and downlink exhibit some common sparsity in the spa-
tial delay domain [13]. We can transform a channel response
matrix Hy from frequency domain to delay domain H; using
an IDFT, i.e.,

H
+wi nm), @)

H,F7 =1, 3)

where F donates the N x Nj, unitary DFT matrix. After IDFT,
most elements in the Ny x N, matrix H; are near zero except

for the first Nf rows. Denote H; and H,, as the first Nf TOws

of matrices after IDFT of H; and H,,, respectively. However,
since Ny x Ny, is still a large number, further compression can
start from the compressed CSI matrix H,; at the UE.

We apply an encoder and a decoder for CSI compres-
sion and reconstruction, respectively. Unlike existing works,
our proposed architecture combines the downlink CSI for
feedback with the available uplink CSI. Let H; be the recon-
structed downlink CSI matrix. The encoder and decoder can
be denoted, respectively, by

5 = fen(Hd) 4)
d = fde(s, Huy). 5)

III. CORRELATION BETWEEN UPLINK AND DOWNLINK

To demonstrate the correlation between uplink and down-
link, we generate CSI matrices using COST 2100 channel
model [14]. A uniform linear array (ULA) is applied with half-
wavelength spacing in an indoor environment with uplink and
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Fig. 1. Distribution of correlation coefficient between uplink and downlink

CSI at various levels of Confidence Interval (CI).

downlink bands at 5.1 GHz and 5.3 GHz, respectively. We
examine the CSI matrices in delay domain by evaluating their
Pearson correlation coefficients. Since the CSI is complex,
their real part and imaginary part correlations are evaluated.

As shown in Fig. 1, the correlation coefficients between
uplink CSI and downlink CSI of the original (real/imaginary)
format are rather erratic. This would seem to invalidate use-
fulness of the channel reciprocity in downlink CSI recovery.
Nevertheless, a closer examination of the physics behind the
CSI of different carriers reveals that in FDD, two different car-
rier frequencies can lead to random phase difference between
them. We further recognize, based on FDD multipath channel
models, that the magnitude in delay domain should exhibit
much stronger correlation than phase.

Thus, we transform the CSI elements in the delay domain
into polar coordinate to separately consider their magnitude
and phase correlations. Fig. 1 demonstrates that the corre-
sponding CSI magnitudes in uplink and downlink exhibit
strong correlation whereas the corresponding phases have little
correlation. In fact, by separating the signs of CSI’s real and
imaginary parts, Fig. 1 shows that the absolute values (ABS)
of uplink and downlink channel coefficients are also positively
correlated. However, their signs show little correlation.

These results demonstrate the practical reciprocal character-
istics in the delay domain, clearly showing that the magnitudes
of the CSI uplink/downlink coefficients are strongly corre-
lated, whereas their phases and the signs of real/imaginary
parts are not. These results motivate us to propose two DL
network decoders for downlink CSI recovery. Specifically, UE
should devote resources to encode the phases and the signs of
downlink CSI for feedback, while gNB jointly utilizes UE’s
feedback and its own uplink CSI to decode the downlink CSI.

IV. DUALNET

We now propose two DL network architectures to reduce
the CSI feedback payload of massive MIMO downlink.

A. DualNet-MAG

The DualNet-MAG utilizes the magnitude correlation to
improve the efficiency of CSI feedback. Fig. 2 shows the gen-
eral architecture of DualNet-MAG, in which magnitudes and
phases of CSI are separately encoded and fed back.

After phase separation, the CSI magnitudes are fed into the
DL network. The first encoder layer is a convolutional layer
(CL) with batch normalization. This layer uses kernels with
dimensions of 3 x 3 to generate one feature maps. We use
the number of squares to denote the number of feature maps
and use X1 x X2 over a feature map to denote its size. After
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Fig. 2. Architecture of DualNet-MAG.

the CL, feature maps are reshaped into a vector. Then a fully
connected layer generates the codeword s with the length M.

After the gNB receives the codeword s, it uses the
uplink CSI magnitudes to help recovering downlink CSI. The
received s is first mapped into the original length using a fully
connected layer. The uplink CSI matrices are reshaped to a
vector before being conjugated with the modified codeword.
Next, the conjugation layer is reshaped into 2 feature maps as
an input to the residual network (RN). The RN in DualNet-
MAG contains two residual blocks, which can effectively hand
the vanishing gradient problem as proposed by [15]. Here the
CL is used as the weight layer. The three CLs in each resid-
ual block utilize 3 x 3 kernels to generate 8, 16 and 2 feature
maps, respectively. Zero padding is used to keep the size of
feature maps at 32 x 32. After RN, the next layer recovers the
downlink CSI magnitudes. Finally, the magnitudes are com-
bined with their corresponding phases as fully recovered CSI
coefficients.

To train the model, normalization is applied in both down-
link and uplink CSI matrices. Adam optimizer is adopted to
update the DL network parameters. The initial learning rate
is set to 0.001. The loss function is the mean squared error
(MSE), which is commonly used in CSI estimation and also
works well here. Other differentiable loss functions can also
be directly applied to DualNet.

Based on channel reciprocity, CSI magnitudes can be well
compressed. However, the poor phase correlation makes it
difficult to apply a similar DL structure to improve phase
recovery. Thus, we let UE quantize and encode the down-
link CSI phase for feedback. In polar coordinate, however,
uniform phase quantization leads to unnecessarily fine quan-
tization at low magnitude and coarse quantization for large
magnitude. To avoid wasting feedback bandwidth, we limit
the CSI quantization error by applying a magnitude depen-
dent phase quantization (MDPQ) in which CSI coefficients
with larger magnitude adopt finer phase quantization and vice
versa. The gNB restores the quantified phase based on MDPQ
using the recovered magnitude. Such MDPQ can keep the
quantization error similarly small for all magnitudes. Note
that the MDPQ codeword lengths vary with the magnitudes.
Thus, the mean codeward length depends on the distribution
of CSI magnitude. In our design, we estimate the cumulative
distribution function (CDF) of magnitudes to determine the
magnitudes corresponding to CDF value of 0.5, 0.7, 0.8, and
0.9, respectively. These four points divide the magnitudes into
five ordered segments from small to large. We allocate 3, 4,
5, 6, 7 bits, respectively, to encode the phase of CSI with
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magnitude inside the 5 segments. In our test, MDPQ code-
words with the mean length of 4.1 bits can achieve the same
MSE as a 6-bit uniform quantizer in both indoor and outdoor
scenarios.

B. DualNet-ABS

Similar to DualNet-MAG, DualNet-ABS exploits the cor-
relation between the uplink/downlink CSIs in terms of their
real/imaginary absolute values to reduce CSI feedback. Unlike
DualNet-MAG, DualNet-ABS separately feeds back the abso-
lute values and signs of real/imaginary CSI components.
Sending back uncorrelated sign information can be effective.

The architecture of DualNet-ABS is similar to DualNet-
MAG. The difference lies in the number of feature maps and
the size of fully connected layers. Since DualNet-ABS divides
CSI matrix into real and imaginary parts, the number of feature
maps and the size of fully connected layers are twice as large.

V. PERFORMANCE EVALUATION
A. Experiment Setup

For both training and testing, we randomly generate CSI
matrices using the COST 2100 model [14]. Two scenar-
ios are tested: (a) indoor channel with 5.1 GHz uplink and
5.3 GHz downlink bands; (b) semi-urban outdoor channel with
260 MHz uplink and 300 MHz downlink bands. In future
works, we will extend the current work to more cases, such as
pilot contamination in multi-cell coverage scenarios. We place
gNB at the center of a square area of lengths 20 m for indoor
coverage and 400 m for outdoor coverage, respectively. Both
uplink and downlink bandwidths are 20 MHz. We randomly
position UEs within the coverage area. The gNB uses ULA
with N, = 32 antennas and Ny = 1024 subcarriers. After
transforming the channel matrix into the delay domain, only
the first 32 rows are kept due to sparsity. The training sample
size is 70,000 and testing sample size is 30,000. The values
of epoch and batch size are set to 600 and 200, respectively.

Normalized MSE (NMSE) is utilized to evaluate the accu-
racy of CSI recovery, which is defined as

ZHH'“ HY|1?/|Hg ),

where k and n are, respectlvely, the index and total number
of samples in the testing set. Compression ratio is defined
as the ratio between total bits after the proposed encoding
and original bits required by pure CSI quantization feedback.

NMSE = (6)
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Fig. 4. CSI recovery comparison at different CSI error levels.

We compare the DualNet-MAG and DualNet-ABS with the
CsiNet [8]. Recall that CsiNet uses a deep learning architec-
ture for CSI feedback compression with only downlink CSI.
Since the three network architectures and feedback modes dif-
fer, compression ratios should be defined separately. Let £ be
the codeword length for the real/imaginary part of one CSI
coefficient. Let A be the average codeword length for one quan-
tified phase. For CsiNet, DualNet-MAG, and DualNet-ABS,
compression ratios are calculated, respectively, as

M-¢ M-£+1024-% M -€42048- 1
2048 - ¢’ 2048 - ¢ 2048 - €

Since standard implementations of neural network typically
use 32-bit floating-point for real values, ¢ is set to 32 bits.

B. Accuracy and Robustness Comparison

We compare the CSI accuracy achieved by CsiNet, DualNet-
MAG, and DualNet-ABS under three compression ratios
(CRs) of 1/12, 1/8 and 1/4. Fig. 3 provides the NMSE results
for both indoor and outdoor channels. Leveraging uplink CSI
for massive MIMO, DualNet-MAG and DualNet-ABS clearly
outperform CsiNet in both scenarios. In Fig. 3a, DualNet-
MAG of CR = 1/12 outperforms CsiNet of CR = 1/4. Note
that DualNet-MAG consistently outperforms DualNet-ABS in
indoor scenario, since CSI magnitudes exhibit stronger corre-
lation between uplink and downlink over the absolute values of
real/imaginary parts. Fig. 3b shows that for the outdoor chan-
nel, both DualNet-MAG and DualNet-ABS are much more
superior. Although DualNet-MAG outperforms DualNet-ABS
in most cases, DualNet-ABS can achieve a smaller CR since
the total space for the phases is twice as large as the space for
the signs. Moreover, when the MSE is large (e.g., CR = 1/12 in
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outdoor), DualNet-MAG performs worse since the low accu-
racy of recovered magnitudes further degrades the accuracy of
phases in MDPQ.

To further test the robustness of CsiNet, DualNet-MAG, and
DualNet-ABS, we examine the reconstruction performance in
the presence of channel estimation error by the UE. We include
an additive random white Gaussian error to the CSI at the UE
encoder. We test different levels of errors in terms of signal-
to-noise ratio (SNR). Fixing the CR to 1/8, we compare the
massive MIMO CSI recovery performance for both indoor and
outdoor channels. As the results in Fig. 4 show, both DualNet-
MAG and DualNet-ABS remain robust and superior.

VI. CONCLUSION

This letter presents two DL-based low rate CSI feed-
back solutions for massive MIMO wireless communications.
Recognizing and utilizing the multipath reciprocity between
uplink and downlink CSI in the delay domain, our DL-based
architectures can significantly improve the feedback efficiency
and the recovery accuracy of downlink CSI. The proposed
DualNet-MAG and DualNet-ABS represent viable practical
solutions in both indoor and outdoor wireless networks.
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