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Abstract—The stringent requirements for low-latency and
privacy of the emerging high-stake applications with intelligent
devices such as drones and smart vehicles make the cloud
computing inapplicable in these scenarios. Instead, edge machine
learning becomes increasingly attractive for performing training
and inference directly at network edges without sending data
to a centralized data center. This stimulates a nascent field
termed as federated learning for training a machine learning
model on computation, storage, energy and bandwidth limited
mobile devices in a distributed manner. To preserve data privacy
and address the issues of unbalanced and non-IID data points
across different devices, the federated averaging algorithm has
been proposed for global model aggregation by computing the
weighted average of locally updated model at each selected device.
However, the limited communication bandwidth becomes the
main bottleneck for aggregating the locally computed updates.
We thus propose a novel over-the-air computation based approach
for fast global model aggregation via exploring the superposition
property of a wireless multiple-access channel. This is achieved by
joint device selection and beamforming design, which is modeled
as a sparse and low-rank optimization problem to support
efficient algorithms design. To achieve this goal, we provide a
difference-of-convex-functions (DC) representation for the sparse
and low-rank function to enhance sparsity and accurately detect
the fixed-rank constraint in the procedure of device selection.
A DC algorithm is further developed to solve the resulting DC
program with global convergence guarantees. The algorithmic
advantages and admirable performance of the proposed method-
ologies are demonstrated through extensive numerical results.

Index Terms—Federated learning, over-the-air computation,
edge machine learning, sparse optimization, low-rank optimiza-
tion, difference-of-convex-functions, DC programming.

I. INTRODUCTION

HE astounding growth in data volume promotes wide-
spread artificial intelligent applications such as image
recognition and natural language processing [1], thanks to
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the recent breakthroughs in machine learning (ML) techniques
particularly deep learning, as well as the unprecedented lev-
els of computing power [2]. Nowadays the typical machine
learning procedure including the training process and the
inference process, is supported by the cloud computing, i.e., a
centralized cloud data center with the broad accessibility
of computation, storage and the whole dataset. However,
the emerging intelligent mobile devices and high-stake appli-
cations such as drones, smart vehicles and augmented reality,
call for the critical requirements of low-latency and privacy.
This makes the cloud computing based ML methodologies
inapplicable [3]. Therefore, it becomes increasingly attractive
to possess data locally at the edge devices and then performing
training/inference directly at the edge, instead of sending data
to the cloud or networks. This emerging technique is termed
as edge ML [4], which is supported by mobile edge computing
[5], [6] via pushing the cloud computing services to the net-
work edges. The main bottleneck is the limited computation,
storage, energy and bandwidth resources to enable mobile
edge intelligent services. To address this issue, there is a
growing body of recent works to reduce the storage overhead,
time and power consumption in the inference process using
the model compression methods via hardware and software
co-design [7], [8]. Furthermore, various advanced distributed
optimization algorithms [9]—-[13] have been proposed to speed
up the training process by taking advantages of the computing
power and distributed data over multiple devices.

Recently, a nascent field called federated Ilearning
[12]-[16] investigates the possibility of distributed learning
directly on the mobile devices to enjoy the benefits of better
privacy and less network bandwidth. It is particular useful in
situations where data are generated at mobile devices but it
is undesirable/infeasible to transmit the data to servers. It has
promising applications [14], [15] such as smart retail, smart
healthcare, financial services, mobile content predictions, etc.
However, a number of challenges arise to deploy the federated
learning technique. 1) The collected non-IID (not independent
and identically distributed) data across the network (i.e., the
data is generated by distinct distributions across different
devices), imposes significant statistical challenges to fit a
mode from the non-I1ID data [13], [17]. 2) Large communi-
cation loads across mobile devices limit the scalability for
federated learning to efficiently exchange locally computed
updates at each device [12], [18]. 3) The heterogeneity of
computation, storage and communication capabilities across
different devices brings unique system challenges to tame
latency for on-device distributed training, e.g., the stragglers
(i.e., devices that run slow) may cause significant delays
[10], [19]. 4) The arbitrarily adversarial behaviors of the
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devices (e.g,. Byzantine failures [20]) bring critical security
issues for large-scale distributed learning, which will incur a
major degradation of the learning performance [21]. 5) System
implementation issues such as the unreliable device connectiv-
ity, interrupted execution and slow convergence compared with
learning on centralized data [14]. In particular, the federated
averaging (FedAvg) algorithm [12] turns out to be a promising
way to efficiently average the locally updated model at each
device with unbalanced and non-IID data, thereby reducing the
number of communication rounds between the center node and
the end devices.

In this paper, we focus on designing the fast model aggre-
gation approach for the FedAvg algorithm to improve the
communication efficiency and speed up the federated learn-
ing system. We observe that the global model aggregation
procedure consists of the transmission of locally computed
updates from each device, followed by the computation of
their weighted average at a central node. In consideration
of both computation and communication, we shall propose
a co-design approach for fast model aggregation by lever-
aging the principles of over-the-air computation (AirComp)
[22]. Aircomp can improve the communication efficiency and
reduce the required bandwidth [22], [23] over the traditional
communication-and-computation separation method. This is
achieved by exploring the superposition property of a wireless
multiple-access channel to compute the desired function (i.e.,
the weighted average function) of distributed locally computed
updates via concurrent transmission. Recent research works on
AirComp have achieved significant progresses from the point
of view of information theory [22], signal processing [23],
transceiver design [24], [25], channel state information acqui-
sition [26], synchronization issues [27], [28], the AirComp
based model aggregation problem poses unique challenges as
we need to simultaneously minimize the function distortion
and maximize the number of involved devices. This is based
on the key observations that the aggregation errors may
lead to a notable drop of the prediction accuracy, while the
convergence of training can be accelerated with more involved
devices [12], [29]. To improve the communication efficiency
and statistical performance of federated learning, we shall
propose a joint device selection and receiver beamforming
design approach to find the maximum selected devices with
the mean-squared-error (MSE) requirement for fast model
aggregation via AirComp. Note that selecting more devices
can improve the convergence rate of federated learning, but
may be infeasible under the target MSE requirement of model
aggregation. Larger aggregation error will lead to poorer model
accuracy. This tradeoff between learning and aggregation
is also considered in the recent parallel work [30], which
quantifies the device population by excluding the devices
with weak channel coefficients under deep channel fading
and assuming IID located devices. In contrast, we propose
to select maximum number of devices given arbitrary values
of channel coefficients from the point of view of mathematical
optimization.

However, the joint device selection and beamforming design
problem is essentially a computationally difficult mixed com-
binatorial optimization problem with nonconvex quadratic
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constraints. Specifically, device selection needs to maximize a
combinatorial objective function, while the MSE requirement
yields nonconvex quadratic constraints due to the multicasting
duality for receiver beamforming design in AirComp [25].
To address the computational issue, we propose a sparse
and low-rank modeling approach to assist efficient algorithms
design. This is achieved by finding a sparse representation for
the combinatorial objective function, followed by reformulat-
ing the nonconvex quadratic constraints as affine constraints
with an additional rank-one matrix constraint by adopting
the matrix lifting technique [31]. For the sparse optimization
problem, ¢;-norm is a celebrated convex surrogate for the non-
convex £p-norm. The nonconvex smoothed £,,-norm supported
by the iteratively reweighted algorithm is a promising way to
enhance the sparsity level [32], [33]. However, its convergence
results rely on the carefully chosen smoothing parameter.
Although the semidefinite relaxation (SDR) technique convex-
ifies the nonconvex quadratic constraints as a linear constraint
via dropping the rank-one constraint in the lifting problem,
the performance degenerates with large number of antennas
as its weak capability of inducing low-rank structures [34].
To address the limitations of existing algorithms for solv-
ing the presented sparse and low-rank optimization problem,
we propose a unified difference-of-convex-functions (DC)
approach to induce both the sparsity and low-rank structures.
Specifically, to enhance sparsity, we adopt a novel DC repre-
sentation for the ¢y-norm [35], which is given by the difference
of the ¢1-norm and the Ky Fan k-norm [36], i.e., sum of the
largest k absolute values. We also provide a DC representation
for the rank-one constraint of the positive semidefinite matrix
by setting the difference between its trace norm and spectral
norm as zero. Based on the novel DC representations for the
sparse function and low-rank constraint, we propose to induce
the sparse structure in the first step as a guideline for the prior-
ity of selecting devices. In the second step, we solve a number
of feasibility detection problems to find the maximum selected
devices via accurately satisfying the rank-one constraint. Our
proposed DC approach for enhancing sparsity is parameter
free. The exact detection of the rank-one constraint is critical
for accurately detecting the feasibility of nonconvex quadratic
constraints in the procedure of device selection. Furthermore,
the computationally efficient DC Algorithm (DC) with global
convergence guarantee is developed by successively solving
the convex relaxation of primal problem and dual problem
of the DC program. These algorithmic advantages make the
proposed DC approach for sparse and low-rank optimization
outperform state-of-the-art approaches considerably.

A. Contributions

In this paper, we propose a novel fast global model aggrega-
tion approach for on-device federated learning via over-the-air
computation. To improve the performance and the convergence
rate for federated learning, we propose a joint device selection
and beamforming approach by selecting maximum number
of devices under target MSE requirement. It is formulated
as a sparse and low-rank optimization problem, followed by
proposing to enhance sparsity and accurately detect rank-one
constraint with a novel DC approach. We then develop a DC
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algorithm via successively convex relaxation with established
convergence rate.

The main contributions of the paper are summarized as
follows:

1) We design a novel fast model aggregation approach
for federated learning via exploiting signal superposition
property of a wireless multiple-access channel using
the principles of over-the-air computation. This idea
is achieved by joint device selection and beamforming
design to improve the statistical learning performance.

2) A sparse and low-rank modeling approach is provided to
support efficient algorithms design for the joint device
selection and beamforming problem, which is essentially
a highly intractable combinatorial optimization problem
with nonconvex quadratic constraints.

3) To address the limitations of existing algorithms for
sparse and low-rank optimization, we propose a unified
DC representation approach to induce both the sparse
and low-rank structures. The proposed DC approach has
the capability of accurately detecting the feasibility of
nonconvex quadratic constraints, which is critical in the
procedure of device selection.

4) We further develop a DC algorithm for the presented
nonconvex DC program via successive convex relaxation.
The global convergence rate of the DC algorithm is
further established by rewriting the DC function as the
difference of strongly convex functions.

The superiority of the proposed DC approach for accurately
feasibility detection and device selection will be demonstrated
through extensive numerical results. It turns out that our
proposed approaches can achieve better prediction accuracy
and faster convergence rate in the experiments of training
support vector machine (SVM) classifier on CIFAR-10 dataset.

B. Organization

The remaining part of this work is organized as follows.
Section II introduces the system model of on-device distributed
federated learning and problem formulation for fast model
aggregation. Section III presents a sparse and low-rank mod-
eling approach for model aggregation. Section IV provides
the DC representation framework for solving the sparse and
low-rank optimization problem, while in Section V the DC
Algorithm is developed and its convergence rate is also
established. The performances of the proposed approaches and
other state-of-the-art approaches are illustrated in Section VI.
We conclude this work in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the on-device distributed federated learning
system is presented. Based on the principles of over-the-air
computation, we propose a computation and communication
co-design approach based on the principles of over-the-air
computation for fast model aggregation of locally computed
updates at each device to improve the global model.
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Fig. 1. On-device distributed federated learning system.

A. On-Device Distributed Federated Learning

On-device federated learning system keeps the training data
at each device and learns a shared global model, which enjoys
lots of benefits such as low-latency, low power consumption
as well as preserving users’ privacy [12]. Fig. 1 illustrates
the federated learning system with M single-antenna mobile
devices and one computing enabled base station (BS) equipped
with IV antennas to support the following distributed machine
learning task:

o 1 &
minimize  f(2) = ; fi(=), (1)
where z is the model parameter vector to be optimized with
dimension d and 7' is the total number of data points. This
model is widely used in linear regression, logistic regression,
support vector machine, as well as deep neural networks.
Typically, each function f; is parameterized by ¢(z; x;,y;),
where ¢ is a loss function with the input-output data pair as
(zj,y;). Here, D = {(x;,y;) : j = 1,---,T} denotes the
dataset involved in the training process. The local dataset at
device ¢ is denoted as D; C D.

Limited network bandwidth is the main bottleneck for
global model aggregation of federated learning. To reduce
the number of communication rounds for global model aggre-
gation, the federated averaging (FedAvg) algorithm [12] has
recently been proposed. Specifically, at the ¢-th round:

1) The BS selects a
S C {17... ,M};

2) The BS sends the updated global model z[*~1l to the
selected devices Sy;

3) Each selected device i € S; runs a local update algorithm
(e.g., stochastic gradient algorithm) based on its local
dataset D; and the global model z!*~!, whose output is
the updated local model zz[t];

4) The BS aggregates all the local updates zz[t] with ¢ €
S;, i.e., computing their weighted average as the updated
global model z!*].

subset of mobile devices

The federated averaging framework is thus presented in
Algorithm 1.
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Algorithm 1: Federated Averaging (FedAvg) Algorithm
BS executes:
initialize wy.
for each round t =1,2,--- do
S; « select a subset of M devices;
broadcast global model z[*~1] to devices in S;.
for each mobile device i € S; in parallel do
zz[t] «— LocalUpdate(D;, z[*~1])
end
= s Ties, |D;|2!") (aggregation)
end

In this paper, we aim at improving the communication effi-
ciency for on-device distributed federated learning by devel-
oping a fast model aggregation approach for locally computed
updates in the FedAvg algorithm. A key observation for the
FedAvg algorithm is that the statistical learning performance
can be improved by selecting more workers in each round [12],
[29]. As an illustrative example in Fig. 2, we train an support
vector machine (SVM) classifier on the CIFAR-10 dataset
[37] with FedAvg algorithm and show the training loss and
the relative prediction accuracy over the number of selected
devices. The relative prediction accuracy is defined as the
prediction accuracy over the accuracy of random classification,
where the prediction accuracy is given by %‘m
and the accuracy of random classification is given by
m = 0.1. The federated learning system con-
sists of 10 mobile devices in total and the selected devices are
chosen uniformly at random for each round. However, select-
ing more devices also brings higher communication overhead
for aggregating the local computed updates at each selected
device.

Note that the model aggregation procedure requires the
computation of the weighted average of locally computed
updates and the communication from selected mobile devices
to the BS. Therefore, in this paper we develop a novel commu-
nication and computation co-design approach for fast model
aggregation. Our approach is based on the principles of over-
the-air computation [22] by leveraging the signal superposition
property of a multiple-access channel. The advantages of the
over-the-air computation beyond traditional communication-
and-computation separation method that computes a linear
function of messages across distributed mobile nodes at the
center node have been demonstrated in terms of higher
communication efficiency and lower bandwidth [22], [23].
They are consistent with the goal of aggregating local model
updates in federated learning. Furthermore, we notice that the
aggregation error may cause a notable drop of the prediction
accuracy [20]. The aggregation error could be measured by
mean-squared-error in equation (7). To address this issue,
we shall develop efficient transceiver strategies to minimize
the distortion error for model aggregation via over-the-air
computation. Based on the above key observations, in this
paper, we focus on the following two aspects to improve
the statistical learning performance in on-device distributed
federated learning system:

2025

14,
—6—# devices = 2
—&—# devices = 4
12+ # devices = 6
—k— # devices = 8
—+—# devices = 10

Training loss
—
(e}

8 L
6 1 1 1
0 5 10 15 20
Round
(a) Training loss
4
3.5¢
as
g 3
3
Q25¢
g A
s 2r I/ —6—# devices = 2
s “‘ —&—# devices = 4
L 1.5 .
~ | # devices = 6
14 —k—# devices = 8
‘ —+—# devices = 10
0'5 L L I
0 5 10 15 20
Round
(b) Relative prediction accuracy
Fig. 2. The training loss and prediction accuracy with different num-

ber of randomly selected devices for FedAvg. We train an support vector
machine (SVM) classifier on the CIFAR-10 dataset and adopt the stochastic
gradient descent algorithm [37] as the local update algorithm for each device.
Each curve is averaged for 10 times.

o Maximize the number of selected devices at each round
to improve the convergence rate in the distributed training
process;

o Minimize the model aggregation error to improve the
prediction accuracy in the inference process.

B. Over-the-Air Computation for Aggregation

Over-the-air computation has become a promising approach
for fast wireless data aggregation via computing a nomo-
graphic function (e.g., arithmetic mean) of distributed data
from multiple transmitters [23]. By integrating computation
and communication through exploiting the signal superposition
property of a multiple-access channel, over-the-air computa-
tion can accomplish the computation of target function via
concurrent transmission, thereby significantly improving the
communication efficiency compared with orthogonal transmis-
sion. The key observation in the FedAvg algorithm is that the
global model is updated through computing the weighted aver-
age of locally computed updates at each selected device, which
falls in the category of computing nomographic functions of
distributed data. In this paper, we shall propose the over-the-air
computation approach for communication efficient aggregation
in federated learning system.
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Specifically, the target vector for aggregating local updates
in FedAvg algorithm is given by

z=19 (Z asi(zi)) : )
icS

where z; is the updated local model at the i-th device,
¢; = |D;| is the pre-processing scalar at device i, p =
m is the post-processing scalar at the BS, and S is
the selected set of mobile devices. The symbol vector for each
local model before pre-processing s; := z; € C¢ is assumed
to be normalized with unit variance, i.e., E(s;st") = I. Ateach
time slot j € {1, -, d}, each device sends the signal s§]) eC
to the BS. We denote

g =3 6:(sP) ®
i€S
as the target function to be estimated through over-the-air

computation at the j-th time slot.
To simplify the notation, we omit the time index by writing

g and sgj ) as g and s;, respectively. The received signal at
the BS is given by
y=> hibsi+n, “)
=

where b; € C is the transmitter scalar, h; € CV is the channel
vector between device i and the BS, and n ~ CN(0,0%1) is
the noise vector. The transmit power constraint at device i is
given by

E(|bisi|?) = [b:]* < Py (5)

with Py > 0 as the maximum transmit power. The estimated
value before post-processing at the BS is given as

A 1 1 4 mHin
g \/ﬁm \/ﬁm g‘;hzbzsz + N ,
where m € CV is the receiver beamforming vector and 7 is a
normalizing factor. Each element of the target vector can thus
be obtained as Z = 1(g) at the BS.

The distortion of § with respect to the target value g given
in equation (3), which quantifies the over-the-air computation
performance for global model aggregation in the FedAvg
algorithm, is measured by the mean-squared-error (MSE)
defined as

mPh;b;
MSE(g,9) = E (|g — g2) =3 [T s,
M

Hy = (©6)

2 sllml?

@)

Motivated by [34], we have the following proposition for
transmitter beamformers:

Proposition 1: Given arbitrarily chosen receiver beamform-
ing vector m, the optimal transmitter scalar that minimizes the
MSE is given by the following zero-forcing transmitter:

(m"h;)"
b= VO ®)

Proof: See Appendix A. [ ]
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Due to the transmit power constraint (5) for transmit scalar
b; given in (8), we have

_ Po[m"h?
n=min = ©)
The MSE is thus given as
X [m|*0* o® 2 |lm]?
MSE(g,g9;S,m)=——"——=— . (10
(6.9:8,m) U] Py iE%Xd) [mHh;|2 (10

Remark 1: Note that we use a single beamforming vector
for the BS instead of M beamforming vectors. Indeed, mHy
is a general linear operation for mapping the received signal
y to an estimated target function value g§. If we use multiple
beamforming vectors m,--- ,mys € CV for their respective
messages si,---, Sy and then estimate the target function g
by computing their linear combination, we get the following
equations

5 =mily, Vi=1,--- M (11)
M M

§= cidi=>» cmlly, (12)
=1 =1

where ¢; € C. Therefore, we can always find a single
beamforming vector m= Ef\il c;m; € CV to achieve the
same performance of multiple beams where ¢; is the conjugate
of the complex number ¢;. Thus, using a single beamforming
vector in over-the-air computation achieves the same perfor-

mance as using multiple beamforming vectors.

C. Problem Formulation

As discussed in Section II-A, we shall maximize the number
of selected devices while introducing small aggregation error
with over-the-air computation. We thus formulate it as the
following mixed combinatorial optimization problem

2 ||“L||2
maxqii < 13
<i€$ ¢ ||’I",Hhi||2 =7 ( )

where v > 0 is the MSE requirement for global model
aggregation and |S| denotes the cardinality of the set S,
i.e., the set of selected devices for uploading locally updated
models.

Unfortunately, the mixed combinatorial optimization prob-
lem (13) is highly intractable due to the combinatorial objec-
tive function |S| and the nonconvex MSE constraint with
coupled combinatorial variable S and continuous variable m.
To address the nonconvexity of MSE function, [34] finds the
connections between the nonconvex MSE constraint (13) and
the nonconvex quadratic constraints for efficient algorithm
designing. Enlightened by this observation, we will show that
problem (13) can be equivalently solved by maximizing the
number of feasible nonconvex quadratic constraints. Specifi-
cally, to support efficient algorithms design, we shall propose
a sparse representation approach to find the maximum number
of involved devices, followed by reformulating the nonconvex
quadratic constraints as affine constraints with an additional
rank-one constraint by the matrix lifting technique.

Remark 2: Note that the proposed transceiver design with
over-the-air computation relies on the perfect channel state

maximize |S| subject to
S,meCN

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 12,2020 at 04:48:54 UTC from IEEE Xplore. Restrictions apply.



YANG et al.: FEDERATED LEARNING VIA OVER-THE-AIR COMPUTATION

information (CSI). To avoid the high overhead of CSI feed-
back, we can perform the transceiver design at the base station
by solving problem (13) and computing equation (8). Then
only channel state information at the base station is required.
After computing the values of transmit scalars, the base
station shall feed back each transmit scalar b; to device i.
Channel training for estimating CSI at the base station can
be accomplished by transmitting pilot sequences from each
mobile device [38, Chapter 4.1]. The feedback problem can
be addressed using unquantized analog feedback or quantized
digital feedback [39].

III. SPARSE AND LOW-RANK OPTIMIZATION FOR
ON-DEVICE DISTRIBUTED FEDERATED LEARNING

In this section, we propose a sparse and low-rank optimiza-
tion modeling approach for on-device distributed federated
learning with device selection.

A. Sparse and Low-Rank Optimization

To support efficient algorithms design, we first rewrite
problem (13) as the mixed combinatorial optimization prob-
lem with nonconvex quadratic constraints as presented in
Proposition 2.

Proposition 2: Problem (13) is equivalent to the following
mixed combinatorial optimization problem:

maximize |S|
S,meCN
subject to ||m||? —v;|m"h;||> <0, i€,

[m|? > 1, (14)

where 7; = v/¢2. That is, our target becomes maximizing the
number of feasible MSE constraints ||m||? —~;[|m"h;[|2 <0
under the regularity condition |m||? > 1.

Proof: Problem (13) can be reformulated as

maximize |S|

S,meCN
subject to F;(m) = [|[m||? — ~v;|m"h||? <0, ieS
m#0, (15)
which is further equivalently rewritten as
maximize |S|
S,meCN
subject to F;(m)/7=|m|?/7—~||m"h;||?/7<0, ieS
[m|?* > 7,7 >0. (16)

Then by introducing variable . = m/+/7, problem (16) can
be reformulated as

maximize |S|
S,meCN
subject to F;(m) = ||m||? — v|m"hi|?> <0, i€,
[m® > 1. (17)
Therefore, problem (13) is equivalent to problem (14), where

the regularity condition ||m]|> > 1 serves the purpose of
avoiding the singularity (i.e., m = 0). ]

2027

To maximize the number of feasible MSE constraints in
problem (14), we can minimize the number of nonzero z;’s
[32], i.e.,

minimize  ||z||o
meRﬂ‘f,mecN
subject to HmH2 - 'yi||mHhi||2 < x;, Vi,

[m]]? > 1. (18)

The sparsity structure of x indicates the feasibility of each
mobile device. If z; = 0, the i-th mobile device can be selected
while satisfying the MSE requirement.

However, both the MSE constraints and the regularity condi-
tion in problem (18) are nonconvex quadratic. A natural way to
address it is adopting the matrix lifting technique [40]. Specif-
ically, by lifting m as a rank-one positive semidefinite (PSD)
matrix M = mmH", problem (18) can be reformulated as the
following sparse and low-rank optimization problem

P . minimize
zeRY MeCN XN
subject to Tr(M) — v;hH Mh; < z;, Vi,
M = 0,Te(M) > 1,
rank(M) = 1.

eI

19)

Although problem &7 is still nonconvex, we shall demonstrate
its algorithmic advantages by developing efficient algorithms.

B. Problem Analysis

Problem &2 is nonconvex with sparse objective function
and low-rank constraint. Sparse and low-rank optimizations
have attracted much attention in machine learning, signal
processing, high-dimensional statistics, as well as wireless
communication [41]-[45]. Although the sparse function and
the rank function are both nonconvex and computationally dif-
ficult, efficient and provable algorithms have been developed
for taming the nonconvexity by exploiting various problem
structures.

1) Sparse Optimization: f1-norm is a natural convex sur-
rogate for the nonconvex sparse function, i.e., fp-norm. The
resulting problem is known as the sum-of-infeasibilities in the
literature of optimization [46]. Another known approach for
enhancing sparsity is the smoothed ¢,-minimization [32] by
finding a tight approximation for the nonconvex ¢y-norm, fol-
lowed by the iteratively reweighted ¢>-minimization algorithm.
However, the smoothing parameters should be chosen care-
fully since the convergence behavior of iterative reweighted
algorithms may be sensitive to them [33], [47].

2) Low-Rank Optimization: Simply dropping the rank-one
constraint in problem £ yields the semidefinite relax-
ation (SDR) technique [31]. The SDR technique is widely
used as an effective approach to find approximate solutions for
the nonconvex quadratic constrained quadratic programs. If the
solution fails to be rank-one, we can obtain a rank-one approx-
imate solution through the Gaussian randomization method
[31]. However, when the number of antennas N increases,
its performance deteriorates since the probability of returning
rank-one solutions is low [34], [48].
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To address the limitations of the existing works, in this
paper, we shall propose a unified difference-of-convex-
functions (DC) programming approach to solve the sparse and
low-rank optimization problem &. This approach is able to
enhance the sparsity in the objective as well as accurately
detect the infeasibility in the nonconvex quadratic constraints,
yielding considerably improvements compared with state-of-
the-art algorithms. Specifically,

e We will develop a parameter-free DC approach to
enhance sparsity, thereby maximizing the number of
selected devices.

o Instead of dropping the rank-one constraint directly,
we will propose a novel DC approach to guarantee the
exact rank-one constraint.

Note that the proposed DC approach has the capability of
guarantee the feasibility of rank-one constraint, which is
critical for accurately detecting the feasibility of the nonconvex
quadratic constraints in the procedure of device selection.

IV. DC REPRESENTATION FOR THE SPARSE AND
Low-RANK FUNCTIONS

In this section, we shall propose a unified DC representation
framework to problem & for federated learning. Specifically,
a novel DC representation for {y-norm is used to induce
sparsity for device selection. A novel DC representation for
the rank function is used to induce rank-one solutions, which
can accurately detect the feasibility of nonconvex quadratic
programs during the procedure of device selection.

A. DC Representation for Sparse Function

Before introducing the DC representation for the /y-norm,
we first give the definition of Ky Fan k-norm.

Definition 1: Ky Fan k-norm [36]: The Ky Fan k-norm of
vector ¢ € CM is a convex function of & and is given by the
sum of largest-k absolute values, i.e.,

k
Il = el (20)
i=1
where 7 is a permutation of {1,---, M} and |z, > --- >

|(Eﬂ- M |

I% t})le lo-norm is no greater than k, its ¢1-norm is equal to
its Ky Fan k-norm. Based on this fact, the /p-norm can be
represented by the difference between ¢;-norm and Ky Fan
k-norm [35]:

[2llo = min{k : [|2]l, — [le]x = 0,0 <k < M}. (21

B. DC Representation for Low-Rank Constraint

For the positive semidefinite (PSD) matrix M € CV*N,
the rank-one constraint can be equivalently rewritten as

O'i(M):O7Vi:27"'5Na (22)

where o; (M) is the i-th largest singular value of matrix M.
Note that the trace norm and spectral norm are given by

N
Te(M) =Y 0i(M) and |[M||y = 01(M),  (23)
=1

respectively. Therefore, we have the following proposition:
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Induce sparsity structure Check the feasibility of
selected devices via

solving problem £,

of vector x via solving
problem %5

Fig. 3. A two-step framework for device selection.
Proposition 3: For PSD matrix M and Tr(M) > 1,
we have

rank(M) =1 & Tr(M) — | M||2 = 0. (24)

Proof: If the rank of PSD matrix M is one, the trace norm
is equal to the spectral norm as o;(M) = 0 for all ¢ > 2. The
equation Tr(M) — ||M||2 = 0 implies that o;(M) = 0 for
all @ > 2, ie., rank(M) < 1. And we have o1(M) > 0
from Tr(M) > 1. Therefore, rank(M) = 1 holds if Tr(M) —
IM]l> =o. .

C. A Unified DC Representation Framework

The main idea of our proposed DC representation frame-
work is to induce the sparsity of @ in the first step, which will
provide guidelines for determining the priority of selecting
devices. Then we shall solve a series of feasibility detection
problems to find maximum selected devices such that the MSE
requirement is satisfied. This two-step framework is illustrated
in Fig. 3. And each step will be accomplished by solving a
DC program.

1) Step I: Sparsity Inducing: In the first step, we solve the
following DC program for problem &7:

Ps1: minimize ||z — [lz]i +Tr(M) — || M|

subject to Tr(M) — y;hH Mh; <z;, Vi=1,--- M
M >0, Tr(M)>1,x*>0. (25)

By sequentially solving problem Z;, we can obtain the sparse
vector * such that the objective value achieves zero through
increasing k from 0 to M. Note that the rank one constraint of
matrix M shall be satisfied when the objective value equals
zero with Tr(M) — | M||2 = 0.

2) Step II: Feasibility Detection: The solution x obtained in
the first step characterizes the gap between the MSE require-
ment and the achievable MSE for each device. Therefore,
in the second step, we propose to select device k with higher
priority if zj is small. The elements of  can be arranged
in descending order (1) > -+ > Tr(pr). We will find the
minimum k& by increasing k from 1 to M such that selecting
all devices in SI¥ is feasible, where the set SI*l is chosen as
{W(k)a ’/T(k + 1)7 T ,W(M)}

In detail, if all devices in S [*] can be selected, the following
optimization problem

find m

subject to [[m||? — yillm"h||? <0, Vie S
[m[* > 1 (26)

should be feasible. It can be equivalently reformulated as

find M
subject to Tr(M) — ~v;hH Mh; <0, Vi e S

M = 0,Te(M) > 1,rank(M) =1  (27)
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Algorithm 2: DC Representation Framework for Solv-
ing Problem & in Federated Learning With Device
Selection
Step 1: sparsity inducing
k—0
while objective value of Ps; is not zero do
Obtain solution x by solving the DC program s

kE—k+1
end

Step 2: feasibility detection
Order x in descending order as Ty >+ > Tr(ar)
k1
while objective value of Ps; is not zero do
SH  {n(k),n(k +1),--- ,7(M)}
Obtain solution M by solving the DC program
Ps)

kE—k+1
end

Output: m through Cholesky decomposition
M = mmHt, and the set of selected devices
S[k] = {ﬂ-(k)a W(k + 1)7 e aﬂ-(M)}

using the matrix lifting technique. To guarantee the feasibil-
ity of the fixed-rank constraint for accurately detecting the
feasibility of MSE constraints, we propose the following DC
approach by minimizing the difference between trace norm
and spectral norm:

Py - minIiJInize Tr(M) — | M||2

subject to Tr(M) — v Mh; <0, Vie S
M =0, Tr(M)>1. (28)

That is, when the objective value of problem s, equals
zero given set S [*1 we conclude that all devices in SI¥! are
selected while satisfying the MSE requirement, i.e., prob-
lem (26) is feasible for SI*). Note that the solution M* shall be
an exact rank-one matrix and a feasible receiver beamforming
vector m can be obtained through Cholesky decomposition
M* = mmH.

The proposed DC representation framework for solving
the sparse and low-rank optimization problem in federated
learning is presented in Algorithm 2. Since the DC program
is still nonconvex, in next section, we will develop the DC
Algorithm (DC) [49] for the DC optimization problem s,
and problem ;. We further contribute by establishing the
convergence rate of DC algorithm. Due to the superiority of
the presented DC representation (24) for rank-one constraint,
our proposed DC approach for accurate feasibility detection
considerably outperforms the SDR approach [31] by simply
dropping the rank-one constraint, which will be demonstrated
through numerical experiments in Section V.

V. DC ALGORITHM FOR DC PROGRAM WITH
CONVERGENCE GUARANTEES

In this section, the DC Algorithm will be developed by
successively solving the convex relaxation of primal problem
and dual problem of DC program. To further establish the

2029

convergence results, we add quadratic terms in convex func-
tions while their difference (i.e., the objective value) remains
unchanged. With this technique, we represent the DC objective
function as the difference of strongly convex functions, which
allows us establish the convergence rate of the DC algorithm.

A. Difference-of-Strongly-Convex-Functions Representation

The DC formulations s; and Ps, for sparse and low-
rank optimization are nonconvex programs with DC objective
functions and convex constraints. Although DC functions are
nonconvex, they have good problem structures and the DC
Algorithm can be developed based on the principles provided
in [49]. In order to establish the convergence result of the DC
algorithm, we will represent the DC objective function as the
difference of strongly convex functions.

Specifically, we can equivalently rewrite problem Zs; as

minimize f1 =||z( |z (x+Tr(M) || M||2+Ic, (2, M),

(29)
and problem s, as
min}i\}lnize fa=Tr(M) — ||M]||2 + Ic, (M), (30)

respectively. Here Cy,Cs are positive semidefinite cones that
integrates the constraints of problem g, and problem s,
and the indicator function is defined as

0, (ZB,M)ECl

; (31)
+o00, otherwise.

ICl(va) = {

In order to establish the convergence result of the DC
algorithm, we rewrite the DC functions f1, f as the difference
of strongly convex functions, i.e., fi = g1 — h1 and fo =
g2 — hs, where

«
g1 = @i+ Te(M) + Lo, (2, M) + S ([lz]F + [ M]F),

(32)
b = lall + 1M1z + 5 (lel? + 1M]3), (33)
g2 = Tr(M) + Ie, (M) + S| M, (34)
he = | M|z + S |1M . (35)

By adding quadratic terms, g1, g2, h1, ho are all a-strongly
convex functions. Then problem (29) and problem (30) admit
the uniform structure of minimizing the difference of two
strongly convex functions

gl(lgémlxze f(X) =g(X) (X)

(36)

For complex domain X, we shall apply Wirtinger calcu-
lus [50] for algorithm design. The DC algorithm is given
by constructing sequences of candidates to primal solutions
and dual solutions. Since the primal problem (36) and its
dual problem are still nonconvex, convex relaxation is further
needed.
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B. DC Algorithm for Sparse and Low-Rank Optimization
According to the Fenchel’s duality [51], the dual problem
of problem (36) is given by

inimize h*(Y) — g*(Y
minimize 1" (Y) — g*(Y),

(37)

where ¢* and h* are the conjugate functions of ¢ and h,
respectively. The conjugate function is defined as

g*(Y): sup <X7Y>_9(X)v

XeCmxn

where (X,Y) = Real(Tr(X"Y)) defines the inner product
of two matrices [50]. The ¢-th iteration of the simplified DC
algorithm is to solve the convex approximation of primal
problem and dual problem by linearizing the concave part:

YU —arg it h*(¥) g (V1) +(y -y U, X)),
S

(39)
XU = arg nf - 9(X) = (X 1) +(X X1, v,
€
(40)

(38)

According to the Fenchel biconjugation theorem [51], equa-

tion (39) can be rewritten as
Y € dxh, (41)

Oxh is the subgradient of h with respect to X at X1,

Therefore, iterations «), M of the DC algorithm for
problem P, are constructed as the solution to the following
convex optimization problem

mini}r\n/lize g1 — (Ogr-nh1,x) — (Opgue—r1hy, M)
subject to Tr(M) — v Mh; <z;, VYi=1,---, M,
M >0, Te(M)>1,z> 0. (42)

The iteration M for problem 2, is given by the solution
to the following optimization problem

min]i\EInize g2 — (Opgre—11ha, M)

subject to Tr(M) — ~v;hH Mh; <0, Vie S,

M =0, Tr(M)>1. (43)
The subgradient of h; and ho are given by

Oghy = Ozl + ax, Onrhy = Onrhy = 0| M |2 + oM.

(44)
The subgradient of ||«|x can be computed by [35]
1 . > .
i-th entry of a”'x'"k _ Slgn(xl)ﬂ |xl| = |x(k)| (45)
0, || <zl

The subgradient of || M||2 is given by the following proposi-
tion.

Proposition 4: The subgradient of || M|z can be computed
as vivt!, where v; € CV is the eigenvector of the largest
eigenvalue o1 (M).

Proof: The subdifferential of orthogonal invariant norm
||[M||2 for PSD matrix M is given by [52]

O|| M2 = conv{Vdiag(d)V" : d € 9||o(M)]||}, (46)
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where conv denotes the convex hull of a set and M = VX VH
is the singular value decomposition of M, and (M) =
[0;(M)] € C¥ is the vector formed by all singular values
of M. Since o1(M) > --- > on(M) > 0, we have

[1,0,--,0]" € 8| (M)] oo (47)
——
N-1
Therefore, one subgradient of || M]||5 is given by v1vfl. ®

C. Computational Complexity and Convergence Analysis

The computational cost of the proposed DC algorithm
consists of solving a sequence of the DC program %, in
step I, plus solving the DC program Zs; in step II. In step I,
we shall solve problem Zg; by increasing k from 0 to M.
To address each DC program s, the SDP problem (42)
should be solved at the ¢-th iteration. The computational cost
of solving problem (42) using the second-order interior point
method [46] is O((N? + M)3) at each iteration. In step II,
problem s, shall be addressed by iteratively solving the
SDP problem (43). The computational cost of solving prob-
lem (43) using the interior point method is O(N%) at each
iteration. Note that the “reweighted+SDR” approach requires
iteratively solving an SDP (i.e., /-minimization problem) and
the “/1+ SDR” approach only requires solving a single SDP
(i.e., ¢;-minimization problem) in step I. The computa-
tional cost of each SDP in step I for both approaches is
O((N% + M)3) at each iteration using the interior point
method. In step II, both of the “reweighted+SDR” approach
and the “¢;+SDR” approach requires solving a single SDP
problem with complexity O(N®) at each iteration using
the interior point method. Thus, the proposed DC algo-
rithm has higher computation complexity than other compar-
ison solutions inexchange for a high-quality solution, while
the “reweighted+SDR” approach is more complex than the
“l1-+SDR” approach.

Based on [49, Proposition 2] and [53, Proposition 1],
we have provided the convergence results of the DC algo-
rithm for problem %, and problem %, in the following
proposition, where the metric of convergence rate is chosen
following [53].

Proposition 5: The sequence {(M!* x[])} generated by
iteratively solving problem (42) for problem Z; has the
following properties:

(i) Any limit point of the sequence {(M" x[1)} is a
critical point of f; (29) given arbitrary initial point,
and the sequence of { fl[t]} is strictly decreasing and
convergent.

(ii) For any t =0,1,---, we have
t t+1]2 1[0]_ff
Ave([IM1 = M) < o @)
[0] —
Avg(||w[t] _ w[tH]H%) < 1(t . 13 . 49)
Q@

where f; is the global minimum of f; and Avg(HM [

M+1)2))  denotes the average of the sequence
{1 — MU,
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Likewise, the sequence {(M!"} generated by iteratively

solving problem (43) for problem s, has the following

properties:

(iii) Any limit point of the sequence { M1} is a critical point
of fo (30) given arbitrary initial point, and the sequence
of { fQ[t]} is strictly decreasing and convergent.

(iv) For any t =0,1,---, we have
1 [t4+1] |12 A
Avg (1M1 — ML) < ST
where f3 is the global minimum of f.
Proof: Please refer to Appendix B for details. [ ]

VI. SIMULATION RESULTS

In this section, we conduct numerical experiments to
compare the proposed DC method with state-of-the-art
approaches for federated learning with device selection. The
channel coefficient vectors h;’s between the BS and each
mobile device follow the i.i.d. complex normal distribution,
ie., h; ~ CN(0,I). The average transmit signal-to-noise-
ratio (SNR) Py/co? is chosen as 20 dB. We assume that all
devices have the same number of data points, i.e., |Di| =
-+« = |Dyyl, for which the pre-processing post-processing pair
can be chosen as ¢; = 1,9 = 1/|S|.

A. Feasibility Detection

Consider a typical Internet of Things (IoT) network setting
with M = 20 active mobile devices for federated learning.
The BS is equipped with N = 6 antennas. Note that there
are possibly a large number of devices to be connected to the
Internet via one base station while only a small fraction of
devices are active simultaneously due to sporadic traffic. This
sporadic property of IoT data traffic can be exploited to support
massive device connectivity via jointly detecting active devices
and estimating channel coefficients [54]. The performance of
feasibility detection, i.e., checking the feasibility of selected
devices, is a critical step for the device selection. We first eval-
uate the convergence behavior of the proposed DC algorithm
for detecting the feasibility of selecting all mobile devices,
i.e., problem s, with SIFl = {1,... 20}. The results with
v =5 dB and v = 3 dB are shown in Fig. 4. It reveals that the
objective value achieves zero for v = 5 dB but cannot achieve
zero for v = 3 dB, which demonstrates that the proposed DC
algorithm returns a rank-one solution when v = 5 dB but fails
to do the same when v = 3 dB.

We then compare the performance of feasibility detection
with the proposed DC approach by solving s, with the
following state-of-the-art approaches:

e SDR [31]: Simply dropping the rank-one constraint of
problem (26) yields the semidefinite relaxation (SDR)
approach for the feasibility detection problem.

¢ Global Optimization [55]: In [55], a global optimization
approach is proposed with exponential time complexity
in the worst case. We set the relative error tolerance as
€ = 1075 and take its performance as our benchmark.

The results averaged over 500 times are shown in Fig. 5,
which demonstrates that the proposed DC-based approach
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Fig. 5. Probability of feasibility with different algorithms.

outperforms SDR approach significantly and achieves the near-
optimal performance compared with the global optimization
approach, and thus yields accurate feasibility detection.

We further evaluate the performance of the proposed DC
approach over the number of antennas. Under different target
MSE requirement, the results averaged over 500 channel
realizations are illustrated in Fig. 6. It demonstrates that fast
aggregation from mobile devices under a more stringent MSE
requirement can be accomplished by increasing the number of
antennas at the BS.

B. Number of Selected Devices over Target MSE

Consider a network with 20 mobile devices and a 6-antenna
BS. Under the presented two-step framework and ordering rule
in Algorithm 2, we compare the proposed DC Algorithm 2 for
device selection with the following state-of-the-art approaches:

e /1+SDR [46] [31]: The ¢;-norm minimization is adopted

to induce the sparsity of & in Step 1, and the nonconvex
quadratic constraints are addressed with SDR in Step
1 and Step 2.

o Reweighted />+ SDR [32]: We take the smoothed

£p-norm for sparsity inducing of x in Step 1, which is
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solved by the reweighted ¢5-minimization algorithm. The
SDR approach is used to address the nonconvex quadratic
program in Step 1 and Step 2.

The average results over 500 channel realizations with differ-
ent approaches for sparsity inducing and feasibility detection
are illustrated in Fig. 7. It is demonstrated that the novel
sparsity and low-rankness inducing approach via the proposed
DC algorithm is able to select more devices than other state-
of-the-art approaches.

C. Performance of Proposed DC Approach for Distributed
Federated Learning

To show the performance of the proposed DC approach for
device selection in distributed federated learning, we further
train a support vector machine (SVM) classifier on CIFAR-10
dataset [37] with a G-antenna BS and 20 mobile devices.
CIFAR-10 is a commonly used dataset of images for clas-
sification and contains 10 different classes of objects. The
benchmark is chosen as the case where all devices are selected
and all local updates are aggregated without aggregation error.
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b) The relationship between communication rounds and test accuracy over
random classification of the trained model. Each client updates its local model
with stochastic gradient descent algorithm.

We average over 10 channel realizations and the performances
of all algorithms with v = 5dB are illustrated in Fig. 8. Here
we choose the size of training set and test set as 50000 and
10000, respectively. The simulation results demonstrate that
the proposed DC approach achieves lower training loss and
higher prediction accuracy as shown in Fig. 8a and Fig. 8b,
respectively.

VII. CONCLUSION

In this paper, we proposed a novel fast global model aggre-
gation approach for federated learning based on the principles
of over-the-air computation. To improve the statistical learning
performance for on-device distributed training, we developed a
novel sparse and low-rank modeling approach to maximize the
selected devices with the MSE requirements for model aggre-
gation. We provided a unified DC representation framework
to induce sparsity and low-rankness, which is supported by
the convergence guaranteed DC algorithm via successive con-
vex relaxation. Simulation results demonstrated the admirable
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performance of the proposed approaches compared with the
state-of-the-art algorithms.

There are still some interesting open problems on the fast
model aggregation for on-device federated learning including:

o This work assumes the perfect channel state information
during receiver beamforming. It would be interesting to
investigate the impacts of channel uncertainty in model
aggregation.

o The security issues are also critical for model aggregation,
though it is beyond the scope of this paper. It is also
interesting to propose a robust approach against the
malicious attacks during model aggregation.

o The proposed DC approach for feasibility detection has
comparable performance with the global optimization
approach through numerical experiments. But it remains
challenging to characterize its optimality conditions of
the DC approach.

o It is interesting to further reduce the computational com-
plexity of the proposed DC algorithm.

APPENDIX A
PROOF OF PROPOSITION 1

The sequence {b;} given by Proposition 1 has the zero-
forcing structure which enforces

2
Z‘m“hb ol =o0. (51)
€S

In addition, the MSE satisfies
MSE(g, g) > o”|m/|>. (52)

Therefore, the MSE is minimized by the zero-forcing trans-
mitter beamforming vectors {b;}’s given in Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 5

Without loss of generality, we shall only present the proof
of properties (i) and (ii), while properties (iii) and (iv) can be
proved with the same merit. For the sequence { (M, 2[!)}
generated by iteratively solving problem (42), we denote the
dual variables as YI\[;] € Oppmha, Ym[t] € Ogi1h1. Due to the
strong convexity of h;, we have

= > (ALY (A YI)
+S(AMIE+ [Acl3),  (53)
(MUY ]) + (@0, 1) = nT o+ i (54)
where A,M = MU — MU and Ay = 20+ — 2
Adding g[tﬂ] at both sides of (53), we obtain that
AT < g™ = =AMLY + (A YY)
= S(18M7 + |1Acl3). (55)

For the update of primal variable M and x according to
equation (40), we have Y]\[j] IS 8M[t+1]g1,Y}/[t] € Oge41101-
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This implies that
J g 2 ALY (B, ¥
Q@
T3 (IAMF + [ Av]]3), (56)
<M[t+1],YA[;]> + <w[t+1]7Yx[t]> [t+1] + 91[ 1 (57)

Similarly, by adding —h[f] at both sides of equation (56),

we have
AV > g = nlT ALY + (- A, V)
+ S (18MF + |1Acl3). (58)
From equation (54) and equation (57), we deduce that
o B A ML Y A, Y = 111 (59)

where f; = hi — ¢g7. Combining equation (55), (58) and (59),
it is derived that

«
> gl §(|\AtMH% + [|Asz]|3)

> A pa(|AM|% + |Acl). (60

Then the sequence { fl[t]} is non-increasing. Since f; > 0
always holds, we conclude that the sequence { fl[t]} is strictly
decreasing until convergence, and we have

0 < Jim (M0 — M 4 2l - l1)3)
< lim (f1 - ;i) =o. 1)
For every limit point, fltJr1 [t] , we have
Ip — a0, 2l — 2lH)E =0
flH] = f*[t] = flM. (62)
Then it is followed by
e g1 — gl 4 glt+1]
= (MUY + (@), (63)
i.e.,
Y € Opgurnhn, YU € 0ppein by (64)

Therefore, Y € Opgier1191 N Opgier] hl,Y € Opre+11g1 N
Opir+nhy. Tt is concluded that (MU 2[+1) is a critical
point of f1 = g1 — hy.

In addition, since

Avg([[M1 = MIFIE 4 ol - a2l 1)3)
Zt 1 1
< i [i+1] 65
- — Oé(t+ 1) fl ) ( )
1 (0] _ plt+1]
< - _
1 0] _ px
< - _
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