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ABSTRACT: We use Euclidean path integrals to explore the set of bulk asymptotically
AdS spacetimes with good CFT duals. We consider simple bottom-up models of bulk
physics defined by Einstein-Hilbert gravity coupled to thin domain walls and restrict
to solutions with spherical symmetry. The cosmological constant is allowed to change
across the domain wall, modeling more complicated Einstein-scalar systems where the
scalar potential has multiple minima. In particular, the cosmological constant can be-
come positive in the interior. However, in the above context, we show that inflating
bubbles are never produced by smooth Euclidean saddles to asymptotically AdS path
integrals. The obstacle is a direct parallel to the well-known obstruction to creating
inflating universes by tunneling from flat space. In contrast, we do find good saddles
that create so-called “bag-of-gold” geometries which, in addition to their single asymp-
totic region, also have an additional large semi-classical region located behind both past
and future event horizons. Furthermore, without fine-tuning model parameters, using
multiple domain walls we find Euclidean geometries that create arbitrarily large bags-
of-gold inside a black hole of fixed horizon size, and thus at fixed Bekenstein-Hawking
entropy. Indeed, with our symmetries and in our class of models, such solutions pro-
vide the unique semi-classical saddle for appropriately designed (microcanonical) path
integrals. This strengthens a classic tension between such spacetimes and the CFT
density of states, similar to that in the black hole information problem.
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1 Introduction

Recent years have seen great progress in understanding the anti-de Sitter/conformal
field theory (AdS/CFT) dictionary, especially in the limit of small perturbations about
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Figure 1: A moment of time symmetry in a bag-of-gold spacetime. The region outside
the minimal surface is precisely AdS-Schwarzschild, as is a small part of the interior.
The rest of the interior is a (say, radiation dominated) FLRW universe.

a given classical background [1-3]. However, it remains to fully understand which set
of classical backgrounds are in fact allowed by the AdS/CFT correspondence. Said
simply, does every Lorentz signature solution of the low energy bulk theory correspond
to a well-defined state in the dual CFT?

At least at first glance, the answer would appear to be negative. Indeed, particular
suspicion falls on so-called bag-of-gold spacetimes which consist of an eternal black
hole exterior attached to an interior that is essentially an large Friedman-Lemaitre-
Robertson-Walker (FLRW) cosmology, which we take here to be filled with whatever
bulk radiation is natural in the theory!; see figure 1. Such solutions exist in essentially
any theory of gravity, and the interior FLRW region can be arbitrarily large. In par-
ticular, one can take the interior large enough that the entropy in its radiation exceeds
the Bekenstein-Hawking entropy Sgy of the black hole. As a result, the entropy also
exceeds the density of states in the dual CFT. This prohibits each microstate of the
bulk ensemble from mapping to a linearly independent CFT state.

This issue has been discussed several times in the literature; see e.g. [5-7] as well
as the related discussion in [8] of large cosmological horizons inside bags-of-gold. And
it has long been of interest as a close analogue of the black hole information problem

1Such spacetimes were introduced by Wheeler in [4]. That work also introduced term “bag of gold,”
but for a somewhat different purpose. Over the years, the term has come to mean a spacetime of the
form shown in figure 1.



(see e.g. ]9, 10] for recent reviews). But the full resolution of the problem remains to be
understood. In addition, the connection was recently reemphasized in [11, 12] where it
was noted that both are associated with novel phase transitions of quantum extremal
surfaces.

In addition to their overly large entropy, another reason to suspect that solutions
with large bags-of-gold may lack CF'T duals is that they cannot be constructed from
the AdS vacuum by applying sources at the boundary and evolving forward in (Lorentz
signature) time. Indeed, at least with spherical symmetry the focusing theorem (see
e.g. [13]) of general relativity prohibits the causal past of the interior from including
any piece of the AdS boundary when the matter fields in the spacetime satisfy the null
energy condition. In contrast, bags-of-gold can be constructed from the AdS vacuum
using time folded sources (this is identical to the construction of long wormholes in
section 2.3 of [14]) that add shock waves. But each shock wave adds positive energy,
and this energy is less than the temperature T of the black hole one must worry that
grey body factors will prohibit its full absorption. So it is not clear that this can yield
large bags-of-gold at fixed black hole mass, which is what we need to create tension
with Sgy.

It is thus natural to explore the construction of bags-of-gold via Euclidean path
integrals. In parallel with [15], if we can find a Euclidean CFT path integral for which
the dominant Euclidean saddle of the bulk dual Wick rotates to a large bag-of-gold,
then slicing open the CFT path integral will yield a CFT state dual to this bag-of-
gold. Indeed, this basic argument has been used to construct black hole interiors in
[15-24]. However, the interior geometries in [23] again have sizes bounded by a (in
this case logarithmic) function of their total mass. And while the other references
above consider 241 dimensional solutions determined by a Riemann surface of genus
¢ and find interior geometries with size proportional to g, past works [21, 22, 24] have
found that there are always lower action Euclidean saddles that lead to solutions with
small genus and thus small interiors. While apparently not discussed in the prior
literature, at least in the case where the matter in the bag-of-gold is pressureless dust
it is similarly straightforward to Wick rotate AdS versions of the original aribtrarily
large FLRW bags-of-gold [4] of figure 1 to Euclidean signature. But the dust case
turns out to be somewhat degenerate, having a continuum of distinct bulk solutions
(not all having bags-of-gold) with a given density of dust particles exiting through each
point of a fixed Euclidean boundary. While worth investigating further in the future,
determining whether bags-of-gold dominate is thus non-trivial.

Below, we return to the basic issue of finding large Euclidean bags-of-gold that dom-
inate path integrals by studying gravity coupled to thin domain walls. For simplicity,
we assume spherical symmetry throughout and also forbid domain wall intersections.



This system models a more complete Einstein-scalar theory where the scalar potential
has multiple minima in the limit where the domain walls become thin. Since it is thus
natural to allow the cosmological constant to change across the wall, this framework
also provides an opportunity to study the possibility of inflating bubbles in AdS/CFT
(see [8, 25] for studies of Lorentzian such solutions) and perhaps thus to better under-
stand answers to fundamental questions [26-31] concerning holography and inflation;
see e.g. [32-36] for other approaches to this issue. Some of our results overlap with
those reported in [37-39], though the bags-of-gold discussed in these references are not
large enough to create tensions with the Bekenstein-Hawking entropy.

In addition, as we will see, finding Euclidean solutions that create bags-of-gold is
closely related to (but subtly different than) constructing Euclidean solutions with mul-
tiple disconnected boundaries known as FEuclidean wormhole solutions. In the context
of Jackiw-Teitelboim gravity [40, 41] such solutions have recently played a key role in
understanding features of quantum chaos and black holes [42, 43], though in general
such solutions are associated with their own array of conceptual issues for AdS/CFT;
see e.g. [44, 45] as well as those that follow from [46-48]. Both features make them
interesting objects of study in their own right.

The plan of this paper is as follows. We begin in section 2 with a brief review of
the thin wall formalism, specializing to the case of spherically symmetric solutions with
asymptotically locally AdS (AIAdS) boundary conditions and taking the opportunity
to fix notation for later use. We then investigate potentially inflating settings in section
3 and show that such cases do not admit Euclidean solutions with AIAdS boundaries
that are smooth apart from the domain walls?>. As a result, they do not define bulk
saddles for CFT path integrals. We also address suggestions [49-51] (see also [39, 52])
that in similar contexts one should include certain singular saddles, provide counterar-
guments, and finally argue that allowing domain wall intersections would not change
the conclusion.

The second part of this work then turns to the construction of bags-of-gold. This
begins with a general analysis in section 4 of when such solutions can arise. We then
study bags-of-gold in more detail in section 5. After first considering settings with a
single domain wall, we progress to showing that Euclidean solutions with large numbers
of domain walls can create correspondingly large bags-of-gold inside a black hole of fixed
horizon size. In particular, one can create bags-of-gold large inside a black hole with
Bekenstein-Hawking entropy Sgpy where the bag is large enough to hold entropy much
greater than Sgy. Here we find it useful to add magnetic charge to the solutions, though

2This part of the paper overlaps with the essentially simultaneous work [39]. However, that work
takes a very different view of the singular/degenerate constructions of [49-51].



the domain walls remain uncharged. We also argue in our models that these are the
only spherically symmetric bulk saddles for properly chosen “microcanonical” Fuclidean
path integrals similar to those used in [53]. Since symmetry breaking is typically
suppressed, we thus expect these saddles to dominate even if less symmetric saddles
also exist. Finally, we close with a discussion of open issues and future directions.

2 Thin wall spacetimes in AdS

Our spacetimes are spherically symmetric and vacuum except for a thin relativistic
D—2
87tGp
the bulk Newton constant, we have required positive tension in order to enforce the

domain wall of tension k > 0 that separates two distinct vacua. Here Gp is
null energy condition at the wall, and D > 3 is the bulk spacetime dimension. After
reviewing the relevant formalism, we investigate general features Euclidean solutions in
sections 3 and 4 below. Detailed investigation of bag-of-gold solutions will be deferred to
section 5. In this section, we also confine ourselves to cases with a single (connected)
domain wall in the Euclidean section. Additional walls can often be added but, at
least in stable theories, are associated with additional sources of domain walls at the
Euclidean boundary. We will return to this issue in section 5 as well.

When two walls collide, interactions between the walls become important and
the simple thin wall approximation tends to fail. We thus restrict attention to non-
intersecting domain walls in the bulk of this paper, though we comment briefly on
interactions in section 3.4. We also require our solutions to be smooth (up to the pres-
ence of our thin domain walls). In contrast, in related settings, references [50, 51] used
the Hamiltonian formalism to advocate the use of certain a priori singular spacetimes.
Arguments against the use of these configurations will be presented in section 3.3.

Our domain walls will separate two vacua which we call interior and exterior. The
analysis is much like that in the classic work [54], though we are explicitly interested
in cases where the domain walls reach the Euclidean boundary. Since our spacetimes
have spherical symmetry, Birkhoff’s theorem with cosmological constant implies our
metric to take the form

dr?

f i,e<r)
where i, e refer to the interior/exterior vacua and f;. define either a Schwarzchild de

Sitter (SdS) solution or a Schwarzschild anti-de Sitter (SAdS) solution. Following
reference [8], we write

ds?, = — fie(r)dt;, + +7r2d3,_,, (2.1)
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taking the exterior to have an AdS cosmological constant with unit AdS length scale.
The interior cosmological constant is parametrized by A and allowed to take either sign.
Since we are interested in Lorentz signature spacetimes having only one boundary and
a regular origin, we will shortly set u; = 0, though we will return to the case p; > 0 in
section 5. The theory is fixed by a choosing A, k, while the allowed solutions within the
theory are specified by the scales fi, j1;. Note that p,, 1; have dimensions of (length)?—3
and so should be thought of as setting the horizon sizes of SAdS black holes rather
than their mass. Note also that when the external vacuum is stable we can find non-
trivial solutions in the (e) vacuum near an asymptotically locally anti-de Sitter (AIAdS)
boundary only for p, > 0.

We will see below that these data uniquely specify the trajectory of the domain wall.
Our focus will be on cases in which the exterior solution extends to an asymptotically
AdS boundary, and in particular where it does so on the moment of time symmetry
(t =0). Indeed, for cases with a single asymptotic region we take this to be the defining
property of exterior versus interior.

The domain wall equation of motion follows from the Israel junction conditions [55].
The analysis is standard, and can be read off from, e.g., reference [56]. The Lorentz
signature result takes the form

a; — Qe = KT, (2.3)

where «; . = rKpp with K, the extrinsic curvature of the wall computed in the appro-
priate (interior/exterior) region using a normal pointing from the interior region toward
the exterior. Our «;. are traditionally called §;., but we use ;. to avoid confusion
with the period 8 of Euclidean time. Following [56] one finds

Qe = +4/12 + fi,e(r)7 (24>

where 1 = % denotes the derivative with respect to proper time 7 along the wall. The
sign of o . is determined by whether the size r of the spheres increases or decreases as
one approaches the wall from the interior side (i) or as one moves away from the wall
in the exterior (e). In particular,  is monotonic near the wall when «; . have identical
signs but is locally extremized at the wall when their signs differ.

For any signs in (2.4), squaring (2.3) twice yields

i+ Veg(r) = 0 (2.5)
in terms of the effective potential
(fi(r) = folr) — *r®)° 2 B C
V;;ff(?“) = fe(T') — 4[{27’2 = Ar -+ 1 + TT_?’ - W (26)
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(2.7)

Other components of the Israel junction conditions on the sphere are related to (2.3)

by spherical symmetry, and as usual the 77 component is proportional to d/dr of (2.5).
Thus (2.3) fully specifies the dynamics of the wall.

Euclidean solutions are obtained by substituting 7z = i7 into (2.5), or equivalently
by changing the sign of V.g. In particular, Euclidean solutions can exist only for choices
of parameters that allow V.g to take non-negative values for some 7.

Since our solutions will be constructed by cutting and pasting pieces of the exterior
and interior metrics specified by (2.2), it will be useful to directly find the curves defined
by the domain wall in both the (r,¢.) and (r ¢;) planes. Since we will focus on Euclidean
solutions below, we now introduce the Euclidean time coordinates tg. = it., tg; = it;
and note that (2.1) and (2.5) can be combined to yield

thi - Q; the i Qe
() T (om) 29

Here we make explicit that the interior and exterior generically define two different

time coordinates tg;, tg. along the wall as the coordinates of (2.1) are not guaranteed
to be continuous at the domain wall. A careful check of the signs shows that the sign
+ in (2.8) changes only on the surface tg; = tg. = 0 of time reflection symmetry and,
in particular, not at other possible zeros of a.

For later use, we also note that combining (2.4), (2.5), and (2.6) yields

. fi(r) —fe(T)+/-i27"2 _ 14+ X\ — k&2 fhe — i 1
D O EN,
£i(r) = f.(r) — K2 L4 A+ A2 b\ 1 (2.9)
a(r) = 2nr = (2—) 7”* ( o ) =
and
Vg = fe—al = fi —a. (2.10)

Since k > 0, one also finds a; > . from either (2.5) or (2.9).

In sections 3 and 4, as well as the first part of section 5, we will set u; = 0. Before
proceeding, it is worth noting that even in this case, by tuning x, A € R and p, > 0
one can realize all values A, B € R and C' > 0 of the coefficients in Vg (see equation
(2.7)). This can be argued by writing A in terms of B, C, x and noting that for any
fixed B, C' with C' > 0 we have A — 400 as kK — 0 and that A — —oc0 as kK — +00.
Thus for u; = 0 dS or AdS interiors, C' > 0 is the only constraint on A, B, C.



3 No AlAdS spacetimes with inflating interiors

We will now show that for de Sitter interior regions (A > 0, u; = 0) there can be no
smooth Euclidean solutions with asymptotically AdS boundaries. Indeed, the identical
argument will also apply to cases with 0 > X\ > —(x — 1)?, so we assume only \ >
—(k — 1)? in this section, and we refer to this as case (I) in the rest of this work.
All parameter choices in case (I) give A < 0, and since Vig ~ Ar? at large r the
Lorentz signature solutions expand exponentially with respect to proper time. For
0 > A > —(x — 1)%, such solutions are examples of domain wall inflation rather than
inflation driven by a cosmological constant.

The case (I) Euclidean solutions without self-intersections that are smooth up
to the presence of out thin walls are constructed in section 3.1 and shown to have
no AIAdS boundaries. A brief argument in section 3.2 then shows that all other cases
(A < —(k+1)?%) where the Lorentz signature wall can grow to infinite size in fact lead to
instabilities of the vacuum. Section 3.3 argues against using analogues of the degenerate
solutions of references [49-51], and section 3.4 argues that allowing self-intersections
alone cannot produce case (1) Euclidean solutions with AIAdS boundaries. So at least
subject to our symmetries, within our class of models there are no stable theories that
allow AIAdS path integrals with good Euclidean saddles that create bubbles of inflating
spacetime.

3.1 Euclidean solutions for case (/)

The detailed formulas given in section 2 are not needed for our main argument. Instead,
we require only the following three properties of Vg, a.:

(i) Veg = —oo0 as r — 0 and as r — oo,

(ii) V% < 0 at points with Vg = 0,

iii) a, decreases monotonically from +oo to —oc.
(iii) y

Properties (i) and (iii) follow immediately from inspection of (2.6) and (2.9), while prop-
erty (ii) is derived in appendix A. We will also need the observation that any allowed
solution defines a (not self-intersecting) domain wall r(s),tg(s) (say, parametrized by
the proper distance s) in the relevant (locally) dS, AdS, or SAdS Euclidean geometries.
Here an important point is that the equations of motion require the exterior to be
locally equivalent to (2.1). But there is no harm in introducing conical singularities
in regions of the SAdS spacetime that will be excised. As a result, the period of the
exterior Euclidean Killing time tg. need not always agree with that of the standard
Euclidean SAdS black hole.
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Figure 2: Both signs of a,(rum) can be found for A > 0 and for A < 0. The cases
D = 3 (left) and D = 4 (right) are shown. The figure displays results at A = 0, but
Qe (Tmin ) 18 continuous so the results for small positive or negative A\ are essentially
identical. Regions with c(rmin ) > 0 are shaded red while those with a,(rmm) < 0 are
shaded green. In the purple regions V' < 0 at all » and Euclidean solutions do not exist.

We will also need that, at each r, whether r decreases or increases as one moves
away from the wall toward the interior/exterior is determined by the signs of a; (7).
We are then to cut the exterior (locally Euclidean SAdS black hole) geometry along
the above curve, discard any pieces that do not satisfy the sign constraint, and glue the
remaining piece to a corresponding piece of the interior (locally Euclidean dS or AdS)
geometry so that the full metric is continuous.

Property (ii) implies Vg to have no local minima and no zeros of order higher than
2. Indeed, even a second order zero must be a local maximum, which must in fact be
a global maxium since there are no local minima to separate multiple local maxima.

We may thus divide the parameter space into three regimes: If Vg is negative
everywhere, there can be no Euclidean solutions. If the maximum of Vg vanishes, the
only Euclidean solution is r = constant at this zero (call its location ry;, = rmax ). If
the maximum is positive, then Vg has two simple zeros that occur at precisely two
values Tmin , "max between which the solution oscillates periodically.?

3That all 3 cases occur can be seen from (2.6) and (2.7). Since B and C' vanish for p. = 0, the
maximum of Veg approaches 1 at small r as y, — 0 at any fixed A, k. In such cases the maximum of
Vog 1s clearly positive. But fixing A, C' and taking x large yields A, B — —o0 so that Veg becomes
very negative everywhere. In this case the maximum is clearly negative. Since the maximum is a
continuous function of A, B, C| it must vanish in between.



Furthermore, at the maximum of Veg we must have 0 = V) = f/ — 2a.al so that
a. = fl/(2al). But clearly f > 0 and o, < 0, so «. is already negative at this
maximum. Monotonicity of a, then requires v (rmax) < 0 as well. In contrast, a, can
take either sign at 7., ; see figure 2.

Let us suppose that the sign of a. tells us to use a region R, of the exterior SAdS
geometry containing an asymptotic boundary. Since the wall satisfies r < ry.x, curves
of constant r near the boundary will remain entirely within R.. Let us deform such
curves inward (preserving the property that each curve has constant ) until some such
curve first contacts the wall. Such a contact can only occur at a local maximum of r,
but all local maxima on the wall occur at r = rp.c where a,(rmax ) < 0.

This contradiction thus requires us to instead discard the exterior SAdS solution on
the r > ryax side of our wall. The physical origin of this requirement may be explained
using the fact that 7 = 0 at .., which allows us to use this configuration as initial
data for a Lorentz signature solution. If the solution is SAdS in the neighboring region
with r > rpax, both the negative de Sitter pressure in the interior and the positive
tension of the black hole pull the wall inward, so the Lorentzian solution must have
7 < 0 at this point. But then % < 0 in Euclidean signature (with 75 Euclidean proper
time, also known as Euclidean proper distance), so such configurations cannot occur at
T'max -

We conclude that all (connected) exterior solutions with A > —(k —1)? are instead
of the form at left shown in figure 3 below. The details of the interior solutions depend
on the sign of A and other features. For the case A > 0 (shown at center in figure
3), they follow from the fact that a;(rm,) > 0 in all cases. This may be argued by
noting that «; monotonically decreases from +oo for 1 + A — k2 > 0 and is positive
definite for 1 + A — k? < 0. Since a;(Tmin) > 0 is then clear in the second case, we
may concentrate on showing it in the first. There o? must decrease monotonically
from 400 to zero before monotonically increasing back to +00. Now note that f; is
positive everywhere for A\ < 0, and is positive at small » for A > 0. And while for
A > 0 the function f; eventually becomes negative, it cannot do so until after ry;, as it
decreases monotonically and Vig(rui, ) = 0 requires f; = a? > 0. Since Vg = f; — a2,
for r € [0, 7min ] we must have o? > f; > 0. It follows that the first zero of Vg must
occur before 04? reaches zero and thus that o;(rm, ) > 0 as claimed.

Sewing any allowed exterior to any allowed exterior yields a solution with no Al-
AdS boundary. Note that in solutions where 7 does not vanish identically, the curves
tracing (r, tg) need not necessarily close in either the AdS interior or the SAdS exterior.
But smooth solutions without self-intersections exist only when they do. Imposing this
condition in the exterior imposes a relation between A, &, p, but in the interior (center

— 10 —



Figure 3: Left: Unshaded regions provide allowed Euclidean SAdS exteriors with r
increasing outward for A > —(xk — 1)? (case (I)) with g; = 0. The angular direction
is Euclidean time. Since a,(Tmax) < 0, one must excise the (shaded) region r > rpax.
The sign of ae(rmin) is positive in the top panel and negative in the bottom panel.
Center: Allowed interiors for A > 0 shown as (unshaded) regions of Euclidean dS
with r increasing inward. Since @;(rmim) > 0, one must excise the (shaded) region
7 > Tmin. LThe sign of a;(rmay ) 1S also positive at top but is negative at bottom. Right:
Allowed interiors for 0 > A > —(x—1)? shown as (unshaded) regions of Euclidean AdS,
with 7 increasing to the right and Euclidean time running vertically. Here a;(rmn ) > 0
requires one to excise the (shaded) region r > ry;,. The sign of a;(rmax ) is also positive
at top but is negative at bottom. Sewing any allowed interior to any allowed exterior
shows the full solution to have no asymptotic region.

panels in figure 3) the domain wall curve can be made to close by inserting an appro-
priate conical singularity in the non-physical (shaded) region. Smooth solutions thus
typically exist on a co-dimension surface in parameter space, or for discrete values of
e within a given theory (fixed A, k).

As noted above, for 0 > A > —(x — 1)? the exterior solutions are again of the form
shown at left in figure 3. And again we have ;(rmim) > 0, though the form of the
interior solution depends on the sign of ;(rmax) as shown at right. As for A > 0, the

- 11 -



interior curves can be made to close without tuning parameters. Here this is due to
the arbitrary period of Euclidean time at top right, and the ability to insert conical
singularities in the non-physical (shaded) region at bottom right. Again, there is no
AlAdS boundary in any solution.

3.2 No other inflating cases in stable theories

The case A < —(k + 1)? is similar to case (I) in that A < 0 so that the Euclidean
domain wall is again confined to some finite range r, so it again defines a curve in
SAdS that does not reach any boundary. But one may now check that o; > a, > 0, so
Euclidean solutions with the desired asymptotics can always be found, and the exterior
curve can be made to close without self-intersections by inserting a conical singularity
into the excluded non-physical region of SAdS inside the curve. But the fact that such
solutions have no boundary source suggests that the theory is unstable. Indeed, setting
e = t; = 0 yields Vg = —Ar? 4+ 1 with A < 0, so Lorenzian zero energy domain walls
expand to r = oo in finite time. Wick rotating to Euclidean signature gives a smooth
instanton describing the nucleation of the corresponding bubbles and thus the expected
vacuum instability. We will refer to A < —(x + 1)? as case (IV') below.

3.3 Good saddles are non-degenerate

Although the context is slightly different, the mechanism that excludes A1AdS saddles
for A > —(xk —1)? is directly analogous to the classic obstruction [49] to finding smooth
instantons mediating nucleation of false vacuum bubbles by quantum tunneling from
flat space. In that context, it has been suggested [49-51] that the process may neverthe-
less take place and that it is instead mediated by certain non-smooth saddles (see also
[39, 52]). As noted in reference [51], this view can be motivated by considering formu-
lations that extend Einstein-Hilbert gravity to include solutions where the metric can
become degenerate. Reference [51] in particular emphasized the Hamiltonian frame-
work, but it is perhaps simpler to consider covariant first order tetrad formulations in
which all dynamical fields are differential forms.
For example, in four dimensions one may use the covariant Palatini action

S = %/ (e“/\eb/\RCd—i— %e“/\eb/\ec/\ed) €abeds (3.1)
where R = dw + w Aw, a,b,c,d are internal SO(3,1) indices, the fundamental variables
with independent variations are the one-forms e® and w®, and €gq is the constant
antisymmeric tensor in the internal space but is a spacetime scalar. As reviewed in [57]
for A = 0, for non-degenerate tetrads the dynamics is that of Einstein-Hilbert gravity.
But given any smooth map f from any manifold M to a given spacetime M, one may

- 12 —



Figure 4: A degenerate case (/) exterior (unshaded region) with AIAdS boundary.
Two copies of Euclidean SdS are shown, with an allowed case (1) domain wall trajectory
shown inside the left copy. The sign of a, requires us to discard the shaded region.
Gluing the remaining unshaded regions together along the co-dimension 2 horizons (H )
gives a singular (degenerate) solution analogous to those advocated in [49-51].

pullback any solution e,w through f to define a new solution é,® on M. Indeed, when
f has degree one this pullback leaves the action invariant and it may be argued [57]
(see also [58]) that the two solutions are gauge equivalent and should be physically
identified.

We can now use this pullback construction to explain the analogue in our context of
the degenerate solutions advocated in references [49-51]. As in section 3, the solutions
are to the constructed by a “cut and paste” procedure. But now, instead of taking
the exterior solution to be cut to be the standard form of Euclidean SAdS on which
r > rp, for horizon radius 7y, we instead pull back some e, w associated with this solution
through the map r—rj, = 72 to yield a solutions with two copies of Euclidean SAdS, one
with 7 > 0 and one with 7 < 0, joined by a degenerate metric at 7 = 0. We may then
cut the solution along a domain wall in the region 7 < 0 while preserving the AIAdS
boundary at 7 > 0; see figure 4. The relevant piece can then be sewn onto an AdS
interior as in section 3. In particular, by placing any resulting conical singularity in
the region where the metric degenerates, we can avoid any need to tune the parameters
(A, K, pte) described in the construction of smooth solutions above. In summary, in this
way we can glue onto the original Euclidean SAdS solution any compact Euclidean
spacetime which satisfies the equations of motion up to having a codimension-2 conical
singularity?.

However, we see two reasons why such constructions should be excluded. One

4And by allowing multiple regions where the metric degenerates we can allow further conical sin-
gularities as well.
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is simply that, so long as the solution preserves time reflection symmetry, the t =
0 surface of time reflection symmetry where one would glue our Euclidean solution
to its Lorentzian analogue is also degenerate. So the instanton should be viewed as
creating a Lorentzian solution where the metric again degenerates, and one would need
to understand the physics of degenerate metrics in Lorentz signature as well.

Perhaps more critically one may also note that when two regions R, Ry are sepa-
rated by a region of degenerate metrics, there is in general no correlation at all between
the metrics in Ry and R,. Indeed, consider a map f from M to M that maps the
boundaries of both R; and R, to a common point o € M and which also maps all
of M outside Ry U R, to the same point zo. Then the pullback through f of some
non-degenerate solution on M is identically zero on M \ (Ry U R,). As a result, given
any two non-degenerate solutions (e;,wi), (ea,wq) on M, we may cut each solution
anywhere in the region between R; and Ry and glue the pullback (é1,&) of the first
solution in R; to the pullback (€3, @s) of the second solution in Ry. The result clearly
satisfies the equation of motion in both R; and Rs, and also in M \ (R1 U Ry) where it
continues to vanish identically.

In this way, given an arbitrary compact Euclidean solution (perhaps with conical
singularities where the equations of motion would naively fail), we can use degenerate
metrics to glue the compact solution to any other solution using a degenerate metric
at a single point z. Perhaps even worse, since the sign of (3.1) depends on a choice of
orientation, one is free to choose the sign of the action in such bubbles at will. Adding
many bubbles of the proper sign then shows the Euclidean action of this class of saddles
to be unbounded below °.

Now, the Hamiltonian framework as used in [50, 51] is a priori more restrictive
than the fully first-order framework of (3.1). However, as already discussed in section

5If one nevertheless chooses to sum over them in the path integral one finds that they add a contri-
bution to the action at each point x( that is independent of xy. While it is unclear if this contribution
is well-defined, after regularization it should serve only to renormalize the various local couplings in
the original action. One could thus consistently neglect such bubbles in a low energy effective field
theory treatment of the path integral in which one simply uses the renormalized values of the cou-
plings. While more complicated bubbles might induce nonlocal couplings, they again renormalize any
nonlocal couplings that might already be present, in which case the resulting renormalized couplings
are experimentally constrained to be small. We may thus simply consider the situation where the
renormalized effective theory is Einstein-Hilbert and then ignore any possible further contributions
of such degenerate solutions. This may provide a consistent interpretation of such path integrals.
Another consistent interpretation is to insist that any single partition function be associated with
a smooth saddle, and to interpret degenerate geometries defined by sewing together such saddles as
computing a product of such partition functions Z; for each smooth component (or perhaps inverse
partition functions Z% for saddles taken to contribute to the action with the opposite of the usual
sign).
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VIII of [51], it nevertheless allows a similar gluing when the compact Euclidean solution
defining the bubble coincides on a codimension-2 surface with the solution to which
it will be glued. The particular example discussed in [51] involved bubbles of empty
Euclidean de Sitter space, the effects of which were described as providing “a possibly
fatal divergence” for the Hartle-Hawking wavefunction of quantum cosmology. But
we see that the compact Euclidean domain-wall solutions (with or without conical
singularity) give equally problematic bubbles which can also contribute to the original
tunneling amplitudes of [49-51]. Indeed, the point here is that while the WKB tunneling
amplitudes are invariant under continuous deformations of the path connecting the
initial and final points (so long as such deformations avoid turning points where the
WKB approximation breaks down), they can change significantly under discontinuous
changes associated with changes of topology. In the Euclidean action formalism, this is
the statement that a given process can receive contributions from multiple saddles with
different Euclidean actions. Here the addition of each bubble defines a topologically
distinct path through configuration space connecting the initial and final tunneling
configurations, which can thus alter the predictions of [49-51] and which again lead to
difficulties.

In summary, we see many issues with following [49-51] in the use of degenerate
saddles to compute tunneling amplitudes. Lacking a satisfactory resolution of such
issues, we tentatively conclude that only smooth saddles should be used in such com-
putations. However, it would be useful to explore this issue further in the future. While
there may be much room for subtlety, at a concrete level it would be very interesting
to understand in detail the effect of moving beyond the thin-wall approximation and
considering such issues in a context where the domain wall arises from smooth scalar

fields.

3.4 Comments on self-intersecting walls

We have limited ourselves to not self-intersecting solutions to the thin wall equations
of motion. But some of our results readily generalize to at least some contexts with
intersecting thin walls.

Consider for example the argument that there are no Euclidean dS-SAdS and
consider a set of walls where the wall locations can be approximated by some (perhaps
self-intersecting) solution to the thin wall equation of motion (2.5). Since equation
(2 5) determines R from R only up to an overall sign, two-wall intersections where
R, = —R, are common in such solutions at points where R # 0. But intersections
cannot occur at Tyax O Tmin, as two solutions to (2.5) that coincide at such points
must agree everywhere; two such walls that meet at ry. or rmin Will never separate.
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Figure 5: Left: A domain wall intersection that would allow both an 7., and an
AIAdS boundary (straight line at top of figure), but which does not satisfy conservation
of the stress-energy tensor. Right: A domain wall intersection that conserves the
stress-energy tensor.

It is therefore natural to take a FEuclidean solution with interacting thin walls to
have a locally SAdS exterior region R. such that whose boundary r(s),tg(s) satisfies
the Euclidean version of (2.5) (perhaps with discontinuities in R), and in particular
with r < rpax - Such spacetimes now exist, though the points closest to the asymptotic
boundary must have a > 0 and so cannot have r = r... Indeed, the exterior region
must look something like that shown above in figure 5 (left), where the points with
locally maximal r have discontinuities in 7. But conservation of stress energy will
require solutions in which two thin walls approach each other and interact on some
sphere p should take the very different form near p shown in figure 5 (right). In other
words, the domain wall world line cannot execute a sharp turn like that shown in figure
5 (left) without some injection of Euclidean momentum from another sources.

We conclude that adding intersections to our thin wall model will not by itself
allow Euclidean path integrals to create spacetimes with inflation. However, it remains
to investigate other generalizations involving walls with internal dynamical degrees of
freedom, multiple types of walls, or more general Einstein-scalar systems using either
analytic or numerical techniques. The former may be of particular interest as an internal
degree of freedom might allow models with configurations that inflate to also have
configurations where Vog > 0 as r — oo so that the wall can reach the Euclidean
boundary. If the two above configurations can be continuously connected in a Euclidean
solution, one might imagine that inflating bubbles could in fact be created by sourcing
the correct wall configurations at the Euclidean boundary. We leave such studies for
future work.
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4 Non-inflating interiors

While strictly de Sitter interiors yield no Euclidean solutions with asymptotically AdS
boundaries, AdS interiors (negative \) can be more interesting. We will divide the
space of models into four regimes in accordance with the behaviors of a., Veg. Since
p; = 0, for A > —(1+ x?) we find a, to be positive everywhere while for A > —(1 + x?)
the derivative o/ is everywhere negative. Furthermore, Vig — +oo at large r for
A> —(k—1)2or A < —(k + 1)?, while Vig — —oo in between these regimes. The
relevant cases are thus

(I) A> —(k—1)° al, < 0,Veg — —oo at large r (4.1)
(II) —(k—1*>X> —(k*+1) o, < 0,Vg > 0 at large r (4.2)
(I11) — (K> 4+1)>A> —(k+1)? ae > 0,Veg > 0 at large r (4.3)
(IV) —(k+1)*>> A e > 0, Veg — —o0 at large 7. (4.4)

In all cases Vog — —o0 as r — 0 and o (rmm ) > 0, with r,;, the smallest zero of Vig.
The latter result may be argued much as at the end of section 3 but now using the fact
that f; is manifestly positive for all r. The statement a;(rmi, ) > 0 is vacuously true in
cases where Vg is always negative and ry;, fails to exist.

Having with cases (I) and (/V') in section 3, we now focus on cases (/1) and (/11).
These latter ranges of parameters allow our domain walls can reach the Euclidean
boundary. In addition, some algebra (see appendix B) shows that for p. > 0 we have

"¢ > 0 at any zero of Vg, so there is a unique zero 7y, . The Euclidean domain wall
thus defines a curve along which r decreases from r = oo to r;, and then returns to
r = 0o in a manner consistent with time reflection symmetry.

We can now address case (I1]), where a; > a, > 0 at all . From (2.8), we
see that the exterior solution moves outward from r = r;,. As shown in figure 6,
self-intersections of the wall in the exterior SAdS region may avoided by taking g, to
be defined on (—o0, +00) (without identifications). Such solutions are free of conical
singularities since the condition a, > 0 forces us to discard the piece of SAdS containing
the Euclidean horizon.

Although there is no minimal surface at t = 0, after Wick rotation to Lorentz sig-
nature the walls will accelerate inward from their initial location on the surface of time
symmetry and form black holes at large |¢|. Such Lorentzian solutions thus represent
black holes that form from time symmetric collapse. We use the term collapsing-shell
solutions to refer to them below.

It remains only to address case (/I), which turns out to have various subcases
associated with the signs of a; . at i, and at r = co. Since case (1) has a. negative
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Horizory = tg >+ r=0 r=e

g5 -o

Figure 6: Unshaded regions provide allowed exteriors (left) and interiors (right) for
case (III), where a; > a, > 0 at all 7. Since the Euclidean horizon is always excised,
we take Euclidean time to run vertically over (—oo, +00). Wick rotating to Lorentz
signature yields time symmetric collapsing-shell solutions, where a domain wall outside
its horizon at ¢t = 0 collapses to form a black hole at late times.

at large r, and since the beginning of section 4 showed «;(rmin) to be positive in all
cases, four subcases remain:

(ITA+) K% — 1> N, (i ) > 0 a; > 0 at all r, o, changes sign, (4.5)
(ITA=) K = 1> X\, ae(rmin) <0 a; > 0 at all 7, no a. sign change, (4.6)
(IIB+) k* =1 < X\, ate(Tmmin ) > 0 a; — —oo at large 7, o, changes sign, (4.7)
(IIB—=) k> =1 < X\, ae(rmin) <0 a; — —oo at large 7, no a, sign change.  (4.8)

Here we have emphasized that (2.9) clearly shows the sign of «; at large r to agree with
the sign of —(1 + A — £?). The sign of a(rmin ) is more complicated to determine and
will be studied numerically below.

None of these subcases allow obstructions from the interior. In the (17A+) cases,
the interior solution behaves just as in case (/1) and thus remains smooth for all
parameters in this regime. The situation is more interesting for cases (I/B4) where
a; changes sign at its unique zero. Via (2.8), this sign change entails a maximum value
of tg; and the interior takes one of the forms shown in figure 7 below. As described
in the figure caption, any apparent self-intersections can then be removed by inserting
a conical singularity in the unphysical excised region of the interior solution, so the
interior is smooth for all parameters.

The (—) cases have a, negative at all r, and in particular at 7y;,. Such situations
hold the potential to create bags of gold. We will show that this potential is realized
by studying these settings in detail in section 5 below.
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Figure 7: Interior solutions for cases (//B+), (IIB—). For these cases, «; is negative
at rmin but positive at large r. The change of sign means that tg; has a maximum
so that the interior solution takes one of the forms shown. Since o;(rmm) > 0, in
each case we must keep a piece of the solution containing » = 0. When there are no
self-intersections (right) this presents no problems. And since a; can vanish at only
one value of r > 7y, self-intersections are always of the form shown at left. Such
self-intersections can be removed by inserting an appropriate conical singularity into
the shaded (unphysical) region. In terms of the physical (unshaded) region, the effect
is to include two copies of the region marked C' near tp = 0 and r = oo. The first copy
Cy of C' is attached smoothly to the rest of the interior solution along the upper left
boundary C', while the lower left boundary of C; is a domain wall junction with the
exterior. In contrast, the second copy C}, of C' is attached smoothly to the rest of the
interior solution along the lower left boundary C, while the upper left boundary of Cyy
is a domain wall junction with the exterior.

The remaining cases (I/A+) and (//B+) may now be handled quickly. There the
function a, changes sign, and since «, is non-negative at ry;, , we now keep the external
SAdS piece in which r approaches r.;, from the outside. These solutions thus create
collapsing shells much as in case (/1I). As shown in figure 8, the condition to avoid
self-intersections is now that tg, is positive for r > r;, along one entire branch of (2.8)
with tg. < 0 on the other.

5 Creating bags of gold

We now carefully examine cases (I/A—) and (/I B—) to show that we can create bags
of gold. In either such case we have «a, negative at all r, so from (2.8) the sign of dtg./dr
changes only at ry;,. This means that the exterior solutions spiral outward from ry;,
and take one of the forms shown in figure 9. Any solutions without self-intersections
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Figure 8: Cases (/IA+),(I1B+) have a. is positive at ry;, but negative at large r.
The change of sign means that tg. has a maximum, and the solution must take one of
the forms shown. Since ae(rmin) > 0 requires us to keep the (unshaded) piece of the
solution containing the larger r side of the wall at r.;,, any point with tg. = 0 and
7 # Tmin wWould yield a self-intersection (left). Avoiding such self-intersections (right)
thus requires tg. > 0 for r > r,;, along one entire branch of (2.8) with ¢g. < 0 on the
other.

will describe bags of gold®.

As can be seen from figure 9, such solutions occur precisely when the world line of
the wall wraps less than once around the origin. This is the condition that the range
Atpg, of tg. over the domain wall world line be less than the natural Euclidean period
of the external SAdS solution. One can explore this condition numerically in detail,
but we show in section 5.1 that there is at least a regime with large «, . where the
condition is satisfied. At the level of our bottom-up analysis, this will then establish
that at least some bags of gold (i.e., those in that regime) have CFT duals.

Now, as shown in appendix C, for D > 3 the bags of gold that can be created
from Euclidean path integrals using a single domain wall have their size bounded by
a power of y. and so produce no immediate tension with the dual CFTs Bekenstein-
Hawking density of states. For D = 3 one can in fact create arbitrarily large bags of
gold at fixed p, but only by tuning the parameter A to be small and taking x > 4/3
(see again appendix C). As a result, the bag of gold is subject to an additional IR
cutoff associated with the finite value of the internal (i) cosmological length scale ¢; =
le/N/ =X =~ L,/(k — 1) < 3, which again limits the entropy such bags may contain.

However, analyzing cases with multiple domain walls in section 5.2 will show that

6If it is free of self-intersections, the special case where a. vanishes at 7ni, describes a degenerate
bag-of-gold of zero size where the domain wall is located at its Schwarzschild radius on the surface of
time symmetry (¢ = 0).
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Figure 9: Cases (/I A—) and (IIB—) have a, negative at all  so that exterior solutions
tend to spiral outward from 7.,;,. Left: In some cases the wall reaches the Euclidean
AdS boundary without self-intersections. We may then keep the unshaded region and
potentially build a smooth solution, depending on the interior. Recall that the interior
imposes no restrictions in case (IIA—), where interior solutions are as in case (I11),
shown at right in figure 6. Right: In other cases, one or more self-intersections occur
before the wall reaches the Euclidean AdS boundary and smooth solutions do not exist.

arbitrarily large bags of gold can be created at fixed p, and that no fine-tuning of model
parameters is required. Furthermore, we argue in section 5.3 that in our models these
are the only spherically-symmetric bulk saddles for appropriately chosen path integrals.
We thus expect them to dominate, so that such bag-of-gold geometries do indeed have
good CFT duals.

5.1 External solutions without self-intersections

In particular, we can identify a regime free of self-intersections by studying the limit
fe — +00. Numerical results show that such solutions can also exist at moderate-to-
small p., but at large u. the treatment simplifies and more can be said analytically. As
usual, this simplification is associated with the fact that large SAdS black holes can be
approximated as planar, so that the term of 1 can be dropped from both f and Vg.
Since this large . limit will also play an important role in later sections, we take the
opportunity to develop it carefully here, and in particular to do so in a way that will
also allow the case p; > 0 to be considered later.

To be specific, we consider any large g, limit in case (I7) in which B < 0, the
quantity v := —u.A/B is bounded away from one, the positive quantities A and B?/4C
are all bounded away from zero, and in which

KVC

eI+ A+ K2)

AC

=0(p.™), and  —5 =0(p.™) (5.1)

e

e
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for some 71,12 > 0.
For example, with p; = 0 one may take u. large holding fixed (finite) values of

e 14+ A+ k2
v o= ,u_7 0= i’ (5.2)
K K
so that (even at finite p.) we have
2 2
p vp v
A=1-2 =+ c=1. 5.3

For 2 > p > 0 the limit lies in case (/]) as desired. Furthermore, B — —oo at large .
while A, C are held fixed. This satisfies all of the conditions above, and in particular
(5.1) yields

kVC v B AC V2 (4 — p? _
3 — :O(,uel>7 2 - ( p )2 :O<:u’62
pe(L+ A+ K% 2ppe B% 4(2u. —vp)

). (5.4)

Other limits satisfying the above conditions will also be of interest in later sections.

The first step in showing the above limits to be free of self—intersection§ is to
estimate ry;,. At large p. the horizon radius r, at which f = 0 is r, = ,ue_ ﬁ(1 -+
O(1/pe)). So since Vg = fo — a? from (2.10) implies Vg(ry,) < 0, we must have
Tmin > Th = ue_ﬁ(l + O(1/pe)) so that rp, must become large as well. It is then
useful to rewrite (2.6) in the form

B? 1 B\’
A+ —+—=— -1 _ — :
Vet = + e —I— C ( 20) (5.5)
Using rmfn Y > 0 one then finds
~-1y B B? A 1
. = — 5.6
Tmin 5 T\ a2 o T o (5.6)

This quantity must approach zero since r,;; becomes large. But 102 1s bounded below,
so the two terms must nearly cancel. This requires é + CT : << 4022. Furthermore,

A>1/r2, . Thus we find

1 1

™ = = H 06T = (14 0w 7)) (5.7

Using the condition that v is bounded away from one, we thus find

Tmin —Th = O(rmin>- (58)
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For future use, we also note that a short computation from (2.7) yields

B 1+X—r B> A 4\

20T p Ak 0T

(5.9)

Understanding tg.(r) requires controlling the three ingredients Vg, cve, fe in (2.8).
1
The last two are straightforward, as for r > 7y, ~ p?-1 our (5.8) yields

) e 2 He —2
and (5.1) gives
r -
0 == (1+0(™). (5-11)

where we have used the definition of p from (5.2) whether or not p is held constant in
our limit and 7 is the smallest of {m, =, %} In particular, we see that bag-of-gold
condition o (rmin) < 0 holds as a consequence of our assumptions.

To control Vg, it is useful to build on (5.6) by defining

—(D—1) B B2 A 1
— 2 Sl R 12
- 20 " \/402 Totoe (5.12)
and also
D-1 D-1 2 2
(7 . 2 "'min r_ o Armin r
‘/eff(r) = Ar (1 — m) (1 + 70D1> = A?“?nin 1 (ngf(r) -1+ E) . (513)

Note that in case (II) the functions ‘7eff, V.g are both positive for r > r,;, and negative
for 0 < r < ruy,. Since we found above that A > r—2

min?

- 1

Integrating (5.14) from the common zero at ry;, then yields

Vg = Vg (1 -0 (é)) . (5.15)

D—1
D )2
1 = O(pe 2/ ) so for r > rp;, we have

min

the above equation implies

On the other hand, (5.1) implies

D—-1

Vo) = art (1= T8 ) (14 0G™). (5:16)
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Introducing 7 = r/rmyi,, we may now combine (2.8), (5.7), (5.10), (5.11), (5.15),
and (5.16) to find

the Qe

ar _Tminm

N 2f2r:m\/z (1 B fg—1>_1 (1 - fpl_l)_ (1+0(")

for all r > ry;,, where 7 is the smallest of 1/(D — 1),711,72/2. Note that the physically

(5.17)

(SIS

interesting parameter is the ratio of the range of tg. to the Euclidean period g =

(131)4%(1 + O(fte ;o= 1)) and that the factor of pl’ pT in 7y in the denominator
—1)He

on the right-hand-side of (5.17) cancels in this ratio. For simplicity, we set tg. = 0 at
Tmin, SO that the desn"ed ratio js 2ee(r=")

The factor of 7=* on the rlght hand side means that tg.(r) is finite as r — oc.

Indeed, if one drops the O(pe DT ') corrections the integral over the full curve can be
done explicitly for D = 3,4,5. The case D = 3 is simplest, as then

toe _ [T NGl .
8 /1 ¢ ATVAF2 — Y)Vi? — 1 (1 + O(pe )) (5.18)

47r\//iT —arctan( T:,;) (1_1_0(“:7)). (5.19)

Thus we find
2tpe(r = 00)

P 8 —n
3 - 4@\/;(1 + O(pe )) : (5.20)

In particular, for u; = 0 tracing through the various definitions gives

2tpe(r = 00) _ 1 (L+0(,") . (5.21)
p 2,/1— 152

1+ +k2
So as long as 1 + A + k? > 8/3 we find W < 1 and there are no intersections
at large p. In particular, this holds when the parameters in (5.3) are held fixed at
e — OO.
The results for D > 4 are more complicated, but it is useful to write them in the

form
2tge(r = 00)

p v B
g - zm\/ng(V) (1+0(u.") - (5.22)
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Figure 10: The functions fp(7) from (5.23) for D = 3,4,5,6,7 on the interval v €
(0,1). The constant function f3 = 3 (lowest curve) is included for reference and, moving
upward in the figure, successive curves have increasing values of D.

in terms of the functions
B fyD 1\/1T TR
fD(V) = (D 27r\/_ / 1) (1 7~;D1)
r D -3 D+
() v (_2

1 1
L ,D—l).
2\/_72(D 1)1“( (D+1) (D—l) 2 Q(D—l)

In (5.23), the function oF} is the standard hypergeometric function and the final ex-

N|=

(5.23)

pression is a conjecture that we have checked using Mathematica for all integer D in
the range 3 < D < 50. The function fp(7) is naturally defined for v € (0, 1]. There
the choice D = 3 yields f3(y) = % in agreement with our results above. In contrast,
for D > 3 the functions fp monotonically decrease from positive infinity at v = 0 to %
at v = 1. Interestingly, however, the divergence as v — 0 is fairly slow if D is not too

large; see figure 10. Indeed we find the expansion
I (D1 1) ’Yﬁ
2,/7T ( _D+1_ > Vel

fo(7) = (1+0())- (5.24)

In particular, for u; = 0 the prefactor in (5.22) is

, / 5.25
2\/1 — \/1 _ \/1 (5:25)
1+/\+52
and v = (1 — p?/4)/(1 — p/2k), so w — 5 as p — 0 as long as p/k also vanishes
in that limit. Since this ratio is less than 1, we find not self-intersecting solutions that
create bags of gold in all bulk spacetime dimensions D.
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5.2 Euclidean wormholes and large bags of gold from multiple domain walls

As stated in the introduction, it is of interest to understand whether the bags of gold
we create can become large inside a black hole of fixed surface area (here, fixed p.).
But for solutions with a single domain wall of the sort we have studied thus far, the size
of a bag-of-gold is largely dictated by 7y, , which from (2.1) is in fact the mazimum

radius of any SP”~2 of spherical symmetry inside the black hole. And as noted above,
1

at large p. the Euclidean solutions tends to have ry;, o< pe’~". This makes it difficult
to find Euclidean solutions that create bags of gold that become parametrically large
at fixed p.. This is especially so if, in order to avoid models that one might consider
less likely to have CFT duals, we wish to exclude models in which x, A\ are fine-tuned
to some order in £,/¢. Of course, Lorentz-signature solutions in which the bag-of-gold
becomes large are easy to construct by taking the interior to inflate, but such models
lie in case (1) so as shown in section 3 they cannot be created by smooth saddle-points
of AIAdS path integrals.

Some specific bounds on 7y, are established in appendix C. In short, for D > 3
we find ry, to be uniformly bounded by a power of .. For D = 3 one can in fact
create arbitrarily large bags of gold at fixed p., but only by tuning the parameter A
to be small and taking k > 4/3 (see again appendix C). As a result, the bag of gold
is subject to an additional IR cutoff associated with the finite value of the internal
(1) cosmological length scale ¢; = £,/v/—\ =~ £,/(k — 1) < 3/, which again limits the
entropy such bags may contain.

However, rather than provide an exhaustive search for highly-entropic single-domain-
wall bags of gold, we instead turn to creating bags of gold with multiple concentric
domain walls, nested one inside the other. In this context, by slightly deforming the
models discussed thus far we will construct saddles describing arbitrarily large bags of
gold with fixed surface area for the black hole horizon. Essentially the same construc-
tion will also lead directly to Euclidean wormholes — defined here as Euclidean saddles
for which the AIAdS boundary consists of two or more smooth compact connected
components.

We will maintain spherical symmetry as well as time-reflection symmetry. It is
clear that many different models can be studied. It will be most useful to consider a
large number of domain walls, but we wish to avoid possible complications associated
with models having large numbers of vacuua. We thus suppose that there are only two
vacuua which alternate between successive domain walls all having the same tension
k. We may continue to call the vacuua (e) and (7), though at every other wall the (e)
vacuum will lie on the inside of the wall and the (i) vacuum will lie on the outside.

The region between two successive domain walls will again be a piece of Euclidean
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Figure 11: We consider the case where the (unshaded) SAdS region between two
consecutive domain walls contains an SAdS horizon (left). The alternative case where
it does not is shown at right. In particular we will focus spacetimes that have a Zs
reflection symmetry exchanging the two domain walls as shown in the left panel.

SAdS. In principle, we may consider cases where the two walls bounding a given SAdS
piece lie on opposite sides of the Euclidean horizon or where they lie on the same;
see figure 11. We shall explore only the first case (left in the figure), as this clearly
makes the given SAdS region larger than when the two walls lie on the same side of the
horizon. In addition, even at large r;, this provides a low redshift regime in which it
might be possible to hold large entropy at small cost in energy.

To organize the discussion, let us note that if we can choose the mass parameters
u for each SAdS region to be identical, then each such region would be exactly the
same. We could then construct an arbitrarily large bag-of-gold by chaining together
many copies of the same fundamental unit consisting of an SAdS region like that shown
at fight in figure 11, bounded on each side by identical domain walls, with each wall
described in the formalism of section 2 by setting u; = p. = p. And a periodic such
chain would yield a Euclidean spacetime with two disconnected boundaries (i.e., it
would yield a Euclidean wormhole). We thus focus on this important special case”.

Setting p; = pe = p simplifies the analysis in several ways. First, note from (2.9)
and (5.2) that it yields

ae(r) = —gr, a;(r) = (—g + /{) r. (5.26)

Recalling the sign conventions of section 2, the condition to keep the pieces of both
(e) and (i) Euclidean SAdS solutions containing the respective horizon (so that both
regions can take the form of the left panel in figure 11) is 2k > p > 0. Case (I])

"Setting A = —1 and including only a single such domain wall behind the horizon gives a spacetime
that is precisely the Zy cover of the end-of-the-world-brane spacetimes of [37].
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always makes p positive, and we can easily choose parameters to make it less than
2k. In particular, this is automatically true for A = —1, in which case the (e) and (7)
vacua have identical gravitational physics. Indeed, even for much more complicated
models than those considered here, it follows from (2.3), (2.4), (2.5), and (2.6) that

kT

5 = —a;(r) and the above conditions are satisfied

whenever f. = f; we have a.(r) =
identically.

Furthermore, (2.7) gives

A=1-p*/4, B=—u, C=0. (5.27)
and thus
A 0> kVC AC B?
= e =A=1- —0, 2= d 2 =00 (52
7T T I mgaesy 0 0 and g =oco (5:28)

As a result, taking u large at fixed p easily satisfied the conditions of section (5.1).
Furthermore, using the above results (5.22) simplifies to yield just

2tpe.(r = 00)

B

Recall that f3(v) = 3 and that for D > 4 the function fp(y) decreases monoton-
ically from +oo at v = 0 to 1/2 at v = 1 as shown in figure 10. As a result, a single

= fp(7) (1 + O(N_%D : (5.29)

domain wall of our form with p; = p. always removes at least half of the Euclidean

boundary on the (e) side of the wall. Since this is true for all A, it must also hold on

r _pZ”, for the desired case 2k > p one finds

the (7) side. Indeed, since a; = —

2tpi(r = 00)

B

which apparently requires —\ > p?/4. As a result, adding two domain walls to each
SAdS region must remove the entire AIAdS boundary. So solutions of the form of figure
11 (left) do not exist in the models studied thus far.

However, for D = 3 this failure is marginal at all \,x in case (II), as regular

— o(3) (1 + O(u—%)) with 5 =1+ p?/4)\ = “# (5.30)

Euclidean boundaries would have existed for any smaller value of (5.29), (5.30). And
for D > 4 it is marginal for v & 4 &~ 1, which in particular holds for A ~ —1 with &
small. As a result, small alterations of the models considered thus far could potentially
allow solutions of the desired form.

Indeed, since the relevant parameter involves the ratio of tg.,tg; to the Euclidean
period (3, it is natural to study modifications that lower the temperature of the SAdS
horizons. The classic way to do so is by adding charge under an appropriate U(1) gauge
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field. To be concrete, let us focus on the case D = 4, add a Maxwell field F,;,, and
consider solutions with magnetic flux on the S? factor of the geometry®. In particular,
we may take these to be the magnetically charged black holes of AdS, supergravity
constructed in [59, 60] with the moduli tuned so that the dilaton and other scalars are
independent of r. Such solutions can be embedded in eleven-dimensional supergravity,
so this provides a top-down model of the black holes backgrounds, if not of the domain
walls. For later use, we mention that doing so realizes the AdS,; Maxwell potential as
a Kaluza-Klein gauge field associated with reduction of the eleven-dimensional metric
along a U(1) fiber. For simplicity, we take our domain walls to be uncharged under
this Maxwell field and leave open for future investigation the question of whether they
may also be embedded in a top-down model such as those studied in [61].

As a result of adding magnetic flux, any e region between a given pair of adjacent
domain walls now becomes a piece of a D = 4 magnetically charged AdS Reissner-
Nordstrom (RNAdAS) spacetime for which

fe:r2+1—§+Q—2. (5.31)
The basic formalism described in section 2 will continue to apply, but with a modified
effective potential V.g. The key point, however, is that the new magnetic term in
(5.31) falls off quickly at large . Indeed, if we introduce the horizon size rj of the
corresponding uncharged black hole (defined by 0 = 7% + 1 — L) and note that (5.31)
will fail to vanish anywhere for Q* > pury, one sees that the charge term in (5.31)
can be neglected when r > r,. So the trajectory of domain walls with r;, > r,
is essentially unaltered by the addition of charge, and this is in particular true for
the times tg.(r = 00),tg;(r = co0) at which the walls reach the AIAdS boundary. In
the limit of large p and large ry/r, = v~/3, the change in the ratio (5.29) is thus
dominated by the change in Euclidean period 3. And since S can be made arbitrarily
large by taking the black hole to be near extremality, we can easily lower the ratio
2t ge(r=00 2tge(r=00)

) below %,

employed to avoid self-intersections in [38].

and similarly for . This is essentially the same mechanism

Now, the reader may be concerned that such solutions are finely tuned, in that large
Tmin/Th Tequires v — 0 so that fy(y) diverges. It may thus appear that our black hole
must be very close to extremality in order for the desired solution to exist. This may in
some sense be true, but any fine tuning is only at the O(1) level, and is not parametric
in the Planck scale £,. Furthermore, as stated in (5.24) fy(v) diverges at small v only

8We choose D = 4 both because of its familiarity and due to subtleties involving Maxwell fields for
D = 3. For example, the charge contribution to the usual charged BTZ solutions grows logarithmically
at large r.
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as 7*1/6, and thus as \/rmin/7Th. So if we reduce the effects of the charge term to the
10% level by taking rmpm/rn ~ 1/10, we find v = 107 and f4(7) =~ 2.11. The desired
solutions then exist when @) is large enough to decrease the black hole temperature by
a bit more than of 4 relative to its uncharged value. Since the temperature has a square
root behavior near extremality, for a given M this means that the charge should be
within 5% to 10% of its extremal value.

The same will be true for the ¢ region if we make the corresponding choices for 7.
Taking both v and 7 to be small will require taking A to be near —1 and x = p = 2,
but again this fine-tuning is O(1) and not parametric in £,,.

Periodic chains of the above form immediately define Euclidean wormholes. We
will discuss these further in section 5.3. To turn a long chain into a bag-of-gold requires
us to end the chain after a finite number of units in each direction. It is useful to first
discuss the related two-boundary wormhole solutions in which the t = 0 surface contain
two disconnected pieces of the AIAdS boundary. While these two pieces are connected
through the Euclidean time direction along the boundary, in Lorentz signature the
solution will become a wormhole with two disconnected boundaries. To build such a
solution from our chain, we need only omit both the left-most and right-most domain
walls, so that the left-most and right-most RNAdS regions contain only a single domain
wall each as in the left panel of figure 9.

A bag-of-gold solution would consist of roughly half of the long-wormhole solution
just constructed. Conservation of magnetic flux on the S? then requires either addi-
tional non-trivial topology or the addition of magnetically charged matter fields. While
the latter is natural, we opt for the former in order to avoid specifying further details. In
particular, we consider bags of gold that are Zs quotients of the above long wormholes,
where the (free) Zs action simultaneously exchanges the right and left boundaries, acts
as the anti-podal map on the S%, and — in order for the Z, action to preserve the sign
of the Maxwell field — also acts as ¢ — —¢ on the internal U(1) Kaluza-Klein fiber
mentioned above. In other words, we take the central RNAdS-like region to in fact be
a charged RP? geon of the sort described in [62]. In particular, it is worth mentioning
that the full spacetime (including the internal dimensions) is non-orientable, but that
is not a problem for a bulk theory like eleven-dimensional supergravity which describes
at least the black hole sector of our model®.

9Furthermore, if there is a second U(1) Kaluza-Klein fiber, one may choose to invert it as well to
give an orientable spacetime.
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5.3 Can Euclidean wormholes and large bags of gold dominate a path in-
tegral?

Having argued that our models yield both Euclidean wormholes and Euclidean saddles
that create arbitrarily large bags of gold, it is important to ask how their actions will
compare with other possible saddles for the same path integral. We now show that
— within our model and with the assumed symmetries — our bags of gold are in fact
the only allowed saddles for properly chosen path integrals. We therefore expect that
they will dominate over other (less symmetric) saddles in our model. We also comment
briefly on issues going beyond our models in section 6, though a complete analysis is
beyond the scope of this work. After addressing bags of gold, we also discuss competing
saddles for Euclidean wormholes.

In the above section we constructed bag-of-gold solutions as Z, quotients of long
two-boundary wormholes. In particular, the long wormholes have AIAdS boundary
topology St x SP~2 (where we now generalize from D = 4 to arbitrary dimension D),
and the Z, acts on this boundary by § — —f on the S! and a simultaneous anti-
podal map on the SP~2. The Euclidean bags-of-gold thus have boundary topology
St x SD*2/ZQ. Since any solution with boundary S' x SD*Q/ZQ admits a Zy cover
with topology S* x SP~2, consideration of saddles that compete with our bags-of-gold
is equivalent to considering saddles that compete with our long wormholes. We find it
simpler to focus on the latter.

We are thus interested in S' x SP~2 boundaries that are divided into alternating
regions associated with the two distinct vacua in the bulk. The vacua are naturally
specified by boundary conditions as, in an Einstein-scalar model, they are associated
with distinct asymptotic values for the scalar fields. The transitions between two
adjacent vacua along the AIAdS boundary will act as sources for bulk domain walls.
So if one fixes the metric and scalar sources on S' x SP~2, one can look for saddles that
match the stated boundary conditions, and thus including a corresponding number of
such walls.

However, we find it more convenient to use a form of the microcanonical path
integral discussed in [53]. This amounts to starting with a standard (canonical) path
integral, perhaps with the standard metric on S* x SP~2 with some choice of sizes for
the S* and SP~2 and then adding a constraint that fixes the stress-energy flux (“the
energy”) fEi VhTnt€® defined by the boundary stress tensor Ty, through some set of
surfaces >; with induced metric A and normal n® in the direction defined by the Killing
field €% along the S'. We will introduce one such energy constraint in every vacuum
region as shown in figure 12 above.

We will also fix the magnetic flux on the SP~2. In our model without charged
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Figure 12: The AIAdS boundary features alternating regions of two distinct vacuua,
shown here as red and blue. Dots on each side indicate that the pattern may continue.
Vertical cross-sections represent S”~2-spheres for our solutions The transitions between
vacuua (white vertical lines) are sources of domain walls. Our microcanonical path
integrals include an energy constraint (vertical green lines) in each vacuum region.

matter, this requires only a single constraint. Flux conservation then fixes the flux
everywhere. But in a more general model it would make sense to fix the flux separately
in each vacuum region.

Within this model, maintaining spherical symmetry, fixing the energy, and also
fixing the magnetic flux requires the bulk solution to be a piece of RNAdS. The bulk
must then consist of a collection of such pieces, each separated from adjacent ones by
domain walls. Furthermore, in stable theories any domain wall in a Euclidean solution
must reach the AIAdS boundary. And more explicitly, since A\ &~ —1 the two vacuua
are similar. So all domain walls in our two-vacuum model have potentials V.g with
A > 0, making it clear that all walls expand to reach the Euclidean AIAdS boundary.
In our model where domain-wall intersections are not allowed, we thus conclude that
each RNAdS piece of the bulk must also reach the AIAdS boundary at a point where
the boundary conditions transition between the two types of vacuum.

Furthermore, we assume that only one bulk domain wall reaches the AIAdS bound-
ary at each such transition in the boundary conditions. This is not something that can
be determined directly from the thin wall model, but it is naturally guaranteed in
appropriate more complete Einstein-scalar models. There each transition should be
described as a continuous change in the scalar boundary conditions from one vacuum
to another over a finite piece of the AIAdS boundary. Thus each wall in fact has some
finite thickness at the AIAdS boundary as determined by the boundary conditions.
Choosing the boundary conditions to vary monotonically from one vacuum to the next
in a theory where domain walls are stable will then naturally yield a single (thickened)
domain anchored to this part of the boundary. In the same way, we see that each bulk
RNAJS region must reach some finite piece of the AIAdS boundary, and must thus
have parameters matching those of one of our boundary regions and thus fixed by our
boundary conditions.

Now, recall that the trajectory of any domain wall between two such RNAdS
regions is also fixed by the RNAdS parameters. For most of the regions we will choose
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Figure 13: Cartoon of bulk Euclidean spacetime for our long wormhole. A/B vacuum
regions are marked on the boundary, and domain walls are shown as dashed lines. The
left-most and right-most A regions are endcaps which admit only a single domain wall.
All other regions allow two. This is the unique Euclidean spacetime compatible with
such boundary conditions.

parameters so that 2% for such walls is % — € for some small positive epsilon. This
constrains each RNAdS piece to have exactly one or two domain walls. But we choose
two regions that are diametrically opposite around the S!, and which thus necessarily

2t—E:%%—e,so

describe the same type of vacuum, in which we instead choose p to be
that only one domain wall is allowed. For small €, the local change in the bulk solution
will be negligible; see appendix D for more detailed comments on domain walls with
i > 0 with p; different from p.. For reasons that will become clear, we refer to these
two special boundary regions as the endcaps. To define a CF'T state, we will choose to
cut open the path integral along a pair of diametrically opposite SP~2 spheres, with
one SP~2 in each endcap.

Let us call the two vacuua A and B and take the endcaps to be regions with
boundary conditions appropriate to the A vacuum. Since only one domain wall can fit
in this region, it must connect to both ends of this A-vacuum region as shown at e.g.
the left end of figure 13. In order to avoid both intersections and three-wall regions, the
two adjacent type B regions (just to the right in 13) must then be connected by a single
RNAAJS piece with two walls. Indeed, we are force to continue to pair up such boundary
regions in this wall until we are left only with the final endcap, which is necessarily
associated with another one-wall RNAdS piece; see again 13. Thus we see that within
our class of models (i.e., without charged matter or domain wall intersections) and with
the chosen boundary conditions, our path integral admits only a single saddle. It is
natural to expect it to dominate even when less symmetric saddles are included.

In contrast, boundary conditions allowing two-boundary Euclidean wormholes de-
scribed above, we always find disconnected saddles with which they can compete. For
example, we find Euclidean wormholes whose boundaries are two disconnected copies of
the S! x SP~2 discussed above, with each copy having its own set of alternative A and
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B regions, but now with all vacuum regions having parameters fixed so that %TE = %6;
i.e., there are no special endcap regions. Nevertheless, there is an allowed saddle given
by two copies of the spacetime shown in figure 13 in which two of the regions simply
happen to have only a single domain wall. Indeed, for n vacuum regions there are n/2
such saddles, as any two diametrically opposed vacuum regions can be chosen to be
special in this way.

Furthermore, while we have not computed the relevant actions, for S' x SP—2
boundaries one would expect the disconnected saddle to dominate. One argument for
this is based on the result of [53] that with an exact S! translational symmetry on the
boundary, the microcanonical action is just —1 times the RT entropy. The disconnected
solution will clearly require an RT surface with two disconnected components, while
the RT surface in the connected saddle should have only one. And if the areas of these
surfaces are fixed in a simple way by boundary parameters (as in standard black hole
solutions), then the two component RT surface seems likely to have twice the area of the
one-component surface. Generalizing this idea to boundaries that break translational
symmetry on the S!, and then further to arbitrary boundary manifolds with non-trivial
fundamental group m;, suggests that disconnected saddles may always dominate in this
context.

This suggestion, however, motivates a closer look at Euclidean wormholes with
spherical boundaries (so that m; = @. Due to conservation of magnetic flux, this is
not strictly possible in our models without introducing (magnetically) charged matter.
We thus leave it for future investigation. But the idea that Fuclidean wormholes with
spherical boundaries might dominate certain path integrals is consistent with [63] and
[21] (which showed that the they fail to dominate with non-spherical boundaries) and
with [44] (which found low energy models where such wormholes appear to dominate
but for which top-down constructions were not known). Furthermore, we will give a
rather generic construction of Euclidean wormholes below in section 6, suggesting that
one can find fully fledged gauge/gravity dualities where such Euclidean wormholes do
indeed dominate the low energy path integral.

6 Discussion

Our work above classified the possible spherically symmetric Euclidean solutions in
D—2
8tGp
free region with a regular origin (r = 0) and cosmological constant A from an external

which a thin domain wall of positive tension k > 0 separates an internal (i) matter-

(e) matter-free region with negative cosmological constant unit AdS length scale. We

also discussed certain examples where there is no regular origin and the internal region
instead contains a minimal surface on the t = 0 slice. We required our solutions to be
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smooth up to discontinuities in the extrinsic curvature at the domain wall. Our goal
was to better understand how asymptotically locally AdS (AlAdS) bulk spacetimes
are described in a dual CFT by identifying the saddle points of bulk Euclidean path
integrals for given AIAdS boundary conditions. In the bulk semi-classical limit, the
dominant such saddle is then dual to the CF'T state generated by the corresponding
CFT path integral by an analogue of the arguments of [15]. Particular goals included the
study of AIAdS solutions with inflating bubbles, and also possible bag-of-gold solutions.
While we used a bottom-up approach, at least some top-down models of domain walls
in AdS/CFT were found in [61].

The first part of our study focused on models that allow inflating internal (7)
bubbles (perhaps driven by domain wall inflation when A < 0) and a stable external
(e) vacuum. In this case, all Euclidean solutions satisfying the above assumptions are
topologically SP. In particular, they have no AIAdS boundaries and so cannot be
described as bulk saddle points of a dual CF'T path integral.

The obstruction to finding good Euclidean solutions with AIAdS boundaries is
essentially the same as that discussed by [49] in the context of seeking instantons that
mediate the nucleation of false vacuum bubbles by quantum tunneling from flat space.
Now, in that context, it has been suggested [49-51] that the process may nevertheless
take place and that it is instead mediated by certain non-smooth saddles (see also
(39, 52]). But by extending concerns already expressed in a related context by reference
[51], we argued in section 3.3 that including such non-smooth saddles renders the
tunneling rate ill-defined. While there reamins much to understand about gravitational
path integrals, and while further consideration of such issues would be useful, this
observation suggests that only smooth saddles should be allowed.

Our analysis above has been limited to the thin wall approximation and to relatively
simple classes of domain walls. However, the basic obstruction to smooth saddles is
simple to state more broadly: Since Wick rotation changes the sign of dt?, it turns
any positive Lorentz signature acceleration driving inflation into a negative Euclidean
signature acceleration driving collapse and trapping the domain wall in the interior so
that it cannot be directly sourced at the Euclidean boundary. And non-trivial source-
free Fuclidean solutions should not exist in theories with a stable vacuum. This forbids
Euclidean solutions with inflating bubbles in simple domain wall models.

As discussed at the end of section 3, it remains to investigate whether more com-
plicated models and/or full Einstein-scalar field theories might allow inflating regions
to be sourced in some indirect manner. It would also be interesting to investigate
whether it might shed light on the validity of degenerate saddles as in [50, 51]. How-
ever, extrapolating our results to such cases would suggest that AIAdS spacetimes with
inflating bubbles may have no dual description in any dual CFT. If so, it may be that
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such spacetimes are not in fact part of any complete theory of quantum gravity. It
is unclear to us whether this would then have further implications for discussions of
exact or meta-stable de Sitter vacua (see e.g. [64, 65]), but it would be interesting to
investigate further.

On the other hand, it should be noted that bubbles only inflate when they are
larger than a certain critical size and that for A > —(xk — 1)? saddles also fail to create
bubbles that are too small for this inflation to occur. Furthermore, for small u., &,
A + 1 the stress tensor of the Lorentzian bubble solutions is small and the metric is
perturbatively close to that of the (e) AdS vacuum near ¢ = 0. In particular, viewing
our thin wall solutions as approximations to those of a theory of gravity and a scalar
field whose potential has multiple minima, one would expect to be able to construct
the analogous Einstein-scalar saddles by adding boundary sources to the usual vacuum
path integral through an analogue of the construction in [66]. It would be interesting
to understand if gravitational effects at non-zero Euclidean times in fact prevent the
existence of such saddles, or whether some such saddles do exist in regimes where the
thin wall approximation breaks down.

The second part of our study constructed Euclidean solutions that create bag-of-
gold spacetimes. We found a large class of models in which such solutions exist, at least
at large mass parameter p.. In spacetimes with only a single domain wall, for D > 3
appendix C shows the size of any bag of gold to bounded by a power of .. For D =3
one can in fact create arbitrarily large bags of gold at fixed pu., but only by tuning the
parameter A to be small and taking k > 4/3 (see again appendix C). As a result, the
bag of gold is subject to an additional IR cutoff associated with the finite value of the
internal (i) cosmological length scale ¢; = £,/v/—\ ~ £,/(k — 1) < 3{, which again
limits the entropy such bags may contain.

However, as described in section 5.2, expanding the class of models slightly to
include magnetic charge allows the construction of arbitrarily large Euclidean bag-of-
gold solutions that contain a correspondingly large number of domain walls. Indeed, the
solutions described in section (5.2) consist of a long chain of identical RNAdS regions,
with each pair of adjacent regions separated by a domain wall. We also argued that, at
least within our class of models and preserving our symmetries, such Euclidean solutions
give the unique saddles for our path integrals, which we took to be microcanonical in
the sense of [53].

As described in the introduction, such solutions create an interesting tension with
the density of states in any dual CFT. While the tension is very real, we would argue
that there is no sharp contradiction. Indeed, the semi-classical approximation to the
bulk path integral is naturally considered to be an asymptotic expansion in small bulk
Newton constant G. A conservative perspective would thus be that it provides such
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an expansion for any given fixed G-independent bulk path integral. In our context,
this would mean that we should first fix AIAdS boundary conditions on the Euclidean
metric and matter fields (and so fix the number N of domain walls reaching the AIAdS
boundary and the mass parameters p) and then take the limit G — 0. In particular,
this perspective suggests that the semi-classical approximation need be valid only for
G < 1/N. Of course, it remains of great interest to understand which particular
corrections to the semi-classical approximation become large for large N and what
effect they have on bulk physics. We hope our solutions provide useful starting points
for investigating such questions.

Even without filling our bags-of-gold with entropy, the results of [67] suggest that
our solutions may have interesting implications for the complexity equals action (CA)
conjecture [68, 69]. Reference [67] showed that a class of 2+1 bags-of-gold based on
adding topology inside black holes had Wheeler-DeWitt patch actions that decrease
with the size of the black hole interior. With a finite UV cut-off, this result is in tension
with the intrinsic positivity of complexity. A resolution proposed there was that such
spacetimes might lack CFT duals as they were not known to dominate any Euclidean
path integrals. But our spacetimes do appear to dominate such path integrals. So
corresponding negative contributions to Wheeler-DeWitt patch actions for these or
other (perhaps (24 1)-dimensional) bag-of-gold solutions would pose a challenge to the
CA conjecture. This remains to be analyzed in detail but, if true, would revive the
original tension noted in [67].

Using a construction closely related to our bags-of-gold, we also identified a new
class of asymptotically AIAdS Euclidean wormhole solutions. Indeed, in retrospect it
seems likely that Euclidean wormholes exist in essentially any low energy theory of
AdS gravity, and with essentially any boundary metric. The point here is that time
symmetric Euclidean wormholes Wick rotate to Lorentz signature closed cosmologies.
These are easy to construct, by simply choosing the desired topology and then adding
enough radiation (or gravitational waves) to satisfy the Hamiltonian constraint. For
example, if the metric on the time symmetric slice has everywhere non-negative Ricci
scale (as for a metric sphere or a metric torus), the Hamiltonian constraint requires the
sum of the energy densities from the cosmological constant and matter fields to be non-
negative. If we arrange for this energy to come from radiation (rather than from scalar
field potentials), the Lorentz signature solution will clearly collapse. Thus the Euclidean
solution will expand and define a Euclidean wormhole. When the spacetime has non-
contractible closed curves, we saw in section 5.3 that — at least in the microcanonical
ensemble — general arguments suggest that this wormhole will give only a subleading
contribution to the path integral. But with spherical topology, there may be potential
for Euclidean wormholes to dominate.
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This idea fits well with the results of [21, 44, 63]. In particular, [44] found low-
energy effective theories of gravity in which two-boundary Euclidean wormholes with
spherical boundaries appear to dominate the path integral. It was unclear if top-down
constructions could yield the particular models studied, but since the above approach
suggests that any top-down model will admit a broad class of Euclidean wormholes
it is plausible that top-down models where Euclidean wormholes dominate can indeed
be found. This may have interesting implications for our understanding of AdS/CFT
more generally, especially concerning any possible role of disorder [70]. We hope to
explore this further in the future.

There are, however, several issues that remain to be addressed for both classes of
solutions. One is that we have ignored the (magnetically) charged matter fields that
one expects to be present in more realistic systems, and which in particular are required
by the arguments of [71] and by appropriate versions of the weak gravity conjecture
[72]. Such fields can cause Reissner-Nordstrom black holes to become unstable to
growing scalar hair near extremality (see e.g. [73]), and thus can modify the analysis.
However, since the detailed form of the charged black hole solution played little role
in our analysis, and since the asymptotic form of all such solutions is identical so
long as the conformal dimension of the charged scalars is not too small, we expect a
similar analysis to hold even in models where such instabilities are present. Indeed,
we expect the existence of charged matter to make the construction of large bags of
gold even easier, as one may then take the mass parameter (and thus 7,;,) to increase
by a constant ratio across each domain wall, and thus to increase exponentially as one
moves further into the interior (see e.g. comments about . # u; in appendix D). It
would then require only a logarithmic number of domain walls to create a bag-of-gold
with entropy greater than the event horizon’s A/4G.

Another such issue concerns the possibility of negative modes. The fact that our
saddles are the only ones for our models satisfying the stated symmetries and boundary
conditions suggests that there will be no negative modes, but a detailed study remains
to be performed.

Other possible concerns regarding our bags-of-gold include more quantum effects.
First, one might ask if fluctuations about our saddles might be large in the limit where
are bags of gold become very large. This is certainly true in some sense. For example, as
described in [53], a microcanonical ensemble of small width AE is naturally associated
with fluctuations in certain time correlations of size At ~ 1/AFE that, if large, make the
bulk far from any given classical metric. Such fluctuations add in quadrature, and so
the total fluctuation along a chain nepai, units long is proportional to \/Nepain- Luckily,
however, we need only a finite number of units each having horizon size r, to make a
bag-of-gold large enough to allow bulk entropy greater than Sgy = r)~>/4¢2~2. Since
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it is easy to fit an entropy Synit = fﬁ—jﬁ into each unit with small back-reaction and small
h

cost in energy, we require no more than ncyam ~ ff;—ji. And taking the width of the

P
microcanonical ensemble to be comparable to the width of the corresponding canonical

ensemble; one finds in each unit that, relative to the corresponding Euclidean time
D—-2

2
period 3, the fluctuations satisfy % ~ %, so even after multiplying by \/nchaim the
,’,.T

h

time correlation fluctuations are still suppressed relative to S by ot

The remaining issue to explore is whether new complications arise when one con-
siders not just the path integral to create a fixed bag-of-gold background, but to also
actually fill the bag-of-gold with large entropy. While we see no obstacles to doing so, a
detailed analysis of this issue (perhaps following [66, 74, 75]) will be left for future work.
The point here is that a single empty bag-of-gold is just a pure state, and does not by
itself lead to tension with the Bekenstein-Hawking density of states'?. Furthermore, it
was recently noted in [11, 12] that this distinction leads to important phase transitions
for quantum extremal surfaces. It follows that, at least in studying Renyi copies of our
path integrals, saddles can exchange dominance depending on the amount of entropy in
the bag-of-gold. It would be extremely interesting to identify a similar phenomenon in
saddles associated with the original state and to investigate their implications for the
information problem. Perhaps the saddles described here will provide fertile ground for
future such investigations.
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"However, if we can indeed create exponentially large bags of gold by taking the mass parameter
to increase as we move inward by adding charged matter, such a tension can be created by taking an
ensemble defined by saddles of our form with different mass parameters.
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A No local minima of Vg for A <0

We now show that in cases where Vog — —o0 at large r, Vg can be equal to zero at
most twice. In such cases, the effective potential has the form

C

r2D—4 ’

B
‘/;ff:AT2+1+7E— (Al)

where A < 0, C' > 0, and D > 3. The sign of B is indefinite. The first derivative and
second derivative of the effective potential are

C

e/ff = 2Ar — (D — 3) TD_Q + (2D - 4) m, (A2)
and
i B C
eH:2A+(D—3)(D—2)m—(2D—4)(2D—3)m (A3)
Let 1o be a point where V[ _, = 0. At such ro, (A.2) requires
C
(D —-3)(D—2) o =2A(D —-2)+ (2D —4) (D—Q)W. (A.4)
0 0
Substituting this into (A.3) yields
" O O
ey, = 2A = (2D —4) (2D = 3) 55— +2A(D = 2)+ (2D —4) (D = 2) 55—
U To
:2A(D—1)—(2D—4)(D—1)%
"o
< 0.
(A.5)

As a result, V.g has no local minima. And since it is large and negative at both large
and small r, it can have at most two zeros.

B Unique zero of Vg for A >0

We now show that in cases where Vog — +o0 at large r, Vg can be equal to zero at
most once. In such cases, the effective potential has the form

C

r2D—4 ’

B
‘/eff:ATQ—{_l_'_m_ (Bl)

where A > 0, C' > 0, and D > 3. The sign of B is indefinite. The first derivative of
the effective potential is again given by (A.2).
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Let rg be a zero of Vg, so that

1 C
=Aro+ — — —5p= B.2
r(f):) 2 0 To 3D—3 ( )
Substituting this into (A.2) yields
¢ D -3 C
VZHL»:TO:2A70+(2D_4)T73+(D—3)AT0+ —(D—S)m
To To n
D -3 C
= (D —1) Arg + +(D—1) 5p— (B.3)
To 70

> 0.

Thus Vg is increasing whenever it crosses zero. In particular, once it becomes positive
it cannot return to zero. As a result, it can cross zero at most once.

C Constraints on the size of single-wall bags of gold

As stated in the introduction, it is of interest to understand whether the bags of gold
we create can become large enough for the bulk quantum fields inside to have entropy
comparable to the Bekenstein-Hawking entropy Sgy. While our analysis is not exhaus-
tive, we present some results below which suggest that this is not possible with a single
domain wall and p; = 0.

First, for D > 4 we show in section C.1 that 7., is bounded above by either
(2,116)D$73 or (Q,ue)ﬁ, whichever is greater. While the bounds are not particularly
strong, they show that the bags of gold do not become arbitrarily large at fixed ., and
the for D > 4 there are bounds that are independent of A, k. We then show in section
C.2 that for D = 3 taking rp;, large at fixed p,. requires tuning A to —(x — 1)? and
taking k > 4/3. As a result, any large r,;, limit requires fine-tuning and, furthermore,
is subject to an additional IR cutoff associated with the finite value of the internal (1)
cosmological length scale ¢; = £./v/—\ = £./(k — 1) < 3. As a slight aside to our
present goals, for completeness section C.3 then verifies that under these constraints
D = 3 saddles do in fact exist that create bags of gold with arbitrarily large 7piy,.

The above bounds suggest that at large p. it will be difficult to generate bags of
gold containing e.g. radiation with entropy exceeding the Bekenstein-Hawking entropy
Sgu without tuning some property of the radiation. For example, if the radiation is
thermal, one may need to take the temperature to be parametrically large. This raises
the possibility of introducing uncontrolled Planck scale physics, and also raises the
possibility that gravitational back-reaction from the radiation will become important.
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While we have not carried out an exhaustive analysis of the possible scenarios, after
some investigation we have certainly not located high-entropy regimes that are free of
such issues.

Now, one might also seek bags of gold with entropy greater than Sgy by looking
at small black holes. There Sgy becomes small, so even a moderately-sized bag-of-gold
would have higher entropy However, for fixed k, A and D > 4, analyzing (2.6) at

small i gives ruin o pd 2. And creating a bag-of-gold requires o (rmin) < 0, which
from (2.9) implies D : 1+)\+ ——— < 1. So for D > 4 bags of gold do not arise at small p,
without ﬁne—tunlng )\ k. The analysis for D = 3 is similar, though there the zero-mass
BTZ black hole has . = 1 and a calculation shows that a(ry;,) > 0 for all A, x, and
that without fine-tuning A, x the smallest bag-of-gold will have BTZ mass parameter
me = e — 1 of order 1 so that Sgy will not be small.

C.1 Bounds on r;, for D >4

As stated in the introduction, it is of interest to understand whether the bags of gold
we create can become large inside a black hole of fixed surface area (here, fixed ).
One notion of this size is set by rpi,, which from (2.1) is in fact the mazimum radius of
any SP~2 of spherical symmetry inside the black hole. We may thus equivalently ask if
Tmin can be large at fixed p.. It turns out that it cannot. In particular, while the large
e limit just studied yields 7, — oo, it also takes p. large. In fact, as we now show,
for bags of gold it is possible to bound ry,;, from above whenever p, is fixed.

Let us begin by noting that V.g becomes negative at any given value of r when we
take C large at fixed values of A, B. As a result, since 7, is the minimum at which
Vog becomes non-negative, in this limit r,;, becomes large. So at least one part of our

task is to show that this limit cannot occur at fixed p.. Since C' = 4“ <, we will need to
show that x is bounded away from zero.

To do so, consider the value r,. where a.(r) = 0. Since bags of gold require
Qe (rmin) < 0 and from (2.9) we see that a.(r) > 0 for r < r,., bags of gold must have
Tmin > Tae, and thus

—(D—1) -1y _ L+ A+K?

T'min < T(;e ’ (Cl)
[he
where the last step used (2.9) to solve for radPY.
On the other hand, (5.6) implies
B B> A

—(D-1)
- > — — 4 —. C.2
Twin =50 Va2t o ©2)

Combining (5.9), (C.1), and (C.2), then requires A > —k?2. But bags of gold arise only
in case (IT), for which —(x — 1)®> > X. These two inequalities are compatible only for
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k > 1/2. For bags of gold we have thus succeed in showing
2
He 2
C=-—= <upu.. C.3
1z < He (C.3)
Now, another way to make Vg very negative would be to take B large and negative
holding fixed A and C. But case (II) also requires A > —(k? + 1), which implies

_ He (2
—B—2—/€2<li—1—)\)<,ue (C4)

For D > 3 a strict bound on r,;, now follows quickly. Defining r, by dropping the
(positive) Ar? term from V.g and setting the result to zero yields

B C
l=—— C5
T*Df3 7:'2(D74 ( )

and also that we must have ry;, < r,. But depending on which of the two terms on
the right-hand-side of (C.5) are greater, we must also have either

rP=% < 2B < 2u, or r?P7* < 20 < 242, (C.6)

* *

Note that the latter condition also implies 7, < (Q;Le)ﬁ, which is the bound quoted
in the introduction to this appendix.

C.2 Bounds on ry;, for D =3

The case D = 3 requires special treatment, as the first inequality in (C.6) then does
not constrain r,. But we will nevertheless derive a bound from the requirement that
the domain wall trajectory has no self-intersections.

We first observe that for D = 3 the effective potential V. becomes r? times a
quadratic in 7~2. Thus we may write

] r
‘/eﬁ‘ = Ar <1 — 7"_2) (1 + ﬁ) s (C?)
with

, (1+B)+(1+B2+4AC (1+ B) — /(14 B)2 +4AC
L= °C , T = — 20 ) (08>

where rf >0,r°%2> 0, and 7y = rmin.

Now, from (C.8) it is natural to expect that A — 0 is a necessary condition for
Tmin = Ty — 00. Let us first carefully argue that this is indeed the case. For 1+ B > 0
it is manifest, as (C.8) and (C.3) then require

1+ B)? +4AC A _ VA
e —2>\/( >0/ = > . .
Tmin = T = 2C =V = L (C9)

min
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For 1+ B < 0, we instead first note that (C.4) now implies |1 + B| = —1—B < p. — 1
and then use the fact that for any positive real numbers a and b one finds

2

\/b2+a2—b>%f0rb2a>0 (C.10)
and .

\/b2+a2—b>§f0raZb>O (C.11)
to conclude that T;Q > %ﬁ > %ﬁ or 7“;2 > %\/g > ;)/77:. In all cases Ty, — 00

with g bounded requires A — 0, and at sufficiently large 7, (with u. fixed) one in

fact finds ; 2012 41
A< e 3+l (C.12)

,,,.2 7‘2

min min

For future use we also note that (C.8) yields

2
He 21+B
2 >/’L€ 20

min

. = 45*(1 + B), (C.13)

so, since Kk > %, taking ryn;, — 00 requires taking 1 4+ B to zero or a negative value.
With the above observations in hand, we will use (2.8) to study possible self-
intersections. Note that since A is small at large r;,, we may write

1+ K%+ X =2x(1 + O(A)), (C.14)

where the overall sign on the right is fixed by the requirement that we remain in case
(II). Since p, is fixed and k > % as described above, for all » > ry;, we find

ac(r) = —=r(1+O0(A) (14+0(ry2)) = =7 (1+0(ryn)) - (C.15)

Similarly, we have

fo(r) =12 (1 + O(r;ﬁzn)) ) (C.16)

As a result, defining 7 = r/ry, = r/r; and choosing the sign appropriate to moving
outward from 7, to r = 400 with increasing tg. we see that (2.8) yields

dtp. 1

= 1 A —2
dr A2y /72— 1 \/ 2 ( +0(4) + O(rmln))
1+ 2%
) L ( ) (C.17)
> ~ [~ ]‘—I—O(rr:nn) )
Al2p 772 — 1 \/1 N %
T
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2
where in the last step we used the fact that 1+ T% is a decreasing function of r
+

together with 7 > 1. Since self-intersections arise when tg.(r = 00) — t ge(Tmin) exceeds

half the pe2riod B of Euclidean time, recalling that -L (arcsec (7)) = F\/F;Tl’ setting

e=A(1+ :—g), integrating (C.17) with tg. = 0 at ry,, and forbidding self-intersections
+

yields
> t —
Ee (7 OO) >

> (1+0(2), (C.18)

™
2r /e
or

71.2

@(1 +O0(rp2)) <rie=A(r2 +12) =+/(1+ B)2 +4AC, (C.19)
where in the last step follows from (C.8).

Since the BTZ period satisfies g—z = /*ET_l, recalling that any limit where ry;, — oo
must have A — 0 and (since A — 0 and x > § prevent B from diverging) there must
be a limit point By of B with 1+ By < 0, we may use (C.19) to write

—1 1
“64 — —(1+4 By) = (1 - E) pe — 1, (C.20)

and thus 4 4
> S C.21
"E3L 173 (C.21)

The condition A — 0 and remaining in case (/) then requires

A= —(k—1)*< —é. (C.22)

In particular, A is bounded away from zero and the internal (i) cosmological length
scale must remain finite.
C.3 With fine tuning, D = 3 bags of gold can have large r;,

The analysis above also allows us to readily show that in D = 3 one can find bags
of gold with arbitrarily large r;, at fixed p. by taking A — 0 and B — By with
1+ By < 0. To do so, note that (C.8) shows that r,;, = r becomes large in this limit

with ri:—lzB(J((l*O(ﬁ))' (C.23)

The first line of (C.17) then yields

dt g

1
— <
dr AV i —1 (

1+ O0(A) + O(rpi)) - (C.24)
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Figure 14: D = 3 Numerical results for r;, and W with A = —1—¢,¢ > 0,
k = 2, and u, = 5. We see that ry;, diverges as ¢ — 0. Since W < 1, the
solutions are free of self-intersections. These choices of parameters lie in case (1), and
we also find a,(rmm) < 0. So as € — 0 we find saddles that create bags of gold with
arbitrarily large rpyip.

We may then integrate this result as above to find

™
———(1+O(rp;
2rmm\/z( (Tmln

So choosing the right-hand side to be less than

V—2(1+ By)

makes our solution free of self-

tge(r = 00) < ) — (C.25)
B
2
intersections. In other words, we find saddles that create D = 3 bags of gold with
Tmin — 00 in any fixed-yi. limit where \ approaches —(x — 1)? from below and the first
inequality in (C.21) holds. As a check, some numerical results for such large bags of

gold are shown in figure 14.

D Results for p; # pie, i >0

We record here a few results concerning the case p; # e, p; > 0. These serve mostly
to demonstrate the continuity at u; = ., and to set the stage for future more detailed

future investigations.

Recall that for SAdS regions with p, = u; we find w = fp(y) and W =
fp(3), with f3(v) = 5 and fp(y) decreasing monotonically from infinity at v = 0 to 3
at v = 1. This prohibits adding two such domain walls to a given SAdS region as in
figure 11 (left), but the failure is marginal in D = 3 and near v = 1 for all D.

In the main text we deal with this failure by adding magnetic charge. However, it
is also interesting to explore cases with p; # p.. We do so briefly below.

For p; near u,. and the qualitative form of the solutions for each domain wall will be

similar to that discussed in section 5.2. In particular, at » = ry;, we will have negative
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Figure 15: D = 3 Numerical results for % (red), %‘Ee% (blue), and the

average of the two (green) with A = —1 and k = 1/2 as a function of m; = u; — 1 for

= pte — 1 =5. In fact, the ratio depends only on ¢ = /;—_1 for e < 1. Results for

other values of k are similar. For A = —1 the system is symmetric under exchanging
2tge(r=

% from the blue curve and

e

the labels e and i, so for me > 1 one can instead find

M% from the red curve. All ratios are % and ¢ = 1, but the average (green) is

smaller at other ratios.

a,. and positive «;, so the region between two adjacent domain walls will contain an
SAdS horizon as desired.
The critical issue is then only the behavior of 2£2er=0¢)  2teilr=c0) f. aach wall. Let

Be ﬁz
us begin with D = 3. Since both of these quantities are % at p; = e, for general p;, fie

it is natural to expect that one will be larger and the other smaller, corresponding to
a non-zero first order term in the Taylor expansion about p; = p.. For D = 3 it is
useful to introduce the parameters m, = p. — 1 and m; = p; — 1 to match the standard

conventions for BTZ black holes where empty AdSs; has mass m = —1. Having done

2tge(r=00)
Be

depends only on the ratio m = 7’2—; While we have not been able to obtain a closed form

2t ge (r=00)

so, for any A one may scale parameters much as in section 5.1 to show that

expression for - as a function of m, for any A one may generalize the calculation

(5.18) to arbitrary m and expand in powers of m — 1 to find integrals that can again

be performed analytically'!. The results for D = 3 may then be written in the form
Ap(r=00) 1 1—m 3(1+X+rk*(1—m)

5. 2" Tm ° 27 +O((1l—m)*). (D)

As expected, the linear term is non-zero and is positive for m < 1; i.e., the ratio exceeds

% on the side of the domain wall with larger . Sample numerical results are also shown

' Most conveniently with help from Mathematica.
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in figure 15.

Without invoking magnetic charge or otherwise altering our simple model, to find a
region like that shown at left in figure 11 having both two domain walls and a non-trivial
AlAdS boundary the mass parameter y for D = 3 must thus behave monotonically as
one passes from each SAdS region to the next. The details of how p evolves as we move
inward are constrained only by the need only ensure that the decrease in W below

% on the larger mass side more than compensates for the increase in 2£U=) ahove % on
the smaller mass side. Note that using 1 —m = (m™'—1)—(m =124+ 0(m! —1)3,
at

one finds from (D.1) that the average of (D 1) 1

T’Z——mandat o= m~is
1 (QtEe(r = oo)‘ N 2 pe(r = oo)’ )
| " |miy | mi_5 1
2 ﬁe me Be me

1 (5k% —3(1 4+ \))(1 —m)? \3
=5 3043 +O((1 —m)”).

(D.2)

This average is thus less than % for k* > 3(1 4+ ) and 7 close to 1; see also figure 15
for a numerical check. As a result, with parameters chosen as above it suffices to take
all walls to have the same ratio ﬁ, with each SAdS region then serving as the interior
(i) for one wall and then as the exterior (e) for the next.

Numerical computations for D > 4 and X near —1 give similar results, though
cases with u; ~ u. can have values near % only for small k. In general the results
depend separately on p; and g, but in the limit of large p. they again depend only
on the ratio i This can again be seen by repeating the sort of analysis described
in section 5.1, but is also simply a manifestation of the well-known facts that large u
SAdS black holes are effectively planar black holes, and that two planar black holes for
differing mass parameters y in fact have the same bulk geometry and differ only by the
normalization of the time translation; i.e., in the limit 4 — oo the geometries lose any
notion of intrinsic scale. In practice, as usual, this amounts to being about to drop the

1in f., f;, and Veg. In all dimensions, numerical results show that for two walls with

2tpe(r=00)  2tg;(r=o00)
Be ’ Bi

than the large u Value at ’“ = 1. So, at least at small enough «, at large p it again

the same mass ratio “Z ~ 1 at large u the average of

is again less

suffices to use the same ratlo % across each domain wall'2.
As noted above, the mass parameter y must behave monotonically as we go inward.
Since regularity at the center of the bag-of-gold requires u = 0, one should thus expect

that g must decrease monotonically. In fact, the case u = 0 requires special treatment

2Interestingly, there appears to be a sharp transition at x = 1 in all dimensions D > 3. For smaller
values of K, the average just described becomes numerically small — and certainly smaller than 1/2 —
when — 0 (or equlvalently £i — 50). But this is not the case for 2 > x > 1.
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as (for D > 4) it clearly is not large and since (for D = 3) it corresponds to m < 0. But
2tEe(7':OO) 1

6. 2
In particular, we may take p to decrease by an appropriate fixed factor ﬁ—l < 1 as we

numerically we do indeed find in regions where our numerics is stable'3.

move inward past each successive domain wall.

13In any case, in a chain with fixed ratio Z—l > 1 the parameter p will increase exponentially and
quickly become very large. As discussed in section 5.1, one can then show analytically for D = 3, 4,

and 5 that this ratio is not less than %
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