An Energy-Efficient Network-on-Chip Design using
Reinforcement Learning

Hao Zheng
George Washington University
haozheng@gwu.edu

ABSTRACT

The design space for energy-efficient Network-on-Chips (NoCs)
has expanded significantly comprising a number of techniques. The
simultaneous application of these techniques to yield maximum en-
ergy efficiency requires the monitoring of a large number of system
parameters which often results in substantial engineering efforts
and complicated control policies. This motivates us to explore the
use of reinforcement learning (RL) approach that automatically
learns an optimal control policy to improve NoC energy efficiency.
First, we deploy power-gating (PG) and dynamic voltage and fre-
quency scaling (DVEFS) to simultaneously reduce both static and
dynamic power. Second, we use RL to automatically explore the
dynamic interactions among PG, DVFS, and system parameters,
learn the critical system parameters contained in the router and
cache, and eventually evolve optimal per-router control policies
that significantly improve energy efficiency. Moreover, we intro-
duce an artificial neural network (ANN) to efficiently implement
the large state-action table required by RL. Simulation results using
PARSEC benchmark show that the proposed RL approach improves
power consumption by 26%, while improving system performance
by 7%, as compared to a combined PG and DVFS design without
RL. Additionally, the ANN design yields 67% area reduction, as
compared to a conventional RL implementation.

ACM Reference Format:

Hao Zheng and Ahmed Louri. 2019. An Energy-Efficient Network-on-Chip
Design using Reinforcement Learning. In The 56th Annual Design Automa-
tion Conference 2019 (DAC ’19), June 2-6, 2019, Las Vegas, NV, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3316781.3317768

1 INTRODUCTION

Network-on-Chips (NoCs) have emerged as the standard intercon-
nect fabric to connect cores, last level caches, and memory modules
on the chip. Current many-core chips consist of tens to hundreds of
cores, and future projections call for thousands of cores. However,
NoCs consume a substantial portion (approximately 10 % to 36 %) of
the total chip’s power [1-3]. The power problem will only become
more of a challenge with the continuous scaling of transistor fea-
ture size, and as more power is consumed in communication than

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06...$15.00
https://doi.org/10.1145/3316781.3317768

Ahmed Louri
George Washington University
louri@gwu.edu

in computing. Therefore, a number of studies have been proposed
to increase power savings for future NoCs design.

To achieve maximum power savings, it is imperative to combine
the benefits of various techniques in an integrated manner. Power-
gating (PG) is an effective technique to reduce static power [4,
5]. Dynamic voltage and frequency scaling (DVFS) is an effective
technique to reduce dynamic power [6, 7]. A combined design,
PG and DVFS, offers static and dynamic power reduction benefits.
However, the dynamic interactions between these techniques and
the network could have negative effects. An overestimated DVFS
decision incurs wasted dynamic power. On the other hand, an
underestimated DVFS decision could result in network congestion,
which in turn reduces the idle cycles between flits. Recall that the PG
decision is made on these idle cycles, thus it negatively affects the
static power reduction. This calls for a proactive control policy to
avoid such negative effects. Moreover, exploring various application
behavior may improve decision accuracy and power savings, but it
complicates the control policy. Applications have varying impacts
on the behavior of the NoC, cache and miss status holding registers
(MSHRs) [8, 9]. At the NoC level, the applications result in different
network utilization and message information [10, 11]. For example,
the network messages, such as load/store and response/request,
indicate the data criticality. At the cache level, L1 instruction and
data cache activities are correlated to the computation intensity,
while L2 cache and MSHR activities provide information about NoC
traffic. Collecting this information could increase decision accuracy
and power reduction benefits, but it complicates the control policy
and requires enormous engineering efforts.

Traditional control algorithms, and more recently, supervised
learning have been proposed to optimize NoC design [12-15]. A
Proportional-Integral-Derivative (PID) controller monitors the out-
put variances, then computes the logic by calculating proportional,
integral, and derivative values. However, the empirically tuned
parameters could fail to resist variations in applications and uncer-
tainties of NoC behavior. Similarly, supervised learning requires
human understanding to create labeled training examples prior to
the training phase, thus requiring human engineering.

In this paper, we propose a reinforcement learning approach
which automatically learns an optimal policy to map runtime sys-
tem parameters for optimal decision making. First, we propose a
combined design—PG and DVFS—to simultaneously reduce static
and dynamic power. PG disconnects the router from the power sup-
ply when the router is idle. DVFS dynamically tunes the V/F levels
and thus provides varying power levels. Second, we propose an RL-
based control policy for the combined design. A per-router based
RL agent learns a set of system parameters related to the NoC and
cache, and eventually evolves an optimal per-router control policy.
By automatically and optimally exploring these system parameters

and actions, the trained control policy maximizes energy efficiency.
Moreover, RL requires the use of a state-action table to record states,
actions, and the rewards resulting from taking actions. When a large
number of system parameters are used, the state-action table in-
creases significantly, which makes its hardware cost prohibitive.
In this paper, we propose an artificial neural network (ANN) to
reduce the hardware costs of implementing the RL on a per-router
basis. Our simulation results show that our proposed approach can
effectively reduce overall power consumption by 26%, and improve
performance by 7%. The ANN design achieves 67% area reduction,
as compared to a conventional RL implementation.

2 PROPOSED DESIGN

2.1 Architecture Overview

SA :Switch allocation = RC :Route computation = VA :Virtual channel allocation

T - =

Power ;
RL Agent H I
‘ & Controller } 3

RC

» Power-gating

X,

SXout ©
—> | Voltage regulator
FVout Vi Vous |
—stVout i

Crossbar I : :_0 E
(nxn) SVout | = Voo |

b i |
| | Vous |
M e
I I !
......................... = v ¢
Router Loimeim e Y |

Processing Core(s)
(a) (b)

Figure 1: (a) Micro-architecture of the proposed router, and
(b) PG technique and voltage regulator.

In the proposed architecture, we assume an 8x8 mesh topology
with deterministic XY routing. The processing core with a private
L1 cache and a shared L2 cache is attached to the router. When a
cache miss occurs, the local private L1 first checks whether it hosts
the data. If not, a request message is initialized and then sent to
shared L2 caches via the NoC. Since wormbhole routing is assumed,
a packet is segmented into several flits in NoC for efficient router
resource utilization.

Figure 1(a) shows a 4-stage router comprised of virtual channels
(VCs) for storing arriving flits, Routing Computation (RC) for cal-
culating flit route, Virtual Channel Allocation (VA) for assigning
virtual channel and flow control, and Switch Allocation (SA) for
allocating an input port on internal crossbar. Our proposed router
design has two additional units called the RL agent and the power
controller.

The RL agent maps system parameters to an optimal action
about which V/F level to take, and updates the state-action table
based on reward function. We implement a set of counters to collect
system parameters, and record them in the state-action table. These
parameters include the number of flits received at each port, the
number of response flits, the number of request flits, and the number
of cache misses. By collecting these parameters, the RL agent could

have a better understanding of application behavior, thus yielding a
more accurate control policy. Moreover, the RL agent monitors PG
performance by counting the number of powered off cycles, which
will be an indication of the PG and DVFS interaction.

The power controller consists of PG and DVFS controller. The
PG disconnects the router from the power supply using a header
transistor, shown in Figure 1(b), as a switch to turn on/off the router.
When the power controller detects a number of consecutive idle
cycles, it cuts off the router from the V;, to save static power.
In this paper, we assume 4 cycles as the detection time [16]. The
controller resumes the router’s full activity when detecting an
incoming flit (any incoming flit on any port will wake up the router).
The voltage regulator, shown in Figure 1(b), selects voltage levels
for each router. In this paper, we assume voltage levels from 0.6V to
1V, and frequency from 1GHz to 2GHz. Upon receiving a decision
from the RL agent, the DVES controller selects the appropriate V/F
for saving router’s dynamic power every 10K cycles. We set the
voltage regulator transition latency as 100 ns [9]. Since V/F levels
may be different among routers, the dual-clock First-input, First-out
(FIFO) synchronizer is used for router-to-router communication.

2.2 RL-Based Control Policy

2.2.1 Reinforcement Learning Basics.

Reinforcement learning (RL) [17] is a machine learning approach, in
which the agent acts as a learner and decision maker by interacting
with the environment. Figure 2 shows the dynamic interaction
between the RL agent and the environment. @ The agent selects
an action a; from a set of actions, A = {1, ...,K}, at time step ¢.
@ The selected action influences the environment by affecting

the internal state s; and rewards ry. @ This eventually results in
a new state and reward, s;+1 and r;1, at the next time step ¢ + 1.

In RL, the goal of the agent is to interact with the environment
by selecting actions in a way that maximizes the long-term total
rewards R, which is the cumulative sum of all future rewards, as
Equation 1. The future rewards (r;+1, r+2, ...) are discounted by a
factor of y (0 < y < 1) called the discount factor. As y approaches
to 0, the agent becomes near-sighted and only considering current
rewards.

@ State sy atstep t @ action a, is selected at step t

RL Agent
(Router)

State Reward@ Return reward 13,4 for state-action (s,a) Action
St Tt ae

T+l

Environment
(NoC System)

i
| St+1

@ New state s;,4 at step;t+1 @ Interact with NoC system

Figure 2: The agent-environment interaction in RL.

R=rr+yrie1 + yerg + ... (1)

All RL algorithms involve estimating the action-value function
to select an optimal action with the highest reward R. In other
words, it is essential to estimate the immediate rewards r for an
agent to be in a given state. Since the rewards depend on what

actions the agent will take, value functions are defined with respect
to particular ways of acting, called policies 7. The value of taking
action a in state s is denoted Q(s,a).

Tabular Q-learning is one of the RL algorithms, which finds
optimal Q-value function. A Q-value table is initialized with random
values for all possible (s,a) pairs. At each time step, the Q-learning
algorithm chooses actions based on current Q, such that, over many
time steps, all actions are taken in all states. In each time step, the
action-value table entry Q(s,a) is updated using Equation 2 based
on action g, reward r, and new state s’.

Q(s.a) = Q(s,a) + alr + ymaxQ(s', a) - Q(s, a)] @)

where « is learning rate and y is discount factor and maxQ(s’, a)
is the maximum Q value over all possible actions in state s’.

2.2.2 Problem Formulation.

Per-router RL Agent: The RL agent uses the monitored system
parameters and decides which voltage and frequency action to take
every 10K cycles.

Actions: The action space consists of different V/F levels that
routers can choose from. For clarity, this paper has three actions,
A = {ayp, a1, a2}, which are 2GHz/1V, 1.5GHz/0.8V, and 1GHz/0.6V,
respectively. The number of actions can be obviously much larger.

Category State Attributes Description

Cache 1. 11D cache miss the number of L1 data cache misses

Related Metrics

2. L1 cache miss the number of L1 instruction cache misses

3. L2 cache miss the number of L2 cache misses

4. +X buffer utilization the buffer utilization of +X input port

5. =X buffer utilization the buffer utilization of -X input port

Network 6. +Y buffer utilization
Related Metrics

the buffer utilization of +Y input port

7.-Y buffer utilization the buffer utilization of —Y input port

8. Local port buffer utilization | the buffer utilization of local port

9. Router throughput the number of flits received per epoch

Message 10. Response flits
Information

the number of response flits received

11. Request flits
PGand DVFS |12. PG efficiency

the number of request flits received

the efficiency of power-gating (Toerof/Tepoch)

Figure 3: The state attributes used in RL.

State Space: A state s is a vector of system attributes. In this
paper, it consists of cache and network related metrics as shown in
Figure 3.

o Cache Related Metrics: State attributes 1-3 are used to rep-
resent the cache activities of a local core. The activities of
L1 cache are correlated to the computation intensity. As L2
caches are shared and distributed across the chip, they com-
municate through the NoC. These communications are a
good indication of the overall NoC global behavior.

o Network Related Metrics: State attributes 4-9 indicate the
number of received flits at each port. These are used by the
RL agent to monitor different routing directions. In NoCs,
flits are often categorized into two classes called response
and request (state attributes 10-11). Response flits often have
priority over the request flits due to the message dependence.
State attribute 12 is the PG efficiency of a router, indicating

the efficiency of the PG for different DVFS decisions.
Reward Function: RL agent uses reward function to evaluate
how beneficial it is to take a specific action for a given state. Typ-
ically, choosing an action with higher reward function tends to

result in better system performance (e.g. power savings). Therefore,
the goal of RL agent is to maximize the long-term reward, which
in our case implies maximizing overall power savings. Thus, we
design the reward function for a router as:

Reward = Pstatic + denamic - Ppg overhead ®3)

Pstatic and Pgypamic represent the static and dynamic power
savings of the given router, respectively, while Py oyerheqd is the
power overhead resulting from powering on the router.

To avoid undesired performance loss due to DVFS, we apply a
negative reward when we observe that the average read cache miss
latency exceeds the threshold of performance loss. To calculate
this average read cache miss latency, we record the time difference
between the issued and completed time of each MSHR entry (read
cache miss). The reward is updated either according to Equation
(3) when the latency is under the threshold, or assigned a negative
reward equals to —1 to prevent the performance loss. A negative
reward that is smaller than -1 can be applied to further improve
performance at the expense of power savings.

Router
(RL Agent)

®

‘ Reward ‘

‘ State ‘ ‘ Action ‘

NoC system
(Environment)

@

State-Action Table (Q table)
States EN EN
$0<0,2,1,..> Qlsp,30) Qlspa,)

@ $1<0,2,2,.> | Qlspag) Q5,20

Figure 4: The procedure of updating stat-action table follow-
ing Q-learning rules.

State-Action Table: RL agent selects actions according to the
Q-values of a given state. Q-values for any state-action pair are
recorded independently in a per-router based state-action table. An
example is shown in Figure 4. The RL agent observes states and
records them as a vector <0,2,2,...> in a given time t, where each
element of the vector represents a specific state. Since some state
attributes are continuous numbers, they could lead to infinite state
space and infeasible Q-learning converging time. Therefore, those
continuous numbers are discretized into finite bins. For example,
the RL agent monitors that the router was powered off for 5000
cycles in the past 10K-cycle epoch, which means its PG efficiency is
0.5 (power off time/epoch time). In this paper, each state attribute
has a discrete set of 5 bins, {0,1,2,3,4}. Therefore, the PG efficiency
of 0.5 is denoted as 2.

Walkthrough Example: The entire process of RL is shown in
Figure 4: @ The observed state vector <0,2,2,...> is used to query
the table where S; matches the state <0,2,2,...>. The action a7 has
the maximum Q-value in the matched entry, thus a; is selected.
We note that e-greedy policy is used to ensure continual design
space exploration, in which a random action may be selected with
a small probability of e. @ Upon taking this action, the system

transits to state s’ in the next time step ¢’. @ By following the
Q-learning update rule as Equation 2, a Q-value is learned from
the past experience. The total reward incorporates the immediate
reward r that results from the action a; and the discounted future
reward ymaxQ(s’, a’).

Learning parameters: In RL, the learning rate «, the discount
rate y, and € can be tuned. The learning rate « is set to 0.1. For the
Y, a larger number would lead to a policy more focused on future
rewards. In this paper, we define y of 0.95 as a value with optimal
performance. When e approaches zero, the RL stops exploration of
unknown actions and selects actions based on current policy. We
empirically find that € of 0.1 provides optimal power savings.

2.3 ANN for Reducing RL Implementation
Overheads

In RL, each state vector consists of a number of states, as discussed
in Section 2.2. When the RL agent observes any new state-action
pair, it creates a new entry in the state-action table to record its
actions and associated Q-values. Even though we have discretized
the parameters into finite bins for a smaller table size, our simulation
results show that the state-action table still requires over 10% router
area to store all state-action pairs. To address this problem, we
replace the state-action table with an offline-trained ANN for less
hardware costs. The ANN calculates the state-action table instead of
storing the entire state-action table in the router, thus eliminating
the storage space for state-action pairs.

State-Action Table (Q table)
States a, a,
50<0,2,1,...> Q(sg,20) Q(sg,2;)
._'-51<0,2,2,...>_! rL— Q(s1,3,) Q(sy,a,)
@ oo ANNC
I
O @
oS / i
o O \ |
1S Qfsya)
W N ! !
: .l ",,.‘\‘}'A o I
1 'g .'.' " Q(sy,a;) |
12y S '\\\ 0 |
I A Qi 1 Qlsy.3) 1
1

tput layer

-

Figure 5: The ANN calculates the Q-values instead of using
a state-action table.

ANN Architecture: The proposed ANN consists of 3 layers:
input layer, hidden layer and output layer. Each layer consists of
multiple neurons. The Sigmoid and Relu functions are used for
the hidden and output layers, respectively. The sizes of input and
output layers depend on the designs of the state and action space.
More detailed discussion on the hidden layer size will be discussed
in Section 3.5.

Training Details: In the offline training, the ANN takes each
state-action entry as a training sample. The state vector is used

as the input of ANN, and Q values are used as the desired output
values. Note that input values are normalized in range of 0 to 1 for
the nonlinearity of sigmoid function. We use the mean square error
function to calculate the error between ANN’s output and desired
values, and then use the mini-batch gradient descent approach to
back propagate this error to the hidden layer to tune their weights.
We note that the batch size is set as 100 in this work. For an offline
approach, we use 0.001 as the learning rate, because the accuracy
is more important than the speed.

Walkthrough Example: Figure 5 shows a walkthrough exam-
ple of using ANN. @ 51<0,2,2,...> is monitored by an RL agent,

which is used as the input values of the ANN. @ The network
calculates the input values layer by layer and then delivers three
values to the output layer, Q(s1, ap), Q(s1, a1), and Q(s1, az). The
action with the highest Q-value will be selected.

3 EVALUATION AND RESULTS
3.1 Experimental Setup

Table 1: Key Simulation Parameters

of cores 64 out-of-order CPUs, ALPHA, 2GHz
Router 4-stage pipeline

Cache block size 64 Bytes

Virtual channel 2 VCs/VN

Input buffer size | 1-flit for control and 3-flit for data
Protocol MESI

Memory latency 128 cycles
Topology 8x8 Mesh

We evaluate the proposed architecture under full system sim-
ulation with the combined use of architecture-level and circuit-
level simulators. The cycle-accurate gem5 simulator [18] enhanced
with GARNET [19] is used for detailed timing simulation of the
memory and on-chip network. We use DSENT to evaluate power
consumption. We also use Synopsys design compiler with 45nm
library to evaluate the area overheads. Table 1 shows the specific
parameters used in the simulation. We analyze our framework with
PARSEC [20] benchmark suite.

The proposed RL-based policy is initialized as follows: the Q-
values are initialized as 0; RL parameters are selected as discussed
in Section 2.2.2.

The simulation framework contains:

(1) Baseline: each NoC router has PG and DVEFS logic. The V/F
level responds to the router’s throughput. The thresholds
are set as 0.1 flits/cycle and 0.05 flits/cycle.

(2) PID: A conventional PID controller is implemented with NoC
router. The controller takes average waiting time of flits in
the input buffer as a reference. The PID, a feedback control
theory, decides the future DVFS decision through its integral
and derivative. The integral provides the prediction based
on previous history, while the derivative predicts its future
trends.

(3) QL: each NoC router has Q-learning algorithm with an ANN
for the proposed design.

1.2

1

o
©

o
S

Router Dynamic Power Consumption
(normalized)
=} =]
Y @

o
bodytrack x264 ferret

EBaseline DOPID D QL

flumindiate blackshochles average

Figure 6: Dynamic power consumption, normalized to the
baseline.

1.2

o
©

Router Static Power Consumption
(normalized)
=] =}
> o

°
N

o
bodytrack x264 ferret

O Baseline OPID OAQL

flumindiate blackshochles average

Figure 7: Static power consumption comparison, normalized
to the baseline.

3.2 Power Consumption Analysis

3.2.1 Dynamic Power Consumption Analysis. Figure 6 shows the
dynamic power consumption analysis. It can be seen that the pro-
posed design achieves an average of 30% dynamic power savings
over the baseline. Even though a PID controller has an average of
17% dynamic power reduction, the proposed design can improve
upon the PID design by 13%.

3.2.2 Static Power Consumption Analysis. Figure 7 shows the static
power consumption analysis. It can be seen that the proposed so-
lution reduces the average static power consumption by 16% as
compared to the baseline.

3.2.3 Overall Power Consumption Analysis. Figure 8 shows the
overall power consumption results. It can be seen that the proposed
solution has an average of 26% power reduction compared to the
baseline. Moreover, the proposed design can improve overall power
consumption upon the PID design by 17%.

3.3 Performance Analysis

Figure 9 shows the performance analysis. The performance is ob-
tained by measuring the application execution time of PARSEC
benchmarks. It can be seen that the proposed solution has an av-
erage of 7% performance improvement over the baseline, with the
best case achieving 14% performance improvement.

3.4 Overhead Analysis

3.4.1 Timing Overhead for ANN calculation. We define the timing
overhead as the time that ANN calculates the Q-values. The timing
overhead depends on the amount of hardware resources in the RL
agent. In this paper, we assume one adder and one multiplier for the
ANN which consists of 12 neurons at the input layer, 20 neurons
at the hidden layer, and 3 neurons at the output layer. With such

1.2

°
©

°
>

Router Overall Power Consumption
(normalized)
° °
N o

o

bodytrack x264 ferret flumindiate blackshochles average

EBaseline DOPID D QL

Figure 8: Overall power consumption comparison, normal-
ized to the baseline.

1.2

1

e
®

Execution Time (normalized)
(-]
& o

e
N

]

bodytrack x264 ferret flumindiate blackshochles average

O Baseline OPID O QL

Figure 9: Application execution time comparison, normal-
ized to the baseline.

design, the ANN calculation incurs 299 ns latency. This latency can
be overlapped by a large epoch equals to 10K cycles.

3.4.2 Area Overhead for Implementing RL. For the area overhead,
the neural network requires an ALU (e.g. Multiplier, Sigmoid func-
tion) and storage. We evaluate the hardware cost through Synopsis
Design Vision using 45 nm technology. The proposed ANN uses
SRAM to store the weights that required for each layer (Input, Hid-
den and Output layers). Recall that the ANN has 12 input neurons,
20 hidden neurons and 3 output neurons, which implies that the
ANN has 300 weights in this work. We use 20 bits to store a single
weight. The ANN requires 300 X 20 bits in total which is smaller
than 1KB. This consumes 0.55 mw with an area overhead of 4620
um?. In addition, simulation results show that ALU and counters
consume 2733 um?.

=
N

[

o
o

o°
o

Router Area (normalized)

I
IS

Router without RL

O Router [RL overhead

Router with RL and ANN Router with RL

Figure 10: Router area comparison, normalized to the base-
line without RL design.

Figure 10 shows the normalized area analysis. The baseline is
the area of a non-RL router design. It can be seen that the ANN
design can reduce the area overhead by 67%, as compared to the
RL design using state-action table. The ANN only requires an area
increase of 3.7%, as compared to the baseline.

3.5 Impacts of ANN size on RL performance

The number of neurons used in the hidden layer of ANN can affect
the accuracy of calculating Q(s,a), which could affect power savings.
In order to obtain the optimal network size, we study the the ANN
accuracy using a different number of neurons for the hidden layer.
Figure 11 shows that 5, 10, 15 and 20 neurons for the hidden layer
can have 74%, 82%, 83% and 97% accuracy, as compared to a state-
action table, respectively. It shows that the accuracy of this network
can approach 1 when the hidden layer size equals to 20.

14
©

e
S

The ANN Accuracy
o o
[

o
I

o
S

ter 62
Average

Ri
Ri
Ri
Ri
Rol
Ri
Ri
Ri
Rol
Ri
Ri
Rol
Ri
Ri
Rol
Rol
Rol
Rol
R
Ri
Rol
Ri
Ri
R
Rol
Rol
Rol

—~—Sigmoid_5
Figure 11: Accuracy analysis of the ANN using different sizes
of the hidden layer.

Sigmoid_10 Sigmoid_15 Sigmoid_20

4 RELATED WORKS

PG: Powerpunch [16] improves PG efficiency by sending an
early wake-up signal to the powered-off router while the NI is pro-
cessing the packet. In doing so, the full wake-up latency is hidden.
NoRD [4] provides a bypass ring network to bypass powered-off
routers, while avoiding waking up the powered-off routers. In [23],
authors use a simple switch to bypass flits while the router is pow-
ered off.

DVES: In [21], it shows that DVFS can be effectively applied on
on-chip voltage scaling by using on-chip voltage regulators. Shang
et al. [6] use DVFS to change the voltage and frequency levels
of individual links according to historical link and input buffer
utilizations. In [7], Chen et al. propose a throughput-driven and
a latency-based PI controller, both with dynamic reference points.
In [22], authors use cache-coherence communication properties to
predict the NoC traffic and set voltage and frequency.

RL in NoCs: Yin et al. [24] proposed a self-learned NoC arbi-
tration policy that can effectively reduce packet latency. Wang et
al. [25] used the RL to balance the trade-offs among NoC perfor-
mance, energy efficiency and reliability.

5 CONCLUSIONS

In this paper, we proposed an RL-based energy-efficient NoC de-
sign. The approach combines PG and DVFS, in order to reduce both
static and dynamic power consumption. The RL algorithm automat-
ically observes the effects of the combined techniques and various
network parameters, updates a control policy that dynamically
changes V/F levels, and selects the actions which yield maximum
power savings and maintain system performance. The proposed RL
approach improves power consumption by 26% while improving
system performance by 7%, as compared to a combined PG and
DVFS design without RL. We also proposed an offline-trained ANN
to reduce the prohibitive hardware costs using RL. The proposed
ANN design reduces 67% area overhead of implementing RL in NoC
routers.

6 ACKNOWLEDGE

This research was partially supported by NSF grants CCF-1547035,
CCF-1547036 and CCF-1702980. We thank the anonymous review-
ers for their excellent feedback.

REFERENCES

[1] TG Mattson and et al. The 48-core scc processor: The programmer’s view. In Intl.
Symp. on High Performance Computing, Networking, Storage and Analysis (SC),
pages 1-11, 2010.

[2] Y. Hoskote, S. Vangala, A. Singha, N. Borkar, and S. Borkar. A 5-ghz mesh
interconnect for a teraflops processor. IEEE Micro, 27(5):51-61.

[3] V.Ganesh, S. Jack, G.Nathan, G. Saturnino, B. Vladyslav, L. Jose, S. Steven, and
T. Bedford. Conservation cores: reducing the energy of mature computations.
ACM SIGARCH Computer Architecture News, 38(1):205-218, 2010.

[4] L.Chen and T.M. Pinkston. NoRD: Node-router decoupling for effective power-
gating of on-chip routers. In Intl. Symp. on Microarchitecture (MICRO), Feb. 2012.

[5] R. Das, S. Narayanasamy, SK Satpathy, and RG Dreslinski. Catnap: Energy
proportional multiple network-on-chip. In ACM SIGARCH Computer Architecture
News, volume 41, pages 320-331. ACM, 2013.

[6] L.Shang, L. Peh, and N. Jha. Power-efficient interconnection networks: Dynamic
voltage scaling with links. IEEE Computer Architecture Letters, 1(1):6—6, 2002.

[7] X. Chen, Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky, U. Ogras, and R. Ay-
oub. Dynamic voltage and frequency scaling for shared resources in multicore
processor designs. In Design Automation Conference (DAC), 2013.

[8] N.Barrow-Williams, C. Fensch, and S. Moore. A communication characterisation
of splash-2 and parsec. 2009.

[9] X.Chen, Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky, and U. Ogras. In-network
monitoring and control policy for dvfs of cmp networks-on-chip and last level
caches. ACM Transactions on Design Automation of Electronic Systems (TODAES),
18(4):47, 2013.

[10] R. Hesse, J. Nicholls, and NE Jerger. Fine-grained bandwidth adaptivity in

networks-on-chip using bidirectional channels. In Intl. Symp. on Networks on

Chip (NoCS), pages 132-141. IEEE, 2012.

Y. Yao and Z. Lu. Dvfs for nocs in cmps: A thread voting approach. In Intl. Symp.

on High Performance Computer Architecture (HPCA), pages 309-320, 2016.

[12] Y. Wang, M. Martonosi, and L. Peh. A supervised learning approach for routing
optimizations in wireless sensor networks. In International workshop on Multi-hop
ad hoc networks: from theory to reality, pages 79-86. ACM, 2006.

[13] J. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou. Up by their bootstraps: Online
learning in artificial neural networks for cmp uncore power management. In Intl.
Symp. on High Performance Computer Architecture (HPCA), pages 308-319. IEEE,
2014.

[14] D. Juan, S. Garg, J. Park, and D. Marculescu. Learning the optimal operating

point for many-core systems with extended range voltage/frequency scaling. In

Intl. Conf. on Hardware/Software Codesign and System Synthesis, page 8, 2013.

E. Kakoulli, V. Soteriou, and T. Theocharides. Intelligent hotspot prediction for

network-on-chip-based multicore systems. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 31(3):418-431, 2012.

[16] L. Chen, D. Zhu, M. Pedram, and TM Pinkston. Power punch: Towards non-
blocking power-gating of noc routers. In Intl. Symp. on High Performance Com-
puter Architecture (HPCA), pages 378-389. IEEE, 2015.

[17] R. Sutton, A. Barto, et al. Reinforcement learning: An introduction. MIT, 1998.

[18] N.Binkert and et al. The gem5 simulator. In ACM SIGARCH Computer Architecture
News, May 2011.

[19] N. Agarwal, T. Krishna, L. Peh, and N. Jha. Garnet: A detailed on-chip network
model inside a full-system simulator. In Intl. Symp. on Performance Analysis of
Systems and Software (ISPASS), pages 33-42, 2009.

[20] C.Bienia and K. Li. Parsec 2.0: A new benchmark suite for chip-multiprocessors.
In 5th Annual Workshop on Modeling, Benchmarking and Simulation, 2009.

[21] W.Kim, MS. Gupta, G. Wei, and D. Brooks. System level analysis of fast, per-core
dvfs using on-chip switching regulators. In Intl. Symp. on High Performance
Computer Architecture (HPCA), pages 123-134, 2008.

[22] R.Hesse and N. E. Jerger. Improving dvfs in nocs with coherence prediction. In
Intl. Symp. on Networks-on-Chip, page 24. ACM, 2015.

[23] H. Zheng and A. Louri. Ez-pass: An energy & performance-efficient power-
gating router architecture for scalable nocs. IEEE Computer Architecture Letters,
17(1):88-91, 2018.

[24] J. Yin, Y. Eckert, S. Che, M. Oskin, and G. Loh. Toward more efficient noc
arbitration: A deep reinforcement learning approach. In Proceedings of the 1st
International Workshop on Al-assisted Design for Architecture (AIDArc), 2018.

[25] K. Wang, A. Louri, A. Karanth, and R. Bunescu. High-performance, energy-
efficient, fault-tolerant network-on-chip design using reinforcement learning. In
Proceedings of the 22nd Design, Automation & Test in Europe (DATE) conference,
2018.

[11

[15

