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ABSTRACT: The AdS/CFT understanding of CFT entanglement is based on HRT sur-
faces in the dual bulk spacetime. While such surfaces need not exist in sufficiently
general spacetimes, the maximin construction demonstrates that they can be found
in any smooth asymptotically locally AdS spacetime without horizons or with only
Kasner-like singularities. In this work, we introduce restricted maximin surfaces an-
chored to a particular boundary Cauchy slice Cy. We show that the result agrees with
the original unrestricted maximin prescription when the restricted maximin surface
lies in a smooth region of spacetime. We then use this construction to extend the
existence theorem for HRT surfaces to generic charged or spinning AdS black holes
whose mass-inflation singularities are not Kasner-like. We also discuss related issues in
time-independent charged wormbholes.
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1 Introduction

As is by now well established [1, 2], in AdS/CFT the Ryu-Takayangi [3, 4] and Hubeny-
Rangamani-Takayanagi (HRT) [5] prescriptions generally describe the von Neumann
entropy of CFT regions A in terms of the area of an appropriate bulk surface. In
particular, Arealext(A)]

realext
Sa = — i (1.1)
where ext(A) is the smallest extremal surface satisfying d(ext(A)) = 0A and with
ext(A) homologous to A. When there is more than one such surface with minimal
area, the HRT surface is ambiguous. Such situations arise at HRT phase transitions,
when the HRT surface jumps discontinuously as one varies the region A.

Now, there are spacetimes in which HRT surfaces fail to exist or where those that
do exist do not correctly compute the von Neumann entropy [6]. However, known
spacetimes M, with the latter issue are A — 0 limits of spacetimes M) in which the
HRT prescription succeeds, but where the correct (smallest) extremal surface recedes
to the future or past singularity as A — 0. Similarly, known spacetimes M where
extremal surfaces fail to exist are again A — 0 limits of spacetimes M), where HRT
succeeds but in which all extremal surfaces recede in this way:.

One thus expects that HRT surfaces do in fact correctly compute the entropy in
contexts such recessions are forbidden; i.e., where extremal surfaces are guaranteed to
exist as surfaces in smooth regions of the bulk. The maximin construction of 7] shows
this to be the case in asymptotically locally-AdS (AlAdS) spacetimes without horizons



Figure 1: The maximal analytic extension of the AdS-Reissner-Nordstrém black hole.
for our study in Section 2.2 we truncate it to the AdS-hyperbolic unshaded region
between the past and future (AdS-) Cauchy horizons (heavy dashed lines).

or where the future and past boundaries consist only of Kasner-like singularities®. Ref.
[7] also shows in this context that HRT surfaces satisfy strong subadditivity.

However, the full array of possible spacetimes have not yet been explored. Of
particular interest are charged or rotating black holes. As is well known, stationary
such black holes generally contain Cauchy horizons (see figure 1 for the AdS-Reissner-
Nordstrom [AdS-RN] case). But this structure is unstable, and perturbations transform
the Cauchy horizons into null mass-inflation singularities which are not Kasner-like [8—
14]; see figure 2. As discussed in the above references, generic black holes are believed
to contain singularities of this type. We show below that HRT surfaces exist in such
spacetimes as well.

Our method of proof extends the maximin arguments of [7]. As defined in [7], a
maximin surface is a codimension-2 surface anchored to 0 A and satisfying the homology
constraint, and minimizing area within some bulk Cauchy surface > O A, but which

n contrast, the examples of [6] contain smooth de Sitter-like pieces of future or past infinity as
well as special non-Kasner-like singular points where the smooth parts of future/past infinity meet
otherwise-Kasner-like singularities.



Figure 2: Perturbed one-sided (left) and two-sided (right) AdS-RN black holes. The
null parts are mass-inflation singularities. A spacelike piece of the singularity forms
whenever caustics arise on a null singularity. Such caustics always arise in the one-sided
case, and also occur for strong enough perturbations (as shown here) in the two-sided
case. The resulting spacelike singularities should be Kasner-like, as can be seen from
the fact that the region between the inner- and outer-horizons in figure 1 admits a
foliation by spatially homogenous slices that, when subjected to correspondingly ho-
mogeneous perturbations, becomes precisely an AdS-Kasner solution. Sufficiently close
to a curvature singularity, one should be able to treat any solution as approximately
homogeneous, so the spacelike part of the singularity should again be Kasner-like. In
the left panel, the black hole is formed by a collapsing shell (in blue).

is also maximal among such minimal surfaces with respect to variations of ». In
particular, the intersection of ¥ with the AIAdS boundary is allowed to vary so long
as it still contains 0A. Below, we consider restricted maximin surfaces — defined by
bulk Cauchy surfaces ¥ that intersect the AIAdS boundary on a fized boundary Cauchy
surface Cy — and show that they must agree with with HRT surfaces (and thus with
unrestricted maximin surfaces) when they lie in a smooth region of the spacetime. In
particular, since any Cauchy surface X is achronal, restricted maximin surfaces must
be achronally related to some Cy. They are thus forbidden from reaching the null
singularities in figure 2 and must lie in the smooth interior of the bulk spacetime as
desired.

We begin by introducing restricted maximin surfaces in section 2 and showing their
equivalence to HRT surfaces when they lie in a smooth region of spacetime. Existence
of HRT surfaces in (perturbed) AdS-RN-like spacetimes then follows immediately, and
more generally in spacetimes where boundary-anchored bulk Cauchy surfaces can reach



a future boundary only at Kasner-like singularities. Section 3 concludes with a brief
discussion of possible extensions to spacetimes with more complicated null singularities.

2 Restricted maximin surfaces

This section will discuss restricted maximin surfaces. In a different context, a maximin
construction that fixes the entire boundary of a (in that case partial) Cauchy surface
was also used in [15]. Here and below we assume i) the null curvature condition (NCC):
Rapk®k® > 0 at each point for every null vector k%, ii) the generic condition [16], which
requires at least some positive focusing along each segment of any null geodesic?, and
iii) AdS-hyperbolicity in the sense of [7]. We choose an achronal codimension-1 surface
A in the AIAdS boundary OM to define the boundary region whose entropy we wish
to study. The boundary of A is denoted JA. Our restricted maximin surfaces are then
defined via the following two-step procedure.

Definition 1: For a chosen Cauchy surface Cy of OM with satisfies A C Cp, on
any complete bulk Cauchy surface ¥ with X N OM = Cy let min(A, 3, Cy) denote the
minimal-area codimension-2 surface anchored to dA and homologous to A within X
(i.e., such that there is a region R of ¥ for which OR = AUmin(A, ¥, Cy)).

If there are multiple minimal area surfaces on 3, then min(A, X, Cy) can refer to
any of them.

Definition 2: The restricted maximin surface Mz (A, Cy) is defined as the min(A, 33, Cy)
whose area is maximal with respect to variations of ¥ that preserve Cy. We use
Y Mp(A,cy) to denote a Cauchy surface on which Mz(A, Cy) is minimal.

In the case where there are multiple such surfaces, let Mz(A, Cs) denote any such
surface that is stable in the following sense: When Y is deformed infinitesimally to any
nearby slice ¥/ (still containing Cy), the new X' still contains a locally-minimal surface
MFE(A, Cy) on 3 close to Mgr(A, Cy) which has no greater area, i.e. Area[Mp(A,Chy)] <
Area[Mg(A, Cp)]>.

Below, we follow [7] in assuming that the stability criterion can be satisfied. When
Y Mr(A,cy) 1s both spacelike and smooth, this follows by the technical argument in
section 3.5 of [7]. But it remains an assumption more generally. Existence of Mg(A, Cy)
then follows as in section 3.4 of [7] so long as boundary-anchored Cauchy surfaces can
future or past boundaries only at Kasner-like singularities. In particular, the space of

2In fact, for our purposes it suffices for the spacetime to be a limit of spacetimes in which the
generic condition holds, where the amount of focusing can vanish in the limit. This will be the case
in examples like exact AdS-RN discussed below in which the generic condition does not hold.

3This definition of stability fixes certain difficulties with the definition given in [7]. A similary
improved version of 7] will appear soon.



boundary-anchored achronal slices is compact in the same sense as the space of achronal
slices anchored only to JA.

2.1 Equivalence of HRT surfaces and restricted maximin surfaces in smooth
regions of spacetime

We now show that the restricted maximin surface Mg(A,Cy) is an HRT surface for
every choice of Cy that contains A so long as Mg(A, Cy) lies in a smooth region of the
bulk spacetime. The argument follows that given in [7] for the original unrestricted
maximin surfaces.

We first show that Mz(A, Cy) extremizes the area with respect to all variations that
preserve 0A. We begin with the case where X/, (4,¢,) has continuous first derivative.
For every point on a restricted maximin surface Mg(A, Cp), there are two independent
directions that are normal to Mr(A, Cy). The area is minimal with respect to variations
on X,(4,cy), and maximal with respect to variations normal to this surface. The
corresponding first order variations of the area vanish. Linearity of first order variations
then implies the area to be stationary under all deformations that preserve 0A; i.e.,
the surface is extremal as desired.

If instead the first derivative of X, (a,c,) jumps discontinuously, the surface Mp(A, Cy)
must still be extremal. The argument is identical to that of Theorem 15(b) in [7].

We now show that Mpg(A,Cy) is the (properly anchored) extremal surface with
least area, and thus an HRT surface. The argument uses the notion introduced in
[7] of the ‘representative’ of any extremal surface x(A) on a Cauchy surface ¥. The
representative Zx(A) is defined by observing that z(A) splits some Cauchy surface into
two pieces, which we arbitrarily label as 3; and ¥;. When the new Cauchy surface
Y. lies to the future of X, this representative may be taken to be the intersection of
Y with the boundary of the future of 3; (one may alternatively use ¥5). As noted in
[7] (theorem 3), since the bulk satisfies NCC and the boundary of the future contains
only null geodesics without conjugate points, the focusing theorem [17] guarantees the
representative to have no more area than z(A). And since 0% is fixed to be Cy, the
representative must have the same anchor set as z(A). If X is not entirely to the
future of ¥;, one may similarly use e.g. the union of the boundary of the future of
¥; and the boundary of the past of ¥y (or alternatively other combinations of the
futures and pasts of ¥;,). And the representative on Yy, (a,c,) must have area at
least as great as Mpg(A, Cy) since the latter surface is minimal on ¥,(a,c,). Thus
Area[Mg(A, Cy)] < Area[Tx(A)] < Area[z(A)], and Mg(A, Cy) is a least-area extremal
surface.



2.2 Existence of HRT surfaces in standard charged and rotating black holes

The above result will show that HRT surfaces exist in charged or rotating black hole
spacetimes. Let us begin with the AdS-Reissner-Nordstrom (AdS-RN) solution. The
maximal analytic extension is shown in figure 1. However, since the Cauchy horizons are
unstable to forming mass-inflation singularities, it is natural to truncate the solution
to the unshaded region between the past and future Cauchy horizons*. Given any
boundary region A C dM, we may then choose a boundary Cauchy surface Cy C
OM with Cy D A and construct the restricted maximin surface Mg(A, Cy) and the
associated bulk Cauchy surface Xys,(4,c,). For Cy to be a full Cauchy surface it must
include pieces on both boundaries even if A is contained in a single boundary.

Now, by definition, M includes only finite boundary times. Since Xz, a,cy) 1S
achronal (i.e., no two of its points can be connected by a timelike curve) and ends on
Cy, it cannot reach the Cauchy horizon. Thus Mpr(A, Cy) lies in the (smooth) interior
of the spacetime and the argument of section 2.1 shows that Mg(A, Cp) is also an HRT
surface for AAS-RN (truncated at the Cauchy horizons).

Furthermore, it is clear that the same conclusion holds for any AdS-hyperbolic
spacetime satisfying i) NCC, ii) the generic condition, and for which iii) all bulk Cauchy
surfaces Y anchored on boundary Cauchy surfaces Cy meet future or past boundaries
only at Kasner-like singularities. We may then use the analysis of Kasner-like singu-
larities in [7] to argue as above. In particular, this is true of the perturbed AdS-RN
spacetimes with mass-inflation singularities shown in figure 2. And it continues to hold
when rotation is added to the black holes, again truncating the spacetime at Cauchy
horizons and/or mass-inflation singularities. Furthermore, strong subadditivity follows
precisely as in [7].

3 Discussion

We have used restricted maximin surfaces to show the existence of HRT surfaces in a
broad class of spacetimes including standard black holes with mass-inflation singular-
ities. In such cases, it also follows that HRT areas satisty strong subadditivity. The
above class of solutions is believed to be generic in the class of charged and rotating
black holes [8-14].

As explained in the introduction, our result forbids such spacetimes from displaying
the HRT-pathologies found in the examples of [6]. Taken together with the Lewkowycz-

If one insists on including regions beyond the Cauchy horizons then, as argued in section 6 of [18],
it appears natural to require the homology surface (used in the homology constraint) to be achronal.
This then requires any entangling surface to again lie in our truncated spacetime between the Cauchy
horizons. So for the purposes of entanglement computations there is no harm in our truncation.



Figure 3: Time-independent charged wormhole which is constructed by sewing two
AdS-RN spacetimes together along a domain wall (thick line). Due to the internal
infinities (small circles), the Cauchy horizons are union of the Cauchy horizons of the
two AdS-RN spacetimes. Limits of Cauchy surfaces like the one shown (red) can reach
such horizons.

Maldacena [1] and Dong-Lewkowycz-Rangamani [2] derivations, this strongly suggests
that these HRT surfaces correctly compute the associated entropies of the dual CFT
state.’

While our requirements are expected to be satisfied generically, one can never-
theless imagine spacetimes where they fail. Indeed, generalizing the time-independent
wormholes of [26] to include electric charge immediately yields solutions of the sort
shown in figure 3 in which (limits of) boundary-anchored bulk Cauchy surfaces can
reach the bulk Cauchy horizons. For this particular spacetime one may nevertheless
use the fact that the right-most and left-most wedges are identical to those of AdS-RN
to show that, for any A, there is a (perhaps disconnected) extremal surface anchored
to 0A that is entirely contained in the union of these wedges. Thus HRT surfaces again
exist for this spacetime, but it remains to argue that smaller such surfaces have not
been lost to the future and past boundaries. Other interesting spacetimes may remain
to be investigated as well.

5These arguments presuppose that the bulk geometry gives the dominant bulk saddle to an ap-
propriate path integral defining a dual CFT state. Although the the class of Lorentzian black hole
spacetimes satisfying this criterion have not been fully characterized, it is clear from e.g. [19-25] that
it includes many familiar open sets in the space of solutions.
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