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Abstract

Let Ω ⊂ Rn be open and let R be a partial frame on Ω; that is, a set of m linearly independent
vector fields prescribed on Ω (m ≤ n). We consider the issue of describing the set of all maps
F : Ω → Rn with the property that each of the given vector fields is an eigenvector of the
Jacobian matrix of F . By introducing a coordinate independent definition of the Jacobian, we
obtain an intrinsic formulation of the problem, which leads to an overdetermined PDE system,
whose compatibility conditions can be expressed in an intrinsic, coordinate independent manner.
To analyze this system we use Darboux and generalized Frobenius integrability theorems. The
size and structure of the solution set of this system depends on the properties of the partial
frame; in particular, whether or not it is in involution. A particularly nice subclass of involutive
partial frames, called rich frames, can be completely analyzed. The involutive, non-rich case is
somewhat harder to handle. We provide a complete answer in the case of m = 3 and arbitrary n,
as well as some general results for arbitrary m. The non-involutive case is far more challenging,
and we only obtain a comprehensive analysis in the case n = 3, m = 2. Finally, we provide
explicit examples illustrating the various possibilities.

Keywords: Jacobian matrix and map; affine connections; prescribed eigenvectors; integrability
theorems; conservative systems; hyperbolic fluxes.
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1 Introduction

The present work deals with the construction of maps F : Ω ⊂ Rn → Rn whose Jacobian matrix
has a partially prescribed set of eigenvector fields on Ω. We consider this problem locally, i.e.,
in a sufficiently small neighborhood of a given point in Ω. The case when the full frame of
n independent eigenvectors is prescribed has been considered in [7]. The generalization to a
partially prescribed set of eigenvector fields allows a greater degree of flexibility in constructing
such maps F and, in particular, it allows us to include maps F whose Jacobian matrix is
not diagonalizable. Another difference from the previous work is that all the overdetermined
systems of PDEs arising in the current paper are analyzed using smooth1 integrability theorems,
including a recently proved generalization of the Frobenius theorem (see Section 3.3). This
theorem allows us to remain in the smooth category, while in [7] we appealed in some cases to
the Cartan-Kähler theorem, which requires analyticity.

Our motivation stems from the study of initial value problems for one dimensional conser-
vative systems of the form

ut + F (u)x = 0, u(0, x) = u0(x), (1)

where t ∈ R and x ∈ R are the independent variables, u = u(t, x) ∈ Rn is a vector of unknowns,
and the flux function F is defined on some open set in Rn and takes values in Rn. One approach

1We employ C1 integrability theorems, but to avoid technicalities C∞-smoothness is assumed throughout.
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for constructing solutions to (1) exploits Riemann problems. These are initial value problems
for (1) with data of the form

u0(x) =

{
u− x < 0
u+ x > 0,

(2)

where u± are constant vectors. Lax [8] provided the general form of such solutions. The
seminal work of Glimm [6] used Riemann solutions as local building blocks to prove global-in-
time existence of weak solutions, provided the initial data u0(x) have sufficiently small total
variation. For detailed accounts of this theory see [14, 3, 4]. It is largely an open problem to
extend the Glimm theory to systems of physical interest beyond the regime of small variation
solutions.

Solutions to Riemann problems depend essentially on the eigen-structure (i.e., eigenvalues
and eigenvectors) of the Jacobian DF (u). It is then a basic question to what extent one can
prescribe some or all of the eigenvectors of the flux F , regarding the eigenvalues as unknowns.
The present work is concerned with this last, purely geometric, problem.

A precise formulation of the problem is provided in Section 2. This first formulation, “Prob-
lem 1,” makes use of a chosen coordinate system. Section 3 provides the geometric framework
required to obtain a coordinate-free formulation. We also state an integrability theorem due
to Darboux and a generalization of the Frobenius integrability theorem, which we use in this
paper. In Section 4, we give an intrinsic (coordinate independent) definition of the Jacobian,
and use it to reformulate Problem 1 in an intrinsic manner (see Problem 2). Exploiting the
coordinate independent formulation, Section 5 treats the case when the prescribed vector fields
are in involution, and, in particular, the case of rich partial frames. In the involutive case, the
relevant integrability conditions lead to a closed algebro-differential system for the unknown
eigenvalues. Section 6 analyzes the simplest non-involutive case of two prescribed vector fields
in R3. Finally, Section 7 provides a list of examples that illustrate the results from the earlier
sections.

2 Problem formulation

Let [DuΨ] denote the Jacobian matrix of a map Ψ from an open subset Ω ⊂ Rn to Rn, relative
to coordinates u, i.e.

[DuΨ] =

[
∂Ψi

∂uj

]
i,j=1,...,n

.

We use the notation [DuΨ]|u=ū, or simply [DuΨ]|ū, when the matrix is evaluated at a point ū.
We consider the following problem:

Problem 1. Given an open set Ω ⊂ Rn on which we fix a coordinate system u = (u1, . . . , un)
and a point ū ∈ Ω. Let R = {R1, . . . , Rm} be a set of m ≤ n smooth vector valued functions
Ri : Ω → Rn which are linearly independent at ū. Then: describe the set F(R) of all smooth
vector-valued functions

F (u) = [F 1(u), . . . , Fn(u)]T

defined near ū and with the property that R1(u), . . . , Rm(u) are right eigenvectors of the Jacobian
matrix [DuF ]|u throughout a neighborhood of ū. In other words, we ask that there exist smooth,
scalar functions λi such that

[DuF ]|uRi(u) = λi(u)Ri(u), i = 1, . . . ,m, (3)

holds on a neighborhood of ū.

As noted above, we are motivated by the construction of flux functions F in systems of
conservation laws of the form (1). The system (1) is hyperbolic on Ω provided the Jacobian
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matrix [DuF ] has a basis of real eigenvectors at each u ∈ Ω, and it is strictly hyperbolic if all its
eigenvalues are distinct at each u ∈ Ω. We adopt the term flux for a vector-function satisfying
(3), with adjectives hyperbolic, strictly hyperbolic or non-hyperbolic depending on the structure
of eigenvectors and eigenvalues of [DuF ], as described above. F(R) will be called the flux space.

Next, we clarify the meaning of “describe” in Problem 1 and make some basic observations.

1. (PDE system) Equations (3) comprise a system of mn first order PDEs for n+m unknown
functions λi and F j :

n∑
k=1

Rki
∂F j

∂uk
= λiRji for i = 1, . . . ,m, j = 1, . . . , n, (4)

where Ri(u) = [R1
i (u), . . . , Rni (u)]T , i = 1, . . . ,m. For all n ≥ m, such that n > 2 and

m ≥ 2, this system is overdetermined with (as we show below) non-trivial compatibility
conditions. Although derivatives of λi do not appear in the equations, these functions are
not arbitrary parameters, but must, in turn, satisfy certain differential equations arising
as differential consequence of (4).

2. (Vector space structure) Let F1, F2 ∈ F(R) have domains of definitions Ω1 and Ω2, respec-
tively. As ū belongs to both Ω1 and Ω2, then Ω1 ∩ Ω2 is a non-empty open neighborhood
of ū. It is easy to check that for any real numbers a, b, the linear combination aF1 + bF2,
defined on Ω1 ∩Ω2, belongs F(R). Thus F(R) is a vector space over R. We will see below
that in some instances this is a finite dimensional vector space, while in others it is an
infinite dimensional space. In the latter case, we describe the “size” of F(R) in terms
of the number of arbitrary functions of a certain number of variables appearing in the
general solution of (4). These arbitrary functions prescribe the values of F and λ’s along
certain submanifolds of Ω. To obtain these results we use the integrability theorem stated
in Section 3.3.

3. (Trivial solutions) For any choice of λ̄ ∈ R and f̄ ∈ Rn, the “trivial” flux

F (u) = λ̄u+ f̄ (5)

satisfies (3). The set of such trivial solutions, denoted by F triv, is an (n+ 1)-dimensional
vector subspace of F(R).

4. (Triviality is generic) For n > 2 and m ≥ 2, the compatibility conditions for system (4)
imply that the non-trivial fluxes exist only for partial frames that satisfy some non-trivial
algebra-differential equations and, therefore, a generic frame admits only trivial fluxes.
One of the goals of the paper is to determine the properties of the frames that allow them
to possess non-trivial, and, in particular, strictly hyperbolic, fluxes.

5. (Scaling invariance) Since eigenvectors are defined up to scaling, it is clear that

F(R1, . . . , Rm) = F(α1R1, . . . , α
mRm) (6)

for any nowhere zero smooth functions αi on Ω.

The next remarks address the coordinate dependence of Problem 1.

Remark 2.1 (Coordinate dependence of the problem formulation). Assume F (u) ∈ F(R)
for R = {R1, . . . , Rm}, i.e., there exist λ1(u), . . . , λm(u), such that system (3) is satisfied.
Let a change of variables be given by a local diffeomorphism u = Φ(w). It is then not true,
in general, that F̃ (w) = F (Φ(w)) belongs to F(R̃), where R̃ = {R̃1(w), . . . , R̃m(w)}, with
R̃i(w) = Ri(Φ(w)). Indeed,

[Dw (F ◦ Φ)] R̃i = [DuF ]|u=Φ(w)[DwΦ]Ri(Φ(w)).
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In general, Ri(Φ(w)) is not an eigenvector of [DuF ]|u=Φ(w)[DwΦ]. Furthermore, if we transform
each Ri(u), by treating them, more appropriately, as vector fields, viz.

R∗i (w) = [DwΦ]−1Ri(Φ(w)),

then

[Dw (F ◦ Φ)]R∗i = [DuF ]|u=Φ(w)[DwΦ][DwΦ]−1Ri(Φ(w))

= [DuF ]|u=Φ(w)Ri(Φ(w))

= λi(Φ(w))Ri(Φ(w)) = λi(Φ(w)) [DwΦ]R∗i (w),

and we see that R∗i (w) is not an eigenvector of [Dw (F ◦ Φ)], unless it is an eigenvector of [DwΦ].

Remark 2.2 (Coordinate dependence of the property of a matrix being a Jacobian matrix).
Assume A(u) = [DuF ] for some smooth map F : Ω → Rn, and let a change of coordinates to
be given by a diffeomorphism u = Φ(w). Then it is not necessarily the case that the matrix
A(Φ(w)) is a Jacobian matrix of any map in w coordinates.

On the other hand, it is still possible to give a coordinate independent definition of the
Jacobian linear map, as we do in Section 4.1. This coordinate independent definition is used
to formulate a coordinate independent version (Problem 2), which, when expressed in an affine
system of coordinates (see Section 3.2), coincides with Problem 1. This intrinsic formulation
allows us to apply a geometric approach to analyze the solution set of the PDE system (4).
We exploit this by working in frames that are adapted to the problem at hand, and we use the
following geometric preliminaries.

3 Geometric preliminaries

Most of the material in Sections 3.1 and 3.2 can be found in standard differential geometry text-
books. We include it to set up notation and to make the paper self-contained. In Section 3.3,
we state an integrability theorem due to Darboux and a generalization of the Frobenius inte-
grability theorem, which are repeatedly useed in the paper to analyze overdetermined systems
of PDEs.

3.1 Partial frames, involutivity, richness

As usual we identify a smooth vector field r on an open subset Ω pf Rn with a derivation, i.e.
with R-linear map from the set of smooth functions C∞(Ω) to itself that satisfies the product
rule. The set of all smooth vector fields is denoted as X (Ω).

Definition 1 (Partial frame). A set of smooth vector fields {r1, . . . , rm} on Ω ⊂ Rn, with
m ≤ n, is a partial frame on Ω if they are independent at all ū ∈ Ω. If m = n, the set is called
a frame.

For a fixed system u1, . . . , un of coordinate functions on Ω, the frame
{

∂
∂u1 , . . . ,

∂
∂un

}
of

partial derivatives is called a coordinate frame. We shall see below that using non-coordinate
frames simplifies our problem. Non-coordinate frames do not commute. The commutator of two
vector fields is called a Lie bracket: for r1, r2 ∈ X (Ω), their Lie bracket is the map C∞(Ω) →
C∞(Ω) defined by

[r1, r2]φ = r1(r2(φ))− r2(r1(φ)).

Straightforward calculations show that [r1, r2] is a vector field, obviously the Lie bracket is
skew-symmetric, and one can check that Jacoby identity is satisfied. Therefore, X (Ω) has the
structure of an infinite-dimensional real Lie algebra.
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For a frame R = {r1, . . . , rn}, one can express the Lie bracket of every pair of vector fields
from R as a linear combination:

[rj , rk] =
n∑
l=1

cljkrl, (7)

where cljk, satisfying cljk = −clkj , are some smooth functions on Ω, called structure coefficients.
In the conservation laws literature, these functions are called interaction coefficients because of
their role in wave interaction formulas [6]. Equations (7) are called structure equations. The
Jacobi identity implies the relationships, that will be used later

rl
(
cijk
)

+ rk
(
cilj
)

+ rj
(
cikl
)

+
n∑
s=1

(
csjkc

i
ls + csljc

i
ks + csklc

i
js

)
= 0 1 ≤ i, j, k, l ≤ n. (8)

Below we give definitions of partial frames with especially nice properties.

Definition 2 (Commutative partial frame). A partial frame R = {r1, . . . , rm} is commutative
if [ri, rj ] = 0 for all ri, rj ∈ R.

Definition 3 (Involutive partial frame). A partial frame R = {r1, . . . , rm} is in involution if
[ri, rj ] ∈ spanC∞(Ω) R for all ri, rj ∈ R.

The proof of the following proposition is contained in the proof of Theorem 6.5 in [15].

Proposition 3.1. If {r1, . . . , rm} is a partial frame in involution on Ω, then there is a com-
mutative partial frame {r̃1, . . . , r̃m} on some open Ω′ ⊂ Ω with

spanR{r1|u, . . . , rm|u} = spanR{r̃1|u, . . . , r̃m|u} for all u ∈ Ω′.

Proposition 3.2. (Theorem 5.14 in [15]) If r1, . . . , rm is a commutative partial frame on Ω,
then in a neighborhood of each point ū ∈ Ω there exist coordinate functions v1, . . . , vn, such that

ri =
∂

∂vi
, i = 1, . . . ,m.

Definition 4 (Rich frame). A partial frame {r1, . . . , rm} is rich if every pair of its vector fields
is in involution, i.e., [ri, rj ] ∈ spanC∞(Ω){ri, rj} for all i, j = 1, . . . ,m.

Lemma 5.6 below shows that every rich partial frame {r1, . . . , rm} can be scaled to become
a commutative frame. Thus, near each point there are coordinates w1, . . . , wn and non-zero
functions α1, . . . , αn, such that αiri = ∂

∂wi , i = 1, . . . ,m. A conservative system (1) is called
rich if there are coordinate functions, called Riemann invariants, in which the system is diago-
nalizable. For definitions, and the fact that richness of a conservative system is equivalent to the
richness of its eigenframe in the sense above, we refer to [12], and Section 7.3 in [4]. Riemann
invariants are exactly the coordinates appearing in Lemma 5.6 in the case of full frame (n = m).
The term rich refers to a large family of extensions (companion conservation laws) that strictly
hyperbolic diagonalizable systems possess [4, 12].

3.2 Connections, symmetry, flatness, affine coordinates

To give a coordinate free definition of the Jacobian, we will use the notion of connection, which
we briefly recall here. A connection ∇ on Ω is an R-bilinear map

∇ : X (Ω)×X (Ω)→ X (Ω) (r, s) 7→ ∇rs

such that for any smooth function φ on Ω

∇φ rs = φ∇rs and ∇r(φ s) = r(φ) s + φ∇rs . (9)
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The vector field ∇rs is called the covariant derivative of s in the direction of r. Given a
connection ∇ and a frame {r1, . . . , rn}, we write

∇rirj =
n∑
k=1

Γkijrk, 1 ≤ i, j ≤ n, (10)

where the smooth functions Γkij are called Christoffel symbols. Conversely, by R-bilinearity and

(9), any choice of a frame and n3 functions Γkij , 1 ≤ i, j, k ≤ n, defines a connection via (10).
A connection ∇ is symmetric if for all r, s ∈ X (Ω):

∇rs−∇sr = [r, s]. (11)

A connection ∇ is flat if for all r, s, t ∈ X (Ω):

∇r∇s t−∇s∇rt = ∇[r,s]t. (12)

The above conditions are equivalent to the following relationships among the structure coeffi-
cients and Christoffel symbols relative to an arbitrary frame: for all i, j, k, s = 1, . . . , n,

Γkij − Γkji = ckij Symmetry (13)

rs
(
Γjki
)
− rk

(
Γjsi
)

=
n∑
l=1

(
ΓjklΓ

l
si − ΓjslΓ

l
ki − clksΓ

j
li

)
Flatness. (14)

Given a connection ∇, a coordinate system such that all Christoffel symbols of ∇ relative to
the corresponding coordinate frame vanish, is called affine. The following is a well known result
(compare, for instance, with Proposition 1.1 of [13]):

Proposition 3.3. A connection ∇ on an n-dimensional manifold M is symmetric and flat if
and only if M can be covered with an atlas of affine coordinate systems. Let Ω be an open
subset of a manifold M with a flat and symmetric connection ∇ and an affine coordinate system
v = (v1, . . . , vn). Then w = (w1, . . . , wn) is another affine coordinate system on Ω if and only
if [w1, . . . , wn]T = C [v1, . . . , vn]T + b̄, where u and w are treated as column vectors, C ∈ Rn×n
is an n× n invertible matrix and b̄ ∈ Rn is a constant vector.

Throughout the paper, we will use a particular connection, denoted ∇̃, defined by setting all
Christoffel symbols to be zero, relative to the coordinate frame corresponding to the coordinate
system u1, . . . , un fixed in Problem 1:

∇̃ ∂

∂ui

∂
∂uj = 0 for all i, j = 1, . . . , n. (15)

However, our coordinate-free formulation of the problem in Section 4.1, makes sense for general
connections.

3.3 Integrability theorems

To analyze the “size” of the flux space F(R) in Problem 1, we shall use two integrability results:
a theorem due to Darboux and a generalized Frobenius Theorem.

In his monograph “Systèmes Orthogonaux” [5], Darboux stated three theorems concerning
local existence and uniqueness of solutions to first order systems of PDEs of a certain type. The
most general of those is Theorem III in Book III, Chapter I. This theorem considers a system
for p unknown functions of n variables, where a subset of partial derivatives is prescribed for
each unknown function. The subset of derivatives prescribed for one of the unknowns may differ
from the subset prescribed for another. We refer to such systems as Darboux systems. The
theorem states that provided the natural integrability conditions are satisfied, there is a unique
solution for appropriately prescribed initial data. Below the theorem is stated in the smooth
case considered in this paper. However, the result is true in the C1 case as well.
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Theorem 3.4. (Darboux [5]) Let Ω ⊂ Rn, Θ ⊂ Rp be open sets, and let ū = (ū1, . . . , ūn) ∈ Ω.
For each i = 1, . . . , p, let Ii ⊆ {1, . . . , n}, and assume hij, for j ∈ Ii, are given smooth func-
tions on Ω × Θ. Consider the following system of differential equations for unknown functions
(φ1, . . . φp) defined on Ω:

∂φi

∂uj
= hij(u, φ), j ∈ Ii, i = 1, . . . , p. (16)

Assume (16) prescribes compatible second order mixed derivatives in the following sense:

(C) Whenever two distinct derivatives ∂φi

∂uj and ∂φi

∂uk of the same unknown φi are present on the
left hand side of (16), the equation

∂

∂uk
[
hij(u, φ(u))

]
=

∂

∂uj
[
hik(u, φ(u))

]
contains (after expanding each side using the chain rule) only first order derivatives which
appear in (16), and substitution from (16) for these first derivatives results in an identity
in u and φ.

Next, to describe the data, suppose a dependent variable φi appears differentiated in (16) with
respect to uj1 , . . . , ujs . Then, letting ũ denote the remaining independent variables, we prescribe
a smooth function gi(ũ) and require that

φi(u1, . . . , un)
∣∣
uj1=ūj1 ,..., ujs=ūjs

= gi(ũ) . (17)

We make such an assignment for each φi that appears differentiated in (16). Then, under the
compatibility condition (C), the problem (16)-(17) has a unique, local smooth solution near ū.

In [5], Darboux proved the theorem for the case of n = 2 and n = 3 only. In [2], we
formulated and proved a generalized version of the Darboux theorem for an arbitrary number
n of independent variables. Our result in [2] generalizes Darboux’s theorem in two ways:

(i) The unknown functions may be differentiated along vector fields in a fixed frame R =
{ri}ni=1 defined near ū. That is, for each i = 1, . . . ,m, there is an index set Ii ⊆ {1, . . . , n}
such that the system contains the equations

rj(φ
i)
∣∣
u

= f ij(u, φ(u)) for each j ∈ Ii. (18)

As in the original Darboux’s theorem, the elements and cardinality of the index sets Ii
may vary with i.

(ii) The prescribed data gi for the unknown φi may be given along a manifold Ξα through the
point ū which is transverse to the vector fields rj with j ∈ Ii.

In [2], we show that under the appropriate conditions the PDE system (18) has a unique local
solution which takes on the assigned data. For the current paper we only need a specific
case of this generalized Darboux theorem, where a PDE system on p functions of n variables
prescribes derivatives of each unknown function in the directions of the same set of m ≤ n
vector fields comprising an involutive partial frame. We refer to such systems as generalized
Frobenius systems, because when m = n, this theorem is equivalent to the PDE version of the
well known Frobenius theorem (Theorem 6.1 in [15]). The generalized Frobenius theorem stated
below claims that under the natural integrability conditions, there is a unique local solution to
a generalized Frobenius systems with initial data prescribed along any m-dimensional manifold
transversal to the given partial frame.
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Theorem 3.5 (Generalized Frobenius: PDE version). Let R = {r1, . . . , rm} be a partial frame
in involution on an open subset Ω ⊂ Rn with coordinates (u1, . . . , un). Let Θ ⊂ Rp be an
open subset with coordinates (φ1, . . . , φp). Let hij, i = 1, . . . , p, j = 1, . . . ,m, be given smooth
functions on Ω×Θ. Consider the system of differential equations

rj(φ
i(u)) = hij(u, φ(u)) i = 1, . . . , p; j = 1, . . . ,m. (19)

Assume the integrability conditions

rj
(
rk(φi)

)
− rk

(
rj(φ

i)
)

=
m∑
l=1

cljkrl(φ
i) i = 1, . . . , p; j, k = 1, . . . ,m, (20)

where the structure coefficients cljk are as in (7) (with n replaced by m), are satisfied identically

on Ω×Θ after substitution of hij(u, φ) for rj(φ
i(u)) as prescribed by (19)2. Then for any point

ū ∈ Ω and for any smooth initial data prescribed along any embedded submanifold Ξ ⊂ Ω of
codimension m containing ū and transversal3to R, there is a unique smooth local solution of
(19).

For the future use we expand conditions (20). After the first substitution of the derivatives
of φ as prescribed by (19) into (20), we get for i = 1, . . . , p and j, k = 1, . . . ,m that

rj
(
hik(u, φ(u)

)
− rk

(
hij(u, φ(u)

)
=

m∑
l=1

cljk h
i
l (u, φ(u)) . (21)

Applying the chain rule and again substituting according to (19), we obtain

n∑
l=1

(∂hik (u, φ)

∂ul
rj(u

l)−
∂hij (u, φ)

∂ul
rk(ul)

)
+

p∑
s=1

(∂hik (u, φ)

∂φs
hsj (u, φ)−

∂hij (u, φ)

∂φs
hsk (u, φ)

)
=

m∑
l=1

cljk(u)hil (u, φ) . (22)

As we mentioned above, the generalized Frobenius theorem is a particular case of the gen-
eralized Darboux Theorem proven in [2] 4. A direct proof via Picard iteration can be found in
thesis [1] of the first author. A weaker version of Theorem 3.5 (with right hand-sides of (19)
independent of φ’s) appears in Lee [9], Theorem 19.27.

Remark 3.6. If the same partial derivatives are prescribed for all unknowns (i.e., I1 = · · · =
Ip), the Darboux system (16) is a generalized Frobenius system. Conversely, using Proposi-
tions 3.1 and 3.2, one can show that for any generalized Frobenius system there is an equivalent
Darboux system, with all partial derivatives of all unknown functions prescribed for the same
set of coordinate directions. In this case, the integrability conditions (C) of Theorem 3.4 are
equivalent to the integrability conditions in Theorem 3.5. However, the manifold Ξ along which
the initial data is allowed to be prescribed in Theorem 3.5 is more general than the coordinate
subspace for which the data is prescribed in Theorem 3.4.

2The resulting equations, explicitly written down as (22), involve no derivatives of φ.
3Here transversality means that spanR{r1|ū, . . . , rm|ū} ⊕ TūΞ = Rn at very point ū ∈ Ξ, where TūΞ denotes the

tangent space to Ξ at ū.
4 An additional geometric condition on the data manifolds and the partial frame, called the stable configuration

condition (SCC) in the hypothesis of the generalized Darboux theorem in [2], is trivially satisfied in the particular
case of Theorem 3.5.
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4 Intrinsic formulation of the problem

In this section, we give an intrinsic (coordinate independent) formulation of Problem 1, which
leads to a system of differential equations written in terms of the frame adapted to the problem.
We derive some differential consequences of this system, which, in particular, lead to a set of
necessary conditions for the existence of strictly hyperbolic fluxes.

4.1 Intrinsic definition of the Jacobian and the F(R)-system

Definition 5. Given a connection ∇ on a smooth manifold M , the ∇-Jacobian of a vector field
f ∈ X (M) is the C∞(M)-linear map Jf : X (Ω)→ X (Ω) defined by:

Jf(s) = ∇sf , ∀s ∈ X (Ω). (23)

If {r1, . . . , rn} is a frame with Christoffel symbols Γkij and f =
∑n
i=1 F

i ri, then (23) implies

Jf(rj) =
n∑
i=1

(
rj(F

i) +
n∑
k=1

Γijk F
k
)

ri. (24)

To arrive to a coordinate independent formulation of Problem 1, let us return to the coordinate
system (u1, . . . , un), fixed in this problem, and consider the flat and symmetric connection ∇̃
defined by (15). Write out f =

∑n
i=1 F̃

i(u) ∂
∂ui in the coordinate frame and let J̃f denote the

∇̃-Jacobian of f . Then a direct computation shows that

J̃f
( ∂

∂uj

)
=

n∑
i=1

∂F̃ i

∂uj
∂

∂ui
,

which corresponds to the j-th column vector of the usual Jacobian matrix [Du F̃ ] of the vector
valued function F̃ (u) = [F̃ 1(u), . . . , F̃n(u)]T . Let Ri be the column vectors of the components of
ri in the u-coordinates. Observing that the right-hand side of (3) in Problem 1 can be rewritten

as
[
DuF̃

]∣∣∣
u
Ri(u) = J̃f(ri) = ∇̃rif , we formulate the following problem:

Problem 2. Assume ∇̃ is a flat and symmetric connection on Ω ⊂ Rn with ū ∈ Ω. Given a
partial frame R = {r1, . . . , rm} on Ω, describe the set F(R) of smooth vector fields f for which
there exist an open neighborhood Ω′ ⊂ Ω of ū and smooth functions λi : Ω′ → R such that

∇̃ri f = λi ri on Ω′ for i = 1, . . . ,m. (25)

From Proposition 3.3, we know that any flat and symmetric connection admits an affine sys-
tem of coordinates. If F 1, . . . , Fn are the components of f , and R1

i , . . . , R
n
i are the components

of ri in an affine system of coordinates, then (25) turns into a system of mn first order PDE’s
on n+m unknown functions F ’s and λ’s:

ri(F
j) = λiRji , for i = 1, . . . ,m, j = 1, . . . , n, (26)

which is equivalent to (3). Therefore, Problem 2 is equivalent to Problem 1.
We call system (25) the F(R)-system. The set of vector fields f satisfying (25) is called the

flux set and is denoted F(R); its elements are called fluxes for R. The flux set always includes
the set of identity fluxes F id defined by the property that

∇̃rf = r for all vector fields r ∈ X (Ω). (27)

It is easy to show that f̂ ∈ F id if and only if relative to any affine coordinates system (u1, . . . , un)

f̂ = [u1, . . . , un]T + b̄, for some b̄ ∈ Rn.

9



The previously defined vector space of trivial fluxes (5), in this more abstract setting, corresponds
to the vector space

F triv = {f ∈ X (Ω) | ∀r ∈ X (Ω) ∃λ̄ ∈ R such that ∇̃rf = λ̄r}. (28)

Equivalently, we have F triv = {λ̄ f̂ | λ̄ ∈ R, f̂ ∈ F id}. Clearly, F id ⊂ F triv ⊂ F(R) for any
partial frame R.

Remark 4.1. Both equations (25) and Problem 2 makes sense if we replace Rn with an arbitrary

manifold M , and replace ∇̃ with an arbitrary connection on the tangent bundle of M . In
particular, it would be of interest to consider this problem on a Riemannian manifold with the
Riemannian connection. These generalizations, however, fall outside of the scope of the present
paper.

4.2 Differential consequences of the F(R)-system

We next derive the differential consequences of (25) implied by the flatness of the connection.

Proposition 4.2. Given a partial frame R = {r1, . . . , rm}, assume that f ∈ F(R) is a flux,
and s1, . . . , sn−m is any completion of R to a full frame. Let the functions alk be defined by

∇̃slf =
m∑
k=1

akl rk +
n∑

k=m+1

akl st, l = 1, . . . , n−m. (29)

Then the functions λi, i = 1, . . . ,m, prescribed by (25), and the functions alk, l = 1, . . . , n−m,
k = 1, . . . , n satisfy the following system of differential and algebraic equations:

ri(λ
j) = Γjji (λi − λj) +

n∑
l=m+1

ajl c
l
ij for all 1 ≤ i 6= j ≤ m (30)

λj Γkij − λi Γkji − ckijλk =
n∑

l=m+1

akl c
l
ij for all distinct triples i, j, k ∈ {1, . . . ,m} (31)

λj Γlij − λi Γlji =

n∑
t=m+1

alt c
t
ij for all 1 ≤ i 6= j ≤ m and l = m+ 1, . . . , n. (32)

In the above equations, the functions ckij and Γkij are the structure functions and the Christoffel
symbols for the full frame R ∪ {s1, . . . , sn−m}.

[ri, rj ] =

m∑
k=1

ckijrk +

n∑
l=m+1

clij sl (33)

∇̃rirj =
m∑
k=1

Γkijrk +
n∑

l=m+1

Γlij sl. (34)

Proof. The flatness condition (12) implies that

∇̃ri∇̃rj f − ∇̃rj ∇̃rif = ∇̃[ri,rj ]f for all i, j = 1, . . . ,m (35)

must hold for the solutions of (25). Therefore,

ri(λ
j) rj + λj ∇̃rirj − rj(λ

i) ri − λi ∇̃rjri = ∇̃[ri,rj ]f . (36)

10



According to (33) and (34), (36) is equivalent to:

ri(λ
j) rj +

m∑
k=1

λj Γkijrk +
n∑

l=m+1

λjΓlij sl − rj(λ
i) ri −

m∑
k=1

λi Γkjirk −
n∑

l=m+1

λiΓlji sl

=
m∑
k=1

ckij∇̃rk f +
n∑

l=m+1

clij ∇̃sl f . (37)

It remains to rewrite the right-hand side of (37) in terms of the frame using (25) for the first
sum and (29) for the second sum:

ri(λ
j) rj +

m∑
k=1

λj Γkijrk +
n∑

l=m+1

λjΓlij sl − rj(λ
i) ri −

m∑
k=1

λi Γkjirk −
n∑

l=m+1

λiΓlji sl

=
m∑
k=1

ckijλ
k rk +

m∑
k=1

n∑
l=m+1

akl c
l
ijrk +

n∑
l,t=m+1

atl c
l
ijst.

Collecting coefficients of the frame vector fields, we obtain equations (30)–(32).

We emphasize that, in general, the structure functions ckij and the Christoffel symbols Γkij
appearing in (30)–(32), depend on the completion of R to a full frame.

Remark 4.3. We note that (30)–(32) do not provide a complete set of integrability condi-
tions for the Frobenius system (25), (29), because they do not include conditions derived from

∇̃ri∇̃sj f−∇̃sj ∇̃rif = ∇̃[ri,sj ] and ∇̃si∇̃sj f−∇̃sj ∇̃sif = ∇̃[si,sj ]. We will derive these additional
conditions in Section 6 for the case m = 2, n = 3 only, and we shall observe how involved they
are already in this case. On the other hand, we will see in Section 5, that if R is an involutive
partial frame, then (30)-(32) simplify to a system which involves only the unknown functions
λi, and this system does provide a complete set of integrability conditions for (25). In the case
of the full frame (m = n), equations (30)-(32) reduce to the λ-system studied in [7].

We can use (30)-(32) to get necessary conditions for F(R) to contain a strictly hyperbolic
flux. We shall see below that these conditions are not sufficient except for rich, partial frames.

Proposition 4.4. Let R = {r1, . . . , rm} be a partial frame on Ω ⊂ Rn containing ū. If there
is a strictly hyperbolic flux f ∈ F(R) on some open neighborhood Ω′ of ū, then for each pair of
distinct indices i, j ∈ {1, . . . ,m} the following equivalence condition holds

∇̃rirj ∈ spanC∞(Ω′){ri, rj} if and only if [ri, rj ] ∈ spanC∞(Ω′){ri, rj} (38)

Proof. If f is strictly hyperbolic on Ω′, then R can be completed to a frame of eigenvectors
r1, . . . , rm, rm+1, . . . , rn, such that there exist functions λ1, . . . , λn : Ω′ → R, with pairwise
distinct values at each point of Ω′, and

∇̃rif = λiri, i = 1, . . . , n.

In the statement of Proposition 4.2, let sl = rl for l = m + 1, . . . , n. Then ail = δilλ
l, where δil

is the Kronecker delta, and the algebraic conditions (31), (32) become

Γkij λ
j − Γkjiλ

i − ckijλk = 0 for all 1 ≤ i 6= j ≤ m and 1 ≤ k ≤ n, with k 6= i and k 6= j. (39)

Let us first assume that for some i, j, such that 1 ≤ i 6= j ≤ m, we have ∇̃rirj ∈ spanC∞(Ω′){ri, rj}
and [ri, rj ] /∈ spanC∞(Ω′){ri, rj}. Then, from the latter condition, there exists k ∈ {1, . . . , n},
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such that k 6= i and k 6= j and ckij 6≡ 0, while the former condition implies that Γkij ≡ 0.

Symmetry of ∇̃ implies that ckij = −Γkji 6≡ 0, and then from (39) we have

ckij (λi − λk) ≡ 0.

We then have λi = λk at least somewhere in Ω′, which contradicts strict hyperbolicity.
Let us now assume that for some i, j such that 1 ≤ i 6= j ≤ m, we have ∇̃rirj /∈

spanC∞(Ω′){ri, rj} and [ri, rj ] ∈ spanC∞(Ω′){ri, rj}. Then, from the former condition, there

exists k ∈ {1, . . . , n}, such that k 6= i and k 6= j and Γkij 6≡ 0; from the latter condition we have

ckij ≡ 0. Symmetry of ∇̃ implies that Γkij = Γkji, and then from (39) we have

Γkij (λj − λi) ≡ 0.

We then have λi = λj at least somewhere in Ω′, which contradicts strict hyperbolicity.

5 Involutive partial frame

As noted in Remark 4.3, the analysis of the F(R)-system is much simpler when the frame R is
in involution. The two extreme cases m = 1 and m = n fall into this category. In the former
case R also trivially satisfies the definition of a rich partial frame, see Remark 5.4. The latter
case of a full frame was considered in [7], and some of the theorems of the present paper are
natural generalizations of those results.

5.1 General involutive partial frames

If the partial frame R is in involution, then for any completion of R to a full frame {r1, . . . , rm}∪
{sm+1, . . . , sn}, we have clij = 0 for all i, j = 1, . . . ,m, l = m+ 1, . . . , n and, therefore, Γlij = Γlji
due to the symmetry of the connection (11). In this case (30)-(32) simplify to

ri(λ
j) = Γjji (λi − λj) for all 1 ≤ i 6= j ≤ m (40)

λj Γkij − λi Γkji − ckijλk = 0 for all distinct triples i, j, k ∈ {1, . . . ,m} (41)

(λj − λi) Γlji = 0 for all 1 ≤ i 6= j ≤ m and l = m+ 1, . . . , n. (42)

where the functions ckij and Γkij are given by (33) and (34). Note that, due to involutivity of R,

the functions ckij , i, j, k ∈ {1, . . . ,m} do not depend on the choice of completion of R to a frame,
while the Christoffel symbols, in general, do depend on the choice of such completion. We call
(40)-(42) the λ-system, generalizing the terminology of [7] to partial involutive frames.

The following proposition allows us, in the involutive case, to solve Problems 2 (and 1) in
two steps: first find all solutions λi of system (40)-(42), and then determine all solutions f
of (25) with these functions λi. This is possible because (40)-(42) provide a complete set of
the integrability conditions for the F(R)-system (25) in this case, as the proof of the following
proposition shows.

Proposition 5.1. If a partial frame R = {r1, . . . , rm} is in involution, then

(1) For every f ∈ F(R), the functions λ1, . . . , λm prescribed by (25) satisfy (40)-(42).

(2) For every solution λ1, . . . , λm of (40)-(42), and any smooth data f̃ for f prescribed along
any embedded submanifold Ξ ⊂ Ω of codimension m and transverse to R, there is a unique
smooth local solution of F(R)-system (25) taking on the given data.
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Proof. (1) Equations (40)-(42) are differential consequences of (25). Therefore, for every f ∈
F(R), the functions λ1, . . . , λm prescribed by (25) satisfy (40)-(42).

(2) Assume λ1, . . . , λm are solutions of (40)-(42). In an affine system of coordinates u =
(u1, . . . , un), equations (25) turn into (26). To simplify the notation we write these as

ri(F )|u = λi(u)Ri(u) for i = 1, . . . ,m, (43)

where F and Ri are the column vectors of the components of the vector fields f and ri, respec-
tively, relative to the coordinate frame ∂

∂u1 , . . . ,
∂
∂un . The system (43) is of the form (19); the

integrability conditions are

ri(λ
j) (Rj) + λj ri(Rj)− rj(λ

i) (Ri)− λi rj(Ri) =
m∑
k=1

ckijλ
kRk. (44)

Since in an affine coordinate system, the components of ∇̃rsrl are given by the column vector
rs(Rl), we have that (44) is equivalent to

ri(λ
j) rj + λj ∇̃rirj − rj(λ

i) ri − λi ∇̃rjri =
m∑
k=1

ckijλ
krk, (45)

which, when written out in components relative to a completion of R to a frame r1, . . . , rm,
sm+1, . . . , sn, is equivalent to (40)-(42). The components of the vector field f̃ provide the data
for F and are of the type described in Theorem 3.5. This theorem guarantees the existence of
a locally unique solution of (43) with this data.

The system (40)-(42) always has the trivial solution λ1 = · · · = λm. However, the existence
of other solutions of (40)-(42) is a subtle issue. Furthermore, even when non-trivial solutions of
(40)-(42) exist, their (strict) hyperbolicity requires further analysis. We note that conditions (41)
and (42) provide us with necessary conditions for the existence of strictly hyperbolic solutions
for Problem 1, in the case of involutive partial frames.

Proposition 5.2. If a partial frame R = {r1, . . . , rm} is in involution on Ω, then the following
conditions must be satisfied for all 1 ≤ i 6= j ≤ m on some open neighborhood Ω′ ⊂ Ω of ū, in
order for the flux set F(R) to contain a strictly hyperbolic flux:

∇̃rirj ∈ spanC∞(Ω′){ri, rj} ⇐⇒ [ri, rj ] ∈ spanC∞(Ω′){ri, rj} (46)

and
∇̃rirj ∈ spanC∞(Ω′) R. (47)

Proof. Condition (46) is the same as (38) proved earlier. If for all open subsets Ω′ ⊂ Ω, there

are 1 ≤ i 6= j ≤ m, such that ∇̃rirj /∈ spanC∞(Ω′) R, then there exists m+ 1 ≤ l ≤ n, such that

Γlij 6≡ 0 on Ω′. From (42), it then follows that λi = λj at least somewhere on Ω′ and therefore
F(R) contains no strictly hyperbolic fluxes.

We observe that involutivity implies that [ri, rj ] ∈ spanC∞(Ω′) R. Thus, due to the symmetry
condition (11), we can replace the condition 1 ≤ i 6= j ≤ m in (47) with 1 ≤ i < j ≤ m. The
above conditions are not sufficient as will be illustrated by Example 5.3 in [7]. However, we can
prove the following condition is sufficient.

Proposition 5.3. Assume that the functions λ1, . . . , λm satisfying (40)-(42) are such that for
some ū ∈ Ω, λ1(ū), . . . , λm(ū) are distinct. Then on an open neighborhood of ū there exists a
strictly hyperbolic flux f , such that

∇̃rif = λiri, i = 1, . . . ,m.
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Proof. Let Ri be the column vector of components of ri in an affine system of coordinates
u1, . . . , un, and let R = [R1| . . . |Rm] be an n × m matrix comprised of these column vectors.
Since ri, i = 1, . . . ,m are independent at ū, there is a non-zero m × m minor of R(ū). Due
to continuity the same minor is non-zero on some open neighborhood of ū. Let {i1, . . . , im}
be the row indices of the submatrix corresponding to this minor. Up to permuting coordinate
functions u1, . . . , un we may, in order to simplify the notation, assume that ij = j. Then the
set of vector fields r1, . . . , rm,

∂
∂um+1 , . . . ,

∂
∂un are independent and, therefore, a submanifold Ξ

defined by ui = ūi for i = 1, . . . ,m is transversal to R.
For l ∈ {m+1, . . . , n}, choose arbitrary constants λ̄l, such that all n real numbers λ1(ū), . . . ,

λm(ū), λ̄m+1, . . . , λ̄n are distinct. Define

F̃ (ū1, . . . , ūm, um+1, . . . , un) =
[
0, . . . , 0, λ̄m+1 um+1, . . . , λ̄n un

]T
and let F be an extension of F̃ such that [DuF ]Ri(u) = λiRi(u), for i = 1, . . . ,m; the existence
of such an extension is guaranteed by Proposition 5.1. Then

[DuF ](ū) =



∂F 1

∂u1 (ū) . . . ∂F 1

∂u1 (ū) . . .
... . . .

... . . .
∂Fm

∂u1 (ū) . . . ∂Fm

∂um (ū) . . .
∂Fm+1

∂u1 (ū) . . . ∂Fm+1

∂um (ū) λ̄m+1

...
...

...
. . .

∂Fn

∂u1 (ū) . . . ∂Fn

∂um (ū) λ̄n


,

where empty spaces are filled with zeros. The matrix [DuF ]|ū has n distinct real eigenvalues
λ1(ū), . . . , λm(ū), λ̄m+1, . . . , λ̄n. Since the entries of [DuF ] are smooth real functions, a standard
argument, involving the implicit function theorem, implies that there is an open neighborhood
Ω′ ⊂ Ω of ū, such that at every point of Ω′ the matrix [DuF ] has n distinct real eigenvalues,
and, therefore, F is strictly hyperbolic on Ω′.

Remark 5.4 (Single vector field case). When R = {r1}, all three conditions (40)-(42) trivially
hold. Therefore, we can assign λ1 to be any function on Ω. Then, by Proposition 5.1, for every
assignment of the vector field f̃ on an (n − 1)-dimensional manifold Ξ, transverse to r1, there

exists a unique local vector field f such that ∇̃r1f = λ1 r1 and f |Ξ = f̃ |Ξ. Thus, the general
solution of the F(R)-system (25) depends on one arbitrary function of n variables (the function
λ1) and n functions of n − 1 variables, that locally describe the initial data for the vector field
f . Due to Proposition 5.3, the F(R)-set contains strictly hyperbolic fluxes.

Remark 5.5 (Full frame). If R is a full frame, then (42) trivially holds while the remaining
equations (40)-(41) form the λ-system analyzed in detail in [7]. According to Proposition 5.1,
for every solution of the λ-system and for every assignment of the vector f̃ at a point ū ∈ Ω,
there exists a locally unique solution f of (25) with a prescribed value for f |ū.

5.2 Rich partial frames

Rich frames (see Definition 4) comprise a particularly nice subclass of involutive frames. This
case trivially includes all partial frames consisting of a single vector field. It also includes all
involutive partial frames consisting of two vector fields.

Let {r1, . . . , rm, sm+1, . . . , sn} be any completion of R to a frame. With the same notation

as above, since R is rich, the symmetry of the connection ∇̃ yields

clij = 0 and Γlij = Γlji for all distinct triples i, j, l, such that 1 ≤ i, j ≤ m, 1 ≤ l ≤ n. (48)
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The F(R)-system (40)-(42) thus reduces to

ri(λ
j) = Γjji (λi − λj) for all 1 ≤ i 6= j ≤ m, (49)

Γlij (λi − λj) = 0 for all 1 ≤ i < j ≤ m, 1 ≤ l ≤ n with l 6= i and l 6= j. (50)

In the rich case, the necessary conditions recorded in Proposition 5.2 for the flux set F(R) to
contain strictly hyperbolic fluxes, become

∇̃rirj ∈ spanC∞(Ω′){ri, rj} for all 1 ≤ i 6= j ≤ m. (51)

Theorem 5.7 below shows that, for a rich partial frame, these necessary conditions are also
sufficient. Moreover, for frames satisfying (51), the theorem describes the size of the set F(R).
Theorem 5.8 describes the size of the set F(R) for partial frames that do not satisfy (51), and
therefore, do not admit strictly hyperbolic fluxes.

The following lemma allows us to introduce a coordinate system adapted to a given rich
partial frame, and subsequently to invoke Darboux’s theorem to describe the flux set F(R).

Lemma 5.6. If a partial frame R = {r1, . . . , rm} on Ω is rich, then in a neighborhood of every
point ū ∈ Ω there exist

(1) strictly positive scalar functions α1, . . . , αm, such that the vector fields r̃i = αi ri, i =
1, . . . , n commute, i.e., [r̃i, r̃j ] = 0 for all i, j ∈ {1, . . . ,m};

(2) local coordinate functions (w1, . . . , wn) such that r̃i = ∂
∂wi , i = 1, . . . ,m.

Proof. For a rich partial frame R the following structure equations hold:

[ri, rj ] = ciijri + cjijrj i, j = 1, . . . ,m,

where the structure functions ckij are independent of the completion of R to a frame. We will

show that the conditions [r̃i, r̃j ] = 0 lead to a generalized Frobenius system for the αi. Indeed,

[r̃i, r̃j ] = [αiri, α
jrj ] = αi αj [ri, rj ] + αi ri(α

j)rj − αj rj(α
i)ri

= αj
(
αiciij − rj(α

i)
)
ri − αi

(
αjcjji − ri(α

j)
)

rj . (52)

Then [r̃i, r̃j ] = 0 if and only if βi = ln(αi) satisfies the PDE system.

rj(β
i) = ciij(u) for all 1 ≤ i 6= j ≤ m (53)

To this system we add the equations

rj(β
j) = 0 for all 1 ≤ j ≤ m, (54)

making an additional requirement that, for each i = 1, . . . ,m, βi is constant along the integral
curve of ri. As cjjj = 0, we can combine (53) and (54) into one system of m2 equations for m
unknown functions β of n variables of generalized Frobenius type:

rj(β
i) = ciij(u) for all 1 ≤ i, j ≤ m. (55)

We now write out the integrability conditions (20), given in Theorem 3.5:

rj(c
i
ik)− rk(ciij) = cjjk c

i
ij + ckjk c

i
ik for all 1 ≤ i, j, k ≤ m, (56)

and note that these are satisfied due to Jacobi identities (8). By Theorem 3.5, we can prescribe
data for β along a submanifold transversal to R and obtain a solution of (55) near ū taking on

these data. Then the positive functions αi := eβ
i

satisfy the requirements in (1).
Part (2) is a direct consequence of Proposition 3.2.
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Due to Lemma 5.6 and thanks to the scaling invariance of Problems 1 and 2, we may
assume that the given rich partial frame is commutative. We then can use a local coordi-
nate system w1, . . . , wn, such that ri = ∂

∂wi , for i = 1, . . . ,m. We complete R to a frame

{r1, . . . , rm, sm+1, . . . , sn}, where sl = ∂
∂wl , for l = m + 1, . . . , n. Commutativity of the frame

together with symmetry of the connection ∇̃, imply the following conditions on the structure
coefficients (33) and Christoffel symbols (34) for this frame:

clrs = 0 and Γlrs = Γlsr for all l, s, r ∈ {1, . . . , n}. (57)

Then equations (40)-(42) reduce to:

∂λj

∂wi
= Γjji (λi − λj) for all 1 ≤ i 6= j ≤ m (58)

Γlij (λi − λj) = 0 for all 1 ≤ i < j ≤ m, 1 ≤ l ≤ n such that l 6= i and l 6= j. (59)

Assuming that the Γkij and unknowns λi are expressed in w-coordinates, we can treat (58)-(59)
as a system of PDEs with simple linear constraints on the unknowns.

Theorem 5.7. If a partial frame R = {r1, . . . , rm} is rich and satisfies the conditions (51),
then the set F(R) of all local solutions of (25) near ū depends on:

(1) m arbitrary functions of n−m+ 1 variables, prescribing for each j = 1, . . . ,m a function
λj along an arbitrary (n−m+ 1) dimensional manifold Ξj containing ū and transverse to
the partial frame {r1, . . . , rj−1, rj+1, . . . , rm};

(2) n functions of n −m variables5, prescribing the components of a vector field f along an
arbitrary (n−m)-dimensional manifold Ξ transverse to the partial frame R.

The above data uniquely determines f in an open neighborhood of ū. Finally, the flux set F(R)
always contains strictly hyperbolic fluxes.

Proof. First, as discussed above, after rescaling we may assume that R is a commutative frame
and we choose a coordinate system such that ri = ∂

∂wi , i = 1, . . . ,m. Conditions (51) are
invariant under rescaling of R and imply that

Γlij ≡ 0 for all 1 ≤ i 6= j ≤ m, 1 ≤ l ≤ n, with l 6= i and l 6= j. (60)

It follows that (59) trivially hold. Next, (58) is a Darboux system and we proceed to verify
the integrability conditions (C) stated in Theorem 3.4. For this purpose we substitute partial
derivatives prescribed by (58) into the equality of mixed partials (writing ∂i = ∂

∂wi ):

∂k(∂iλ
j) ≡ ∂i(∂kλj) for all distinct triples i, j, k ∈ {1, . . . ,m}.

The first substitution leads to

∂k(Γjji (λi − λj)) ≡ ∂i(Γjjk (λk − λj)) for all distinct triples i, j, k ∈ {1, . . . ,m},

and the subsequent substitution leads to the condition:

(∂iΓ
j
jk − ∂kΓjji)λ

j + (ΓjjiΓ
i
ik + ΓjjkΓkki − ΓjjiΓ

j
jk − ∂iΓ

j
jk)λk

− (ΓjjiΓ
i
ik + ΓjjkΓkki − ΓjjkΓjji − ∂kΓjji)λ

i ≡ 0, (61)

5Example 7.1 demonstrates that, when a general solution of an F(R)-system is explicitly written out, some of
the arbitrary functions of n−m variables may be absorbed into arbitrary functions of n−m+ 1 variables (a larger
number of variables). This is a standard phenomenon arising in applications of integrability theorems.
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which must hold for all triples of pairwise distinct indices i, j, k ∈ {1, . . . ,m}. We will use the
flatness condition (14) to show that all functions λi appearing in (61) have vanishing coefficients.

We first substitute s = j in (14) and we assume that i, j, k ∈ {1, . . . ,m} are pairwise distinct
indices. Then using (57) and (60), we obtain that for all triples of pairwise distinct indices
i, j, k ∈ {1, . . . ,m}, we have

− ∂kΓjji = ΓjjkΓjji − ΓjjiΓ
i
ik − ΓjjkΓkki. (62)

This immediately implies that the coefficient (ΓjjiΓ
i
ik + ΓjjkΓkki − ΓjjkΓjji − ∂kΓjji) of λi in (61)

vanishes. Interchanging k and i in (62), we obtain:

− ∂iΓjjk = ΓjjiΓ
j
jk − ΓjjkΓkki − ΓjjiΓ

i
ik. (63)

so that the coefficient of λk in (61) vanishes. We note that the right hand sides of the identities
(62) and (63) are equal. Therefore, the coefficient (∂iΓ

j
jk − ∂kΓjji) of λj in (61) also vanishes.

We have thus verified that the integrability conditions (C) stated in Theorem 3.4 hold for
the PDE system (58). Hence, for any fixed point ū ∈ Ω whose w-coordinates are (w̄1, . . . , w̄n),
and any assignment of m arbitrary functions of n−m+ 1 variables,

λ̃i(w̄1, . . . , w̄i−1, wi, w̄i+1, . . . , w̄m, wm+1, . . . , wn), i = 1, . . . ,m

on the subsets Ξi ⊂ Ω, where wj = w̄j , for 1 ≤ j ≤ m, j 6= i, there is a unique local solution
λ1, . . . , λm of (58) such that λi|Ξi∩Ω′ = λ̃i|Ξi∩Ω′ on some open subset Ω′ ⊂ Ω containing ū.
Thus the general solution λ of (58) depends on m arbitrary functions of n−m+ 1 variables.

Next, recalling that for a rich frame satisfying (51), the system (49) is equivalent to the
λ-system (40)-(42), we use Proposition 5.1 to conclude that for any solution λ of (49) and
any smooth data for f prescribed along any embedded submanifold Ξ ⊂ Ω of codimension m
transversal to R, there is a unique smooth local solution of the F(R)-system (25). In local
coordinates the data can be defined by n functions (components of f) of n−m variables (local
coordinates on Ξ). Therefore, for a given solution λ of (49), the general solution f of the
F(R)-system (25) depends on n arbitrary functions of n−m variables.

Finally, we may choose λ̃1, . . . , λ̃m in the first part of the proof such that λ̃1(ū), . . . , λ̃m(ū)
are all distinct. Let λ1, . . . , λm be the corresponding solutions of (49). The existence of strictly
hyperbolic fluxes in the flux set F(R) then follows from Proposition 5.3.

We note that in the case of a single vector field (m = 1), the conclusion of Theorem 5.7 is
consistent with the observation made in Remark 5.4. The first part of the proof of Theorem 5.7
is a rather straightforward generalization of the proof of Theorem 4.3 in [7], where the λ system
(49) was considered in the case of the full frame (m = n). In a similar way, we can generalize
Theorem 4.4 in [7] to treat the case when necessary conditions (51) for strict hyperbolicity
are not satisfied. In this case, the algebraic relationship (50) implies that there exist distinct
i, j ∈ {1, . . . ,m} such that λi ≡ λj , and therefore, there are no strictly hyperbolic fluxes in F(R).
The next theorem gives a somewhat involved description of F(R); a proof (omitted) may be
obtained by combining the arguments in the proofs of Theorem 4.4 in [7] and Theorem 5.7.

Theorem 5.8. Let R = {r1, . . . , rm} be a rich partial frame that does not satisfy conditions
(51). Then the system (49)-(50) imposes multiplicity conditions6 on λi in the following sense.
There are disjoint subsets A1, . . . , As0 ⊂ {1, . . . ,m} (s0 ≥ 1) of cardinality two or more, and
such that (49)-(50) impose the equality λi = λj if and only if i, j ∈ Aα for some α ∈ {1, . . . , s0}.
Let l =

∑s0
α=1 |Aα| ≤ m and s1 = m− l. By relabeling indices we may assume that {1, . . . ,m}r⋃s0

α=1Aα = {1, . . . , s1}. Then the set F(R) of all local solutions of (25) near ū depends on:

6Clearly, for all i 6= j, with ∇̃rirj /∈ span{ri, rj}, (50) implies a multiplicity condition λi = λj . Less obviously,
(49) may impose additional multiplicity conditions on λi. See the proof of Lemma 4.5 in [7] for more details.
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• s1 arbitrary functions λ̃1, . . . , λ̃s1 of n−m+1 variables prescribing, for j = 1, . . . , s1, data
for the functions λj, so that λj |Ξj

= λ̃j, where Ξj is an arbitrary (n−m+ 1)-dimensional
manifold Ξj containing ū and transverse to the vector fields r1, . . . , rj−1, rj+1, . . . , rm;

• s0 arbitrary functions κ1, . . . , κs0 of m−n variables prescribing, for j = s1 +1, . . . ,m, data
for the functions λj, so that when j ∈ Aα for some α = 1, . . . , s0 when j ∈ Aα for some
α = 1, . . . , s0, then λj |Ξj

= κα, where Ξj is an (n −m)-dimensional manifold containing
ū and transverse to R;

• n functions of n − m variables prescribing the components of a vector field f along an
arbitrary (n−m)-dimensional manifold Ξ transverse to the partial frame R.

The above data uniquely determines f in an open neighborhood of ū. The flux set F(R) never
contains strictly hyperbolic fluxes.

5.3 Non-rich involutive frames consisting of three vector fields

The lowest cardinality of a partial frame for which the involutive, non-rich scenario may occur
is m = 3. The full frame case m = n = 3 was treated in [7]. We now generalize these results to
n ≥ 3. Generalization to m > 3 would involve a large number of cases and is not pursued here.

We first treat the case when R satisfies the necessary conditions of Proposition 5.2 for the
existence of strictly hyperbolic fluxes. We choose an arbitrary completion of R to a frame and
write out the λ-system (40)-(42). The differential part (40) becomes

r2(λ1) = Γ1
12(λ2 − λ1) r3(λ1) = Γ1

13(λ3 − λ1) r1(λ2) = Γ2
21(λ1 − λ2)

r3(λ2) = Γ2
23(λ3 − λ2) r1(λ3) = Γ3

31(λ1 − λ3) r2(λ3) = Γ3
32(λ2 − λ3), (64)

while the algebraic equations (41) may be written as

Aλ

 λ1

λ2

λ3

 = 0 , where Aλ =

 c123 Γ1
32 −Γ1

23

Γ2
31 c213 −Γ2

13

Γ3
21 −Γ3

12 c312

 . (65)

Condition (47) in Proposition 5.2 implies that (42) is trivial. We also note that, since R is
involutive and satisfies the conditions in Proposition 5.2, for all i, j, k ∈ {1, 2, 3} the structure
coefficients ckij and Christoffel symbols Γkij are independent of the completion of R to a frame.
Thus, the system (64)-(65) can be written out without specifying a completion to a full frame.
Our goal is to describe the solution set of (64)-(65). We observe that:

• From the symmetry of the connection it follows that the last column of Aλ is the sum of
the first two columns; thus rankAλ ≤ 2.

• Non-richness of R implies that at least one of the ckij in Aλ is nonzero; thus rankAλ ≥ 1.

• Condition (46) in Proposition 5.2 implies that, for each row in Aλ, either all three entries
are zero, or all three entries are non-zero.

Following the same argument as in Section 3 of [7], one can show that if rankAλ = 2 at ū, then
the three eigenfunctions must coincide in a neighborhood of ū; i.e., λ1 = λ2 = λ3 = λ for some
functions λ, and, therefore, F(R) does not contain strictly hyperbolic fluxes. Moreover, (64)
imply that λ is constant along the integral manifolds of the involutive frame R, and we can
prescribe an arbitrary value of λ along a manifold Ξ transverse to R. Otherwise, rankAλ = 1,
and we may assume without loss of generality that c123 6= 0. The first equation in (65) can
be solved for λ1 and substituted in (64). This yields a system of six equations specifying the
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derivatives of the two unknown functions λ2 and λ3 along a partial, involutive frame {r1, r2, r3}:

r1(λ2) =
Γ2

21Γ1
23

c132

(λ2 − λ3) ,

r2(λ2) =

[
Γ1

23

Γ1
32

(Γ3
32 − Γ1

12)− c132

Γ1
32

r2

(
Γ1

32

c132

)]
(λ2 − λ3) ,

r3(λ2) = −Γ2
23(λ2 − λ3) , (66)

r1(λ3) =
Γ3

31Γ1
32

c132

(λ2 − λ3) ,

r2(λ3) = Γ3
32(λ2 − λ3) ,

r3(λ3) =

[
Γ1

32

Γ1
23

(Γ1
13 − Γ2

23) +
c132

Γ1
23

r3

(
Γ1

23

c132

)]
(λ2 − λ3) ,

A similar system, for n = 3, was analyzed in [7] via the classical Frobenius theorem. For the
present setting with n ≥ 3 we need to use the generalized Frobenius Theorem 3.5. To verify the
integrability conditions, we rewrite (66) as

ri(λ
s) = φsi (u)(λ2 − λ3) for i = 1, 2, 3 and s = 2, 3, (67)

where φsi are given functions of the Γkij . The integrability conditions amount to[
ri(φ

s
j)− rj(φsi ) + φsj(φ

2
i − φ3

i )− φsi (φ2
j − φ3

j )
]
(λ2 − λ3) =

[
3∑
k=1

ckijφ
s
k

]
(λ2 − λ3) , (68)

where 1 ≤ i < j ≤ 3, s = 2, 3 and ckij = Γkij − Γkji.

These conditions are satisfied if λ2 = λ3 in a neighborhood of ū, in which case the first
equation in (65) implies λ1 = λ2 = λ3 = λ, and, as above, the functions λi must be constant
along the integral manifolds of the involutive frame R, and we can prescribe an arbitrary value
of the λi along a manifold Ξ transverse to R. For a strictly hyperbolic flux to exist the following
six conditions must hold:

ri(φ
2
j )− rj(φ

2
i ) = φ2

jφ
3
i − φ2

iφ
3
j +

3∑
k=1

ckijφ
2
k 1 ≤ i < j ≤ 3, (69)

ri(φ
3
j )− rj(φ

3
i ) = φ2

jφ
3
i − φ2

iφ
3
j +

3∑
k=1

ckijφ
3
k 1 ≤ i < j ≤ 3. (70)

Conditions (69)-(70) were derived in [7] in the case of full frames in R3, and Examples 5.1
and 5.3 in [7] show that these compatibility conditions may or may not be satisfied; they must be
checked for each case individually. If these integrability conditions are met, then by Theorem 3.5,
the general solution of the λ-system depends on two functions of n− 3 variables prescribing the
values of λ2 and λ3 along any two n− 3 dimensional manifolds passing ū and transverse to R.
The function λ1 is then determined by the first equation in (65). Combining the above argument
with Propositions 5.1-5.2 we arrive at the following theorem.

Theorem 5.9. Assume R = {r1, r2, r3} is a non-rich partial frame in involution on a neigh-
borhood Ω of ū satisfying conditions (46) and (47) in Proposition 5.2. For i, j, k ∈ {1, 2, 3}, let
ckij and Γkij be defined by

[ri, rj ] =
3∑
k=1

ckijrk ∇rirj =
3∑
k=1

Γkijrk.

Up to permutation of indices and by shrinking Ω we may assume c123 is nowhere zero on Ω.
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• If the matrix Aλ defined in (65) has rank 1 and (69)-(70) are satisfied in a neighborhood
of ū, then the flux set F(R) of system (25) depends on n+ 2 arbitrary functions of n− 3
variables (2 of those determine λ2 and λ3, while n of those determine f along an (n− 3)-
dimensional manifold passing through ū and transverse to R). The set F(R) contains
strictly hyperbolic fluxes.

• If the matrix Aλ defined in (65) has rank 2 at ū or if (69)-(70) are not satisfied at ū, then
the three eigenfunctions must coincide in a neighborhood of ū, i.e. λ1 = λ2 = λ3 = λ
for some function λ which is constant along the integral manifolds of the involutive frame
R, and can take arbitrary values along a manifold Ξ transverse to R. The flux set F(R)
depends on n + 1 arbitrary functions of n − 3 variables (1 of those determine λ and n of
those determine f along an (n−3)-dimensional manifold passing through ū and transverse
to R). The set F(R) does not contain strictly hyperbolic fluxes.

When the partial frame R does not satisfy the necessary conditions of Proposition 5.2 for
the existence of strictly hyperbolic fluxes, then the algebraic conditions (41) and (42) force two
or more of eigenfunctions to be equal to each other, and we can prove the following result:

Theorem 5.10. Assume R = {r1, r2, r3} is a non-rich partial frame in involution on a neigh-
borhood Ω of ū, such that R does not satisfy condition (46) or condition (47) in Proposition 5.2.
Then there are exactly two possibilities: either

• the λ-system (40)-(42) implies that λ1 = λ2 = λ3 = λ, in a neighborhood of ū, where the
function λ is constant along the integral manifolds of the frame R and may take arbitrary
values on an (n− 3)-dimensional manifold Ξ0 passing through ū and transverse to R; or

• up to permutation of indices, the λ-system (40)-(42) implies that λ1 = λ2 = λ, but allows
the possibility that λ 6= λ3 in a neighborhood of ū. The function λ3 is uniquely determined
by its values on an (n − 2)-dimensional manifold Ξ1 passing through ū and transverse to
{r1, r2}, while the function λ is uniquely determined by its values on an (n−3)-dimensional
manifold Ξ2 passing through ū and transverse to R.

In either case the λ-system (40)-(42) has a locally unique solution with data as described above;
for each such solution the F(R)-system (25) has a locally unique solution determined by the
values of f on an (n − 3)-dimensional manifold Ξ passing through ū and transverse to R. The
set F(R) contains no strictly hyperbolic fluxes.

Proof. If (46) fails, then (41) implies that at least two functions among λ1, λ2 and λ3 coincide
on a neighborhood of ū. If (47) fails, then (42) yields the same conclusion. In either case the
set F(R) does not contain strictly hyperbolic fluxes.

If (41) and (42) imply that all three are equal, i.e., λ1 = λ2 = λ3 = λ, then (40) implies
that the function λ is constant along the integral manifolds of the involutive frame R. In this
case, the system (40) trivially satisfies the assumptions of Theorem 3.5. Consequently, for any
assignment of λ along an (n− 3)-dimensional manifold Ξ0 passing through ū and transverse to
R, there is unique such function in a neighborhood of ū.

If (41) and (42) imply that only two of the λi coincide, e.g. λ1 = λ2 = λ, but not that they
are equal to λ3, then one can argue that the ckij and Γkij satisfy

c312 = 0, Γ2
13 = 0 and Γ1

23 = 0, (71)

in which case the λ-system (40)-(42) becomes:

r2(λ) = 0 r1(λ3) = Γ3
31(λ− λ3)

r3(λ) = Γ1
13(λ3 − λ) r2(λ3) = Γ3

32(λ− λ3).

r1(λ) = 0

r3(λ) = Γ2
23(λ3 − λ)
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If Γ2
23 6= Γ1

13, then the second and the fourth equations imply λ = λ3, so that λ1 = λ2 = λ3 = λ,
and we are in the situation considered above. If instead

Γ2
23 = Γ1

13 (72)

we obtain the system

r1(λ) = 0 (73)

r2(λ) = 0 (74)

r3(λ) = Γ1
13(λ3 − λ) (75)

r1(λ3) = Γ3
31(λ− λ3) (76)

r2(λ3) = Γ3
32(λ− λ3). (77)

Subtracting (73) from (76), (74) from (77), and introducing the unknown µ = λ3 − λ, yield

r1(λ) = 0 (78)

r2(λ) = 0 (79)

r3(λ) = Γ1
13 µ (80)

r1(µ) = −Γ3
31 µ (81)

r2(µ) = −Γ3
32 µ. (82)

By assumption {r1, r2, r3} are in involution and the first condition in (71) implies that the
vector fields r1 and r2 are in involution. Thus we can first apply Theorem 3.5 to the subsystem
(81)-(82), whose integrability condition

r2(Γ3
31)− r1(Γ3

32) = c221 Γ3
32 + c121 Γ3

31 (83)

is satisfied as shown in Lemma 3.6 of [7], due to the flatness and symmetry property of the
connection, combined with conditions (71) and (72). Thus there is a unique solution µ for the
subsystem (81)-(82) with any data prescribed along an (n−2)-dimensional manifold Ξ1 passing
through ū and transversal to r1, r2. Substituting the solution µ into (80) we obtain a subsystem
(78)-(80) whose integrability condition is

r2(Γ1
13) = Γ3

23 Γ1
13 (84)

r1(Γ1
13) = Γ3

13 Γ1
13.

As shown in Lemma 3.6 of [7], conditions (84) hold identically on Ω due to the flatness and
symmetry property of the connection, combined with conditions (71) and (72). Theorem 3.5
now guarantees the existence of a locally unique solution of the subsystem (78)-(80), with the
values of function λ prescribed along an (n−3) dimensional manifold Ξ2 passing through ū and
transverse to R. Recalling that µ = λ3 − λ, we conclude that λ is uniquely determined by its
values on an (n − 3) dimensional manifold Ξ1 passing through ū and transverse to R, and the
function λ3 is uniquely determined by its values on an (n− 2) dimensional manifold Ξ2 passing
through ū and transverse to {r1, r2}.

Finally, it follows from Proposition 5.1 that for each solution of the λ system, the F(R)-
system (25) has a locally unique solution determined by the values of f on an (n−3)-dimensional
manifold Ξ passing through ū and transverse to R.

6 Non-involutive partial frames of two vector fields in R3.

In the non-involutive case, the differential consequences (30)-(32) of the F(R)-system (25) in-
volve the unknowns aji . Thus, instead of a “λ-system” we now have a “(λ, a)-system.” Moreover,
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(30)-(32) do not provide a complete set of integrability conditions for the F(R)-system. This
makes the non-involutive case much harder than the involutive case, and we can only treat the
lowest dimensional case where R = {r1, r2} is a partial frame in R3 with

[r1, r2]ū /∈ spanR{r1|ū, r2|ū}. (85)

The F(R)-system then consists of the two equations

∇̃r1 f = λ1 r1 and ∇̃r2 f = λ2 r2. (86)

The necessary conditions (38) for strict hyperbolicity become

∇̃r1r2|ū /∈ spanR{r1|ū, r2|ū} and ∇̃r2r1|ū /∈ spanR{r1|ū, r2|ū}. (87)

We next state two theorems describing the size and structure of the flux space F(R) for partial
frames R satisfying (87). The proofs of the theorems rely on the sequence of lemmas listed
below. We remind the reader that F triv denotes the 4-dimensional space of trivial fluxes.

Theorem 6.1. Let R = {r1, r2} be a non-involutive partial frame on an open neighborhood of
ū ∈ R3 satisfying conditions (87). Then

1. A non-zero flux f ∈ F(R)/F triv is either strictly hyperbolic or non-hyperbolic.

2. If dimF(R)/F triv > 1, then F(R) contains strictly hyperbolic fluxes.

3. If F(R) contains a non-hyperbolic flux, then for any vector field s completing R to a local
frame, the following identity holds on an open neighborhood of ū:

Γ3
12 Γ3

21 − 2 (c312)2 = Γ3
11 Γ3

22, (88)

where the ckij and Γkij are the structure components and Christoffel symbols, respectively,

of the connection ∇̃ relative to the frame {r1, r2, s}.

Although identity (88) is a restrictive condition, Examples 7.7 and 7.9 show that there are
partial frames with non-hyperbolic fluxes. On the other hand, Examples 7.5, 7.6, 7.8 and 7.11
show that there are partial frames for which all non-trivial fluxes are strictly hyperbolic.

Theorem 6.2. Let R = {r1, r2} be a non-involutive partial frame on an open neighborhood of
ū ∈ R3 satisfying conditions (87). Let s be any completion of R to a local frame near ū and let

Γkij be the Christoffel symbols for connection ∇̃ relative to this frame. Assume further that the
following condition is satisfied:

Γ3
22(ū) Γ3

11(ū)− 9 Γ3
12(ū) Γ3

21(ū) 6= 0. (89)

Then:

1. 0 ≤ dimF(R)/F triv ≤ 4.

2. For each k = 0, . . . , 4 there exists a partial frame R satisfying the assumptions of the
theorem and such that dimF(R)/F triv = k.

Lemma 6.3. Conditions (88)-(89) are independent of the vector field s completing R to a frame.

Proof. Consider two completions of R to a local frame in a neighborhood Ω of ū, by vector
fields s and s̄, respectively. Let

s̄ = α r1 + β r2 + γ s,
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for some smooth functions α, β and γ, with γ non-vanishing on Ω. Let ckij and c̄kij (Γkij and Γ̄kij)

be the structure coefficients (Christoffel symbols) for the connection ∇̃ relative to the frames
{r1, r2, s} and {r1, r2, s̄}, respectively. Then for i, j = 1, 2:

∇̃ri rj = Γ1
ij r1 + Γ2

ij r2 + Γ3
ij s = Γ1

ij r1 + Γ2
ij r2 + Γ3

ij γ
−1(s̄− αr1 − β r2)

= (Γ1
ij − γ−1αΓ3

ij) r1 + (Γ2
ij − γ−1β Γ3

ij) r2 + γ−1Γ3
ij s̄.

Hence, Γ̄3
ij = γ−1Γ3

ij and c̄3ij = γ−1c3ij for i, j = 1, 2. It follows that (88) and (89) hold for c̄kij
and Γ̄kij if and only if they hold for ckij and Γkij .

Condition (89) arises in the proof of Lemma 6.5 and Example 7.11 illustrates that there are
partial frames, with non-trivial fluxes, for which (89) does not hold. Beyond this, we shall not
pursue further this non-generic situation.

Lemma 6.4. Let R = {r1, r2} be a non-involutive partial frame satisfying (87). Set s = [r1, r2]

and denote by ckij, Γkij the structure coefficients and Christoffel symbols of the connection ∇̃
relative to the frame {r1, r2, s}. Then the following conditions are equivalent for functions λ1

and λ2 defined near ū:

1. There is a solution f of the F(R)-system (86) for the prescribed functions λ1 and λ2.

2. The functions λ1 and λ2, together with the functions a1 and a2 defined by

a1 = −r2(λ1)− Γ1
12 (λ1 − λ2) (90)

a2 = r1(λ2)− Γ2
21 (λ1 − λ2) (91)

satisfy the following system of 6 equations:

r1(λ1) =
1

Γ3
21

(
Υ1 (λ1 − λ2) + Γ3

11 a
1 + 2 Γ3

12 a
2
)

(92)

r2(λ2) =
1

Γ3
12

(
Υ2 (λ1 − λ2)− 2 Γ3

21 a
1 − Γ3

22 a
2
)

(93)

r2(a1) = (Γ1
23 Γ3

12 − Γ1
32) (λ1 − λ2) + (c323 − Γ1

21) a1 − Γ1
22 a

2 (94)

r1(a2) = (Γ2
13 Γ3

21 + Γ2
31) (λ1 − λ2)− Γ2

11 a
1 + (c313 − Γ2

12) a2 (95)

r1(a1)− s(λ1) = Γ1
13Γ3

12 (λ1 − λ2)− (Γ1
11 − c313) a1 − Γ1

12 a
2 (96)

r2(a2)− s(λ2) = Γ2
23 Γ3

21 (λ1 − λ2)− Γ2
21 a

1 + (c323 − Γ2
22)a2 (97)

where

Υ1 = Γ3
12 (Γ2

21 − Γ3
31) − r1(Γ3

12) and Υ2 = Γ3
21 (Γ3

32 − Γ1
12) + r2(Γ3

12). (98)

Moreover, for every pair of functions λ1 and λ2 satisfying these conditions, there exists a unique
(up to a constant term) flux f satisfying (86).

Proof. We first note that, due to the symmetry of ∇̃ and our definition of s we have

Γ1
12 − Γ1

21 = c112 = 0, Γ2
12 − Γ2

21 = c212 = 0, Γ3
12 − Γ3

21 = c312 = 1. (99)

Assume λ1 and λ2 are given functions and that there exists f such that (86) holds. The flatness
condition (12) implies that

∇̃[r1,r2]f = ∇̃r1∇̃r2f − ∇̃r2∇̃r1f . (100)
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As s = [r1, r2], expanding the right hand side, substituting (86), and using (99) give

∇̃s f = a1 r1 + a2 r2 + a3 s, (101)

where a1, a2 are given by (90),(91), and

a3 = Γ3
12 λ

2 − Γ3
21 λ

1. (102)

The following consequence of (102) and the last equation in (99) is repeatedly used below:

λ1 − a3 = Γ3
12 (λ1 − λ2) and λ2 − a3 = Γ3

21 (λ1 − λ2) (103)

By expanding the identity
∇̃[r1,s]f = ∇̃r1∇̃sf − ∇̃s∇̃r1f , (104)

and eliminating any occurrences of a3 using (103), we obtain

r1(a1) = s(λ1) + Γ1
13Γ3

12 (λ1 − λ2)− (Γ1
11 − c313) a1 − Γ1

12 a
2 (coefficient of r1) (105)

r1(a2) = (Γ2
13 Γ3

21 + Γ2
31) (λ1 − λ2)− Γ2

11 a
1 + (c313 − Γ2

12) a2 (coefficient of r2) (106)

r1(a3) = Γ3
31 Γ3

12(λ1 − λ2)− Γ3
11 a

1 − Γ3
12 a

2. (coefficient of r3) (107)

Similarly, the identity
∇̃[r2,s]f = ∇̃r2∇̃sf − ∇̃s∇̃r2f (108)

leads to

r2(a1) = (Γ1
23 Γ3

12 − Γ1
32) (λ1 − λ2) + (c323 − Γ1

21) a1 − Γ1
22 a

2 (coefficient of r1) (109)

r2(a2) = s(λ2) + Γ2
23 Γ3

21 (λ1 − λ2)− Γ2
21 a

1 + (c323 − Γ2
22)a2 (coefficient of r2) (110)

r2(a3) = Γ3
32 Γ3

21 (λ1 − λ2)− Γ3
21 a

1 − Γ3
22 a

2. (coefficient of s) (111)

Note that a3 was eliminated from the right-hand sides of the above equations using (103). We
note that (109), (106), (105), (110) coincide with (94), (95), (96), and (97), respectively. To
show that the remaining two equations, (92) and (93), hold, we note that equations (107) and
(111) express the derivatives of a3 in the r1 and r2 directions, respectively. However, these
derivatives can be also obtained by differentiating (102) and substituting (90) and (91):

r1(a3) = Γ3
12 r1(λ2)− Γ3

21 r1(λ1) + r1(Γ3
12) (λ2 − λ1) (112)

=
(
Γ3

12 Γ2
21 − r1(Γ3

12)
)

(λ1 − λ2) + Γ3
12a

2 − Γ3
21 r1(λ1),

r2(a3) = Γ3
12 r2(λ2)− Γ3

21 r2(λ1) + r2(Γ3
12) (λ2 − λ1) (113)

= Γ3
12 r2(λ2) +

(
r2(Γ3

12)− Γ3
21 Γ1

12

)
(λ2 − λ1) + Γ3

21 a
1,

where we used the fact that, due to the last equation in (99), derivatives of Γ3
12 and Γ3

21 are
equal. From (107) and (112) we obtain:

Γ3
21 r1(λ1) =

(
Γ3

12 (Γ2
21 − Γ3

31) − r1(Γ3
12)
)

(λ1 − λ2) + Γ3
11 a

1 + 2 Γ3
12 a

2 (114)

Similarly, from (111) and (113) we obtain:

Γ3
12 r2(λ2) =

(
r2(Γ3

12) + Γ3
21 (Γ3

32 − Γ1
12

)
(λ1 − λ2)− 2 Γ3

21 a
1 − Γ3

22 a
2. (115)

Condition (38) implies that Γ3
21 6= 0 and Γ3

12 6= 0 and, therefore, we can solve (114) and (115)
for r1(λ1) and r2(λ2), establishing (92) and (93).

Conversely, given functions λ1 and λ2, let a1, a2 and a3 be defined by (90), (91), (102)
respectively. Then equations (86) and (101) constitute a Frobenius system for the three unknown
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components of the flux f . It is straightforward to check that the integrability conditions for this
system coincide with the flatness conditions (100), (104) and (108). Reversing the proof of
the first part, we see that they are satisfied provided λ1 and λ2 satisfy condition 2. Thus, if
λ1 and λ2 satisfy condition 2, then for any prescription of the initial value f(ū), there exists
a unique f satisfying (86) and (101). Moreover, since (101) is a consequence of (86), there
is a unique f satisfying (86) for any prescription of the initial value f(ū). Thus, the generic
solution to (86) depends on three constants. We finally note that if f satisfies (86), then so does
f + (a constant vector in R3). Therefore, the three arbitrary constants in the generic solution
correspond to the components of an arbitrary constant vector. Thus, for the given pair of
functions λ1 and λ2, the solution of the F(R)-system (86) is unique up to a constant vector.

Lemma 6.5. Let R = {r1, r2} be a partial frame satisfying the assumptions of Theorem 6.2.
Then the set of pairs of functions λ(R) = {(λ1, λ2)} satisfying condition 2 of Lemma 6.4 is a
real vector space of dimension at most 5.

Proof. It is straightforward to check that λ(R) is a vector space. To prove the bound on its
dimension, we prolong the system of equations (90)-(97) listed in condition 2 of Lemma 6.4 to
a Frobenius system for 5 unknown functions λ1, λ2, a1, a2, and τ , where we define

τ = s(λ2) for s = [r1, r2]. (116)

This is done by the following steps.
(1) By expanding the right-hand side of the commutator relationship

s(λ1) = [r1, r2](λ1)

and substituting the expressions for r1(λ1), r2(λ1), r1(λ2), r2(λ2), r1(a1), r2(a1), r1(a2), r2(a2)
from (90)-(97), we obtain

2 Γ3
21 s(λ1) + 2 Γ3

12 s(λ2) = Γ3
21

(
A1 (λ1 − λ2) +B1 a

1 + C1 a
2
)
, (117)

where

A1 = −r2

(
Υ1

Γ3
21

)
− r1(Γ1

12) +
Υ1 Υ2

Γ3
21 Γ3

12

− Γ3
12 (Γ1

13 + 2 Γ2
23)− Γ3

11

Γ3
21

(Γ1
23 Γ3

12 − Γ1
32) + Γ1

12 Γ2
21

(118)

B1 = −r2

(
Γ3

11

Γ3
21

)
− Υ1 (Γ3

21 − 1)

Γ3
21 Γ3

12

− Γ3
11 c

3
23

Γ3
21

+ 2
Γ3

12 Γ2
21

Γ3
21

+ Γ1
11 − c313 (119)

C1 = 2
r2(Γ3

12)

(Γ3
21)2

− Υ1 Γ3
22

Γ3
21 Γ3

12

− 2
Γ1

12

Γ3
21

+
Γ3

11 Γ1
22

Γ3
21

+ 2
Γ3

12

Γ3
21

(Γ2
22 − c323). (120)

(2) By expanding the right-hand side of the commutator relationship

s(λ2) = [r1, r2](λ2)

and substituting the expressions for r1(λ1), r2(λ1), r1(λ2), r2(λ2), r1(a1), r2(a1), r1(a2), r2(a2)
from (90)-(97), we obtain

2 Γ3
21 s(λ1) + 2 Γ3

12 s(λ2) = Γ3
12

(
A2(λ1 − λ2) +B2 a

1 + C2 a
2
)
, (121)
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where

A2 = r1

(
Υ2

Γ3
12

)
− r2

(
Γ2

21

)
+

Υ2 Υ1

Γ3
12 Γ3

21

− Γ3
21(Γ2

23 + 2 Γ1
13)− Γ3

22

Γ3
12

(Γ2
13 Γ3

21 + Γ2
31) + Γ2

21 Γ1
12

(122)

B2 = −2
r1

(
Γ3

21

)
(Γ3

12)2
+

Υ2 Γ3
11

Γ3
12 Γ3

21

+ 2
Γ2

21

Γ3
12

+
Γ3

22 Γ2
11

Γ3
12

+ 2
Γ3

21

Γ3
12

(Γ1
11 − c313) (123)

C2 = −r1

(
Γ3

22

Γ3
12

)
+

Υ2 (Γ3
12 + 1)

Γ3
12 Γ3

21

− Γ3
22 c

3
13

Γ3
12

+
2 Γ3

21 Γ1
12

Γ3
12

+ Γ2
22 − c323. (124)

(3) As the left hand sides of (117) and (121) agree, so do their right hand sides. In fact,

Γ3
21A1 ≡ Γ3

12A2, Γ3
21B1 ≡ Γ3

12B2, and Γ3
21C1 ≡ Γ3

12C2 (125)

due to the flatness condition (12). To show the A identity in (125), we first compute Γ3
21A1 −

Γ3
12A2 by substituting Υ1 and Υ2 into (118) and (122) and making various simplifications. We

obtain

Γ3
21A1 − Γ3

12A2 = −s(Γ3
12) + Γ3

12 r2(Γ3
31)− Γ3

21 r1(Γ3
32)− Γ2

21 Γ3
32 + Γ3

31 Γ3
32 − Γ3

31Γ1
12

+ Γ3
21 Γ3

12 (Γ1
13 − Γ2

23)− Γ3
11 (Γ1

23Γ3
12 − Γ1

32) + Γ3
22 (Γ2

13 Γ3
21 + Γ2

31). (126)

We then expand the identity

Γ3
12

(
∇r2 ∇sr1 −∇s∇r2r1 −∇[r2,s] r1

)
− Γ3

21

(
∇r1 ∇sr2 −∇s∇r1r2 −∇[r1,s] r2

)
≡ 0. (127)

and observe that the coefficient of s in (127) equals to the left hand side of (126). Similarly,
we use the s coefficient of the expanded identity ∇r1∇r2r1 − ∇r2∇r1r1 ≡ ∇sr2 to show the
B-identity of (125), and the s coefficient of the expanded identity ∇r1∇r2r2−∇r2∇r1r2 ≡ ∇sr2

to show the C-identity of (125).
(4) Introducing a new unknown function τ , defined by (116), we solve (117) for s(λ1):

s(λ1) = − Γ3
12

Γ3
21

τ +
1

2
A1 (λ1 − λ2) +

1

2
B1 a

1 +
1

2
C1 a

2 (128)

and rewrite (96) and (97) as

r1(a1) =
(1

2
A1 + Γ1

13Γ3
12

)
(λ1 − λ2) +

(1

2
B1 − Γ1

11 + c313

)
a1 +

(1

2
C1 − Γ1

12

)
a2 − Γ3

12

Γ3
21

τ (129)

r2(a2) = Γ2
23 Γ3

21 (λ1 − λ2)− Γ2
21 a

1 + (c323 − Γ2
22)a2 + τ. (130)

(5) To complete the system (90)-(95), (116), (128), (129), and (130) to a Frobenius system
we need to express the remaining derivatives s(a1), s(a2), r1(τ), r2(τ) and s(τ) as functions of
λ1, λ2, a1, a2 and τ . For this purpose, we consider further commutator relationships. Expanding
the left hand side of the relation [r1, s](λ2) = r1(s(λ2))− s(r1(λ2)), and substituting (116) and
(91) into the right hand side, we obtain

c113 r1(λ2) + c213 r2(λ2) + c313 s(λ2) = r1(τ)− s(Γ2
21 (λ1 − λ2) + a2). (131)

By substituting the already known expressions for r1(λ2), r2(λ2), s(λ2), s(λ1), given by (91),
(93), (116), (128), respectively, into (131), we obtain:

r1(τ)− s(a2) = L1(λ1 − λ2, a1, a2, τ), (132)
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where L1 is a linear function with coefficients depending on ckij , Γkij , and their derivatives.

Applying the same procedure to the relation [r2, s](λ2) = r2(s(λ2))− s(r2(λ2)), yields

c123 r1(λ2) + c223 r2(λ2) + c323 s(λ2) = r2(τ)− s
(

1
Γ3
12

(Υ2 (λ1 − λ2)− 2 Γ3
21 a

1 − Γ3
22 a

2)
)
, (133)

and the same substitutions as above yields

Γ3
12 r2(τ) + 2 Γ3

21 s(a1) + Γ3
22 s(a2) = L2(λ1 − λ2, a1, a2, τ), (134)

where L2 is linear with coefficients depending on ckij , Γkij , and their derivatives. Perform-

ing similar calculations for the relations [r2, s](λ1) = r2(s(λ1)) − s(r2(λ1)) and [r1, s](λ1) =
r1(s(λ1))− s(r1(λ1)), we obtain

− Γ3
12 r2(τ) + Γ3

21 s(a1) = L3(λ1 − λ2, a1, a2, τ), (135)

and
Γ3

12 r1(τ) + Γ3
11 s(a1) + 2 Γ3

12 s(a2) = L4(λ1 − λ2, a1, a2, τ), (136)

where L3 and L4 are linear with coefficients depending on ckij , Γkij , and their derivatives.
Equations (132), (134), (135) and (136) can be viewed as a linear inhomogeneous system of

four equations for the four unknowns s(a1), s(a2), r1(τ) and r2(τ):
1 0 0 −1
0 Γ3

12 2 Γ3
21 Γ3

22

0 −Γ3
12 Γ3

21 0
Γ3

12 0 Γ3
11 2 Γ3

12




r1(τ)
r2(τ)
s(a1)
s(a2)

 =


L1

L2

L3

L4

 . (137)

Let M denote the 4× 4 matrix on the left of (137). The upper left 3 × 3 minor of M equals to
3 Γ3

12Γ3
21 and is non-zero under our assumptions. Thus the rank of M is at least 3. We find that

det(M) = Γ3
12 (9Γ3

12 Γ3
21 − Γ3

11 Γ3
22),

where the expression in the parentheses is non-zero near ū due to the assumption (89) in Theo-
rem 6.2. Solving (137) we obtain expressions for s(a1), s(a2), r1(τ), and r2(τ) as linear functions
of λ1 − λ2, a1, a2, τ , with coefficients depending on ckij , Γkij , and their derivatives. Finally,

s(τ) = [r1, r2](τ) = r1(r2(τ))− r2(r1(τ)), (138)

and substitution of the known expressions of the derivatives, r1(τ), r2(τ), r1(λ1), r2(λ1), r1(λ2),
r2(λ2), r1(a1), r2(a1), r1(a2), and r2(a2), yields a linear function of λ1 − λ2, a1, a2, τ , with
coefficients depending on ckij , Γkij , and their derivatives.

(6) The fifteen equations (90)-(95), (116), (128), (129), (130), (137) and (138) can be used
to express all directional derivatives of the functions λ1, λ2, a1, a2 and τ as linear combinations
of λ1 − λ2, a1, a2, and τ , with coefficients depending on ckij , Γkij , and their derivatives. These
expressions provide a Frobenius system. If its integrability conditions are satisfied, the generic
solution depends on 5 constants, the prescribed values of these functions at ū. If the integrability
conditions for this system are not identically satisfied, they will impose additional relationships
on λ1, λ2, a1, a2 and τ , thus reducing the size of the solution set.

(7) The Frobenius type system (90)-(95), (116), (128), (129), (130), (137) and (138) was
obtained as a consequence of condition 2 of Lemma 6.4. Therefore, the vector space of pairs of
functions λ(R) = {(λ1, λ2)} satisfying this condition is of dimension at most 5.

Lemma 6.6. Let R = {r1, r2} be a non-involutive partial frame satisfying condition (87).
Assume f ∈ F(R) is a non-hyperbolic flux. Then the corresponding eigenfunctions λ1 and λ2,
appearing in (86), coincide and are non-constant: λ1 = λ2 = λ with λ non-constant.
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Proof. We recall that f being non-hyperbolic means that the operator ∇̃(·)f , does not posses
three real eigenfunctions. However, (86) holds by assumption, so that it possesses two real
eigenfunctions λ1 and λ2. As complex eigenfunctions come in conjugate pairs and n = 3,
the possibility of a third eigenfunction being complex is excluded. Therefore, f must have a
generalized eigenvector field, which we denote s. Let ckij and Γkij denote structure coefficients

and Christoffel symbols for ∇̃ relative to the frame {r1, r2, s}. First, assume for contradiction
that λ1 6= λ2. Then either

∇̃sf = r1 + λ1 s or ∇̃sf = r2 + λ2 s. (139)

Without loss of generality we assume that the second equality holds (if not, relabel r1 and r2).
Then (100) together with (86) and the second equation in (139) imply

c112λ
1r1 + c212λ

2r2 + c312(r2 + λ2 s) = ∇̃r1(λ2 r2)− ∇̃r2(λ1 r1). (140)

Using (86) again and collecting the coefficients for s, we obtain Γ3
21(λ2−λ1) = 0. Condition (87)

implies Γ3
21 6= 0 on an open neighborhood of ū, and, therefore, λ1 = λ2 on this neighborhood.

Next, let λ1 = λ2 = λ. Then, since s is a generalized eigenvector field, we must have

∇̃sf = αr1 + βr2 + λ s, (141)

where α and β are functions with α(ū) or β(ū) non-zero. Assume for contradiction that λ is a
constant function on a neighborhood of ū. Then (100) together with (86) and (141) imply that

c112λr1 + c212λr2 + c312(α r1 + β r2 + λ s) = λ∇̃r1 r2 − λ∇̃r2 r1. (142)

On the left hand side of (142), we notice that c112λr1 + c212λr2 + c312λ s = λ [r1, r2]. At the same
time, the right hand side of (142) equals to λ [r1, r2] due to the symmetry condition (11). Then
α r1 + β r2 = 0, which contradicts our assumption that vectors r1|ū and r2|ū are independent
and α and β are functions with α(ū) or β(ū) non zero. Thus λ is a non-constant function.

Lemma 6.7. Let R = {r1, r2} be a non-involutive partial frame satisfying condition (87).
Assume f ∈ F(R) is a non-hyperbolic flux. Then all other non-hyperbolic fluxes in F(R) are of
the form c f + (trivial flux) where c 6= 0 ∈ R.

Proof. (1) Let f ∈ F(R) be a non-hyperbolic flux. By Lemma 6.6 there exists a non-constant
function λ in a neighborhood of ū, such that f and λ1 = λ2 = λ satisfy (86). A calculation
shows that if λ̄ ∈ R and f̄ ∈ F id (see (27)), then c f + λ̄f̄ is a non-hyperbolic flux which verifies
(86) (with λ1 = λ2 = c λ+ λ̄). Recalling (28), we conclude that c f + (a trivial flux) belongs to
F(R); clearly these fluxes are non-hyperbolic. It remains to show that any non-hyperbolic flux
in F(R) is of this form.

(2) Lemma 6.4 implies that the function λ together with the functions

a1 := −r2(λ) and a2 := r1(λ) (143)

satisfy the following system (these are (92)–(97) in the case λ1 = λ2):

r1(λ) =
1

Γ3
21

(
Γ3

11 a
1 + 2 Γ3

12 a
2
)
, (144)

r2(λ) = − 1

Γ3
12

(
2 Γ3

21 a
1 + Γ3

22 a
2
)
, (145)

r2(a1) = (c323 − Γ1
21) a1 − Γ1

22 a
2, (146)

r1(a2) = −Γ2
11 a

1 + (c313 − Γ2
12) a2, (147)

r1(a1)− s(λ) = −(Γ1
11 − c313) a1 − Γ1

12 a
2, (148)

r2(a2)− s(λ) = −Γ2
21 a

1 + (c323 − Γ2
22)a2, (149)
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where the functions Γkij are Christoffel symbols for ∇̃ relative to the frame {r1, r2, s := [r1, r2]}.
Equation (143) immediately imply that

s(λ) = r1(r2(λ))− r2(r1(λ)) = −r1(a1)− r2(a2). (150)

Then from (150), together with (148) and (149), we obtain:

s(λ) =
1

3
(Γ1

11 + Γ2
21 − c313) a1 +

1

3
(Γ2

22 + Γ1
12 − c323) a2 , (151)

r1(a1) =
1

3
(−2 Γ1

11 + Γ2
21 + 2 c313) a1 +

1

3
(Γ2

22 − 2 Γ1
12 − c323) a2, (152)

r2(a2) =
1

3
(Γ1

11 − 2 Γ2
21 − c313) a1 +

1

3
(−2 Γ2

22 + Γ1
12 + 2 c323) a2. (153)

From Lemma 6.6 we know that λ is a non-constant function, and, therefore, at least one of its
derivatives in the frame directions must be non-zero. Examining (143) and (151), we conclude
that at least one of the functions a1 or a2 is non zero. Without loss of generality, we assume
that a1 6= 0 (otherwise, relabel r1 and r2).

(3) Equations (143), (144), (145) imply[
Γ3

11 Γ3
12 + 1

Γ3
21 − 1 Γ3

22

] [
a1

a2

]
= 0. (154)

Since [a1, a2]T is non-zero, the determinant of the matrix in (154) must vanish, i.e.

Γ3
11 Γ3

22 − (Γ3
12 + 1)(Γ3

21 − 1) = 0. (155)

Substituting c312 = 1 in (155) and simplifying, we get the condition

Γ3
12 Γ3

21 − (c312)2 = Γ3
11 Γ3

22. (156)

(4) At least one of the expressions Γ3
12 + 1 or Γ3

21 − 1 is non-zero: if both were zero, then
c321 = −2, which contradicts our assumption that the ckij are the structure coefficients for the
frame {r1, r2, s = [r1, r2]}. Thus (154) has a one parameter family of solutions. In part (2) of
the proof, we argued that we may assume a1 6= 0. Then, from (154), we can express

a2 = αa1, (157)

where α(u) is a known function expressible in terms of the Γkij . (Explicitly, if Γ3
12 6= −1, then

α =
Γ3
11

Γ3
12+1

, otherwise, we can show that Γ3
22 6= 0 and α = 3

Γ3
22

.) Substitution of (157) into (143),

(146), (151), and (152), gives

r1(λ) = αa1 (158)

r2(λ) = −a1 (159)

s(λ) = α1 a
1 (160)

r1(a1) = α2 a
1 (161)

r2(a1) = α3 a
1, (162)

where α, α1, α2, α3 are known functions, expressible in terms of the functions Γkij and their
derivatives. Substituting (161) and (162) in the commutator relationship, we conclude that

s(a1) = r1(r2(a1))− r2(r1(a1)) = α4 a
1, (163)
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where α4 is another known function, expressible in terms of the functions Γkij and their deriva-

tives. The system (158)-(163) is a Frobenius system for the two unknowns λ and a1, and so its
solution depends on at most two arbitrary constants.

(5) Parts (1) and (2) of the proof show that there exist non-constant functions λ and a1 =
−r2(λ), satisfying (158)-(163), giving a 2-parameter family of solutions λc,λ̄ = c λ+ λ̄, a1

c = c a1,

where c, λ̄ are arbitrary constants. Part (4) shows that there are no other solution. Also, each
λc,λ̄, with c 6= 0, corresponds to a 3-parameter family of non-hyperbolic fluxes c f +λ̄f̄ , where f̄ ∈
F id. We conclude that any non-hyperbolic flux in F(R) is of the form c f + (a trivial flux).

Remark 6.8. From (143) it follows that if f is a non-hyperbolic flux for R = {r1, r2}, then
s = [r1, r2] is a generalized eigenvector field of f . Indeed,

∇̃[r1,r2]f = ∇̃r1∇̃r2f − ∇̃r2∇̃r1f = ∇̃r1(λ r2)− ∇̃r2(λ r1) = a1 r1 + a2r2 + λ [r1, r2]. (164)

Proof of Theorem 6.1: 1. We want to show that a non-zero flux f ∈ F(R)/F triv is either strictly
hyperbolic or non-hyperbolic. Assume that there exists a non-strictly hyperbolic flux f ∈ F(R).
Then f has the third eigenvector field r3 and at least two of the corresponding eigenvalue
functions λ1, λ2 and λ3 coincide in an neighborhood of a fixed point ū ∈ Ω. Examining the r3

component of the expended flatness condition (100), we conclude that

Γ3
12 λ

2 − Γ3
21 λ

1 = c312 λ
3, (165)

where here ckij and Γkij denote structure coefficients and Christoffel symbols for ∇̃ relative to the
frame {r1, r2, r3}. (165) must hold as an identity near ū, and may be written as

Γ3
12 (λ2 − λ3)− Γ3

21 (λ1 − λ3) ≡ 0. (166)

From the assumption of the theorem it follows that Γ3
12 6= 0, Γ3

21 6= 0, and Γ3
12 6= Γ3

21. From (166)
we conclude that if any two of the functions λ1, λ2, λ3 are equal, then all three of them must be
equal, to λ(u), say. This implies that ∇̃rf = λr for any r ∈ X (Ω). The flatness conditions

∇̃[r1,ri]f = ∇̃r1∇̃rif − ∇̃ri∇̃r1f for i = 2, 3,

then imply that
λ [r1, ri] = r1(λ ri)− ri(λ r1) for i = 2, 3.

As the right hand side of the above equation is λ [r1, ri] + r1(λ) ri − ri(λ) r1, and r1, r2, r3 are
independent, we conclude that ri(λ) = 0 for i = 1, 2, 3. Therefore, λ ≡ λ̄ ∈ R is a constant
function. This implies that f is a trivial flux, and the statement is proven.

2. From Lemma 6.7, if F(R) contains strictly hyperbolic fluxes, then up to adding a triv-
ial flux, it contains exactly a one parameter family of non-hyperbolic fluxes. Therefore, if
dimF(R)/F triv > 1, then F(R) contains hyperbolic fluxes, and, from the first part of the
theorem, we know that all non-trivial hyperbolic fluxes in F(R) are strictly hyperbolic.

3. In the proof of Lemma 6.7 (see (156)), we showed that if F(R) contains non-hyperbolic
fluxes, then (88) holds with ckij and Γkij being the structure coefficients and Christoffel symbols

of the connection ∇̃ relative to the frame {r1, r2, [r1, r2]}. Then Lemma 6.3 asserts that (88)
holds with c and Γ corresponding to any completion {r1, r2, s} of R to a frame. �

Proof of Theorem 6.2: 1. We want to show that 0 ≤ dimF(R)/F triv ≤ 4. Lemma 6.5 asserts
that under the assumptions of Theorem 6.2, the set of pairs of functions λ(R) = {(λ1, λ2)}
satisfying condition 2 of Lemma 6.4 is a real vector space of dimension at most 5. In addition,
Lemma 6.4 implies that for every λ1 and λ2 satisfying condition 2, there exists a unique (up to a
constant vector) flux f satisfying (86). Thus dimF(R) ≤ 8. On the other hand, F(R) contains
a 4-dimensional subspace of trivial fluxes, giving the stated inequality.

2. For k = 0, . . . , 4, Examples 7.4-7.8 exhibit partial frames, satisfying the assumptions of
the theorem, and with dimF(R)/F triv = k. �
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7 Examples

The examples provided in this section illustrate the main results of the paper and also provide
a proof for the existence statement in Theorem 6.2. The computations were performed with
Maple by setting up systems of differential equations for f and λ and applying pdsolove.

7.1 Rich partial frames

For rich partial frames satisfying (51) Theorem 5.7 gives the degree of freedom for prescribing
λ and f satisfying the F(R)-system (25). The theorem also asserts that F(R) contains strictly
hyperbolic fluxes. The following three examples demonstrate these results. They also illustrate
the fact that a hyperbolic flux corresponding to a rich partial frame may have a non-rich full
frame. In fact, there are three different scenarios: in Example 7.1 all strictly hyperbolic fluxes
in F(R) are rich, in Example 7.2 all hyperbolic (strictly and non-strictly) fluxes in F(R) are
non-rich, and in Example 7.3 F(R) contains both rich and non-rich strictly hyperbolic fluxes.

In the following examples, n = 3 and m = 2. The standard affine coordinates in R3 for the
connection ∇̃ are denoted by (u, v, w). We start with a simple example, a partial frame given
by the first two standard vectors in R3.

Example 7.1. Let r1 = [1, 0, 0]T and r2 = [0, 1, 0]T comprise a partial frame R on R3. It is
clear that R satisfies the assumptions of Theorem 5.7, and as predicted by this theorem λ1 and
λ2 are parametrized by two functions of two variables:

λ1 = φ(u,w) and λ2 = ψ(v, w). (167)

For each such pair of λ1 and λ2 we get a family of fluxes in F(R) parametrized by three arbitrary
functions of one variable, g, h and k:

f =

[∫ u

∗
φ(s, w) ds+ g(w),

∫ v

∗
ψ(s, w) ds+ h(w), k(w)

]T
. (168)

On the other hand, we could start by parametrizing the set F(R) by two arbitrary functions Φ
and Ψ of two variables and an arbitrary function k of one variable:

f = [Φ(u,w),Ψ(v, w), k(w)]T with λ1 = ∂uΦ, λ2 = ∂vΨ. (169)

Of course, (169) is equivalent to (167)-(168), but in (169) the functions g, h are absorbed into Φ
and Ψ. While (169) is simpler, (167)-(168) more closely illustrates the argument in the proof of
Theorem 5.7. Obviously, for most choices of Φ, Ψ, and k, the resulting flux is strictly hyperbolic.

We finally show that all strictly hyperbolic fluxes in F(R) are rich. Let r3 be the third
eigenvector field of a hyperbolic flux f ∈ F(R). Since r3 is linearly independent of r1 and r2,
it can be, up to rescaling, written as r3 = [a, b, 1]T , where a and b are functions on R3. As

∇̃r3r1 = ∇̃r3r2 = 0, we have in particular that

Γ2
31 = Γ1

32 = 0 and therefore c213 = Γ2
13 and c123 = Γ2

23. (170)

We also have
Γ3

12 = Γ3
21 = c312 = 0. (171)

Substituting (170) and (171) into (41) produces two equations:

Γ1
23 (λ3 − λ1) = 0 and Γ2

13 (λ3 − λ2) = 0. (172)

If Γ1
23 6= 0 or Γ2

13 6= 0, then (172) implies that λ3 = λ1 or λ3 = λ2 and therefore f is not strictly
hyperbolic. If Γ1

23 = 0 and Γ2
13 = 0, then (171) implies that c123 = 0 and c213 = 0, and therefore

f is rich. Thus F(R) does not contain non-rich strictly hyperbolic fluxes.
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On the other hand, the following example presents a rich pair of vector fields satisfying (51)
and which admits only non-rich hyperbolic fluxes.

Example 7.2. Consider the partial frame R consisting of the vector fields r1 = [1, 0, 0]T and

r2 = [w, 1, 0]T on a set Ω ⊂ R3 where w 6= 0. As [r1, r2] = 0, ∇̃r1 r2 = 0, and ∇̃r2 r1 = 0,
we are in the case considered in Theorem 5.7. As predicted by Theorem 5.7, the freedom for
prescribing λ1 and λ2 consists of two arbitrary functions of two variables:

λ1 = φ
(
w, v − u

w

)
and λ2 = ψ(v, w). (173)

The corresponding family of fluxes is

f =

[
w

∫ v

∗
ψ(s, w) ds− w

∫ v− u
w

∗
φ(w, s) ds+ g(w),

∫ v

∗
ψ(s, w) ds+ h(w), k(w)

]T
,

where g, h and k are arbitrary functions of one variable.
Proposition 5.3 gives that for any ū ∈ Ω and any choices of φ and ψ such that the λ1(ū) 6=

λ2(ū), one can find functions h, g and k so that the resulting flux f is strictly hyperbolic.
For a concrete example, let φ

(
w, v − u

w

)
= − 1

w and ψ(v, w) = 0, g(w) = h(w) = 0 and
k(w) = − 1

w − logw. We observe that the flux

f =

[
v − u

w
, 0,− 1

w
− logw

]T
is strictly hyperbolic with eigenvalues

λ1 = − 1

w
, λ2 = 0, λ3 =

1− w
w2

,

and with the third eigenvector given by r3 = [u, 0, 1]T .
We now show that, although the partial frame R is rich, the corresponding set of fluxes

F(R) does not contain any rich hyperbolic fluxes. Indeed, let r3 be the third eigenvector of a
strictly hyperbolic flux in F(R). Up to a scaling, any vector field which is linearly independent
from r1 and r2, is of the form r3 = [a, b, 1]T , where a and b are arbitrary functions on R3. Since
[r3, r2] = [1, 0, 0]T , we have c132 = 1, and, therefore, there is no rich hyperbolic fluxes in F(R).

Finally, we present an example of a rich partial frame R, which admits both rich and non-rich
strictly hyperbolic fluxes.

Example 7.3. Consider a partial frame R, consisting of the vector fields r1 = [1,−
√
u, 0]T and

r2 = [1,−
√
u, 0]T on a set Ω ⊂ R3 where u 6= 0. One can directly check that the assumption of

Theorem 5.7 are satisfied.
Adjoining the third vector field r3 = [0, 0, 1]T , we obtain a full rich frame, which also satisfies

the hypothesis of Theorem 5.7, and thus admits strictly hyperbolic fluxes, all of which belong to
F(R) by construction. We do not include the general explicit expression for these fluxes, which
is rather long and involves special functions.

On the other hand, if we adjoin vector field r̃3 = [1, 0,−u]T , we obtain a non-rich full frame
(with c213 = − 1

4u ), such that modulo F triv, it has a 1-parameter family of strictly hyperbolic
fluxes:

f = a [v,
u2

2
+ w, 0]T , where a 6= 0 ∈ R, (174)

with the eigenvalues
λ1 = −

√
u; λ2 =

√
u; λ3 = 0.

By construction, F(R) contains fluxes (174), and thus it contains both rich and non-rich strictly
hyperbolic fluxes.
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7.2 Non-involutive partial frames of two vectors fields in R3.

We next present examples of non-involutive partial frames R = {r1, r2} on some open subsets of
R3 which illustrate Theorems 6.1 and 6.2. We continue with examples satisfying the hypotheses
of Theorem 6.2. These examples illustrate the second claim of this theorem, assuring that
for each k = 0, . . . , 4, there exists R, meeting the assumptions of the theorem and satisfying
dimF(R)/F triv = k.

Example 7.4 (dimF(R)/F triv = 0). For a partial frame R consisting of vector fields r1 =
[0, 1, u]T and r2 = [w, 0, 1]T all fluxes are trivial.

Example 7.5 (dimF(R)/F triv = 1). For a partial frame R consisting of vector fields r1 =
[v, u, w]T and r2 = [u,w, v]T , on an open subset Ω ⊂ R3 where these vectors are independent,
the non-trivial fluxes form a 1-parameter family:

f =
c1

(u+ v + w)2

[
−1

2
u2 − uv,−(u+ v)(u+ w)− 1

2
v2, vw +

1

2
w2

]T
.

This frame does not satisfy condition (88) and, therefore, in agreement with Theorem 6.1, all
non-trivial fluxes are strictly hyperbolic with eigenfunctions

λ1 = c1
u− v

(u+ v + w)2
, λ2 = c1

v − w
(u+ v + w)2

, λ3 = 0.

The third eigenvector is equal to r3 = [u, v, w]T .

Example 7.6 (dimF(R)/F triv = 2). For a partial frame R consisting of vector fields r1 =
[−1, 0, v + 1]T and r2 = [ w

v2−1 ,−1, u]T defined on an appropriate open subset of R3, the set of

non-trivial fluxes forms a two-dimensional vector space7:

f = c1

 ((v − 1)u+ w) Ei(v − 1)− e1−vu
1
2

[
(v − 1)2 Ei(v − 1)− (3v + 2)e1−v]

(v + 1)((1− v)u− w) Ei(v − 1) + (2(v + 1)u+ w)e1−v

+ c2

 uv + w
v2

2
u (1− v2)− vw

 ,
where Ei(x) =

∫∞
1

e−tx

t dt is the exponential integral. This frame does not satisfy condition (88)
and therefore, in agreement with Theorem 6.1, all non-trivial fluxes are strictly hyperbolic with
eigenfunctions

λ1 = −c1(2 Ei(v−1)+e1−v)−c2, λ2 = c1((v−1) Ei(v−1)+v e1−v)+c2v, λ3 = c1e
1−v+c2.

The third eigenvector of [Df ] is:

r3 =
[
c1 Ei(v − 1) + c2, 0, c1 (2 e1−v + (v − 1) Ei(v − 1))− c2 (v − 1)

]T
.

Example 7.7 (dimF(R)/F triv = 3). For a partial frame R consisting of vector fields r1 =
[1,
√
w, 0]T and r2 = [u, 0,−w]T the set of non-trivial fluxes forms a three-dimensional vector

space:

f = c1

3uv
√
w − v2 − u2w
uvw

vw3/2 − uw2

+ c2

 v
uw
0

+ c3

u√w − v0
w3/2

3

 .
In this case, when c1 = 0 and c2 = 1

2c3, we obtain a 1-parameter family of non-hyperbolic fluxes

fnh = c

[
u
√
w − 1

2
v,

1

2
uw,

w3/2

3

]T
,

7Technically, we should say “the set of non-trivial fluxes and the zero flux form a two-dimensional vector space.”
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with the eigenfunctions

λ1 = λ2 =
1

2
c
√
w.

We also confirm that R satisfies the necessary condition (88) for admitting non-hyperbolic
fluxes. To check this we complete R to a frame, e.g., by adjoining the vector field s = [r1, r2] =
[1, 1

2

√
w, 0]T . We also confirm Remark 6.8: s is a generalized eigenvector, viz.

∇̃sf =
1

2
c
√
w s +

1

4
c
√
w r1.

In agreement with Theorem 6.1, all other fluxes are strictly hyperbolic with the eigenfunctions:

λ1 = c1(v
√
w + uw) + c2

√
w;

λ2 = c1

(
3

2
v
√
w − uw

)
+
c3
2

√
w;

λ3 = c1(2v
√
w − 3uw)− c2

√
w + c3

√
w.

The third eigenvector of [Df ] is:

r3 =

 c21 (2u2 w − 2 v2) + c1 c2 (3
√
w u− v)− c1 c3 (

√
w u+ v) + c22 − c2 c3

1
2 (c1 v + c2) (c1 (

√
w v + uw) + c2

√
w)

2 c1 w (c1 (
√
w v + uw) + c2

√
w)

 .
We observe that, in this last case, the dependence of r3 on c1, c2 and c3 is non-linear.

Example 7.8 (dimF(R)/F triv = 4). For a partial frame R consisting of vector fields r1 =
[1, 0, v]T and r2 = [0, 1,−u]T , the set of non-trivial fluxes forms a four-dimensional vector space:

f = c1

2u (w + u v)
2 v (w − u v)
w2 + 3u2v2

+ c2

 2u2

w − u v
2u2 v

+ c3

u v + w
−2 v2

2uv2

+ c4

 0
2 v

w − uv

 .
This frame does not satisfy condition (88) and, therefore, in the agreement with Theorem 6.1,
all non-trivial fluxes are strictly hyperbolic with eigenfunctions

λ1 = 2 c1 (w + 3u v) + 4 c2u− 2 c3v;

λ2 = 2 c1 (w − 3u v)− 2 c2u− 4 c3 v + 2 c4;

λ3 = 2 c1w + c2 u− c3v + c4.

The third eigenvector of [Df ] is

r3 = [−2 c1 u− c3, 2 c1 v + c2, 2 c1 u v + 2 c2 u+ 2 c3 v − c4]
T
.

Finally, we give another maximal-dimensional case where F(R) contains non-hyperbolic fluxes.

Example 7.9 (dimF(R)/F triv = 4). For a partial frame R consisting of vector fields r1 =
[1, 0, 2 v]T and r2 = [0, 1, u]T , the set of non-trivial fluxes forms a four-dimensional vector space:

f = c1

 u (uv − w)
−2 v (2uv − w)

−6u v(uv − w)− 2w2

+ c2

 u2

2 (2uv − w)
2u2v

+ c3

w − uv2 v2

2uv2

+ c4

 0
v

2uv − w

 .
When c1 = c3 = c4 = 0 and c2 = 1, we obtain a 1-parameter family of non-hyperbolic fluxes

fnh = c
[
u2, 2 (2uv − w), 2u2v

]T
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with eigenfunctions
λ1 = λ2 = 2 c u.

In agreement with Theorem 6.1, all other fluxes are strictly hyperbolic with eigenfunctions

λ1 = −c1 w + 2 c2 u+ c3 v

λ2 = 2 c1 (w − 3u v) + 2 c2 u+ 4 c3 v + c4,

λ3 = 2 c1 (3u v − 2w) + 2 c2 u− 2 c3 v − c4,

and
r3 = [c1 u− c3c1 v − c2(5u v − 3w)− c2 u− c3 v − c4]

T
.

Remark 7.10. In Examples 7.6-7.9, where 2 ≤ dimF(R)/F triv ≤ 4, the following interesting
phenomenon occurs. For the basis fluxes f1, . . . , fk presented in these examples (k = 2, ..., 4, de-
pending on an example), the corresponding Jacobian matrices DF1, . . . , DFk have the additivity
of eigenvalues property, called the property L by Motzkin and Taussky in [10, 11]. By construc-
tion, r1 and r2 are eigenvectors of DF1, . . . , DFk. It is therefore obvious that, if λ1

1, . . . , λ
1
k are

the eigenvalues for r1 of DF1, . . . , DFk, respectively, and λ2
1, . . . , λ

2
k are the eigenvalues for r2

of DF1, . . . , DFk, respectively, then for f = c1f1 + · · · + ckfk the Jacobian matrix DF has the
eigenvalue λ1 = c1λ

1
1 + · · ·+ckλ1

k for the eigenvector r1 and the eigenvalue λ2 = c1λ
2
1 + · · ·+ckλ2

k

for the eigenvectors r2. However, we note that also the third eigenvalues also “add up.” Indeed,
in all of the examples, λ3 = c1λ

3
1 + · · ·+ ckλ

3
k is the third eigenvalue of Df , where λ3

1, . . . , λ
3
k are

the third eigenvalues of DF1, . . . , DFk, despite the fact that these matrices have non-collinear
third eigenvectors r3,1, . . . , r3,k.

Our last example shows that even when the first assumption in Theorem 6.2, i.e., the neces-
sary condition (87) for strict hyperbolicity, holds, the second assumption, i.e., (89), may not.

Example 7.11. Consider the partial frame R defined consisting of the vector fields r1 =
[1, 0, w]T and r2 = [0, 1,− 9

8 ln(w) + u]T , for which (87) holds. The vector field s = [0, 0, 1]T

completes R to a frame, and relative to this frame we have

Γ3
22(u) Γ3

11(u)− 9 Γ3
12(u) Γ3

21(u) ≡ 0. (175)

(This example was obtained by setting up a differential equation on the components of vector
fields r1 and r2, induced by the identity (175) and finding its particular solution.) For this
partial frame the vector space F(R)/F triv is one dimensional:

f = c
[

1
8e
−u, e−u w, e−u w

(
u− 9

8 ln(w) + 9
8

)]T
.

This frame does not satisfy condition (88), and therefore, in agreement with Theorem 6.1, all
non-trivial fluxes are strictly hyperbolic with eigenfunctions

λ1 = − 1
8c e
−u, λ2 = c e−u

(
u− 9

8 ln(w)
)
, λ3 = 0,

and the third eigenvector field is r3 = [0, 1, 0]T .
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