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Abstract

Let Q C R”™ be open and let 2R be a partial frame on €2; that is, a set of m linearly independent
vector fields prescribed on © (m < n). We consider the issue of describing the set of all maps
F : Q — R™ with the property that each of the given vector fields is an eigenvector of the
Jacobian matrix of F. By introducing a coordinate independent definition of the Jacobian, we
obtain an intrinsic formulation of the problem, which leads to an overdetermined PDE system,
whose compatibility conditions can be expressed in an intrinsic, coordinate independent manner.
To analyze this system we use Darboux and generalized Frobenius integrability theorems. The
size and structure of the solution set of this system depends on the properties of the partial
frame; in particular, whether or not it is in involution. A particularly nice subclass of involutive
partial frames, called rich frames, can be completely analyzed. The involutive, non-rich case is
somewhat harder to handle. We provide a complete answer in the case of m = 3 and arbitrary n,
as well as some general results for arbitrary m. The non-involutive case is far more challenging,
and we only obtain a comprehensive analysis in the case n = 3, m = 2. Finally, we provide
explicit examples illustrating the various possibilities.
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1 Introduction

The present work deals with the construction of maps F': 2 C R™ — R”™ whose Jacobian matrix
has a partially prescribed set of eigenvector fields on €2. We consider this problem locally, i.e.,
in a sufficiently small neighborhood of a given point in 2. The case when the full frame of
n independent eigenvectors is prescribed has been considered in [7]. The generalization to a
partially prescribed set of eigenvector fields allows a greater degree of flexibility in constructing
such maps F' and, in particular, it allows us to include maps F' whose Jacobian matrix is
not diagonalizable. Another difference from the previous work is that all the overdetermined
systems of PDEs arising in the current paper are analyzed using smooth® integrability theorems,
including a recently proved generalization of the Frobenius theorem (see Section 3.3). This
theorem allows us to remain in the smooth category, while in [7] we appealed in some cases to
the Cartan-Kéhler theorem, which requires analyticity.

Our motivation stems from the study of initial value problems for one dimensional conser-
vative systems of the form

ug + F(u)y =0, u(0, ) = uo(x), (1)

where t € R and = € R are the independent variables, u = u(t, z) € R™ is a vector of unknowns,
and the flux function F' is defined on some open set in R™ and takes values in R™. One approach

"We employ C' integrability theorems, but to avoid technicalities C'°°-smoothness is assumed throughout.



for constructing solutions to (1) exploits Riemann problems. These are initial value problems
for (1) with data of the form
um <0
wale) = { ®

ut x>0,

where u® are constant vectors. Lax [8] provided the general form of such solutions. The

seminal work of Glimm [6] used Riemann solutions as local building blocks to prove global-in-
time existence of weak solutions, provided the initial data wug(z) have sufficiently small total
variation. For detailed accounts of this theory see [14, 3, 4]. It is largely an open problem to
extend the Glimm theory to systems of physical interest beyond the regime of small variation
solutions.

Solutions to Riemann problems depend essentially on the eigen-structure (i.e., eigenvalues
and eigenvectors) of the Jacobian DF(u). It is then a basic question to what extent one can
prescribe some or all of the eigenvectors of the flux F, regarding the eigenvalues as unknowns.
The present work is concerned with this last, purely geometric, problem.

A precise formulation of the problem is provided in Section 2. This first formulation, “Prob-
lem 1,” makes use of a chosen coordinate system. Section 3 provides the geometric framework
required to obtain a coordinate-free formulation. We also state an integrability theorem due
to Darboux and a generalization of the Frobenius integrability theorem, which we use in this
paper. In Section 4, we give an intrinsic (coordinate independent) definition of the Jacobian,
and use it to reformulate Problem 1 in an intrinsic manner (see Problem 2). Exploiting the
coordinate independent formulation, Section 5 treats the case when the prescribed vector fields
are in involution, and, in particular, the case of rich partial frames. In the involutive case, the
relevant integrability conditions lead to a closed algebro-differential system for the unknown
eigenvalues. Section 6 analyzes the simplest non-involutive case of two prescribed vector fields
in R3. Finally, Section 7 provides a list of examples that illustrate the results from the earlier
sections.

2 Problem formulation
Let [D, V] denote the Jacobian matrix of a map ¥ from an open subset 2 C R™ to R”, relative

to coordinates wu, i.e.
ov?
o= (2]
ij=1

ouJ

ooy TV

We use the notation [D,¥]|,=g, or simply [D,¥]|z, when the matrix is evaluated at a point .
We consider the following problem:

Problem 1. Given an open set  C R™ on which we fix a coordinate system u = (u', ..., u")
and a point @ € Q. Let R = {Ry,...,Rn} be a set of m < n smooth vector valued functions
R; : Q — R™ which are linearly independent at w. Then: describe the set F(R) of all smooth
vector-valued functions

F(u) = [F'(u),..., F"(w)]"

defined near @ and with the property that Ry(u), ..., Rm(u) are right eigenvectors of the Jacobian
matric (D, F|, throughout a neighborhood of @. In other words, we ask that there exist smooth,
scalar functions \* such that

[DuFlluRi(u) = N(u)Ri(u),  i=1,...,m, (3)

holds on a neighborhood of u.

As noted above, we are motivated by the construction of flux functions F' in systems of
conservation laws of the form (1). The system (1) is hyperbolic on 2 provided the Jacobian



matrix [D, F| has a basis of real eigenvectors at each u € Q, and it is strictly hyperbolic if all its
eigenvalues are distinct at each u € 2. We adopt the term flux for a vector-function satisfying
(3), with adjectives hyperbolic, strictly hyperbolic or non-hyperbolic depending on the structure
of eigenvectors and eigenvalues of [D, F], as described above. F(R) will be called the fluz space.

Next, we clarify the meaning of “describe” in Problem 1 and make some basic observations.

1. (PDE system) Equations (3) comprise a system of mn first order PDEs for n+m unknown
functions A and FV:

OFI o
ZR?W:MRg fori=1,...,m,j=1,...,n, (4)
k=1

n
where R;(u) = [R}(u),...,R*w)]T, i =1,...,m. For all n > m, such that n > 2 and
m > 2, this system is overdetermined with (as we show below) non-trivial compatibility
conditions. Although derivatives of A’ do not appear in the equations, these functions are
not arbitrary parameters, but must, in turn, satisfy certain differential equations arising
as differential consequence of (4).

2. (Vector space structure) Let Fy, Fp € F(9R) have domains of definitions €; and {2, respec-
tively. As @ belongs to both ©; and 5, then €7 N Qs is a non-empty open neighborhood
of w. It is easy to check that for any real numbers a, b, the linear combination aF; + bF5,
defined on 21 Ny, belongs F(MR). Thus F(R) is a vector space over R. We will see below
that in some instances this is a finite dimensional vector space, while in others it is an
infinite dimensional space. In the latter case, we describe the “size” of F(R) in terms
of the number of arbitrary functions of a certain number of variables appearing in the
general solution of (4). These arbitrary functions prescribe the values of F' and \’s along
certain submanifolds of 2. To obtain these results we use the integrability theorem stated
in Section 3.3.

3. (Trivial solutions) For any choice of A € R and f € R", the “trivial” flux
F(u) =X u+ f (5)
satisfies (3). The set of such trivial solutions, denoted by F*iV, is an (n + 1)-dimensional
vector subspace of F(2R).

4. (Triviality is generic) For n > 2 and m > 2, the compatibility conditions for system (4)
imply that the non-trivial fluxes exist only for partial frames that satisfy some non-trivial
algebra-differential equations and, therefore, a generic frame admits only trivial fluxes.
One of the goals of the paper is to determine the properties of the frames that allow them
to possess non-trivial, and, in particular, strictly hyperbolic, fluxes.

5. (Scaling invariance) Since eigenvectors are defined up to scaling, it is clear that
F(Ri,...,Rp)=F(a' Ry,...,a"R,,) (6)

for any nowhere zero smooth functions a* on .
The next remarks address the coordinate dependence of Problem 1.
Remark 2.1 (Coordinate dependence of the problem formulation). Assume F(u) € F(R)
for R = {Ry,...,Rn}, i.e., there exist \'(u),...,\™(u), such that system (3) is satisfied.
Let a change of variables be given by a local diffeomorphism u = @gw). It is then not true,
in general, that F(w) = F(®(w)) belongs to F(R), where R = {Ry(w),..., Ry(w)}, with
Ri(w) = R;y(®(w)). Indeed,

[Dy, (F 0 ®)] R; = [DuF)|ues(w)[Duw®] Ri(®(w)).



In general, R;(®(w)) is not an eigenvector of [Dy F||y=a(w) [Dw®]. Furthermore, if we transform
each R;(u), by treating them, more appropriately, as vector fields, viz.

Ri(w) = [Dw@]*l Ri(®(w)),

then

[Du (F 0 ®)] R = [DuFl|uza(w)[Duw®][Dy®] ! Ri(D(w))
— X (®(w)) Ri(®(w)) = N (B(w)) [Dy BB (w),

and we see that R} (w) is not an eigenvector of [Dy, (F o ®)], unless it is an eigenvector of [D,,P].

Remark 2.2 (Coordinate dependence of the property of a matrix being a Jacobian matrix).
Assume A(u) = [DyF)] for some smooth map F : Q@ — R™, and let a change of coordinates to
be given by a diffeomorphism u = ®(w). Then it is not necessarily the case that the matriz
A(®(w)) is a Jacobian matriz of any map in w coordinates.

On the other hand, it is still possible to give a coordinate independent definition of the
Jacobian linear map, as we do in Section 4.1. This coordinate independent definition is used
to formulate a coordinate independent version (Problem 2), which, when expressed in an affine
system of coordinates (see Section 3.2), coincides with Problem 1. This intrinsic formulation
allows us to apply a geometric approach to analyze the solution set of the PDE system (4).
We exploit this by working in frames that are adapted to the problem at hand, and we use the
following geometric preliminaries.

3 Geometric preliminaries

Most of the material in Sections 3.1 and 3.2 can be found in standard differential geometry text-
books. We include it to set up notation and to make the paper self-contained. In Section 3.3,
we state an integrability theorem due to Darboux and a generalization of the Frobenius inte-
grability theorem, which are repeatedly useed in the paper to analyze overdetermined systems
of PDEs.

3.1 Partial frames, involutivity, richness

As usual we identify a smooth vector field r on an open subset 2 pf R” with a derivation, i.e.
with R-linear map from the set of smooth functions C°°(2) to itself that satisfies the product
rule. The set of all smooth vector fields is denoted as X'(€2).

Definition 1 (Partial frame). A set of smooth vector fields {r1,...,r,} on Q C R™, with
m < n, is a partial frame on § if they are independent at all u € Q. If m = n, the set is called
a frame.

L ..., u™ of coordinate functions on €2, the frame {%7 oo, 22V of

For a fixed system u s Hom
partial derivatives is called a coordinate frame. We shall see below that using non-coordinate
frames simplifies our problem. Non-coordinate frames do not commute. The commutator of two
vector fields is called a Lie bracket: for ri,ro € X (), their Lie bracket is the map C*(Q2) —
C*(9) defined by

[r1,12]¢ =11(r2(9)) — r2(r1(0)).
Straightforward calculations show that [ri,rs] is a vector field, obviously the Lie bracket is

skew-symmetric, and one can check that Jacoby identity is satisfied. Therefore, X'(2) has the
structure of an infinite-dimensional real Lie algebra.



For a frame R = {ry,...,r,}, one can express the Lie bracket of every pair of vector fields
from fR as a linear combination:

n
[0j,r] =D cyri, (7)
=1

where cé-k, satisfying cé- £ = —cfcj, are some smooth functions on €2, called structure coefficients.
In the conservation laws literature, these functions are called interaction coefficients because of
their role in wave interaction formulas [6]. Equations (7) are called structure equations. The

Jacobi identity implies the relationships, that will be used later

n

r; (c;k) + 1y (cfj) +r, (cfﬁl) + Z (c;fkcfs + ijczs + CZZC§3) =0 1<i,5,k 1 <n. (8)
s=1

Below we give definitions of partial frames with especially nice properties.

Definition 2 (Commutative partial frame). A partial frame R = {ry,...,r,n} is commutative
if [ti,r;] =0 for allr;,r; € R.

Definition 3 (Involutive partial frame). A partial frame | = {r1,...,r,,} is in involution if
[ri, 1;] € spancee(qy R for all vi,r; € R.

The proof of the following proposition is contained in the proof of Theorem 6.5 in [15].

Proposition 3.1. If {r1,...,r.m} s a partial frame in involution on ), then there is a com-
mutative partial frame {¥1,...,Tm} on some open Q' C Q with
spang{ri|u, .-, Tmlu} = spang{Tilu, ..., Tmlu} for all u € Q.
Proposition 3.2. (Theorem 5.14 in [15]) If ry,...,r,, is a commutative partial frame on €,
then in a neighborhood of each point u € ) there exist coordinate functions v',...,v", such that
0 )
ri:w, i=1,....,m.

Definition 4 (Rich frame). A partial frame {r1,...,r,,} is rich if every pair of its vector fields
is in involution, i.e., [r;,v;] € spancee () {ri,r;} for alld,j=1,...,m.

Lemma 5.6 below shows that every rich partial frame {ri,...,r,,} can be scaled to become
a commutative frame. Thus, near each point there are coordinates w!,...,w™ and non-zero
functions a',...,a", such that a‘r; = %, i =1,...,m. A conservative system (1) is called

rich if there are coordinate functions, called Riemann invariants, in which the system is diago-
nalizable. For definitions, and the fact that richness of a conservative system is equivalent to the
richness of its eigenframe in the sense above, we refer to [12], and Section 7.3 in [4]. Riemann
invariants are exactly the coordinates appearing in Lemma 5.6 in the case of full frame (n = m).
The term rich refers to a large family of extensions (companion conservation laws) that strictly
hyperbolic diagonalizable systems possess [4, 12].

3.2 Connections, symmetry, flatness, affine coordinates

To give a coordinate free definition of the Jacobian, we will use the notion of connection, which
we briefly recall here. A connection V on () is an R-bilinear map

V:X(Q) x X(Q2) - X(Q) (r,s) — V,s
such that for any smooth function ¢ on 2

Vers = ¢Vys and Vi(¢s) =r(¢)s+ ¢V,s. (9)



The vector field V.s is called the covariant derivative of s in the direction of r. Given a
connection V and a frame {ry,...,r,}, we write

n
Ver; = Thr, 1<i,j<n, (10)

where the smooth functions Ffj are called Christoffel symbols. Conversely, by R-bilinearity and

(9), any choice of a frame and n® functions Ffj, 1 <14,j,k <mn, defines a connection via (10).
A connection V is symmetric if for all r;s € X(2):

Vs — Ver =, s]. (11)
A connection V is flat if for all r,s,t € X (Q):
ViVst — ViVt = Vi gt (12)
The above conditions are equivalent to the following relationships among the structure coeffi-
cients and Christoffel symbols relative to an arbitrary frame: for all ¢, j,k, s =1,...,n
F?j — Fé‘z = cfj Symmetry (13)
rs(I7,) — v (T7) Zn: (T7,0, — 17,18, — 17 Flatness. (14)
=1

Given a connection V, a coordinate system such that all Christoffel symbols of V relative to
the corresponding coordinate frame vanish, is called affine. The following is a well known result
(compare, for instance, with Proposition 1.1 of [13]):

Proposition 3.3. A connection V on an n-dimensional manifold M is symmetric and flat if
and only if M can be covered with an atlas of affine coordinate systems. Let € be an open
subset of a manifold M with a flat and symmetric connection V and an affine coordinate system
v=(v...;0"). Then w = (wl,... w") is another affine coordinate system on € if and only
if [wh, .. wt) T = Ol .., v™T + b, where u and w are treated as column vectors, C € R™*"

is an n X n invertible matriz and b € R™ is a constant vector.

Throughout the paper, we will use a particular connection, denoted %, defined by setting all
Christoffel symbols to be zero, relative to the coordinate frame corresponding to the coordinate
system u!, ..., u™ fixed in Problem 1:

Vo 2=0 foralli,j=1,...,n. (15)

du?

However, our coordinate-free formulation of the problem in Section 4.1, makes sense for general
connections.

3.3 Integrability theorems

To analyze the “size” of the flux space F(9R) in Problem 1, we shall use two integrability results:
a theorem due to Darboux and a generalized Frobenius Theorem.

In his monograph “Systémes Orthogonaux” [5], Darboux stated three theorems concerning
local existence and uniqueness of solutions to first order systems of PDEs of a certain type. The
most general of those is Theorem III in Book III, Chapter I. This theorem considers a system
for p unknown functions of n variables, where a subset of partial derivatives is prescribed for
each unknown function. The subset of derivatives prescribed for one of the unknowns may differ
from the subset prescribed for another. We refer to such systems as Darboux systems. The
theorem states that provided the natural integrability conditions are satisfied, there is a unique
solution for appropriately prescribed initial data. Below the theorem is stated in the smooth
case considered in this paper. However, the result is true in the C' case as well.



Theorem 3.4. (Darbouz [5]) Let @ C R™, © C RP be open sets, and let u = (u',...,ua") € Q.
For each i = 1,...,p, let I; C {1,...,n}, and assume h;, for j € I;, are given smooth func-
tions on ) x ©. Consider the following system of differential equations for unknown functions

(¢, ... ¢P) defined on Q:

O’
out

=hi(u,¢), jel,i=1,..,p. (16)

Assume (16) prescribes compatible second order mized derivatives in the following sense:

(C) Whenever two distinct derivatives % and % of the same unknown ¢' are present on the

left hand side of (16), the equation

%[hﬁ-(u,qb(u))] = % [ (u, ¢(w))]

contains (after expanding each side using the chain rule) only first order derivatives which
appear in (16), and substitution from (16) for these first derivatives results in an identity
mu and ¢.

Nezxt, to describe the data, suppose a dependent variable ¢* appears differentiated in (16) with

respect to u’, ..., uls. Then, letting @ denote the remaining independent variables, we prescribe
a smooth function g*(i) and require that
- .
QSZ(U P 7un)‘uj1 =ail,..., uds =uis = g’b(u) . (17)

We make such an assignment for each ¢' that appears differentiated in (16). Then, under the
compatibility condition (C), the problem (16)-(17) has a unique, local smooth solution near .

In [5], Darboux proved the theorem for the case of n = 2 and n = 3 only. In [2], we
formulated and proved a generalized version of the Darboux theorem for an arbitrary number
n of independent variables. Our result in [2] generalizes Darboux’s theorem in two ways:

(i) The unknown functions may be differentiated along vector fields in a fixed frame R =

{r;}?_, defined near @. That is, for each i = 1,...,m, there is an index set I; C {1,...,n}
such that the system contains the equations
rj(qbi)’u = f;(u,gb(u)) for each j € I. (18)

As in the original Darboux’s theorem, the elements and cardinality of the index sets I;
may vary with .

(ii) The prescribed data g for the unknown ¢* may be given along a manifold Z, through the
point % which is transverse to the vector fields r; with j € I;.

In [2], we show that under the appropriate conditions the PDE system (18) has a unique local
solution which takes on the assigned data. For the current paper we only need a specific
case of this generalized Darboux theorem, where a PDE system on p functions of n variables
prescribes derivatives of each unknown function in the directions of the same set of m < n
vector fields comprising an involutive partial frame. We refer to such systems as generalized
Frobenius systems, because when m = n, this theorem is equivalent to the PDE version of the
well known Frobenius theorem (Theorem 6.1 in [15]). The generalized Frobenius theorem stated
below claims that under the natural integrability conditions, there is a unique local solution to
a generalized Frobenius systems with initial data prescribed along any m-dimensional manifold
transversal to the given partial frame.



Theorem 3.5 (Generalized Frobenius: PDE version). Let R = {r1,...,r,} be a partial frame

in involution on an open subset Q C R™ with coordinates (u',...,u™). Let © C RP be an
open subset with coordinates (¢',...,¢P). Let h;'-, i=1,...,p, 7 =1,...,m, be given smooth
functions on Q0 x ©. Consider the system of differential equations

rj(¢'(w) = hi(u, ¢(w))  i=1,....pj=1...,m (19)

Assume the integrability conditions
r; (rk((bi))—rk chkrl (6" i=1,....p; 5, k=1,...,m, (20)

where the structure coefficients c! S are as in (7) (with n replaced by m), are satisfied identically
on Q) x © after substitution of h; (u, @) for rj(¢*(u)) as prescribed by (19)2. Then for any point
u € Q and for any smooth initial data prescribed along any embedded submanifold = C Q of

codimension m containing @ and transversalto R, there is a unique smooth local solution of
(19).

For the future use we expand conditions (20). After the first substitution of the derivatives
of ¢ as prescribed by (19) into (20), we get for i = 1,...,p and j,k = 1,...,m that

r; (hj,(u, ¢(u)) —ry (hZ u, p(u Zc 2 hi (u, p(u)) . (21)
Applying the chain rule and again substituting according to (19), we obtain

j. (u oh’; (u, E ¢ (u oh’ (u,
; (er(ul) - %rk(ul)) + ; (‘W he (u, ¢) — ]8(<z>é¢) Z(Wﬁ))

Z u) hi (u, ¢) . (22)

As we mentioned above, the generalized Frobenius theorem is a particular case of the gen-
eralized Darboux Theorem proven in [2] 4. A direct proof via Picard iteration can be found in
thesis [1] of the first author. A weaker version of Theorem 3.5 (with right hand-sides of (19)
independent of ¢’s) appears in Lee [9], Theorem 19.27.

Remark 3.6. If the same partial derivatives are prescribed for all unknowns (i.e., Iy = --- =
I,), the Darbouzr system (16) is a generalized Frobenius system. Conversely, using Proposi-
tions 8.1 and 3.2, one can show that for any generalized Frobenius system there is an equivalent
Darboux system, with all partial derivatives of all unknown functions prescribed for the same
set of coordinate directions. In this case, the integrability conditions (C) of Theorem 3.4 are
equivalent to the integrability conditions in Theorem 3.5. However, the manifold = along which
the initial data is allowed to be prescribed in Theorem 3.5 is more general than the coordinate
subspace for which the data is prescribed in Theorem 3.4.

2The resulting equations, explicitly written down as (22), involve no derivatives of ¢.

3Here transversality means that spang{rila,...,rmla} ® TeZ = R"™ at very point @ € Z, where T3 = denotes the
tangent space to = at .

4 An additional geometric condition on the data manifolds and the partial frame, called the stable configuration
condition (SCC) in the hypothesis of the generalized Darboux theorem in [2], is trivially satisfied in the particular
case of Theorem 3.5.



4 Intrinsic formulation of the problem

In this section, we give an intrinsic (coordinate independent) formulation of Problem 1, which
leads to a system of differential equations written in terms of the frame adapted to the problem.
We derive some differential consequences of this system, which, in particular, lead to a set of
necessary conditions for the existence of strictly hyperbolic fluxes.

4.1 Intrinsic definition of the Jacobian and the F(R)-system

Definition 5. Given a connection V on a smooth manifold M, the V-Jacobian of a vector field
f e X(M) is the C*°(M)-linear map Jf: X(2) — X () defined by:

JE(s) = Vsf, Vs € X(Q). (23)

If {ry,...,r,} is a frame with Christoffel symbols Ffj and f = Y"1 | F'r;, then (23) implies

JEr) =Y (rj(Fi) +3 1 F’f) ;. (24)
=1 k=1

To arrive to a coordinate independent formulation of Problem 1, let us return to the coordinate
system (ul,...,u"), fixed in this problem, and consider the flat and symmetric connection V
defined by (15). Write out f = S°° | Fi(u )? in the coordinate frame and let Jf denote the

V-Jacobian of f. Then a direct computation shows that

(6uﬂ ) Z gf; oul’

which corresponds to the j-th column vector of the usual Jacobian matrix [D,, F7] of the vector
valued function F(u) = [F(u),..., F"(u)]T. Let R; be the column vectors of the components of
r; in the u-coordinates. Observing that the right-hand side of (3) in Problem 1 can be rewritten

as {DUF” R;i(u) = Jf(r;) = Vy,f, we formulate the following problem:

Problem 2. Assume V is a flat and symmetric connection on Q C R™ with u € Q. Given a
partial frame R = {r1,...,r} on Q, describe the set F(R) of smooth vector fields £ for which
there exist an open neighborhood ' C Q2 of 4 and smooth functions \': ' — R such that

Ve, £ = Nr on Q) fori=1,...,m. (25)

From Proposition 3.3, we know that any flat and symmetric connection admits an affine sys-
tem of coordinates. If F!,... F™ are the components of f, and R},..., R? are the components
of r; in an affine system of coordinates, then (25) turns into a system of mn first order PDE’s
on n + m unknown functions F’s and \’s:

ri(F)Y=XR, fori=1,...,m,j=1,...,n, (26)

which is equivalent to (3). Therefore, Problem 2 is equivalent to Problem 1.

We call system (25) the F(R)-system. The set of vector fields f satisfying (25) is called the
flux set and is denoted F(fR); its elements are called fluzes for 3. The flux set always includes
the set of identity fluxes F'¢ defined by the property that

Vif=r for all vector fields r € X(€2). (27)
It is easy to show that f € Fidif and only if relative to any affine coordinates system (u!, ... u")
f= [u',...,u"]T 4+ b, for some b € R™.



The previously defined vector space of trivial fluxes (5), in this more abstract setting, corresponds
to the vector space

FUY = {f € X(Q)|Vr € X() I\ € R such that V,.f = Ar}. (28)
Equivalently, we have F™V = {Af|X € R, f € Fi4}. Clearly, F'¢ ¢ F"V ¢ F(R) for any
partial frame fR.

Remark 4.1. Both equations (25) and Problem 2 makes sense if we replace R™ with an arbitrary

manifold M, and replace V with an arbitrary connection on the tangent bundle of M. In
particular, it would be of interest to consider this problem on a Riemannian manifold with the
Riemannian connection. These generalizations, however, fall outside of the scope of the present
paper.

4.2 Differential consequences of the F(R)-system
We next derive the differential consequences of (25) implied by the flatness of the connection.

Proposition 4.2. Given a partial frame R = {r1,...,r;}, assume that £ € F(R) is a fluz,
and 81,...,S8,—m s any completion of R to a full frame. Let the functions aﬁc be defined by

VslffzalrkJr Z ay sy, I=1,...,n—m. (29)

k=m+1

Then the functions \', i = 1,...,m, prescribed by (25), and the functions aﬁw l=1,...,n—m,

k=1,...,n satisfy the following system of differential and algebraic equations:
ri()\j):I‘J A Z al ¢ ” foralll<i#j<m (30)
l=m+1
n
N Ffj -\ Ffi - cfj)\k = Z ay céj for all distinct triples i,j,k € {1,...,m} (31)
l*m-&-l

)\jFéjf)\iI‘éi: Z ale i foralll<i#j<mandl=m+1,...,n. (32)
t=m+1

In the above equations, the functzons c . and Fk are the structure functions and the Christoffel
symbols for the full frame RU {sy,.. sn mt

[I‘i, I‘j] = Z C”I']g + Z CZJ S (33)
l=m+1
Ver, = Z Iy, + Z Il s (34)
l=m+1
Proof. The flatness condition (12) implies that
VeV, £ = Ve, Ve f = Vi, o f  forallij=1,...,m (35)
must hold for the solutions of (25). Therefore,
I‘Z‘()\j) r; + )\j %rir]’ - I‘j(/\i) r, — )\i 61']' r, — 6[ri,rj]f' (36)
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According to (33) and (34), (36) is equivalent to:

ri(/\j)rj—l—z/\J ey, + Z NTL s —rj(\)r ZMF?irk— > NTYs)
l=m+1 l=m+1
= Ve £+ Z e Vg, f. (37)
k=1 l=m+1

It remains to rewrite the right-hand side of (37) in terms of the frame using (25) for the first
sum and (29) for the second sum:

ri(M)rj + Z N TEry, + Z NT s —1j(A Z NThre— > AT s
l=m+1 l=m+1
TS S ddnt 3 dde
k=1 k=1l=m+1 lit=m+1
Collecting coefficients of the frame vector fields, we obtain equations (30)—(32). O

We emphasize that, in general, the structure functions c¥ i; and the Christoffel symbols F
appearing in (30)—(32), depend on the completion of R to a full frame.

Remark 4.3. We note that (30)-(32) do not provide a complete set of integrability condi-
tions for the Frobenius system (25), (29), because they do not include conditions derived from
6“ %sjf— %Sj %rif = 6[ri,s]~] and %Siﬁsjf—%sj %sif = %[Si’sj]. We will derive these additional
conditions in Section 6 for the case m = 2, n = 3 only, and we shall observe how involved they
are already in this case. On the other hand, we will see in Section 5, that if R is an involutive
partial frame, then (30)-(32) simplify to a system which involves only the unknown functions
A, and this system does provide a complete set of integrability conditions for (25). In the case
of the full frame (m = n), equations (30)-(32) reduce to the A-system studied in [7].

We can use (30)-(32) to get necessary conditions for F(9R) to contain a strictly hyperbolic
flux. We shall see below that these conditions are not sufficient except for rich, partial frames.

Proposition 4.4. Let R = {r1,...,r;,} be a partial frame on Q@ C R™ containing u. If there
is a strictly hyperbolic flux £ € F(R) on some open neighborhood ' of @, then for each pair of
distinct indices i,5 € {1,...,m} the following equivalence condition holds

Vy,Tj € Spanges o) {Ti, Ty} if and only if  [r;,r;] € spance g {ri,r;} (38)

Proof. If f is strictly hyperbolic on ', then 98 can be completed to a frame of eigenvectors
ri,...,Tp, Tmil,..., Iy, such that there exist functions A',...,A": ¥ — R, with pairwise
distinct values at each point of ¥, and

Vef=Nr;, i=1,...,n.

In the statement of Proposition 4.2, let s; =r; for {=m+1,...,n. Then af = 5})\l, where (5}
is the Kronecker delta, and the algebraic conditions (31), (32) become

RN —ThX — A =0forall 1 <i#j<mand1<k<n, withk+#iandk+#j (39)
Let us first assume that for some 4, j, such that 1 < i # j < m, we have 6“ r; € Spancmm,){ri, rj}

and [r;, 1] ¢ spance (o {ri,r;}. Then, from the latter condition, there exists k € {1,...,n},
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such that k # i and k # j and cfj # 0, while the former condition implies that I‘fj = 0.
Symmetry of v implies that cfj = —F?i # 0, and then from (39) we have

cfj (N =Xk =o.
We then have A\! = \¥ at least somewhere in €', which contradicts strict hyperbolicity.

Let us now assume that for some ¢,j such that 1 < i # j < m, we have V,r; ¢
Spange (o 11, T;} and [rj,r;] € spance g {ri,r;j}. Then, from the former condition, there
exists k € {1,...,n}, such that k # ¢ and k # j and Ffj =% 0; from the latter condition we have

cfj = 0. Symmetry of v implies that l"fj =Tk

%> and then from (39) we have

k j 7\ —
rE (M — ) =0.

We then have \' = M\ at least somewhere in €', which contradicts strict hyperbolicity. O

5 Involutive partial frame

As noted in Remark 4.3, the analysis of the F(9R)-system is much simpler when the frame fR is
in involution. The two extreme cases m = 1 and m = n fall into this category. In the former
case R also trivially satisfies the definition of a rich partial frame, see Remark 5.4. The latter
case of a full frame was considered in [7], and some of the theorems of the present paper are
natural generalizations of those results.

5.1 General involutive partial frames

If the partial frame R is in involution, then for any completion of R to a full frame {ry,...,r;,}U
{Sm+1,---,Sn}, we have cﬁj =0foralli,j=1,...,m, I =m+1,...,n and, therefore, I‘éj = ng
due to the symmetry of the connection (11). In this case (30)-(32) simplify to

ri(M) = T, (N —-XN)forall1<i#j<m (40)
N I5 — NT¥ — A" = 0 for all distinct triples 4,5,k € {1,...,m} (41)
(N =M)Th = Oforalll<i#j<mandl=m+1,...,n (42)

where the functions cfj and Ffj are given by (33) and (34). Note that, due to involutivity of %R,
the functions cfj, i,j,k € {1,...,m} do not depend on the choice of completion of 2R to a frame,
while the Christoffel symbols, in general, do depend on the choice of such completion. We call
(40)-(42) the A-system, generalizing the terminology of [7] to partial involutive frames.

The following proposition allows us, in the involutive case, to solve Problems 2 (and 1) in
two steps: first find all solutions A® of system (40)-(42), and then determine all solutions f
of (25) with these functions A*. This is possible because (40)-(42) provide a complete set of
the integrability conditions for the F(9R)-system (25) in this case, as the proof of the following
proposition shows.

Proposition 5.1. If a partial frame R = {r1,...,rn} s in involution, then
(1) For every £ € F(R), the functions ', ..., \™ prescribed by (25) satisfy (40)-(42).

(2) For every solution A',...,\™ of (40)-(42), and any smooth data £ for £ prescribed along
any embedded submanifold = C ) of codimension m and transverse to R, there is a unique
smooth local solution of F(R)-system (25) taking on the given data.
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Proof. (1) Equations (40)-(42) are differential consequences of (25). Therefore, for every f €
F(R), the functions A!, ..., \™ prescribed by (25) satisfy (40)-(42).

(2) Assume A',... A\™ are solutions of (40)-(42). In an affine system of coordinates u =
(ul,...,u™), equations (25) turn into (26). To simplify the notation we write these as
7i(F)|w = N (u) Ri(u) fori=1,...,m, (43)

where F' and R; are the column vectors of the components of the vector fields f and r;, respec-
tively, relative to the coordinate frame %, cee %. The system (43) is of the form (19); the
integrability conditions are

ri(N) (Ry) + N ri(R;) —r;(X') (Ri) — A'rj(Ry) = Z A Ry, (44)
k=1

Since in an affine coordinate system, the components of @rsrl are given by the column vector
rs(R;), we have that (44) is equivalent to

m

ri(\) r;+ N %rirj — rj()\i) r; — A\ %rjri = Z cfj)\krk, (45)
k=1

which, when written out in components relative to a completion of JR to a frame ry,...,ry,
Smls- - -, Sn, is equivalent to (40)-(42). The components of the vector field f provide the data
for F' and are of the type described in Theorem 3.5. This theorem guarantees the existence of
a locally unique solution of (43) with this data. O

The system (40)-(42) always has the trivial solution A\! = ... = A\™. However, the existence
of other solutions of (40)-(42) is a subtle issue. Furthermore, even when non-trivial solutions of
(40)-(42) exist, their (strict) hyperbolicity requires further analysis. We note that conditions (41)
and (42) provide us with necessary conditions for the existence of strictly hyperbolic solutions
for Problem 1, in the case of involutive partial frames.

Proposition 5.2. If a partial frame B = {ry,..., 1} is in involution on Q, then the following
conditions must be satisfied for all 1 < i # j < m on some open neighborhood Q' C Q of @, in
order for the flur set F(R) to contain a strictly hyperbolic flux:

Vi Tj € Spancoo(g,){ri,rj} = [r;,r;] € spancoc(g,){ri,rj} (46)

and

%rirj € spance () R (47)
Proof. Condition (46) is the same as (38) proved earlier. If for all open subsets Q' C Q, there
are 1 <14 # j < m, such that V,,r; ¢ spanges () R, then there exists m 4+ 1 <[ < n, such that

[l # 0 on . From (42), it then follows that A\’ = M at least somewhere on Q' and therefore
F(R) contains no strictly hyperbolic fluxes. O

We observe that involutivity implies that [r;, r;] € spange o) R. Thus, due to the symmetry
condition (11), we can replace the condition 1 < i # j < m in (47) with 1 <i < j < m. The
above conditions are not sufficient as will be illustrated by Example 5.3 in [7]. However, we can
prove the following condition is sufficient.

Proposition 5.3. Assume that the functions A, ..., \™ satisfying (40)-(42) are such that for
some i € Q, A\(a),...,\™ (@) are distinct. Then on an open neighborhood of u there exists a
strictly hyperbolic fluz £, such that

%rif:)\iri, i=1,...,m.
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Proof. Let R; be the column vector of components of r; in an affine system of coordinates
ul,...,u", and let R = [Ry|...|R,,] be an n x m matrix comprised of these column vectors.
Since r;, i« = 1,...,m are independent at @, there is a non-zero m x m minor of R(u). Due
to continuity the same minor is non-zero on some open neighborhood of @. Let {i1,...,%m}
be the row indices of the submatrix corresponding to this minor. Up to permuting coordinate
functions u',...,u"™ we may, in order to simplify the notation, assume that i; = j. Then the
set of vector fields ry,..., Ty, gongr, - - -5 5w are independent and, therefore, a submanifold =
defined by u* = @' for i = 1,...,m is transversal to fR.

Forl € {m+1,...,n}, choose arbitrary constants A, such that all n real numbers \! (@), ...,
A7 (@), A™FTL LA™ are distinct. Define

T

F(a',...,a™ o™ ™) = [O,...,O, j\m"'lum"'l,...,;\"u"]

and let F' be an extension of F' such that [D,F] R;(u) = \* R;(u), for i = 1,...,m; the existence
of such an extension is guaranteed by Proposition 5.1. Then

_ L 1 -
Fr (1) Gar (@)
8F"; (I_L) 6F".L (17,
[DuFl(a) = | 2%, oum )<
algul (u) 8}87117” (’LL) >\m+1
| G (@ G (1) A"

where empty spaces are filled with zeros. The matrix [D, F]|z has n distinct real eigenvalues
(@), ..., A™ (@), \™TL ... A™. Since the entries of [D,, F] are smooth real functions, a standard
argument, involving the implicit function theorem, implies that there is an open neighborhood
Q' C Q of @, such that at every point of Q' the matrix [D, F] has n distinct real eigenvalues,
and, therefore, F is strictly hyperbolic on €' O

Remark 5.4 (Single vector field case). When R = {r1}, all three conditions (40)-(42) trivially
hold. Therefore, we can assign A to be any function on Q. Then, by Proposition 5.1, for every
assignment of the vector field £ on an (n — 1)-dimensional manifold Z, transverse to ry, there
exists a unique local vector field £ such that %rlf = Ary and flz = f'\g Thus, the general
solution of the F(R)-system (25) depends on one arbitrary function of n variables (the function
AY) and n functions of n — 1 variables, that locally describe the initial data for the vector field
f. Due to Proposition 5.3, the F(R)-set contains strictly hyperbolic fluzes.

Remark 5.5 (Full frame). If R is a full frame, then (42) trivially holds while the remaining
equations (40)-(41) form the \-system analyzed in detail in [7]. According to Proposition 5.1,
for every solution of the \-system and for every assignment of the vector f at a point @ € €,
there exists a locally unique solution £ of (25) with a prescribed value for f|5.

5.2 Rich partial frames

Rich frames (see Definition 4) comprise a particularly nice subclass of involutive frames. This
case trivially includes all partial frames consisting of a single vector field. It also includes all
involutive partial frames consisting of two vector fields.

Let {ri,...,Tm,Sm+1,...,Sn} be any completion of R to a frame. With the same notation
as above, since fR is rich, the symmetry of the connection v yields

clij =0 and I‘ﬁj = I‘é—i for all distinct triples 4, j,, such that 1 <4,j <m, 1 <1<n. (48)
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The F(R)-system (40)-(42) thus reduces to
ri(M)=T% (N =XN)  forall1 <i#j<m, (49)
Y i . . . .
LA =N)=0 forall 1 <i<j<m,1<Il<nwithl#1dand!l#j. (50)

In the rich case, the necessary conditions recorded in Proposition 5.2 for the flux set F(R) to
contain strictly hyperbolic fluxes, become

Vy,Tj € spange o {1, 15} for all 1 <i £ j <m. (51)

Theorem 5.7 below shows that, for a rich partial frame, these necessary conditions are also
sufficient. Moreover, for frames satisfying (51), the theorem describes the size of the set F(R).
Theorem 5.8 describes the size of the set F(R) for partial frames that do not satisfy (51), and
therefore, do not admit strictly hyperbolic fluxes.

The following lemma allows us to introduce a coordinate system adapted to a given rich
partial frame, and subsequently to invoke Darboux’s theorem to describe the flux set F(9R).

Lemma 5.6. If a partial frame R = {r1,...,1r,,} on Q is rich, then in a neighborhood of every
point u € ) there exist
(1) strictly positive scalar functions al,... o™, such that the vector fields ¥; = a‘r;, i =
1,...,n commute, i.e., [t;,T;] =0 for alli,j € {1,...,m};
(2) local coordinate functions (w',...,w") such that ¥; = 32, i =1,...,m.

Proof. For a rich partial frame R the following structure equations hold:
[I‘i,I‘j] :cﬁjri—l—czjrj ’L,j: 1,...,7’77,,

where the structure functions cfj are independent of the completion of R to a frame. We will

show that the conditions [F;,T;] = 0 lead to a generalized Frobenius system for the o’. Indeed,
[, 1] = [@'ri, afrj] = o' o [r;, 1] + o' ri(@d)r; — o rj(a)r;
= (o/céj —rj(a))r; — o (ozjc;i - ri(aj)) r;. (52)
Then [F;,7;] = 0 if and only if 3" = In(a?) satisfies the PDE system.
r;j(B) = czj(u) forall1<i#j<m (53)
To this system we add the equations
r;(87) =0foral 1<j<m, (54)

making an additional requirement that, for each ¢ = 1,...,m, B is constant along the integral
curve of r;. As ¢j; = 0, we can combine (53) and (54) into one system of m? equations for m
unknown functions § of n variables of generalized Frobenius type:

r;(8) = c;(u) forall 1 <i,5 <m. (55)

We now write out the integrability conditions (20), given in Theorem 3.5:
r;(cl,) — rk(céj) = c?k cij + c?k iy forall 1 <i,j,k <m, (56)

and note that these are satisfied due to Jacobi identities (8). By Theorem 3.5, we can prescribe
data for § along a submanifold transversal to & and obtain a solution of (55) near @ taking on
these data. Then the positive functions o := e satisfy the requirements in (1).

Part (2) is a direct consequence of Proposition 3.2. O
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Due to Lemma 5.6 and thanks to the scaling invariance of Problems 1 and 2, we may
assume that the given rich partial frame is commutative. We then can use a local coordi-
nate system w',...,w", such that r; = a 7, for i = 1,...,m. We complete R to a frame

{r1,.- s Tm,Sm41,-.,Sn}, where s; = 8 2, for I =m+1,...,n. Commutativity of the frame

together with symmetry of the connection V, imply the following conditions on the structure
coefficients (33) and Christoffel symbols (34) for this frame:

dy=0 and T!, =T%, for all I,s,7 € {1,...,n}. (57)

Then equations (40)-(42) reduce to:

J . . .
gz}z =T5, (X" = N) forall1<i#j<m (58)
U (i j o . .
Fij(/\—/\J)zO forall1<i<j<m,1<I]<nsuchthat!=#1iandl#j. (59)

Assuming that the Ffj and unknowns A’ are expressed in w-coordinates, we can treat (58)-(59)
as a system of PDEs with simple linear constraints on the unknowns.

Theorem 5.7. If a partial frame R = {r1,...,ry} is rich and satisfies the conditions (51),
then the set F(R) of all local solutions of (25) near u depends on:

(1) m arbitrary functions of n —m + 1 variables, prescribing for each j =1,...,m a function
N along an arbitrary (n —m+1) dimensional manifold Z; containing @ and transverse to
the partial frame {r1,...,r;_1,Tj41,...,Tm};

(2) n functions of n —m variables®, prescribing the components of a vector field £ along an
arbitrary (n — m)-dimensional manifold Z transverse to the partial frame R.

The above data uniquely determines £ in an open neighborhood of 4. Finally, the flux set F(R)
always contains strictly hyperbolic fluzes.

Proof. First, as discussed above, after rescaling we may assume that R is a commutative frame
and we choose a coordinate system such that r; = 2, i = 1,...,m. Conditions (51) are
invariant under rescaling of R and imply that

I,=0 foralll<i#j<m,1<1<n, withl#iandl# j. (60)

It follows that (59) trivially hold. Next, (58) is a Darboux system and we proceed to verify
the integrability conditions (C) stated in Theorem 3.4. For this purpose we substitute partial
derivatives prescribed by (58) into the equality of mixed partials (writing 9; = 83,; ):

O (N = 0;(OpN) for all distinct triples i, j,k € {1,...,m}.
The first substitution leads to
OR(T2, (X' = X)) = 0;(T%, (\* = V) for all distinct triples i,j,k € {1,...,m},
and the subsequent substitution leads to the condition:
(0,19, — OkTI )N + (T%,T0y, + 19, TF, = T3.T9, — o7 AP
— (,T + T, T, r;kr;.i — M)A =0, (61)

Ji 1k

"Example 7.1 demonstrates that, when a general solution of an JF(9)-system is explicitly written out, some of
the arbitrary functions of n — m variables may be absorbed into arbitrary functions of n — m + 1 variables (a larger
number of variables). This is a standard phenomenon arising in applications of integrability theorems.
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which must hold for all triples of pairwise distinct indices i,7,k € {1,...,m}. We will use the
flatness condition (14) to show that all functions A\’ appearing in (61) have vanishing coefficients.

We first substitute s = j in (14) and we assume that 4, j, k € {1,...,m} are pairwise distinct
indices. Then using (57) and (60), we obtain that for all triples of pairwise distinct indices
i,7,k € {1,...,m}, we have

- 315?1» = FﬁkF}i - F;irék - F;’}crii' (62)

This immediately implies that the coefficient (I, T4, + %, T, — 7, T%, — 8,T%) of A’ in (61)
vanishes. Interchanging &k and ¢ in (62), we obtain:

- air;k = F?irgk - F;‘kFZi - F;i ik (63)
so that the coefficient of A¥ in (61) vanishes. We note that the right hand sides of the identities
(62) and (63) are equal. Therefore, the coefficient (9;I'}, — 0xI'};) of M in (61) also vanishes.

We have thus verified that the integrability conditions (C) stated in Theorem 3.4 hold for
the PDE system (58). Hence, for any fixed point @ € Q whose w-coordinates are (w!,...,w"),
and any assignment of m arbitrary functions of n —m + 1 variables,

N(wh, ..ot et L ™ ™ w), i =1, ,m
on the subsets Z; C Q, where w/ = @/, for 1 < j < m, j # i, there is a unique local solution
AL 2™ of (58) such that A|z,nqr = AY=,nq/ on some open subset ' C Q containing .
Thus the general solution A of (58) depends on m arbitrary functions of n —m + 1 variables.

Next, recalling that for a rich frame satisfying (51), the system (49) is equivalent to the
A-system (40)-(42), we use Proposition 5.1 to conclude that for any solution A of (49) and
any smooth data for f prescribed along any embedded submanifold Z C € of codimension m
transversal to R, there is a unique smooth local solution of the F(R)-system (25). In local
coordinates the data can be defined by n functions (components of f) of n — m variables (local
coordinates on EZ). Therefore, for a given solution A of (49), the general solution f of the
F(R)-system (25) depends on n arbitrary functions of n — m variables.

Finally, we may choose AL ..., A\™ in the first part of the proof such that 5\1(@), ey ;\m(ﬂ)
are all distinct. Let A1,...  A™ be the corresponding solutions of (49). The existence of strictly
hyperbolic fluxes in the flux set F(9R) then follows from Proposition 5.3. O

We note that in the case of a single vector field (m = 1), the conclusion of Theorem 5.7 is
consistent with the observation made in Remark 5.4. The first part of the proof of Theorem 5.7
is a rather straightforward generalization of the proof of Theorem 4.3 in [7], where the A system
(49) was considered in the case of the full frame (m = n). In a similar way, we can generalize
Theorem 4.4 in [7] to treat the case when necessary conditions (51) for strict hyperbolicity
are not satisfied. In this case, the algebraic relationship (50) implies that there exist distinct
i,j € {1,...,m} such that \* = M, and therefore, there are no strictly hyperbolic fluxes in F(R).
The next theorem gives a somewhat involved description of F(R); a proof (omitted) may be
obtained by combining the arguments in the proofs of Theorem 4.4 in [7] and Theorem 5.7.

Theorem 5.8. Let R = {r1,...,r;n} be a rich partial frame that does not satisfy conditions
(51). Then the system (49)-(50) imposes multiplicity conditions® on A in the following sense.
There are disjoint subsets Ay, ..., As, C {1,...,m} (so > 1) of cardinality two or more, and
such that (49)-(50) impose the equality \* = N if and only if i, j € Ay for some a € {1,..., 80}
Let 1 =352 |Ao| <m and s1 = m—1. By relabeling indices we may assume that {1,...,m} \
U, Ay ={1,...,s1}. Then the set F(R) of all local solutions of (25) near @ depends on:

a=1

5Clearly, for all i # j, with %rlrj ¢ span{r;,r;}, (50) implies a multiplicity condition XY = M. Less obviously,
(49) may impose additional multiplicity conditions on A*. See the proof of Lemma 4.5 in [7] for more details.
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o sy arbitrary functions N\, . .., X\** of n—m+1 variables prescribing, for j =1,...,s1, data
for the functions M, so that )\j\gj = M, where Z; is an arbitrary (n —m + 1)-dimensional
manifold Z; containing @ and transverse to the vector fields rq,...,rj_1,Tj41,..., m;

o sy arbitrary functions k', ..., k% of m—n variables prescribing, for j = s1+1,...,m, data
for the functions N, so that when j € Ay for some o = 1,..., 89 when j € A, for some
a=1,..., 59, then )\j|5j = K%, where Z; is an (n — m)-dimensional manifold containing
u and transverse to ‘R;

e n functions of n — m wariables prescribing the components of a wvector field f along an
arbitrary (n — m)-dimensional manifold = transverse to the partial frame R.

The above data uniquely determines £ in an open neighborhood of 4. The flux set F(R) never
contains strictly hyperbolic fluxes.

5.3 Non-rich involutive frames consisting of three vector fields

The lowest cardinality of a partial frame for which the involutive, non-rich scenario may occur
is m = 3. The full frame case m = n = 3 was treated in [7]. We now generalize these results to
n > 3. Generalization to m > 3 would involve a large number of cases and is not pursued here.

We first treat the case when R satisfies the necessary conditions of Proposition 5.2 for the
existence of strictly hyperbolic fluxes. We choose an arbitrary completion of $R to a frame and
write out the A-system (40)-(42). The differential part (40) becomes

BV =THLOZ=A) () =TH* —A) 1) =T( -
B() =I5 -0 B =THO - N n) =THO° - A%,  (64)

while the algebraic equations (41) may be written as

Al 0%3 Fé2 _F%S
Ay | A2 | =0, where Ay=| T3 ;3 T3 |. (65)
A? Fgl —F‘I)z C%z

Condition (47) in Proposition 5.2 implies that (42) is trivial. We also note that, since R is
involutive and satisfies the conditions in Proposition 5.2, for all 4, j,k € {1,2,3} the structure
coefficients c¥; and Christoffel symbols I‘fj are independent of the completion of R to a frame.
Thus, the system (64)-(65) can be written out without specifying a completion to a full frame.
Our goal is to describe the solution set of (64)-(65). We observe that:

e From the symmetry of the connection it follows that the last column of Ay is the sum of
the first two columns; thus rank A, < 2.

e Non-richness of SR implies that at least one of the cfj in A, is nonzero; thus rank A, > 1.

e Condition (46) in Proposition 5.2 implies that, for each row in Ay, either all three entries
are zero, or all three entries are non-zero.

Following the same argument as in Section 3 of 7], one can show that if rank Ay = 2 at @, then
the three eigenfunctions must coincide in a neighborhood of @; i.e., A' = A2 = A3 = X for some
functions A, and, therefore, F (1) does not contain strictly hyperbolic fluxes. Moreover, (64)
imply that X\ is constant along the integral manifolds of the involutive frame R, and we can
prescribe an arbitrary value of A along a manifold = transverse to R. Otherwise, rank Ay = 1,
and we may assume without loss of generality that cl; # 0. The first equation in (65) can
be solved for A! and substituted in (64). This yields a system of six equations specifying the
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derivatives of the two unknown functions A\? and A* along a partial, involutive frame {r,ro,r3}:

rzrl
rl(/\Q): 211 23(/\2_)\3),
C32
Tl cl Il
f2(/\2) = ?3 (F§2 Fiz) - % r2 % (/\2 - %),
I'sy I'sy C32
r3(\?) = —T35(A* =A%), (66)
rsri
rl()\?’): 311 32()\2_)\3)’
C39
ry(A\%) = T3, (A = A7),
It ck Il
rs(\3) = 1“?2 (T3 —T3) + 1% s (f)] (A2 =A%),
23 23 32

A similar system, for n = 3, was analyzed in [7] via the classical Frobenius theorem. For the
present setting with n > 3 we need to use the generalized Frobenius Theorem 3.5. To verify the
integrability conditions, we rewrite (66) as

ri(A%) = o5 (u) (A2 — \3) fori=1,2,3 and s = 2,3, (67)

where ¢ are given functions of the I‘fj. The integrability conditions amount to

[1i(8) = 73(87) + 6587 — 67) — 93 (6% — 6)| (N [Zcmk] -, (68)

where 1 <i<j<3,5=2,3and cfj :Ffj frgg..
These conditions are satisfied if A2 = A in a neighborhood of @, in which case the first
equation in (65) implies A! = A2 = A3 = ), and, as above, the functions A\’ must be constant
along the integral manifolds of the involutive frame R, and we can prescribe an arbitrary value
of the A% along a manifold Z transverse to JR. For a strictly hyperbolic flux to exist the following

six conditions must hold:

3

ri(¢) —1i(¢7) = G307 —¢FeT+ > cieh  1<i<j<3, (69)
k=1
3

ri(¢3) —ri(¢8) = 6307 — il + ) el  1<i<j<3. (70)
k=1

Conditions (69)-(70) were derived in [7] in the case of full frames in R3, and Examples 5.1
and 5.3 in [7] show that these compatibility conditions may or may not be satisfied; they must be
checked for each case individually. If these integrability conditions are met, then by Theorem 3.5,
the general solution of the A-system depends on two functions of n — 3 variables prescribing the
values of A2 and A* along any two n — 3 dimensional manifolds passing % and transverse to .
The function \! is then determined by the first equation in (65). Combining the above argument
with Propositions 5.1-5.2 we arrive at the following theorem.

Theorem 5.9. Assume R = {ry,ra,r3} is a non-rich partial frame in involution on a neigh-
borhood Q of @ satisfying conditions (46) and (47) in Proposition 5.2. Fori,j k € {1,2,3}, let
and I‘k be defined by

U

3
k
[r;,rj] g c”rk Vrirjzg % g
k=1

Up to permutation of indices and by shrinking Q we may assume cis is nowhere zero on .
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o If the matriz Ay defined in (65) has rank 1 and (69)-(70) are satisfied in a neighborhood
of @, then the flux set F(R) of system (25) depends on n + 2 arbitrary functions of n — 3
variables (2 of those determine A\* and A3, while n of those determine f along an (n — 3)-
dimensional manifold passing through @ and transverse to R). The set F(R) contains
strictly hyperbolic fluzes.

o If the matriz Ay defined in (65) has rank 2 at @ or if (69)-(70) are not satisfied at @, then
the three eigenfunctions must coincide in a neighborhood of @, i.e. A = A2 = X3 = )\
for some function \ which is constant along the integral manifolds of the involutive frame
R, and can take arbitrary values along a manifold ZE transverse to R. The flux set F(R)
depends on n + 1 arbitrary functions of n — 3 variables (1 of those determine A and n of
those determine f along an (n— 3)-dimensional manifold passing through @ and transverse
to R). The set F(R) does not contain strictly hyperbolic fluzes.

When the partial frame R does not satisfy the necessary conditions of Proposition 5.2 for
the existence of strictly hyperbolic fluxes, then the algebraic conditions (41) and (42) force two
or more of eigenfunctions to be equal to each other, and we can prove the following result:

Theorem 5.10. Assume R = {r1,ra,r3} is a non-rich partial frame in involution on a neigh-
borhood § of u, such that R does not satisfy condition (46) or condition (47) in Proposition 5.2.
Then there are exactly two possibilities: either

o the \-system (40)-(42) implies that \* = A2 = X3 = X, in a neighborhood of i, where the
function X\ is constant along the integral manifolds of the frame R and may take arbitrary
values on an (n — 3)-dimensional manifold Zy passing through @ and transverse to R; or

e up to permutation of indices, the \-system (40)-(42) implies that \' = \? = X, but allows
the possibility that X # X3 in a neighborhood of @. The function A3 is uniquely determined
by its values on an (n — 2)-dimensional manifold 2, passing through @ and transverse to
{r1,r2}, while the function X is uniquely determined by its values on an (n—3)-dimensional
manifold Zo passing through @ and transverse to R.

In either case the A-system (40)-(42) has a locally unique solution with data as described above;
for each such solution the F(R)-system (25) has a locally unique solution determined by the
values of £ on an (n — 3)-dimensional manifold = passing through @ and transverse to R. The
set F(R) contains no strictly hyperbolic fluzes.

Proof. Tf (46) fails, then (41) implies that at least two functions among A!, A2 and A3 coincide
on a neighborhood of @. If (47) fails, then (42) yields the same conclusion. In either case the
set F(R) does not contain strictly hyperbolic fluxes.

If (41) and (42) imply that all three are equal, i.e., A} = A2 = A3 = X, then (40) implies
that the function X is constant along the integral manifolds of the involutive frame 9R. In this
case, the system (40) trivially satisfies the assumptions of Theorem 3.5. Consequently, for any
assignment of A along an (n — 3)-dimensional manifold Zy passing through @ and transverse to
fR, there is unique such function in a neighborhood of «.

If (41) and (42) imply that only two of the A coincide, e.g. A\l = A\? = )\, but not that they
are equal to A3, then one can argue that the cfj and Ffj satisfy

¢fy =0,T73 =0 and 'y =0, (71)
in which case the A-system (40)-(42) becomes:
ra(A) =0 ri(A%) =T3,(A = \3)
r3(A) = Ti3(A° = ) r3(A%) =T (A =A%)
ri(\)=0
r3(A) = T35(\° =)
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If T2, # T'l;, then the second and the fourth equations imply A = A3, so that A\l = A% = A3 = )\,
and we are in the situation considered above. If instead

1“33 = F%:s (72)

we obtain the system

ri(\) =0 (73)
ro(A) =0 (74)
r3(A) = F%3()\3 =) (75)
ri(A°) =I5 (A =A%) (76)
r2(X%) =M =A%) (77)
Subtracting (73) from (76), (74) from (77), and introducing the unknown p = A3 — )\, yield

ri(A) = (78)
ra(A\) = (79)
r3(A) = F13 K (80)
ri(u) = —T% p (81)
r2(n) = T3 p (82)

By assumption {rj,rs,r3} are in involution and the first condition in (71) implies that the
vector fields ry and ro are in involution. Thus we can first apply Theorem 3.5 to the subsystem
(81)-(82), whose integrability condition

ry(T5)) —r1(T8,) = ¢3, T3y + ¢5, T3 (83)

is satisfied as shown in Lemma 3.6 of [7], due to the flatness and symmetry property of the
connection, combined with conditions (71) and (72). Thus there is a unique solution u for the
subsystem (81)-(82) with any data prescribed along an (n — 2)-dimensional manifold E; passing
through @ and transversal to rq,ry. Substituting the solution p into (80) we obtain a subsystem
(78)-(80) whose integrability condition is

r2(F%3) = Fgg F%S (84)
rl(F%s) = Fi’:s F%:s-

As shown in Lemma 3.6 of [7], conditions (84) hold identically on  due to the flatness and
symmetry property of the connection, combined with conditions (71) and (72). Theorem 3.5
now guarantees the existence of a locally unique solution of the subsystem (78)-(80), with the
values of function A prescribed along an (n — 3) dimensional manifold =5 passing through @ and
transverse to 9. Recalling that 1 = A3 — )\, we conclude that X is uniquely determined by its
values on an (n — 3) dimensional manifold Z; passing through @ and transverse to 9, and the
function A3 is uniquely determined by its values on an (n — 2) dimensional manifold = passing
through @ and transverse to {ry,ra}.

Finally, it follows from Proposition 5.1 that for each solution of the A system, the F(R)-
system (25) has a locally unique solution determined by the values of f on an (n—3)-dimensional
manifold = passing through @ and transverse to R. O

6 Non-involutive partial frames of two vector fields in R3.

In the non-involutive case, the differential consequences (30)-(32) of the F(R)-system (25) in-
volve the unknowns a]. Thus, instead of a “A-system” we now have a “(\, a)-system.” Moreover,
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(30)-(32) do not provide a complete set of integrability conditions for the F(R)-system. This
makes the non-involutive case much harder than the involutive case, and we can only treat the
lowest dimensional case where R = {ry,ry} is a partial frame in R3 with

[r1,12)7 € spang{ri|a,r2|a}- (85)
The F(R)-system then consists of the two equations
Ve f=Alr;  and Vi, f=Ar,. (86)
The necessary conditions (38) for strict hyperbolicity become

%rIPQ‘ﬂ ¢ spang{ri|a, rz2|z} and §r21‘1|a ¢ spang{ri|a,r2|a}- (87)

We next state two theorems describing the size and structure of the flux space F(fR) for partial
frames R satisfying (87). The proofs of the theorems rely on the sequence of lemmas listed
below. We remind the reader that 7%V denotes the 4-dimensional space of trivial fluxes.

Theorem 6.1. Let R = {r1,ra} be a non-involutive partial frame on an open neighborhood of
u € R® satisfying conditions (87). Then

1. A non-zero fluz £ € F(R)/F™ is either strictly hyperbolic or non-hyperbolic.

2. If dim F(R)/Fi™ > 1, then F(R) contains strictly hyperbolic fluzes.

3. If F(R) contains a non-hyperbolic fluz, then for any vector field s completing R to a local
frame, the following identity holds on an open neighborhood of u:

F%z Fg1 -2 (C§2)2 = F?l Fgm (88)

where the cfj and Ffj are the structure components and Christoffel symbols, respectively,

of the connection V relative to the frame {ry,r9,s}.

Although identity (88) is a restrictive condition, Examples 7.7 and 7.9 show that there are
partial frames with non-hyperbolic fluxes. On the other hand, Examples 7.5, 7.6, 7.8 and 7.11
show that there are partial frames for which all non-trivial fluxes are strictly hyperbolic.

Theorem 6.2. Let R = {r1,ra2} be a non-involutive partial frame on an open neighborhood of
u € R? satisfying conditions (87). Let s be any completion of R to a local frame near i and let

Ffj be the Christoffel symbols for connection V relative to this frame. Assume further that the
following condition is satisfied:

[5,(@) T, (@) — 9T3,(@) T3, (a) # 0. (89)
Then:

1. 0 < dim F(R)/Firv < 4.

2. For each k = 0,...,4 there exists a partial frame R satisfying the assumptions of the
theorem and such that dim F(R)/F = k.

Lemma 6.3. Conditions (88)-(89) are independent of the vector field s completing R to a frame.

Proof. Consider two completions of R to a local frame in a neighborhood € of @, by vector
fields s and s, respectively. Let
S=ar;+0ra+7s,
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for some smooth functions «, 8 and 7, with v non-vanishing on 2. Let c - and éF (I‘fj and f‘fj)

be the structure coefficients (Christoffel symbols) for the connection \Y relatlve to the frames
{r1,r9,s} and {ry,ry,§}, respectively. Then for i,j =1,2:
Ve, 1) = Liiri+ 0o+ s =Thr +T5,re + 5,77 (5 — ary — 1)

= (ng -9 al"ij)rl + (F?j — _151—‘ij) ro 47y 11—‘% S.

Hence, I'}; = y7'T; and &; = 7y~ '¢}; for 4,5 = 1,2. It follows that (88) and (89) hold for
and fk- 1f and only if they hold for c - and Fk D

Condition (89) arises in the proof of Lemma 6.5 and Example 7.11 illustrates that there are
partial frames, with non-trivial fluxes, for which (89) does not hold. Beyond this, we shall not
pursue further this non-generic situation.

Lemma 6.4. Let R = {r1,r2} be a non-involutive partial frame satisfying (87). Set s = [r1,r2]
and denote by c”, Ffj the structure coefficients and Christoffel symbols of the connection V

relative to the frame {ri,ra,8}. Then the following conditions are equivalent for functions \*
and \? defined near a:

1. There is a solution f of the F(R)-system (86) for the prescribed functions A\* and \2.

2. The functions \' and \?, together with the functions a' and a® defined by
a' = —ra(\') =T}, (A1 =A%) (90)
> = ri(\%) T3 (\'—\?) (91)

satisfy the following system of 6 equations:

1
() = o (T1 (L= 22) 4T3 g +2F12a2) (92)
51
2 1 2 3 1 3 9
1) = o (T2 (' =A%) =213, o’ — T}, 0?) (93)
12
1"2(a1> <F23 F?Q - F;)Q) ()\1 - /\2) (023 F21) 1—%2 a? (94)
ri(a®) = (T3305, +T3) (A =A%) =T a' + (¢} — T1y) d® (95)
rl(al) - S(/\l) F%3F ()\1 - /\2) - (Fil - C§3) at - Fi2 a? (96)
ry(a®) —s(A?) =T33 15, (A = X*) = T3, a' + (¢35 — T3y)a” (97)

where
Ti =T%, (03, —3;) —r1(T%,) and Ty =T%5, ([, — I1y) +r2(Ty). (98)

Moreover, for every pair of functions \' and \? satisfying these conditions, there exists a unique
(up to a constant term) flux £ satisfying (86).

Proof. We first note that, due to the symmetry of V and our definition of s we have
F%z - F%1 = 0%2 =0, F%z - F%l = C?z =0, F:132 - F§1 = C?z =1 (99)

Assume A and A? are given functions and that there exists f such that (86) holds. The flatness
condition (12) implies that
V[rl’m]f =V, Ve, f -V, V. 1. (100)
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As s = [r1, ro], expanding the right hand side, substituting (86), and using (99) give
Vef=a'r; +a’rs + a®s, (101)
where a', a? are given by (90),(91), and
a® =T3, 2% —T5, AL (102)
The following consequence of (102) and the last equation in (99) is repeatedly used below:
M —a®=T%, (A = A and A2 —a® =T3, (\' = \?) (103)

By expanding the identity B o o
Ve, s)f = Vi, Vof = ViV, f, (104)

and eliminating any occurrences of a® using (103), we obtain

ri(a') = s(\') + T1,T5, (A — A% — (T}, — ¢33)a' —T1, d? (coefficient of ry) (105)
ri(a®) = (T2, T5, +T2) (AN =A%) —T3 o' + (¢33 - T3,) a® (coefficient of ry) (106)
ri(a®) =T3, T3\ = 2\ —T%, o' — T3, 42 (coefficient of r3) (107)

Similarly, the identity
Virssif = Ve, Vof — VsV, f (108)

leads to

ra(al) = (T3, T3, —Th) (A =A%) + (¢33 —T3))a! —T3,a? (coefficient of ry) (109)
ra(a?) = s(\?) + T2, T3 (\' — A?) = T3, a' + (c35 — T'3y)d? (coefficient of ry) (110)
ra(a®) =Th, T3 (A = \?) = T3, o' — T3, 6% (coefficient of s) (111)
Note that a® was eliminated from the right-hand sides of the above equations using (103). We
note that (109), (106), (105), (110) coincide with (94), (95), (96), and (97), respectively. To
show that the remaining two equations, (92) and (93), hold, we note that equations (107) and

(111) express the derivatives of as in the ry and ry directions, respectively. However, these
derivatives can be also obtained by differentiating (102) and substituting (90) and (91):

ri(as) =T3,r1(A%) = T3 1 (M) +11(TF,) (A2 = A1) (112)
= (le32 I3 — r1(1“i’2)) (A" = X% +T8a” = T3t (A,
ry(ag) = T3y ra(A?) — I3 ra(AY) +12(T',) (A2 — A1) (113)

=Tfra(N?) + (rg(F:{’2) -T3, F%2) (A2 =\ +T3,a",

where we used the fact that, due to the last equation in (99), derivatives of I'{, and I'j; are
equal. From (107) and (112) we obtain:

I3 ri(A\) = (F?2 (I3, —T3%)) — rl(riz)) (A" = M)+ T3 a! + 20, 6 (114)
Similarly, from (111) and (113) we obtain:
I'f,ra(N?) = (r2(F?2) + T35, (3, — F%z) (A" =A%) —2T3, 0" — T3, a%. (115)

Condition (38) implies that I'S; # 0 and '}, # 0 and, therefore, we can solve (114) and (115)
for ry(A!) and ra(\?), establishing (92) and (93).

Conversely, given functions A and A%, let a', a® and @3 be defined by (90), (91), (102)
respectively. Then equations (86) and (101) constitute a Frobenius system for the three unknown
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components of the flux f. It is straightforward to check that the integrability conditions for this
system coincide with the flatness conditions (100), (104) and (108). Reversing the proof of
the first part, we see that they are satisfied provided A! and A2 satisfy condition 2. Thus, if
Al and A2 satisfy condition 2, then for any prescription of the initial value f(u), there exists
a unique f satisfying (86) and (101). Moreover, since (101) is a consequence of (86), there
is a unique f satisfying (86) for any prescription of the initial value f(@). Thus, the generic
solution to (86) depends on three constants. We finally note that if f satisfies (86), then so does
f + (a constant vector in R?). Therefore, the three arbitrary constants in the generic solution
correspond to the components of an arbitrary constant vector. Thus, for the given pair of
functions A! and A?, the solution of the F(9R)-system (86) is unique up to a constant vector. [J

Lemma 6.5. Let R = {ry,r2} be a partial frame satisfying the assumptions of Theorem 6.2.
Then the set of pairs of functions A(R) = {(A\, %)} satisfying condition 2 of Lemma 6.4 is a
real vector space of dimension at most 5.

Proof. Tt is straightforward to check that A(9R) is a vector space. To prove the bound on its
dimension, we prolong the system of equations (90)-(97) listed in condition 2 of Lemma 6.4 to
a Frobenius system for 5 unknown functions A!, A2, a', a?, and 7, where we define

T =15()\?) for s = [rq,r2]. (116)

This is done by the following steps.
(1) By expanding the right-hand side of the commutator relationship

s(A') = [r1, 2] (A1)

and substituting the expressions for ri(A!), ra(Al), r1(A2), ra(A2), ri(al), ra(at), ri(a?), ro(a?)
from (90)-(97), we obtain

213, s(\") + 2%, s(\?) =13, (A1 (\' = A*) + Bia' + C1a?), (117)
where
T, T, T, r3
A= -ra () =)+ g~ Th (T + 20 - T (O T - T + Th T3,
21 21+ 12 21
(118)
3 T, (T3 -1) 13 3,12
By = —r3 (11) o ) TuTEs o 12 pl 3 (119)
IS I3 T, I I e
I'2(F£1))2) Ty ng F}Q F:ﬂ 1—%2 F?2 2 3
=2 - -222 4+ +212(12, — c3,). (120)
(3,)? Iy, ~T5, I rg o2

(2) By expanding the right-hand side of the commutator relationship
s(A\?) = [r1,12](3?)

and substituting the expressions for ri(A!), ra(Al), r1(A2), ra(A2), ri(al), ra(at), ri(a?), ro(a?)
from (90)-(97), we obtain

273, s(A") + 2T, 5(\?) =T%, (A2(A' — A?) + Boa' + Caa?) (121)
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where

T Ty T 3
As =11 TQ -1y (T3;) + % —T3,(F33 +2T13) — =32 (P13 T3, +3,) + 15, Ty
Iy Iy Ty 'y
(122)
ri (03,) | ToIf, r3, T3, T3 3
Bo=—2 + p22L g +2 220 (T - ) (123)
(I$)?  T§I5  "Tf, T rg, o
I3 T, (T3, +1) T%,¢d, 203, T
S (22) 12 _ Loocqg 21012 23 (124)
Ity r$, I3 It e, 2o

(3) As the left hand sides of (117) and (121) agree, so do their right hand sides. In fact,
I3, A, =T%,4,, T5,B, =T%,B,, and  T35,Cp =T5,C (125)

due to the flatness condition (12). To show the A identity in (125), we first compute I'3; A; —
'3, Ay by substituting Y1 and T, into (118) and (122) and making various simplifications. We
obtain

I3 A; —T3yAy = —s(T3y) + Ty ra(T5;) — I3, 11 (3,) — T35, T3y + T3, T3, — 5,11y
+ T3, 195 (D13 — T53) — T'fy (D331 — Tp) + T35 (T35 T3, +13,). (126)
We then expand the identity

I3, (vrz Ver1 = Ve VioT1 = Vi, r1) — 13, (vrl Vers = Vo ViiTs — Ve, r2) —0. (127)

and observe that the coefficient of s in (127) equals to the left hand side of (126). Similarly,
we use the s coefficient of the expanded identity Vy, Vy,r1 — Vy, Vi r1 = Vgrs to show the
B-identity of (125), and the s coefficient of the expanded identity V,, Vy,ro — Vy, Vy ra = Virs
to show the C-identity of (125).

(4) Introducing a new unknown function 7, defined by (116), we solve (117) for s(A!):

S(Al):—F—?QT—i—lA ()\1—)\2)—1—}3 al—l—lC a® (128)
r3 27! 2 ! 27!
and rewrite (96) and (97) as
1 1 13 Y2l _ 2 1 1 3\ 1, (1 1),2 TP
ri(at) = (5,41 + r13r12)(/\ — 22+ (5 B —T!, + clg)a + (501 - I‘u)a - 2 (129)
21
r2(a®) =T33 15 (A =A%) = T3 a' + (¢35 — [5y)a® + 7. (130)

(5) To complete the system (90)-(95), (116), (128), (129), and (130) to a Frobenius system
we need to express the remaining derivatives s(a'), s(a?), r1(7), r2(7) and s(7) as functions of
AL A2, at, a? and 7. For this purpose, we consider further commutator relationships. Expanding
the left hand side of the relation [rq,s](A\?) = r1(s(A\?)) — s(r1(\?)), and substituting (116) and
(91) into the right hand side, we obtain

clgr1(N?) +clgra(N?) + cly s(A?) = ri(7) — (I3, (A = A?) +a?). (131)

By substituting the already known expressions for r1(\?), ra(A\?), s(A?), s(A!), given by (91),
(93), (116), (128), respectively, into (131), we obtain:

rl(T) - S(CL2) = ‘Cl(Al - )‘27 ala a2, T)? (132)
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where £; is a linear function with coefficients depending on c¥., T¥., and their derivatives.

R K
Applying the same procedure to the relation [ra, s](A\%) = ra(s(\?)) — s(r2(A\?)), yields

33 T1(A?) 4 a3 12 (A?) 4 a3 s(A?) = ro(7) — S(F%fz(Tg (A =A%) =273, 0" - T3, (12)), (133)
and the same substitutions as above yields
F:132 I‘2(T> + 2Fgl S<a1) + FSZ S(az) = ‘62(/\1 - )‘27 alv a2? T)7 (134)

where L is linear with coefficients depending on ¢¥,, T'*.. and their derivatives. Perform-

ijs g
ing similar calculations for the relations [ra,s](A!) = ra(s(A!)) — s(ra(A)) and [ry,s](\}) =

r1(s(A!)) —s(r1 (A1), we obtain
71_‘%2 rQ(T)+F§1 S(al) :£3(>\1 7)\27(117(12,7'), (135)
and
3,1 (1) + T3 s(al) + 213, s(a®) = L4\ — A%, al, a2, 7), (136)

where L3 and L4 are linear with coefficients depending on cfj, I‘fj, and their derivatives.
Equations (132), (134), (135) and (136) can be viewed as a linear inhomogeneous system of

four equations for the four unknowns s(a'), s(a?), r1(7) and ro(7):

1 0 0 -1 ri(7) Ly

0 F?Q 2 F?2>1 F%Q ra(7) e

0 I3, T3 0 s(a) | 7| L3 | (137)
rs, 0 rs, 213, s(a?) L4

Let M denote the 4 x 4 matrix on the left of (137). The upper left 3 x 3 minor of M equals to
33,3, and is non-zero under our assumptions. Thus the rank of M is at least 3. We find that

det(M) =T'%, (913, T3, — 7, T5,),

where the expression in the parentheses is non-zero near 4 due to the assumption (89) in Theo-
rem 6.2. Solving (137) we obtain expressions for s(a'), s(a?), r1(7), and ra(7) as linear functions
of X' = A%, a',a?, 7, with coefficients depending on ¢}, I'};, and their derivatives. Finally,

s(7) = [r1,12)(7) = r1(r2(7)) — ra(r1(7)), (138)

and substitution of the known expressions of the derivatives, r1(7), r2(7), r1(A!), r2(A1), r1(A\2),
ro(\2), ri(al), ra(al), r1(a?), and ry(a?), yields a linear function of \!' — A2, al,a? 7, with
coefficients depending on c¥;, Ffj, and their derivatives.

(6) The fifteen equations (90)-(95), (116), (128), (129), (130), (137) and (138) can be used
to express all directional derivatives of the functions A\', A2, a', a? and 7 as linear combinations
of A\l — A2, al, a2, and 7, with coefficients depending on Cfﬁ I‘fj, and their derivatives. These
expressions provide a Frobenius system. If its integrability conditions are satisfied, the generic
solution depends on 5 constants, the prescribed values of these functions at w. If the integrability
conditions for this system are not identically satisfied, they will impose additional relationships
on A, A2, a', @ and 7, thus reducing the size of the solution set.

(7) The Frobenius type system (90)-(95), (116), (128), (129), (130), (137) and (138) was
obtained as a consequence of condition 2 of Lemma 6.4. Therefore, the vector space of pairs of

functions A(R) = {(A\!, A\?)} satisfying this condition is of dimension at most 5. O

Lemma 6.6. Let R = {r1,ra} be a non-involutive partial frame satisfying condition (87).
Assume £ € F(R) is a non-hyperbolic flur. Then the corresponding eigenfunctions \* and N2,
appearing in (86), coincide and are non-constant: \' = A\ = X\ with A non-constant.
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Proof. We recall that f being non-hyperbolic means that the operator 6(,)f , does not posses
three real eigenfunctions. However, (86) holds by assumption, so that it possesses two real
eigenfunctions A' and A?. As complex eigenfunctions come in conjugate pairs and n = 3,
the possibility of a third eigenfunction being complex is excluded. Therefore, f must have a
generalized eigenvector field, which we denote s. Let cfj and Ffj denote structure coeflicients

and Christoffel symbols for V relative to the frame {r1,rs,s}. First, assume for contradiction
that A! # A2. Then either

Vef =11 +A's or Vif=rs+ s (139)

Without loss of generality we assume that the second equality holds (if not, relabel r; and rs).
Then (100) together with (86) and the second equation in (139) imply

oAy + EoNry + By (ra + A2s) = Vi, (A2 12) — Vi, (A 1y). (140)

Using (86) again and collecting the coefficients for s, we obtain I'3; (A2 — A!) = 0. Condition (87)
implies I'3; # 0 on an open neighborhood of 4, and, therefore, A = A\? on this neighborhood.
Next, let A\' = A2 = X. Then, since s is a generalized eigenvector field, we must have

st =ary + fra + As, (141)

where o and 8 are functions with a(@) or 5(@) non-zero. Assume for contradiction that A is a
constant function on a neighborhood of @. Then (100) together with (86) and (141) imply that

choAry 4+ 3Arg + ¢y (ary + Bry 4+ As) = AVy, 1y — AV, 1. (142)

On the left hand side of (142), we notice that cioAry + cZoAra + cisAs = X [rq,12]. At the same
time, the right hand side of (142) equals to A [ry,rs] due to the symmetry condition (11). Then
ary + fre = 0, which contradicts our assumption that vectors r1|; and ra|; are independent
and « and S are functions with «(@) or S(#) non zero. Thus A is a non-constant function. [

Lemma 6.7. Let R = {r1,ra} be a non-involutive partial frame satisfying condition (87).
Assume £ € F(R) is a non-hyperbolic flux. Then all other non-hyperbolic fluzes in F(R) are of
the form cf + (trivial flur) where ¢ # 0 € R.

Proof. (1) Let f € F(R) be a non-hyperbolic flux. By Lemma 6.6 there exists a non-constant
function A in a neighborhood of #, such that f and A = A2 = X\ satisfy (86). A calculation
shows that if A € R and f € F'¢ (see (27)), then c¢f + M is a non-hyperbolic flux which verifies
(86) (with A\' = A2 = ¢ A + ). Recalling (28), we conclude that cf + (a trivial flux) belongs to
F(R); clearly these fluxes are non-hyperbolic. It remains to show that any non-hyperbolic flux
in F(R) is of this form.

(2) Lemma 6.4 implies that the function X together with the functions

a' := —ry()) and a? = r1()\) (143)
satisfy the following system (these are (92)7(97) in the case A\! = \2):

ri(\) = — (Fi’la +2T%,a%), (144)

L5,

1
ra(\) = ——5 (213, a' + T3, a%), (145)

F12

1‘2(0,1) (023 F21) F%2 a2, (146)
ri(a®) = -TT, a' + (c}3 — TTy) d®, (147)
(al) s(A\) = (Fh 013)a —F12a (148)
ry(a®) —s(A) = =T, a' + (¢33 — T3y)a®, (149)
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where the functions I‘k are Christoffel symbols for V relative to the frame {r1,re,s:=[r1,r2]}.
Equation (143) 1mmed1ately imply that

s(A) = r1(r2(\)) = r2(ri(V)) = —r1(a’) — ra(a®). (150)

Then from (150), together with (148) and (149), we obtain:

1 ) 1 ;
s(A\) = 3 (T}, +T3 —cly)a' + 3 (T3, + 1y — ¢33) a?, (151)
1 . 1
ri(a') 3 (=207, + T3 +2c83)a' + 3 (I3, — 2T, — c35) a?, (152)
1 1
ry(a®) = 3 (T}, — 273, — cfg)a’ + g (=203, + iy + 2¢33) a®. (153)

From Lemma 6.6 we know that A is a non-constant function, and, therefore, at least one of its
derivatives in the frame directions must be non-zero. Examining (143) and (151), we conclude
that at least one of the functions a' or a? is non zero. Without loss of generality, we assume
that a' # 0 (otherwise, relabel r1 and r3).

(3) Equations (143), (144), (145) imply

rf T+l a
M1 T, w | = 0. (154)
Since [a', a?]" is non-zero, the determinant of the matrix in (154) must vanish, i.e.

9035 — (T, + 1)(I5; — 1) = 0. (155)
Substituting ¢3, = 1 in (155) and simplifying, we get the condition
[, 051 — (cfy)? =71 T, (156)

(4) At least one of the expressions I}, + 1 or I's; — 1 is non-zero: if both were zero, then

¢3; = —2, which contradicts our assumption that the c” are the structure coefficients for the
frame {rl,rg,s = [r1,r2]}. Thus (154) has a one parameter family of solutions. In part (2) of

the proof, we argued that we may assume a' # 0. Then, from (154), we can express
a*=aal, (157)

where a(u) is a known function expressible in terms of the I‘fj (Explicitly, if '}, # —1, then

F§1j3+1’ otherwise, we can show that '3, # 0 and a = Figz) Substitution of (157) into (143),

(146), (151), and (152), gives

o =

r(\) = (158)
ra(A) = (159)
s(\) = ay (160)
ri(a') = azal (161)
ry(a’) = aza', (162)

where «, aq,as, a3 are known functions, expressible in terms of the functions Ffj and their
derivatives. Substituting (161) and (162) in the commutator relationship, we conclude that

s(a') = ri(ra(ah)) — ra(ri(a')) = agal, (163)
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where ay is another known function, expressible in terms of the functions I‘fj and their deriva-
tives. The system (158)-(163) is a Frobenius system for the two unknowns A and a!, and so its
solution depends on at most two arbitrary constants.

(5) Parts (1) and (2) of the proof show that there exist non-constant functions A and a! =
—r3(\), satisfying (158)-(163), giving a 2-parameter family of solutions A, 5 = cA+ A, a} = ca’,
where ¢, \ are arbitrary constants. Part (4) shows that there are no other solution. Also, each
Acx» With ¢ # 0, corresponds to a 3-parameter family of non-hyperbolic fluxes ¢ f + M, where f €

Fid. We conclude that any non-hyperbolic flux in F(R) is of the form cf + (a trivial flux). O

Remark 6.8. From (143) it follows that if £ is a non-hyperbolic flux for | = {r1,ra}, then
s = [r1,r2] is a generalized eigenvector field of £. Indeed,

%{rhrz]f = %m%rzf — 6r2%r1f = %rl (Arg) — 61‘2 (Ary) = a'ry; 4+ a’ro+ A [r1,12]. (164)

Proof of Theorem 6.1: 1. We want to show that a non-zero flux f € F(R)/F" is either strictly
hyperbolic or non-hyperbolic. Assume that there exists a non-strictly hyperbolic flux f € F(fR).
Then f has the third eigenvector field r3 and at least two of the corresponding eigenvalue
functions A', A? and A\? coincide in an neighborhood of a fixed point @ € Q. Examining the r3
component of the expended flatness condition (100), we conclude that

[y A% = T5 A = ¢y N2, (165)

where here cfj and I‘fj denote structure coefficients and Christoffel symbols for V relative to the

frame {ry,ra,rs}. (165) must hold as an identity near @, and may be written as
I3, (A2 =2 T3, (A =A%) =o0. (166)

From the assumption of the theorem it follows that I'$, # 0, I'3; # 0, and I'}, # I's;. From (166)
we conclude that if any two of the functions AL A2, A3 are equal, then all three of them must be
equal, to A\(u), say. This implies that V,.f = Ar for any r € X(2). The flatness conditions

Vierrdf = Ve, Vi f = Vi, Vi £ fori=2,3,

then imply that
Alry, ] =r1(Ar;) —r;(Ary) for i =2,3.

As the right hand side of the above equation is A [ry,r;] +ri(A)r; —r;(A)ry, and ry,ro, r3 are
independent, we conclude that r;(A\) = 0 for i = 1,2,3. Therefore, A = A € R is a constant
function. This implies that f is a trivial flux, and the statement is proven.

2. From Lemma 6.7, if F(R) contains strictly hyperbolic fluxes, then up to adding a triv-
ial flux, it contains exactly a one parameter family of non-hyperbolic fluxes. Therefore, if
dim F(R)/F"Y > 1, then F(R) contains hyperbolic fluxes, and, from the first part of the
theorem, we know that all non-trivial hyperbolic fluxes in F(fR) are strictly hyperbolic.

3. In the proof of Lemma 6.7 (see (156)), we showed that if F(R) contains non-hyperbolic
fluxes, then (88) holds with cfj and I‘fj being the structure coefficients and Christoffel symbols

of the connection V relative to the frame {ry,r, [r1,r5]}. Then Lemma 6.3 asserts that (88)
holds with ¢ and T' corresponding to any completion {ry,rs, s} of R to a frame. (I

Proof of Theorem 6.2: 1. We want to show that 0 < dim F(R)/F" < 4. Lemma 6.5 asserts
that under the assumptions of Theorem 6.2, the set of pairs of functions A(R) = {(A\!, A\?)}
satisfying condition 2 of Lemma 6.4 is a real vector space of dimension at most 5. In addition,
Lemma 6.4 implies that for every A\! and \? satisfying condition 2, there exists a unique (up to a
constant vector) flux f satisfying (86). Thus dim F(R) < 8. On the other hand, F(R) contains
a 4-dimensional subspace of trivial fluxes, giving the stated inequality.

2. For k =0,...,4, Examples 7.4-7.8 exhibit partial frames, satisfying the assumptions of
the theorem, and with dim F(R)/F"Y = k. O
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7 Examples

The examples provided in this section illustrate the main results of the paper and also provide
a proof for the existence statement in Theorem 6.2. The computations were performed with
MAPLE by setting up systems of differential equations for f and A and applying pdsolove.

7.1 Rich partial frames

For rich partial frames satisfying (51) Theorem 5.7 gives the degree of freedom for prescribing
A and f satisfying the F(R)-system (25). The theorem also asserts that F(9R) contains strictly
hyperbolic fluxes. The following three examples demonstrate these results. They also illustrate
the fact that a hyperbolic flux corresponding to a rich partial frame may have a non-rich full
frame. In fact, there are three different scenarios: in Example 7.1 all strictly hyperbolic fluxes
in F(R) are rich, in Example 7.2 all hyperbolic (strictly and non-strictly) fluxes in F(R) are
non-rich, and in Example 7.3 F(R) contains both rich and non-rich strictly hyperbolic fluxes.

In the following examples, n = 3 and m = 2. The standard affine coordinates in R3 for the
connection V are denoted by (u,v,w). We start with a simple example, a partial frame given
by the first two standard vectors in R3.

Example 7.1. Let r; = [1,0,0]7 and ry = [0,1,0]7 comprise a partial frame R on R3. It is
clear that 9% satisfies the assumptions of Theorem 5.7, and as predicted by this theorem A! and
A2 are parametrized by two functions of two variables:

M= o(u,w) and A = (v, w). (167)
For each such pair of A! and A\? we get a family of fluxes in F(9R) parametrized by three arbitrary

functions of one variable, g, h and k:

T

- { [ dtswyds + gtw). [ wlsw)ds +hiw).biw)| (168)

On the other hand, we could start by parametrizing the set F(R) by two arbitrary functions ®
and VU of two variables and an arbitrary function k£ of one variable:

f=[®(u,w), ¥(v,w), k(w)]"  with A =9,®, A\ =09,V. (169)

Of course, (169) is equivalent to (167)-(168), but in (169) the functions g, h are absorbed into ®
and U. While (169) is simpler, (167)-(168) more closely illustrates the argument in the proof of
Theorem 5.7. Obviously, for most choices of ®, ¥, and k, the resulting flux is strictly hyperbolic.

We finally show that all strictly hyperbolic fluxes in F(R) are rich. Let rs be the third
eigenvector field of a hyperbolic flux f € F(R). Since r3 is linearly independent of ry and ro,
it can be, up to rescaling, written as r3 = [a,b,1]7, where a and b are functions on R3. As
%rgrl = %rg ro = 0, we have in particular that

I3, =T%, =0 and therefore cly =T, and  c33 =3 (170)

We also have
3, =I5 =c,=0. (171)

Substituting (170) and (171) into (41) produces two equations:
M, (A=A =0 and T3;(\° -\ =0. (172)

If Tl; # 0 or I'2; # 0, then (172) implies that A3 = A! or A*> = A2 and therefore f is not strictly
hyperbolic. If I'}; = 0 and I'?; = 0, then (171) implies that c; = 0 and ¢ = 0, and therefore
f is rich. Thus F(R) does not contain non-rich strictly hyperbolic fluxes.
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On the other hand, the following example presents a rich pair of vector fields satisfying (51)
and which admits only non-rich hyperbolic fluxes.

Example 7.2. Consider the partial frame %R consisting of the vector fields r1 = [1,0,0]7 and
ry = [w,1,0]T on a set @ C R® where w # 0. As [r;,rs] = 0, Vriry = 0, and Vror, = 0,
we are in the case considered in Theorem 5.7. As predicted by Theorem 5.7, the freedom for
prescribing A! and A? consists of two arbitrary functions of two variables:

M =¢(w,v—2) and A2 = (v, w). (173)

The corresponding family of fluxes is
u T

- [w [ vwrds—w [ oo ds + glw). [ vl ds + i) k)|

where g, h and k are arbitrary functions of one variable.

Proposition 5.3 gives that for any @ € Q and any choices of ¢ and 9 such that the \!(u) #
A2(@), one can find functions h,g and k so that the resulting flux f is strictly hyperbolic.
For a concrete example, let ¢ (w,v — %) = —L and ¢(v,w) = 0, g(w) = h(w) = 0 and
k(w) = —L —logw. We observe that the flux

U 1 T
f=|v——,0,—— —logw
w w
is strictly hyperbolic with eigenvalues
1 1-—
M=—2,  X=0, N="C1,
w w

and with the third eigenvector given by r3 = [u,0,1]7.

We now show that, although the partial frame R is rich, the corresponding set of fluxes
F(R) does not contain any rich hyperbolic fluxes. Indeed, let r3 be the third eigenvector of a
strictly hyperbolic flux in F(R). Up to a scaling, any vector field which is linearly independent
from r; and ra, is of the form r3 = [a,b, 1]7, where a and b are arbitrary functions on R3. Since
[r3,12] = [1,0,0]7, we have ¢}, = 1, and, therefore, there is no rich hyperbolic fluxes in F(R).

Finally, we present an example of a rich partial frame R, which admits both rich and non-rich
strictly hyperbolic fluxes.

Example 7.3. Consider a partial frame R, consisting of the vector fields r1 = [1, —/u,0]” and
ry = [1,—+v/u,0]T on a set Q C R where u # 0. One can directly check that the assumption of
Theorem 5.7 are satisfied.

Adjoining the third vector field r3 = [0, 0, 1], we obtain a full rich frame, which also satisfies
the hypothesis of Theorem 5.7, and thus admits strictly hyperbolic fluxes, all of which belong to
F(R) by construction. We do not include the general explicit expression for these fluxes, which
is rather long and involves special functions.

On the other hand, if we adjoin vector field ¥3 = [1, 0, —u], we obtain a non-rich full frame
(with ¢24 = such that modulo F%"V, it has a l-parameter family of strictly hyperbolic
fluxes:

7&%
u?
f:a[v,7+w,O]T, where a # 0 € R, (174)

with the eigenvalues

M=—Vu;, X=Vu AN =0.
By construction, F(R) contains fluxes (174), and thus it contains both rich and non-rich strictly
hyperbolic fluxes.
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7.2 Non-involutive partial frames of two vectors fields in R>.

We next present examples of non-involutive partial frames R = {r;,r2} on some open subsets of
R? which illustrate Theorems 6.1 and 6.2. We continue with examples satisfying the hypotheses
of Theorem 6.2. These examples illustrate the second claim of this theorem, assuring that
for each k£ = 0,...,4, there exists R, meeting the assumptions of the theorem and satisfying

dim F(R)/Fiv = k.

Example 7.4 (dim F(R) /]_-mv = 0). For a partial frame PR consisting of vector fields ry =
[0,1,4)T and ry = [w,0,1]7 all fluxes are trivial.
)

Example 7.5 (dim F(R)/F"Y = 1). For a partial frame R consisting of vector fields r; =
[v,u,w]T and ry = [u,w,v]T, on an open subset 2 C R? where these vectors are independent,
the non-trivial fluxes form a 1-parameter family:

T
c1 1, 1, 1,
f=—"-"—|—u"—w,—(u+v)(u+w) — v, vw+ Zw
arerer |3 (et v)(u+w) = S0 vw +

This frame does not satisfy condition (88) and, therefore, in agreement with Theorem 6.1, all

non-trivial fluxes are strictly hyperbolic with eigenfunctions

U—v v—w

Al = —_— AQ = D EEEEEE— )\3 - 0
cl(u+v+w)2’ cl(u—i—v—i—w)?’

The third eigenvector is equal to rz = [u,v, w]?.

Example 7.6 (dim F(R)/F" = 2). For a partial frame R consisting of vector fields r; =
[~1,0,v +1]7 and ry = (o257 —1,u]T defined on an appropriate open subset of R?, the set of
non-trivial fluxes forms a two-dimensional vector space”:

(v =1 u+w)Ei(v —1) —el~vu uv + w
f=c 1 [(v=1)?Ei(v—1) — (3v+2)e! ] +co g ,
(v+1)((1 —v)u—w)Ei(v—1)+ (2(v + Du + w)e! = u(l—v?) —ovw
where Ei(z) = [;© e;m dt is the exponential integral. This frame does not satisfy condition (88)

and therefore, in agreement with Theorem 6.1, all non-trivial fluxes are strictly hyperbolic with
eigenfunctions

M= —ci2Ei(v—-1)+e'"") —ca, N =c1((v—1)Ei(v—1)4ve! ™) +cov, N = cre! Tty
The third eigenvector of [Df] is
ry = [e1 Bi(v — 1) + 2,0, ¢1 (2¢" ™" + (v — 1) Ei(v — 1)) — ¢ (v — 1)]

Example 7.7 (dim F(R)/F"Y = 3). For a partial frame R consisting of vector fields r; =
[1,/w,0]T and ry = [u,0, —w]T the set of non-trivial fluxes forms a three-dimensional vector
space:

3uvy/w — v? — wiw v Uy/w —v
f=c uvw +co |uw| +c3 0
3/2
w2 — yw? 0 wt

3

L¢3, we obtain a 1-parameter family of non-hyperbolic fluxes

In this case, when ¢; = 0 and ¢z = 3

1 1 w3/2 r
fob — fw — = v, = =z
c |uvw 21},2uw7 3 ,

"Technically, we should say “the set of non-trivial fluxes and the zero flux form a two-dimensional vector space.”
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with the eigenfunctions
1
M =)= ic\/w.

We also confirm that PR satisfies the necessary condition (88) for admitting non-hyperbolic
fluxes. To check this we complete R to a frame, e.g., by adjoining the vector field s = [ry,rs] =
[1, 2w, 0]7. We also confirm Remark 6.8: s is a generalized eigenvector, viz.

Vef = %c\/ﬁs + ic\/@rl.
In agreement with Theorem 6.1, all other fluxes are strictly hyperbolic with the eigenfunctions:
M = e1 (vy/w + uw) + cav/w;
A= (20\/@ - uw) + %3\/@,
A3 = ¢ (2uvw — 3uw) — cov/w + c3v/w.
The third eigenvector of [Df] is:

A RuAPw—2v%)+ c1ca(Bvwu —v) — crez (Vwu+v) +ci—cacs
r3 = L (c1v+ ) (a (Vwv+uw) + co )
2ciw (c1 (YVwv+uw)+ o J/w)

We observe that, in this last case, the dependence of rs on c;, ¢ and c3 is non-linear.

Example 7.8 (dim F(R)/FV = 4). For a partial frame R consisting of vector fields r; =
[1,0,v]7 and ry = [0, 1, —u]”, the set of non-trivial fluxes forms a four-dimensional vector space:

2u (w+uv) 2u? uv+ w 0
f=c [2v(w—uv)| +c |w—uv| +ecs —2v% | 4+ ¢4 2v
w? + 3uZv? 2u%v 2 uv? w — uY

This frame does not satisfy condition (88) and, therefore, in the agreement with Theorem 6.1,
all non-trivial fluxes are strictly hyperbolic with eigenfunctions

M =2¢; (w+3uv) +4cou —2c3v;
AN =2¢ (w—3uv) —2cou—4czv+2cy;
A =2ciw+ cou— c3v + ¢y
The third eigenvector of [Df] is
r3 = [—201u—03,2qv+02,2cluv+202u+203v—04]T

Finally, we give another maximal-dimensional case where F(R) contains non-hyperbolic fluxes.

Example 7.9 (dim F(R)/F"Y = 4). For a partial frame R consisting of vector fields r; =
[1,0,2v]T and ry = [0, 1,u]T, the set of non-trivial fluxes forms a four-dimensional vector space:

u (uv — w) u? w — UY 0
f=c —2v (2uv — w) +ea [2Quu—w)| +e3| 20 | 4y v
—6uv(uv —w) — 2w? 2u?v 2 uv? 2uv — w

When ¢; = ¢3 = ¢4 = 0 and ¢ = 1, we obtain a 1-parameter family of non-hyperbolic fluxes

frh— ¢ [u2,2 (2uv — w),2u2v]T
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with eigenfunctions
M =X =2cu.

In agreement with Theorem 6.1, all other fluxes are strictly hyperbolic with eigenfunctions

M=—ciw+2cu+csv
N =2¢ (w—3uv)+2cu+4dczv+ ey,

N =2¢ (Buv—2w) +2cu—2c3v — cy,

and
r3=[ciu—czciv—co(buv—3w)— cou— 031)—04]T

Remark 7.10. In Examples 7.6-7.9, where 2 < dim F(R)/F < 4, the following interesting
phenomenon occurs. For the basis fluzes f1, ..., £ presented in these examples (k =2,...,4, de-
pending on an example), the corresponding Jacobian matrices DFY, ..., DFy, have the additivity
of eigenvalues property, called the property L by Motzkin and Taussky in [10, 11]. By construc-
tion, r1 and ro are eigenvectors of DFy, ..., DFy. It is therefore obvious that, if A\, ..., )\i are
the eigenvalues for vy of DFy, ..., DFy, respectively, and \3,..., A3 are the eigenvalues for ra
of DFy, ..., DFy, respectively, then for f = c1f; + - -+ + cfy, the Jacobian matriz DF has the
eigenvalue \' = ¢; /\% +-- 'Jrck)\,lc for the eigenvector r1 and the eigenvalue A2 = cl)\% +-- ~+ck)\i
for the eigenvectors ro. However, we note that also the third eigenvalues also “add up.” Indeed,
in all of the examples, \> = c1 A3+ -+ A} is the third eigenvalue of Df, where A3, ..., A} are
the third eigenvalues of DF}, ..., DF}, despite the fact that these matrices have non-collinear
third eigenvectors r31,...,r3 .

Our last example shows that even when the first assumption in Theorem 6.2, i.e., the neces-
sary condition (87) for strict hyperbolicity, holds, the second assumption, i.e., (89), may not.

Example 7.11. Consider the partial frame R defined consisting of the vector fields r; =
[1,0,w]” and ry = [0,1, -3 In(w) + u]”, for which (87) holds. The vector field s = [0,0, 1]*
completes R to a frame, and relative to this frame we have

Fg2(“) F:ﬁ(“) - 9F§2(U) F§1(U) =0. (175)

(This example was obtained by setting up a differential equation on the components of vector

fields ry and ry, induced by the identity (175) and finding its particular solution.) For this

partial frame the vector space F(R)/F" is one dimensional:
f=clge™ e w e w (u—FIn(w)+ %)]T.

This frame does not satisfy condition (88), and therefore, in agreement with Theorem 6.1, all
non-trivial fluxes are strictly hyperbolic with eigenfunctions

M= —lee M=ce™ (u—3In(w)), A3 =0,

and the third eigenvector field is r3 = [0,1,0]%.
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