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Abstract

Herein we report the synthesis and characterization of a linear, two-coordinate Pt(II) ketimide
complex, Pt(N=C'Bu2)2 (1), formed via reaction of PtClz(1,5-COD) with 2 equiv of Li(N=C'Buz).
Also generated in the reaction is the bimetallic complex, [(‘BuzC=N)Pt(u-N,C-
N=C('Bu)C(Me)2CH2)Pt(N=C'Bu2)] (2). Both complexes 1 and 2 have been characterized by NMR
spectroscopy and X-ray crystallography. Notably, complex 1 exhibits short Pt-N distances (av.

Pt-N = 1.815 A) and an unusually deshielded '*>Pt chemical shift (sp = —629 ppm) with a large



1J(*3Pt,'*N) coupling constant (537 Hz). These data, in combination with a detailed DFT
electronic structure analysis, reveal the presence of highly covalent Pt=N multiple bonds (with a
formal bond-order of 2.5) formed by a combination of o-donation, m-donation, and m-

backdonation.

Introduction

Two-coordinate complexes have come under increased scrutiny for their high reactivity and
unique magnetic properties.' Their low coordination number renders them highly reactive, owing
to the ease of substrate access to the metal ion. Consequently, these materials are of interest for
catalysis, small molecule activation, and as precursors to nanomaterials.>® These properties are
perhaps best exemplified by the M(N{SiMe3}2)2-type complexes (M = Mn, Fe, Co).! For
example, Fe(N{SiMes}2)2 was found to be an effective pre-catalyst for both alkene
hydrogenation and carbonyl hydrosilylation.” 3 With respect to magnetism, the highly anisotropic
ligand field and unquenched orbital angular momentum extant in two-coordinate complexes
leads to large magnetic moments and high barriers for magnetic reversal, which make these
complexes promising single molecule magnets (SMMs).”!! For example, the two-coordinate
Fe(IT) amide complex, Fe(N'Buz)z, features a high magnetic moment and a large internal
magnetic field.'> Similar results are observed for [Fe(C{SiMes})2]%".> > !4 For the lanthanides,
[(Cp"™)2Dy][B(CsFs)a] (Cp™ = 1,2,4-tri(zert-butyl)cyclopentadienyl) and
[(Cp'P)DyCp*][B(CsFs)4], which, while not truly two-coordinate, do feature large axial fields

imposed by the trans arrangement of their two bulky Cp ligands and exhibit the highest energy



barriers for magnetic reversal yet recorded.!>!” Similarly, [Dy(O'Bu)2(py)s][BPhs], which

contains two axial alkoxide ligands, features a remarkably high barrier to magnetic relaxation.'®

While these examples reveal the inherent promise of two-coordinate complexes in catalysis
and for magnetic materials, further development in this area would benefit from the identification
of new ligands that can enforce the desired 2-coordinate geometry. In this regard, the ketimide
ligand, [R2C=N]’, may be a suitable candidate. Like amides and alkoxides, ketimides are strong
donors, and should be able to generate the required anisotropic ligand field for SMMs. And like
amides and alkoxides, ketimides are easily tailored and can feature a broad range of steric

profiles and donor abilities. "2

Our research group has been exploring the chemistry of the ketimide ligand with a variety of
transition metals. For example, we recently reported the syntheses of the homoleptic transition
metal ketimides, M(N=C'Buz)4+ (M = Fe, Co),?>?* which both feature the relatively rare +4
formal oxidation state for these metals.?? They also both possess squashed tetrahedral
geometries.?* 23 These unusual properties are thought to be a consequence of the interplay
between the strong n-donating and m-accepting abilities of the linear ketimide ligand.?® These
strong donor properties suggested to us that ketimides could generate a strong axial ligand field

in a two-coordinate complex.

Several other homoleptic M(N=C'Bu2)s-type complexes are also known, including examples
containing M = Ti, V, Nb, Ta, Cr, Mo, W, and Mn.?*3° Homoleptic ketimide complexes are also
known for copper, boron, aluminum, uranium, and cerium.?!~** In this context, the absence of a
homoleptic group 10 ketimide is notable, especially given the foundational role that these

elements have played in the development of organometallic chemistry.*® To rectify this



oversight, we explored the reactivity of a series of Pt(II) salts with Li(N=C'Bu2). Herein, we
describe our first foray into group 10 ketimide chemistry, specifically the synthesis and
characterization of a linear Pt(II) coordination complex, Pt(N=C'Bu2)2 (1), along with an analysis

of its electronic structure and Pt NMR spectrum using relativistic DFT calculations.

Results and Discussion

Synthesis and Characterization. The reaction of PtClz(1,5-COD) with 2 equiv of Li(N=C'Bu2)
in THF results in immediate formation of yellow-orange solution, which gradually changes to
red-brown over 90 min. Work-up and crystallization from pentane results in the deposition of a
mixture of small deep red-brown blocks of Pt(N=C'Buz)2 (1) and [(‘Bu2C=N)Pt(u-N,C-
N=C('Bu)C(Me)2CH2)Pt(N=C'Bu2)] (2) on the vial walls. "H NMR analysis of this mixture
revealed the presence of 1 and 2 in an approximate 1:1 molar ratio (Scheme 1). Because of their
similar solubilities, crystals of 1 and 2 always co-deposited, and because of their similar colors,
they could not be manually separated. Thus, they were characterized as a mixture. They are both
highly soluble in pentane, hexanes, Et20, benzene, toluene, and THF, and somewhat soluble in
MeCN. A few bright yellow crystals of a third product were also isolated from this reaction.
Analysis by X-ray crystallography revealed these to be [Pt(N=C'Bu2)2(u-n*:n'-
CsH11)Pt(N=C'Bu2)(1,5-COD)] (4) (Figure S16 in SI). This material was isolated in minute
quantities and could not be further characterized. Attempts to perform the reaction of
Li(N=C'Bu2) with other Pt(II) salts (such as PtCl> or PtCl2(PhCN)2) or with other ketimide
precursors (e.g., NaN=C'Buz), in an effort to improve the chemoselectivity of the transformation,

resulted in formation of intractable mixtures.
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Scheme 1. Syntheses of complexes 1 — 4

Complex 1 crystalizes in the triclinic space group P-1 (Figure 1). Each independent Pt center
lies on a crystallographic center of symmetry; accordingly, the N-Pt-N angles of the two
independent molecules in the unit cell are both 180°. The Pt-N bond distances in 1 are
exceptionally short (1.815(4) and 1.818(4) A). According to a search of the Cambridge Structural
Database,*’ these are the shortest Pt-N distances reported thus far. For comparison, the Pt(II)
amides, cis-Pt(CI)(NPh2)(PEt3)2 and trans-Pt(H)(NHPh)(PEt3)2, feature much longer Pt-N bond
lengths of 2.09(2) A and 2.125(5) A, respectively,*®*! while the Pt(II) ketimide,
[Pt(bpy)Me(N=CMe {C(C(Me)=0)(=C(Me)OH})], features a Pt-N bond length of 2.01(2) A.#?
The N=C bond lengths of the ketimide ligands in 1 (1.256(6), 1.258(2) A) are typical of carbon-
nitrogen distances in other ketimide complexes,**% * and the Pt-N-C bond angles in 1
(179.7(4), 178.4(4)°) are consistent with sp hybridization of the N atom.?*2% 43 Finally, we note
that the two ketimide ligands in 1 are co-planar, suggesting that the nitrogen lone pairs on the

two ['Bu2C=N] ligands interact with the same Pt(5d) orbital (see further discussion below).
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Figure 1. ORTEP diagram of one independent molecule of 1 shown with 50% probability
ellipsoids. Hydrogen atoms and a second molecule of 1 are omitted for clarity. Selected bond
distances (A) and angles (°): Pt1-N1 = 1.815(4), Pt2-N2 = 1.818(4), N1-C1 = 1.256(6), N2-C10
=1.258(2), N1-Pt1-N1* = 180, N2-Pt2-N2* = 180, C1-N1-Ptl = 179.7(4), C10-N2-Pt2 =

178.4(4).

Complex 2, which was isolated along with 1, crystallizes in the monoclinic space group P21/n

(Figure 2). It features two Pt(II) centers, each ligated by a terminal ketimide ligand, and each



bridged by a ketimide ligand that has also been deprotonated at a methyl carbon. The nitrogen of
the modified ketimide ligand is ligated to both Pt centers, while its methylene group is only
ligated to Pt2. Similar to 1, all three ketimide ligands in 2 are co-planar and the N-Pt-N angles
(166.1(4) and 170.6(3)°) approach linearity. The Pt-N distances for the terminal ketimide ligands
(1.825(8) and 1.85(1) A) are similar to those observed in 1, while their Pt-N-C angles (175.8(8)
and 164.7(8)°) are close to 180°. Both features are suggestive of a strong degree of n-donation
and/or m-backdonation from/to the ketimide ligand. The Pt-Pt distance (2.5951(6) A) is much
shorter than those reported for other platinum(Il) complexes with bridging amido ligands,** %°
but is in line with those seen in Pt(II) acetate.*® Finally, the Pt-C distance (2.08(1) A) is similar to

those of other structurally characterized Pt(II) complexes with C-H activated ‘Bu groups.*’>°




Figure 2. ORTEP diagram of 2 shown with 50% probability ellipsoids. Hydrogen atoms are
omitted for clarity. Selected bond distances (A) and angles (°): Pt1-N1 = 1.825(8), Pt2-N2 =
1.85(1), Pt1-Pt2 = 2.5951(6), Pt1-N3 = 1.934(7), Pt2-N3 = 1.989(9), Pt2-C27 = 2.08(1), N1-Pt1-
N3 =166.1(4), N2-Pt2-N3 = 170.6(3), C1-N1-Ptl = 175.8(8), C10-N2-Pt2 = 164.7(8), C19-N3-

Ptl = 151.6(8), C19-N3-Pt2 = 125.4(7).

While we were unable to isolate pure samples of 1 or 2 (their crystals always co-deposited; see
Experimental Section), we were able to fully assign the 'H NMR spectrum of the combined
solids. The spectrum in C¢Ds features of a sharp singlet at 1.11 ppm, which is assignable to 1
(Figures S5 and S6). Additionally, there are 3 singlets, at 1.46, 1.30, and 1.28 ppm, each
integrating for 9 protons, and one singlet at 1.22 ppm, integrating for 18 protons, which are
assignable to the 5 magnetically inequivalent ‘Bu groups (with two overlapping) of 2.
Additionally, the spectrum features a singlet at 1.18 ppm, which integrates for 6 protons, and a
singlet at 3.25 ppm, which integrates for 2 protons (and features Pt satellites with %/pr = 88 Hz).
An ESI-MS of the isolated crystals (dissolved in THF) features a signal at m/z 476.2674 (Figures
S11 and S12 in SI), which corresponds to the [1 + H]" ion (calcd m/z 476.2645). This spectrum
features a second prominent signal at m/z 810.3602 (Figure S13 in SI), which corresponds to [2 +

H]* (caled m/z 810.3633).

Moreover, for a mixture of 1 and 2 that was slightly enriched with 1, we detected in C¢Ds at 25
°C a '>Pt NMR resonance at -663 ppm that is assignable to 1 (Figure S10 in SI; '*Pt NMR shifts
in ppm vs. Na2PtCle(aq)). Upon increasing the temperature to 50 °C, the signal shifted downfield
(8pt = -629 ppm) and became a well-resolved quintet due to couplings with two equivalent '“N
nuclei ( = 1), with 'J('*°Pt, '“N) = 537 Hz (Figure 3). The '**Pt nucleus in 1 is remarkably

deshielded as compared to other Pt(Il) complexes with nitrogen-based ligands, which normally



feature dp; within the range -2700 to -1700 ppm (cf. Table S7 in SI). In addition, the 'J('*°Pt,
14N) value is the largest coupling constant reported to date for a Pt-N bond, consistent with the
short distance and multiple bond character in 1. The assignment of these NMR parameters to
complex 1 was confirmed by relativistic two-component DFT calculations including spin-orbit
coupling (2¢c-ZORA(SO)/PBE/QZ4P), which predict 8pi = -601 ppm and 'Jeen = 576 Hz.5! For

complex 2, the '>Pt NMR shifts are predicted to appear at -2054 and -2928 ppm, but no signal

within the range -6000 to -1000 ppm was detected in our '*>Pt NMR experiments.>
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Figure 3. Partial > Pt NMR spectrum of a mixture of 1 and 2 in CsDs, recorded at 50 °C.



To better understand the formation of 1 and 2, and identify the origin of the poor
chemoselectivity, we monitored the reaction of PtClz(1,5-COD) with 2 equiv of Li(N=C'Bu2) by
"H NMR spectroscopy. A 'H NMR spectrum of an aliquot of the crude reaction mixture, taken
after 20 min of reaction time, reveals the presence of the complexes 1, 2, and the mono(ketimide)
complex, [Pt(1,5-COD)(N=C'Bu2)Cl] (3), in an approximately 1:2:10 ratio, respectively (Figures
S1 and S2 in SI). After 90 min of reaction time, a 'H NMR spectrum of an aliquot reveals the
presence of the complexes 1, 2, and 3 in an approximately 1:1:1 ratio, respectively (Figures S3
and S4 in SI). Also present in the 90 min spectrum is a small amount of HN=C'Buz, as well as
signals that that we have tentatively assigned to dinuclear Pt complex 4, [Pt(N=C'Bu2)2(p-n*m'-
CsH11)Pt(N=C'Bu2)(1,5-COD)]. According to the '"H NMR spectrum, 4 is not formed in
significant quantities, but its presence, along with the presence of small amounts of 3, help

rationalize the relatively low yields of 1 and 2.

Complex 3 can be independently synthesized by reaction of PtCl2(1,5-COD) with 1 equiv of
Li(N=C'Buz) in THF (Scheme 2). When generated in this fashion it can be isolated as an orange
powder in 46% yield. Complex 3 has been characterized by X-ray crystallography and by 'H and
BC{'H} NMR spectroscopy (Figures S7, S8, and S15 in SI). In the solid state, it features a Pt-N
bond length of 1.961(4) A, which is notably longer than those of 1, and is suggestive of a
significantly lesser degree of n-donation and n-backdonation between the Pt center and ketimide
ligand (Figure S15 in SI). Consistent with this hypothesis, the Pt-N-C angle in 3 (143.8(4)°)

deviates significantly from linearity.
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Scheme 2. Synthesis of complex 3.

We also explored the suitability of 3 as a precursor to complexes 1 and 2. Thus, reaction of 3
with 1 equiv of Li(N=C'Buz) in THF results formation of both 1 and 2 in an approximately 1:1
ratio, according to a 'H NMR spectrum of the crude reaction mixture (Figure S9 in SI). Several
other minor resonances are also present in the reaction mixture, which we have tentatively
assigned to complex 4. A small amount of HN=C'Bu: is also present in the sample. Given that
this route did not appear to offer any advantages over the initial method of preparation, it was not

pursued further.

Computational Analysis. In an effort to explain the unique structural features of this two-
coordinate Pt complex, we performed a computational bonding analysis of 1 and its truncated
model complex, Pt(N=CH2)2 (1’). DFT calculations accurately reproduce the short Pt-N bond
lengths, linear coordination geometry, and co-planar arrangement of ketimide ligands in both 1
and 1’ (Table 1). These features remain virtually unaffected upon replacing fer¢-butyl groups in
the ketimide ligand with hydrogen atoms, demonstrating the minimal role of attractive London

dispersion forces and/or steric repulsion between bulky alkyl groups on the structure.

11



A molecular orbital (MO) diagram for 1’ in its singlet (S = 0) ground-state is depicted in Figure 4
(selected frontier MOs of 1 are given in Figure S17 in SI and give qualitatively the same picture
as presented here). As expected, the metal-based atomic orbitals dxy (HOMO-3) and dx2-y2
(HOMO-4) are basically non-bonding (they do not interact with the orbitals of the R2C=N
fragments), the HOMO is predominantly metal-based 5dz2-6s in character, and the LUMO
involves the 5dy. atomic orbital and has a clear n*(Pt-N) antibonding character. While it is
sometimes a challenge to classify the nature of a bonding interaction from the canonical MOs,>?
the HOMO-5 (dyz) and HOMO-7 (dxz) orbitals are best described as the Pt-N © donation and Pt-N
© back-donation interactions, respectively. This assessment is confirmed by inspection of the
corresponding Naturally Localized Molecular Orbitals (NLMOs)** (Figure S20) and Adaptive
Natural Density Partitioning (AdNDP)> analysis (Figure 5), which provide a chemically more
intuitive description of bonding, exploiting the concept of Lewis structures with shared pairs of
electrons between adjacent atoms (see discussion below).>® In particular, the NLMO Pt-N r-
bonds (shown in Figure S20) are formed by linear combinations of HOMO-1 and HOMO-5,
along with lesser amounts of HOMO-9 and HOMO-10 (Figure 4), while the Pt-N n-backbonding
interaction (shown in Figure S20) is composed principally of HOMO-7 with a small admixture

of HOMO-2 (Figure 4).

Table 1. Atomic NPA charges, NLMO analysis of the M-N bonding, and QTAIM
delocalization indices, DI(M-N), as a measure of the M-N bond covalency, in a series of two-

coordinate group 10 [M(N=CR2)2]? (R = H, ‘Bu) ketimide complexes “”

Complex d(M-N) NPA charges NLMO analysis of the M-N bonds QTAIM
[A] qM)  q(N) type %M %M(s) %M(d) %N  %N(s) %N(p) DIM-N)
Pt(N=CH,), 1.797 0.452  -0481 o(M«N) 156 71 29 833 52 48 1.514
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1(M«N) 29.0 100 64.5 100

mN—M—-N)  69.5 100 14.5 100
Pt(N=C'Bu,),  1.803 0433 -0553 o(M<N) 153 71 29 832 48 52 1.463
n(M<N) 293 100 64.0 100
mN—M—-N) 708 100 13.9 100
PA(N=CBu,), 1.824 0395 -0.507 o(M<N) 112 82 17 875 48 52 1.295
n(M—N) 31.2 100 613 100
mN—M—oN) 784 100 10.2 100
Ni(N=CBuy),  1.683 0.655 -0.619 o(M<N) 90 90 10 89.6 47 53 1.289
n(M—N) 26.4 100 67.0 100
mN—M-N) 803 100 9.3 100

“PBE0-D3(BJ)/ECP/def2-TZVP results (see Computational details); the metal atom (M) bound
to nitrogen is indicated in bold; ® t(N«—M—N) corresponds to a n-backdonation from the metal

d-orbital to 7*(N=C) antibonding MOs

On the basis of ligand-field theory,’® one would expect the LUMO of a linear, 16e” complex to
be predominately d2 in character, which is not the ordering observed for 1’ or 1. This
discrepancy can be rationalized by the extensive ligand-induced 5d-6s hybridization, which
lowers the energy of the ds manifold, and by the strong metal(dx)-ligand(z) interactions at the
short M-L distances, which increases the antibonding M(dxrg)-L(pr)* level. A notable 5d-6s

hybridization is also observed for a Pt atom (or Pt>*

ion) placed between two negative point
charges (¢ = -1.0 e) separated by ca. 4 A (Figure 4, left). The d-s hybridization shifts the charge
from the axial lobes of the 5dz2 orbital into its toroidal ring and reduces the Pauli repulsion
between Pt(5d.2) and ligand o-type (ag) orbitals. A similar d-electron distribution in the ground-
state of two-coordinate complexes (accompanied with a d-s hybridization) was also found in a
series of 3d metal dihalogenides and in a series of recently published 2-coordinate iron

complexes containing bulky amide or tris(trimethylsilyl)methyl ligands.” 2 13: 5758
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Figure 4. Schematic MO diagram for complex 1’ (for the sake of clarity, given MO levels are

aligned based on their energies only qualitatively). Canonical MOs are depicted as isosurface



plots (+£0.03 au). Symmetry labels are for D2x point group. The left side of the figure shown the
splitting of the d orbital manifold and the Pt(5dz2)/Pt(6s) hybridization that occurs upon
interaction of the Pt atom with two negative point charges positioned in a linear fashion with

respect to the metal and each separated by 2 A from the Pt center.
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Figure 5. Localized AANDP orbitals corresponding to Pt-N interaction in 1°. ON stands for

occupation number. See also Figure S20 in SI for corresponding NLMOs.

Although the d-s hybridization gives rise to a notable Pt(6s) occupation in the natural population
analysis (NPA), the NPA charge and population at the Pt center of 1 is comparable with those of
well-known square-planar Pt(II) complexes and PtClz (a hypothetical but clear-cut example of a

two-coordinate Pt(I) molecule) and differs notably from known Pt(I) and Pt(0) complexes,

consistent with the Pt(II) oxidation-state assignment for 1 and 1’ (cf. Table 2 for NPA charges
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and electron configurations at the metal center for a series of pertinent complexes). Our
oxidation-state assignment is also confirmed by using the localized orbital bonding analysis

(LOBA) method (Table 2),> which accurately produces the chemically intuitive oxidation state
for challenging systems with redox non-innocent ligands.5%!

Table 2. NPA charges, electron configurations, and spin-densities at the Pt center, as well as metal
oxidation-states (OS) assigned by a localized-orbital bonding analysis (LOBA), for a series of

pertinent two-coordinate and square-planar Pt(II), Pt(I), and Pt(0) complexes ¢

Complex spin-state d(Pt-L) NPA charge el. configuration spin-density OS of Pt
on Pt

(AE, kJ/mol) [A] q(Pt) 6s 5d p(Pt) (LOBA)
Pt(N=C'Buz)2 (1) S=0(0.0) 1.803 +0.433 0.96 8.59 - Pt(II)

S=1(75.2)% 1.856 +0.276 1.00 8.74 0.55 Pt(0)
PtCl2 (Deh) S=0(97.1)¢ 2.148 +0.438 0.92 8.63 - Pt(II)

S=1(0.0) ¢ 2.155 +0.541 0.92 8.52 1.21 Pt(1D)
PtClz (C2v) S=0 (58.5) ¢ 2.156 +0.536 0.66 8.75 - Pt(1D)
[Pt(P'Bus)2]*, S=1/2 2.271 +0.239 1.02 8.75 1.00 Pt(I)
Pt(P'Bus)2,} S=0 2.267 -0.490 0.89 9.59 - Pt(0)
Pt(cAAC),* S=0 1.975 -0.203 1.00 9.19 - Pt(0)
Pt(CNAr),’ S=0 1.899 -0.162 1.01 9.16 - Pt(0)
Pt(NHC)2,° S=0 1.970 -0.359 1.10 9.25 - Pt(0)
trans-PtCl2(NH3)2 S=0 2.035 (Pt-N) +0.588 0.63 8.76 - Pt(ID)

2.299 (Pt-Cl)

Pt(PPhs)4 S=0 2.346 +0.053 0.50 9.45 - Pt(0)

¢ PBE0-D3(BJ)/ECP/def2-TZVP results (see Computational details); ® Structure of 1 with an
orthogonal arrangement of two ketimide ligands; ¢ Linear (D«h) structure of PtClz (o = 180°); ¢
Bent (Cav) structure of PtClz (o= 115°)

Both 1 and 1’ are computed to feature a high degree of Pt=N multiple bond character, as revealed
by a natural localized molecular orbital (NLMO) analysis and the computed QTAIM
delocalization indices, DI(M-N) (Table 1), which is consistent with the short Pt-N bonds
observed for 1 in the solid-state. The DI(M-N) integrates the electron density in the region

between two atoms in question (M and N) and is closely related to the covalent bond order,
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reduced by bond polarity. For comparison, the DI(Pt-N) values in cisplatin (cis-PtCIl2(NH3)2) and
transplatin (zrans-PtCl2(NH3)2) are computed to be 0.768 and 0.810, respectively, which are
roughly a half that of 1. According to Adaptive Natural Density Partitioning (AdNDP) analysis,*
which is capable of identifying multicenter bonds, the Pt-N interactions of 1 (and 1’) can be best
described as a Pt=N double bond with one 6(Pt-N) and one “in-plane” n-(Pt-N) component on
each side of the molecule (Figure 5). These interactions are further strengthened by a delocalized
five-center, two-electron (5c2e¢) bond across the entire C=N=Pt=N=C fragment, which
corresponds to the Pt-N n-backdonation from the “out-of-plane” Pt(5dxz) orbital into both
n*(C=N) antibonding MOs of the ketimide ligands. In the NLMO analysis, this interaction is
approximated by a three-center two-electron m(N«—M—N) bonding (Table 1 and Figure S20)
and becomes more covalent, along with the 6(M«N) component, on moving down group 10,
which can be attributed to the more diffuse valence d-orbitals of the heavier metals (see also
Table S4 for results of EDA analysis, which provide similar trends). The lack of an analogous 7t-
backdonation interaction in the group 10 M(N'Bu2)2 bis(amide) series is likely responsible for
their longer M-N bonds, as compared to ketimides (Table S3). For instance, the Pt-N bond-
length in the hypothetical bis(amide) Pt(N'Buz)2 is computed to be 1.892 A, which is 0.09 A

longer than that of 1.

As discussed above, the experimental structure of 1 exhibits a co-planar (eclipsed) arrangement
of its ketimide ligands. We therefore explored computationally the alternative “allene-like”
geometry wherein the ketimide ligands feature a staggered conformation. The structure of 1 with
a staggered arrangement of the two ketimide ligands is computed to have a triplet ground-state (S
= 1) and is energetically disfavored by 75.2 kJ/mol in comparison to the experimentally-

observed co-planar structure featuring a singlet ground-state (Tables 2 and S5). The energetic
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preference of the co-planar configuration permits the maximum constructive overlap between the
n-symmetry orbitals on the ligand and the relevant Pt(5d) orbitals. Specifically, a p-orbital from
each nitrogen interacts with the “in-plane” 5dy- orbital and a n*(C=N) orbital from each ligand
interacts with the “out-of-plane” 5dx- orbital (Figure S23). In the structure with the orthogonal
configuration, however, the two ketimide ligands must interact individually with the Pt center,
via two different Pt(5d) orbitals. As a result, the two orthogonal N(2p) orbitals cannot be
involved in m-bonding; instead they are each occupied by an unpaired electron (cf. Figure S23
and Table S5 in SI for NLMO analysis and corresponding Lewis structures). Although these
unpaired electrons are delocalized over the Pt and N atoms (cf. Figure S24 for the spin-density
distribution), the metal center in the structure of 1 with an orthogonal arrangement of ketimide
ligands is best characterized as a Pt(0) complex with two 6(Pt<—N) bonding and two n(Pt—N)
backbonding interactions. This is also reflected in the reduced atomic charge at the Pt center in
contrast to the experimentally observed co-planar structure of 1 (S = 0), with its clear Pt(I)

character (Table 2).

Summary

We have prepared and characterized the linear Pt(I) complex, Pt(N=C'Bu2)2 (1), expanding the
scope of Pt(II) coordination chemistry beyond the more common square planar and T-shaped
geometries. While many two-coordinate Pt(0) and Pt(I) complexes are known,>® complex 1 is
the first two-coordinate Pt(II) complex to be reported.! Its unusual coordination geometry can be
rationalized by its exceptionally covalent M-N interactions, a consequence of the strong n-donor
and m-acceptor properties of the linear ketimide ligand, as revealed by a detailed computational

DFT analysis. These interactions result in short, highly covalent Pt-N bonds, which stabilize this
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formally unsaturated, 16e” species. This covalency is also evident in its highly deshielded '°Pt

chemical shift and large '*>Pt-'*N nuclear spin-spin coupling constant.

For comparison, several two-coordinate Ni(II) complexes, such as [Ni{N(H)Ar*™},] (Ar'® =
CeH3-2,6(CsH2-2,4,6-'Pr3)2),5 are also known, but these tend to be paramagnetic, with high-spin
d® configurations at the Ni center. This change in the electronic ground-state is caused by two
factors: first, the greater spatial extent of the 5d vs. 3d orbitals, and thus their better overlap with
donor atoms on the ligands (i.e., larger M-L bond covalency); and, second, the strong n-donating
and m-accepting properties of the linear ketimide ligand, which produces a larger crystal field

than that provided by an amide ligand.

The unusual electronic properties imparted to Pt suggest that other linear [M(ketimide)2]™*
complexes (M = transition metal or lanthanide) would also feature interesting electronic
structures and could potentially possess unique magnetic properties. The generation of species of
this type will likely require the use of substantially bulkier ketimide ligands, by analogy to the
bulky alkyl, aryl, and amido ligands previously used to stabilize two-coordinate transition metal
complexes; % 1262 however, because of the relatively straightforward synthesis of the ketimide

fragment, this should be easy to achieve.
ASSOCIATED CONTENT

Experimental, computational, and crystallographic details (as CIF files) for complexes 1 - 4.

This material is available free of charge via the Internet at http://pubs.acs.org.
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TOC SYNOPSIS

two-coordinated
Pt(ll)

3("“Pt) = -629 ppm

'J("™P,“N) = 537 Hz

Pt(N=C'Bu2)2 represents the first linear Pt(II) complex to be reported, expanding the scope of

Pt(IT) coordination chemistry beyond the more common square planar and T-shaped geometries.
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