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Abstract: We use Euclidean path integrals to explore the set of bulk asymptotically

AdS spacetimes with good CFT duals. We consider simple bottom-up models of bulk

physics defined by Einstein-Hilbert gravity coupled to thin domain walls and restrict

to solutions with spherical symmetry. The cosmological constant is allowed to change

across the domain wall, modeling more complicated Einstein-scalar systems where the

scalar potential has multiple minima. In particular, the cosmological constant can be-

come positive in the interior. However, in the above context, we show that inflating

bubbles are never produced by smooth Euclidean saddles to asymptotically AdS path

integrals. The obstacle is a direct parallel to the well-known obstruction to creating

inflating universes by tunneling from flat space. In contrast, we do find good saddles

that create so-called “bag-of-gold” geometries which, in addition to their single asymp-

totic region, also have an additional large semi-classical region located behind both past

and future event horizons. Furthermore, without fine-tuning model parameters, using

multiple domain walls we find Euclidean geometries that create arbitrarily large bags-

of-gold inside a black hole of fixed horizon size, and thus at fixed Bekenstein-Hawking

entropy. Indeed, with our symmetries and in our class of models, such solutions pro-

vide the unique semi-classical saddle for appropriately designed (microcanonical) path

integrals. This strengthens a classic tension between such spacetimes and the CFT

density of states, similar to that in the black hole information problem.
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1 Introduction

Recent years have seen great progress in understanding the anti-de Sitter/conformal

field theory (AdS/CFT) dictionary, especially in the limit of small perturbations about
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Figure 1: A moment of time symmetry in a bag-of-gold spacetime. The region outside

the minimal surface is precisely AdS-Schwarzschild, as is a small part of the interior.

The rest of the interior is a (say, radiation dominated) FLRW universe.

a given classical background [1–3]. However, it remains to fully understand which set

of classical backgrounds are in fact allowed by the AdS/CFT correspondence. Said

simply, does every Lorentz signature solution of the low energy bulk theory correspond

to a well-defined state in the dual CFT?

At least at first glance, the answer would appear to be negative. Indeed, particular

suspicion falls on so-called bag-of-gold spacetimes which consist of an eternal black

hole exterior attached to an interior that is essentially an large Friedman-Lemâıtre-

Robertson-Walker (FLRW) cosmology, which we take here to be filled with whatever

bulk radiation is natural in the theory1; see figure 1. Such solutions exist in essentially

any theory of gravity, and the interior FLRW region can be arbitrarily large. In par-

ticular, one can take the interior large enough that the entropy in its radiation exceeds

the Bekenstein-Hawking entropy SBH of the black hole. As a result, the entropy also

exceeds the density of states in the dual CFT. This prohibits each microstate of the

bulk ensemble from mapping to a linearly independent CFT state.

This issue has been discussed several times in the literature; see e.g. [5–7] as well

as the related discussion in [8] of large cosmological horizons inside bags-of-gold. And

it has long been of interest as a close analogue of the black hole information problem

1Such spacetimes were introduced by Wheeler in [4]. That work also introduced term “bag of gold,”

but for a somewhat different purpose. Over the years, the term has come to mean a spacetime of the

form shown in figure 1.
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(see e.g. [9, 10] for recent reviews). But the full resolution of the problem remains to be

understood. In addition, the connection was recently reemphasized in [11, 12] where it

was noted that both are associated with novel phase transitions of quantum extremal

surfaces.

In addition to their overly large entropy, another reason to suspect that solutions

with large bags-of-gold may lack CFT duals is that they cannot be constructed from

the AdS vacuum by applying sources at the boundary and evolving forward in (Lorentz

signature) time. Indeed, at least with spherical symmetry the focusing theorem (see

e.g. [13]) of general relativity prohibits the causal past of the interior from including

any piece of the AdS boundary when the matter fields in the spacetime satisfy the null

energy condition. In contrast, bags-of-gold can be constructed from the AdS vacuum

using time folded sources (this is identical to the construction of long wormholes in

section 2.3 of [14]) that add shock waves. But each shock wave adds positive energy,

and this energy is less than the temperature T of the black hole one must worry that

grey body factors will prohibit its full absorption. So it is not clear that this can yield

large bags-of-gold at fixed black hole mass, which is what we need to create tension

with SBH.

It is thus natural to explore the construction of bags-of-gold via Euclidean path

integrals. In parallel with [15], if we can find a Euclidean CFT path integral for which

the dominant Euclidean saddle of the bulk dual Wick rotates to a large bag-of-gold,

then slicing open the CFT path integral will yield a CFT state dual to this bag-of-

gold. Indeed, this basic argument has been used to construct black hole interiors in

[15–24]. However, the interior geometries in [23] again have sizes bounded by a (in

this case logarithmic) function of their total mass. And while the other references

above consider 2+1 dimensional solutions determined by a Riemann surface of genus

g and find interior geometries with size proportional to g, past works [21, 22, 24] have

found that there are always lower action Euclidean saddles that lead to solutions with

small genus and thus small interiors. While apparently not discussed in the prior

literature, at least in the case where the matter in the bag-of-gold is pressureless dust

it is similarly straightforward to Wick rotate AdS versions of the original aribtrarily

large FLRW bags-of-gold [4] of figure 1 to Euclidean signature. But the dust case

turns out to be somewhat degenerate, having a continuum of distinct bulk solutions

(not all having bags-of-gold) with a given density of dust particles exiting through each

point of a fixed Euclidean boundary. While worth investigating further in the future,

determining whether bags-of-gold dominate is thus non-trivial.

Below, we return to the basic issue of finding large Euclidean bags-of-gold that dom-

inate path integrals by studying gravity coupled to thin domain walls. For simplicity,

we assume spherical symmetry throughout and also forbid domain wall intersections.

– 3 –



This system models a more complete Einstein-scalar theory where the scalar potential

has multiple minima in the limit where the domain walls become thin. Since it is thus

natural to allow the cosmological constant to change across the wall, this framework

also provides an opportunity to study the possibility of inflating bubbles in AdS/CFT

(see [8, 25] for studies of Lorentzian such solutions) and perhaps thus to better under-

stand answers to fundamental questions [26–31] concerning holography and inflation;

see e.g. [32–36] for other approaches to this issue. Some of our results overlap with

those reported in [37–39], though the bags-of-gold discussed in these references are not

large enough to create tensions with the Bekenstein-Hawking entropy.

In addition, as we will see, finding Euclidean solutions that create bags-of-gold is

closely related to (but subtly different than) constructing Euclidean solutions with mul-

tiple disconnected boundaries known as Euclidean wormhole solutions. In the context

of Jackiw-Teitelboim gravity [40, 41] such solutions have recently played a key role in

understanding features of quantum chaos and black holes [42, 43], though in general

such solutions are associated with their own array of conceptual issues for AdS/CFT;

see e.g. [44, 45] as well as those that follow from [46–48]. Both features make them

interesting objects of study in their own right.

The plan of this paper is as follows. We begin in section 2 with a brief review of

the thin wall formalism, specializing to the case of spherically symmetric solutions with

asymptotically locally AdS (AlAdS) boundary conditions and taking the opportunity

to fix notation for later use. We then investigate potentially inflating settings in section

3 and show that such cases do not admit Euclidean solutions with AlAdS boundaries

that are smooth apart from the domain walls2. As a result, they do not define bulk

saddles for CFT path integrals. We also address suggestions [49–51] (see also [39, 52])

that in similar contexts one should include certain singular saddles, provide counterar-

guments, and finally argue that allowing domain wall intersections would not change

the conclusion.

The second part of this work then turns to the construction of bags-of-gold. This

begins with a general analysis in section 4 of when such solutions can arise. We then

study bags-of-gold in more detail in section 5. After first considering settings with a

single domain wall, we progress to showing that Euclidean solutions with large numbers

of domain walls can create correspondingly large bags-of-gold inside a black hole of fixed

horizon size. In particular, one can create bags-of-gold large inside a black hole with

Bekenstein-Hawking entropy SBH where the bag is large enough to hold entropy much

greater than SBH. Here we find it useful to add magnetic charge to the solutions, though

2This part of the paper overlaps with the essentially simultaneous work [39]. However, that work

takes a very different view of the singular/degenerate constructions of [49–51].
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the domain walls remain uncharged. We also argue in our models that these are the

only spherically symmetric bulk saddles for properly chosen “microcanonical” Euclidean

path integrals similar to those used in [53]. Since symmetry breaking is typically

suppressed, we thus expect these saddles to dominate even if less symmetric saddles

also exist. Finally, we close with a discussion of open issues and future directions.

2 Thin wall spacetimes in AdS

Our spacetimes are spherically symmetric and vacuum except for a thin relativistic

domain wall of tension D−2
8πGD

κ ≥ 0 that separates two distinct vacua. Here GD is

the bulk Newton constant, we have required positive tension in order to enforce the

null energy condition at the wall, and D ≥ 3 is the bulk spacetime dimension. After

reviewing the relevant formalism, we investigate general features Euclidean solutions in

sections 3 and 4 below. Detailed investigation of bag-of-gold solutions will be deferred to

section 5. In this section, we also confine ourselves to cases with a single (connected)

domain wall in the Euclidean section. Additional walls can often be added but, at

least in stable theories, are associated with additional sources of domain walls at the

Euclidean boundary. We will return to this issue in section 5 as well.

When two walls collide, interactions between the walls become important and

the simple thin wall approximation tends to fail. We thus restrict attention to non-

intersecting domain walls in the bulk of this paper, though we comment briefly on

interactions in section 3.4. We also require our solutions to be smooth (up to the pres-

ence of our thin domain walls). In contrast, in related settings, references [50, 51] used

the Hamiltonian formalism to advocate the use of certain a priori singular spacetimes.

Arguments against the use of these configurations will be presented in section 3.3.

Our domain walls will separate two vacua which we call interior and exterior. The

analysis is much like that in the classic work [54], though we are explicitly interested

in cases where the domain walls reach the Euclidean boundary. Since our spacetimes

have spherical symmetry, Birkhoff’s theorem with cosmological constant implies our

metric to take the form

ds2
i,e = −fi,e(r)dt2i,e +

dr2

fi,e(r)
+ r2dΩ2

D−2, (2.1)

where i, e refer to the interior/exterior vacua and fi,e define either a Schwarzchild de

Sitter (SdS) solution or a Schwarzschild anti-de Sitter (SAdS) solution. Following

reference [8], we write

fi(r) = 1− λr2 − µi
rD−3

,

fe(r) = 1 + r2 − µe
rD−3

,
(2.2)
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taking the exterior to have an AdS cosmological constant with unit AdS length scale.

The interior cosmological constant is parametrized by λ and allowed to take either sign.

Since we are interested in Lorentz signature spacetimes having only one boundary and

a regular origin, we will shortly set µi = 0, though we will return to the case µi > 0 in

section 5. The theory is fixed by a choosing λ, κ, while the allowed solutions within the

theory are specified by the scales µe, µi. Note that µe, µi have dimensions of (length)D−3

and so should be thought of as setting the horizon sizes of SAdS black holes rather

than their mass. Note also that when the external vacuum is stable we can find non-

trivial solutions in the (e) vacuum near an asymptotically locally anti-de Sitter (AlAdS)

boundary only for µe > 0.

We will see below that these data uniquely specify the trajectory of the domain wall.

Our focus will be on cases in which the exterior solution extends to an asymptotically

AdS boundary, and in particular where it does so on the moment of time symmetry

(t = 0). Indeed, for cases with a single asymptotic region we take this to be the defining

property of exterior versus interior.

The domain wall equation of motion follows from the Israel junction conditions [55].

The analysis is standard, and can be read off from, e.g., reference [56]. The Lorentz

signature result takes the form

αi − αe = κr, (2.3)

where αi,e = rKθθ with Kab the extrinsic curvature of the wall computed in the appro-

priate (interior/exterior) region using a normal pointing from the interior region toward

the exterior. Our αi,e are traditionally called βi,e, but we use αi,e to avoid confusion

with the period β of Euclidean time. Following [56] one finds

αi,e = ±
√
ṙ2 + fi,e(r), (2.4)

where ṙ ≡ dr
dτ

denotes the derivative with respect to proper time τ along the wall. The

sign of αi,e is determined by whether the size r of the spheres increases or decreases as

one approaches the wall from the interior side (i) or as one moves away from the wall

in the exterior (e). In particular, r is monotonic near the wall when αi,e have identical

signs but is locally extremized at the wall when their signs differ.

For any signs in (2.4), squaring (2.3) twice yields

ṙ2 + Veff(r) = 0 (2.5)

in terms of the effective potential

Veff(r) = fe(r)−
(fi(r)− fe(r)− κ2r2)

2

4κ2r2
= Ar2 + 1 +

B

rD−3
− C

r2D−4
(2.6)
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with

A = 1− (1 + κ2 + λ)
2

4κ2
, B =

1

2κ2

[(
1 + λ− κ2

)
µe −

(
1 + λ+ κ2

)
µi
]
, C =

(µe − µi)2

4κ2
.

(2.7)

Other components of the Israel junction conditions on the sphere are related to (2.3)

by spherical symmetry, and as usual the ττ component is proportional to d/dτ of (2.5).

Thus (2.3) fully specifies the dynamics of the wall.

Euclidean solutions are obtained by substituting τE = iτ into (2.5), or equivalently

by changing the sign of Veff. In particular, Euclidean solutions can exist only for choices

of parameters that allow Veff to take non-negative values for some r.

Since our solutions will be constructed by cutting and pasting pieces of the exterior

and interior metrics specified by (2.2), it will be useful to directly find the curves defined

by the domain wall in both the (r, te) and (r,ti) planes. Since we will focus on Euclidean

solutions below, we now introduce the Euclidean time coordinates tEe = ite, tEi = iti
and note that (2.1) and (2.5) can be combined to yield

dtEi
dr

= ±
(

αi

fi
√
Veff

)
,
dtEe
dr

= ±
(

αe

fe
√
Veff

)
. (2.8)

Here we make explicit that the interior and exterior generically define two different

time coordinates tEi, tEe along the wall as the coordinates of (2.1) are not guaranteed

to be continuous at the domain wall. A careful check of the signs shows that the sign

± in (2.8) changes only on the surface tEi = tEe = 0 of time reflection symmetry and,

in particular, not at other possible zeros of αe.

For later use, we also note that combining (2.4), (2.5), and (2.6) yields

αi(r) =
fi(r)− fe(r) + κ2r2

2κr
= −

(
1 + λ− κ2

2κ

)
r +

(
µe − µi

2κ

)
1

rD−2
,

αe(r) =
fi(r)− fe(r)− κ2r2

2κr
= −

(
1 + λ+ κ2

2κ

)
r +

(
µe − µi

2κ

)
1

rD−2
,

(2.9)

and

Veff = fe − α2
e = fi − α2

i . (2.10)

Since κ ≥ 0, one also finds αi ≥ αe from either (2.5) or (2.9).

In sections 3 and 4, as well as the first part of section 5, we will set µi = 0. Before

proceeding, it is worth noting that even in this case, by tuning κ, λ ∈ R and µe > 0

one can realize all values A, B ∈ R and C > 0 of the coefficients in Veff (see equation

(2.7)). This can be argued by writing A in terms of B, C, κ and noting that for any

fixed B, C with C > 0 we have A → +∞ as κ → 0 and that A → −∞ as κ → +∞.

Thus for µi = 0 dS or AdS interiors, C > 0 is the only constraint on A, B, C.
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3 No AlAdS spacetimes with inflating interiors

We will now show that for de Sitter interior regions (λ > 0, µi = 0) there can be no

smooth Euclidean solutions with asymptotically AdS boundaries. Indeed, the identical

argument will also apply to cases with 0 > λ > −(κ − 1)2, so we assume only λ >

−(κ − 1)2 in this section, and we refer to this as case (I) in the rest of this work.

All parameter choices in case (I) give A < 0, and since Veff ≈ Ar2 at large r the

Lorentz signature solutions expand exponentially with respect to proper time. For

0 > λ > −(κ − 1)2, such solutions are examples of domain wall inflation rather than

inflation driven by a cosmological constant.

The case (I) Euclidean solutions without self-intersections that are smooth up

to the presence of out thin walls are constructed in section 3.1 and shown to have

no AlAdS boundaries. A brief argument in section 3.2 then shows that all other cases

(λ < −(κ+1)2) where the Lorentz signature wall can grow to infinite size in fact lead to

instabilities of the vacuum. Section 3.3 argues against using analogues of the degenerate

solutions of references [49–51], and section 3.4 argues that allowing self-intersections

alone cannot produce case (I) Euclidean solutions with AlAdS boundaries. So at least

subject to our symmetries, within our class of models there are no stable theories that

allow AlAdS path integrals with good Euclidean saddles that create bubbles of inflating

spacetime.

3.1 Euclidean solutions for case (I)

The detailed formulas given in section 2 are not needed for our main argument. Instead,

we require only the following three properties of Veff, αe:

(i) Veff → −∞ as r → 0 and as r →∞,

(ii) V ′′eff < 0 at points with V ′eff = 0,

(iii) αe decreases monotonically from +∞ to −∞.

Properties (i) and (iii) follow immediately from inspection of (2.6) and (2.9), while prop-

erty (ii) is derived in appendix A. We will also need the observation that any allowed

solution defines a (not self-intersecting) domain wall r(s), tE(s) (say, parametrized by

the proper distance s) in the relevant (locally) dS, AdS, or SAdS Euclidean geometries.

Here an important point is that the equations of motion require the exterior to be

locally equivalent to (2.1). But there is no harm in introducing conical singularities

in regions of the SAdS spacetime that will be excised. As a result, the period of the

exterior Euclidean Killing time tEe need not always agree with that of the standard

Euclidean SAdS black hole.
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Figure 2: Both signs of αe(rmin ) can be found for λ > 0 and for λ < 0. The cases

D = 3 (left) and D = 4 (right) are shown. The figure displays results at λ = 0, but

αe(rmin ) is continuous so the results for small positive or negative λ are essentially

identical. Regions with αe(rmin ) > 0 are shaded red while those with αe(rmin ) < 0 are

shaded green. In the purple regions V < 0 at all r and Euclidean solutions do not exist.

We will also need that, at each r, whether r decreases or increases as one moves

away from the wall toward the interior/exterior is determined by the signs of αi,e(r).

We are then to cut the exterior (locally Euclidean SAdS black hole) geometry along

the above curve, discard any pieces that do not satisfy the sign constraint, and glue the

remaining piece to a corresponding piece of the interior (locally Euclidean dS or AdS)

geometry so that the full metric is continuous.

Property (ii) implies Veff to have no local minima and no zeros of order higher than

2. Indeed, even a second order zero must be a local maximum, which must in fact be

a global maxium since there are no local minima to separate multiple local maxima.

We may thus divide the parameter space into three regimes: If Veff is negative

everywhere, there can be no Euclidean solutions. If the maximum of Veff vanishes, the

only Euclidean solution is r = constant at this zero (call its location rmin = rmax ). If

the maximum is positive, then Veff has two simple zeros that occur at precisely two

values rmin , rmax between which the solution oscillates periodically.3

3That all 3 cases occur can be seen from (2.6) and (2.7). Since B and C vanish for µe = 0, the

maximum of Veff approaches 1 at small r as µe → 0 at any fixed λ, κ. In such cases the maximum of

Veff is clearly positive. But fixing λ, C and taking κ large yields A, B → −∞ so that Veff becomes

very negative everywhere. In this case the maximum is clearly negative. Since the maximum is a

continuous function of A, B, C, it must vanish in between.
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Furthermore, at the maximum of Veff we must have 0 = V ′eff = f ′e − 2αeα
′
e so that

αe = f ′e/ (2α′e). But clearly f ′e > 0 and α′e < 0, so αe is already negative at this

maximum. Monotonicity of αe then requires αe(rmax ) < 0 as well. In contrast, αe can

take either sign at rmin ; see figure 2.

Let us suppose that the sign of αe tells us to use a region Re of the exterior SAdS

geometry containing an asymptotic boundary. Since the wall satisfies r ≤ rmax, curves

of constant r near the boundary will remain entirely within Re. Let us deform such

curves inward (preserving the property that each curve has constant r) until some such

curve first contacts the wall. Such a contact can only occur at a local maximum of r,

but all local maxima on the wall occur at r = rmax where αe(rmax ) < 0.

This contradiction thus requires us to instead discard the exterior SAdS solution on

the r > rmax side of our wall. The physical origin of this requirement may be explained

using the fact that ṙ = 0 at rmax , which allows us to use this configuration as initial

data for a Lorentz signature solution. If the solution is SAdS in the neighboring region

with r > rmax, both the negative de Sitter pressure in the interior and the positive

tension of the black hole pull the wall inward, so the Lorentzian solution must have

r̈ < 0 at this point. But then d2r
dτ2E

< 0 in Euclidean signature (with τE Euclidean proper

time, also known as Euclidean proper distance), so such configurations cannot occur at

rmax .

We conclude that all (connected) exterior solutions with λ > −(κ− 1)2 are instead

of the form at left shown in figure 3 below. The details of the interior solutions depend

on the sign of λ and other features. For the case λ > 0 (shown at center in figure

3), they follow from the fact that αi(rmin ) > 0 in all cases. This may be argued by

noting that αi monotonically decreases from +∞ for 1 + λ − κ2 > 0 and is positive

definite for 1 + λ − κ2 ≤ 0. Since αi(rmin) > 0 is then clear in the second case, we

may concentrate on showing it in the first. There α2
i must decrease monotonically

from +∞ to zero before monotonically increasing back to +∞. Now note that fi is

positive everywhere for λ ≤ 0, and is positive at small r for λ > 0. And while for

λ > 0 the function fi eventually becomes negative, it cannot do so until after rmin as it

decreases monotonically and Veff(rmin ) = 0 requires fi = α2
i ≥ 0. Since Veff = fi − α2

i ,

for r ∈ [0, rmin ] we must have α2
i ≥ fi > 0. It follows that the first zero of Veff must

occur before α2
i reaches zero and thus that αi(rmin ) > 0 as claimed.

Sewing any allowed exterior to any allowed exterior yields a solution with no Al-

AdS boundary. Note that in solutions where ṙ does not vanish identically, the curves

tracing (r, tE) need not necessarily close in either the AdS interior or the SAdS exterior.

But smooth solutions without self-intersections exist only when they do. Imposing this

condition in the exterior imposes a relation between λ, κ, µe, but in the interior (center

– 10 –
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Figure 3: Left: Unshaded regions provide allowed Euclidean SAdS exteriors with r

increasing outward for λ > −(κ − 1)2 (case (I)) with µi = 0. The angular direction

is Euclidean time. Since αe(rmax ) < 0, one must excise the (shaded) region r > rmax.

The sign of αe(rmin ) is positive in the top panel and negative in the bottom panel.

Center: Allowed interiors for λ > 0 shown as (unshaded) regions of Euclidean dS

with r increasing inward. Since αi(rmin ) > 0, one must excise the (shaded) region

r > rmin. The sign of αi(rmax ) is also positive at top but is negative at bottom. Right:

Allowed interiors for 0 > λ > −(κ−1)2 shown as (unshaded) regions of Euclidean AdS,

with r increasing to the right and Euclidean time running vertically. Here αi(rmin ) > 0

requires one to excise the (shaded) region r > rmin. The sign of αi(rmax ) is also positive

at top but is negative at bottom. Sewing any allowed interior to any allowed exterior

shows the full solution to have no asymptotic region.

panels in figure 3) the domain wall curve can be made to close by inserting an appro-

priate conical singularity in the non-physical (shaded) region. Smooth solutions thus

typically exist on a co-dimension surface in parameter space, or for discrete values of

µe within a given theory (fixed λ, κ).

As noted above, for 0 > λ > −(κ− 1)2 the exterior solutions are again of the form

shown at left in figure 3. And again we have αi(rmin) > 0, though the form of the

interior solution depends on the sign of αi(rmax) as shown at right. As for λ > 0, the
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interior curves can be made to close without tuning parameters. Here this is due to

the arbitrary period of Euclidean time at top right, and the ability to insert conical

singularities in the non-physical (shaded) region at bottom right. Again, there is no

AlAdS boundary in any solution.

3.2 No other inflating cases in stable theories

The case λ < −(κ + 1)2 is similar to case (I) in that A < 0 so that the Euclidean

domain wall is again confined to some finite range r, so it again defines a curve in

SAdS that does not reach any boundary. But one may now check that αi > αe > 0, so

Euclidean solutions with the desired asymptotics can always be found, and the exterior

curve can be made to close without self-intersections by inserting a conical singularity

into the excluded non-physical region of SAdS inside the curve. But the fact that such

solutions have no boundary source suggests that the theory is unstable. Indeed, setting

µe = µi = 0 yields Veff = −Ar2 + 1 with A < 0, so Lorenzian zero energy domain walls

expand to r = ∞ in finite time. Wick rotating to Euclidean signature gives a smooth

instanton describing the nucleation of the corresponding bubbles and thus the expected

vacuum instability. We will refer to λ < −(κ+ 1)2 as case (IV ) below.

3.3 Good saddles are non-degenerate

Although the context is slightly different, the mechanism that excludes AlAdS saddles

for λ > −(κ−1)2 is directly analogous to the classic obstruction [49] to finding smooth

instantons mediating nucleation of false vacuum bubbles by quantum tunneling from

flat space. In that context, it has been suggested [49–51] that the process may neverthe-

less take place and that it is instead mediated by certain non-smooth saddles (see also

[39, 52]). As noted in reference [51], this view can be motivated by considering formu-

lations that extend Einstein-Hilbert gravity to include solutions where the metric can

become degenerate. Reference [51] in particular emphasized the Hamiltonian frame-

work, but it is perhaps simpler to consider covariant first order tetrad formulations in

which all dynamical fields are differential forms.

For example, in four dimensions one may use the covariant Palatini action

S =
1

2

∫ (
ea ∧ eb ∧Rcd +

Λ

6
ea ∧ eb ∧ ec ∧ ed

)
εabcd, (3.1)

where R = dω+ω ∧ω, a, b, c, d are internal SO(3,1) indices, the fundamental variables

with independent variations are the one-forms ea and ωab, and εabcd is the constant

antisymmeric tensor in the internal space but is a spacetime scalar. As reviewed in [57]

for Λ = 0, for non-degenerate tetrads the dynamics is that of Einstein-Hilbert gravity.

But given any smooth map f from any manifold M̃ to a given spacetime M , one may
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H

r =∞

H

r =∞

Figure 4: A degenerate case (I) exterior (unshaded region) with AlAdS boundary.

Two copies of Euclidean SdS are shown, with an allowed case (I) domain wall trajectory

shown inside the left copy. The sign of αe requires us to discard the shaded region.

Gluing the remaining unshaded regions together along the co-dimension 2 horizons (H)

gives a singular (degenerate) solution analogous to those advocated in [49–51].

pullback any solution e, ω through f to define a new solution ẽ, ω̃ on M̃ . Indeed, when

f has degree one this pullback leaves the action invariant and it may be argued [57]

(see also [58]) that the two solutions are gauge equivalent and should be physically

identified.

We can now use this pullback construction to explain the analogue in our context of

the degenerate solutions advocated in references [49–51]. As in section 3, the solutions

are to the constructed by a “cut and paste” procedure. But now, instead of taking

the exterior solution to be cut to be the standard form of Euclidean SAdS on which

r ≥ rh for horizon radius rh, we instead pull back some e, ω associated with this solution

through the map r−rh = r̃2 to yield a solutions with two copies of Euclidean SAdS, one

with r̃ > 0 and one with r̃ < 0, joined by a degenerate metric at r̃ = 0. We may then

cut the solution along a domain wall in the region r̃ < 0 while preserving the AlAdS

boundary at r̃ > 0; see figure 4. The relevant piece can then be sewn onto an AdS

interior as in section 3. In particular, by placing any resulting conical singularity in

the region where the metric degenerates, we can avoid any need to tune the parameters

(λ, κ, µe) described in the construction of smooth solutions above. In summary, in this

way we can glue onto the original Euclidean SAdS solution any compact Euclidean

spacetime which satisfies the equations of motion up to having a codimension-2 conical

singularity4.

However, we see two reasons why such constructions should be excluded. One

4And by allowing multiple regions where the metric degenerates we can allow further conical sin-

gularities as well.
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is simply that, so long as the solution preserves time reflection symmetry, the t =

0 surface of time reflection symmetry where one would glue our Euclidean solution

to its Lorentzian analogue is also degenerate. So the instanton should be viewed as

creating a Lorentzian solution where the metric again degenerates, and one would need

to understand the physics of degenerate metrics in Lorentz signature as well.

Perhaps more critically one may also note that when two regions R1, R2 are sepa-

rated by a region of degenerate metrics, there is in general no correlation at all between

the metrics in R1 and R2. Indeed, consider a map f from M̃ to M that maps the

boundaries of both R1 and R2 to a common point x0 ∈ M and which also maps all

of M̃ outside R1 ∪ R2 to the same point x0. Then the pullback through f of some

non-degenerate solution on M is identically zero on M̃ \ (R1 ∪ R2). As a result, given

any two non-degenerate solutions (e1, ω1), (e2, ω2) on M , we may cut each solution

anywhere in the region between R1 and R2 and glue the pullback (ẽ1, ω̃1) of the first

solution in R1 to the pullback (ẽ2, ω̃2) of the second solution in R2. The result clearly

satisfies the equation of motion in both R1 and R2, and also in M̃ \ (R1 ∪R2) where it

continues to vanish identically.

In this way, given an arbitrary compact Euclidean solution (perhaps with conical

singularities where the equations of motion would naively fail), we can use degenerate

metrics to glue the compact solution to any other solution using a degenerate metric

at a single point x0. Perhaps even worse, since the sign of (3.1) depends on a choice of

orientation, one is free to choose the sign of the action in such bubbles at will. Adding

many bubbles of the proper sign then shows the Euclidean action of this class of saddles

to be unbounded below 5.

Now, the Hamiltonian framework as used in [50, 51] is a priori more restrictive

than the fully first-order framework of (3.1). However, as already discussed in section

5If one nevertheless chooses to sum over them in the path integral one finds that they add a contri-

bution to the action at each point x0 that is independent of x0. While it is unclear if this contribution

is well-defined, after regularization it should serve only to renormalize the various local couplings in

the original action. One could thus consistently neglect such bubbles in a low energy effective field

theory treatment of the path integral in which one simply uses the renormalized values of the cou-

plings. While more complicated bubbles might induce nonlocal couplings, they again renormalize any

nonlocal couplings that might already be present, in which case the resulting renormalized couplings

are experimentally constrained to be small. We may thus simply consider the situation where the

renormalized effective theory is Einstein-Hilbert and then ignore any possible further contributions

of such degenerate solutions. This may provide a consistent interpretation of such path integrals.

Another consistent interpretation is to insist that any single partition function be associated with

a smooth saddle, and to interpret degenerate geometries defined by sewing together such saddles as

computing a product of such partition functions Zi for each smooth component (or perhaps inverse

partition functions 1
Zj

for saddles taken to contribute to the action with the opposite of the usual

sign).
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VIII of [51], it nevertheless allows a similar gluing when the compact Euclidean solution

defining the bubble coincides on a codimension-2 surface with the solution to which

it will be glued. The particular example discussed in [51] involved bubbles of empty

Euclidean de Sitter space, the effects of which were described as providing “a possibly

fatal divergence” for the Hartle-Hawking wavefunction of quantum cosmology. But

we see that the compact Euclidean domain-wall solutions (with or without conical

singularity) give equally problematic bubbles which can also contribute to the original

tunneling amplitudes of [49–51]. Indeed, the point here is that while the WKB tunneling

amplitudes are invariant under continuous deformations of the path connecting the

initial and final points (so long as such deformations avoid turning points where the

WKB approximation breaks down), they can change significantly under discontinuous

changes associated with changes of topology. In the Euclidean action formalism, this is

the statement that a given process can receive contributions from multiple saddles with

different Euclidean actions. Here the addition of each bubble defines a topologically

distinct path through configuration space connecting the initial and final tunneling

configurations, which can thus alter the predictions of [49–51] and which again lead to

difficulties.

In summary, we see many issues with following [49–51] in the use of degenerate

saddles to compute tunneling amplitudes. Lacking a satisfactory resolution of such

issues, we tentatively conclude that only smooth saddles should be used in such com-

putations. However, it would be useful to explore this issue further in the future. While

there may be much room for subtlety, at a concrete level it would be very interesting

to understand in detail the effect of moving beyond the thin-wall approximation and

considering such issues in a context where the domain wall arises from smooth scalar

fields.

3.4 Comments on self-intersecting walls

We have limited ourselves to not self-intersecting solutions to the thin wall equations

of motion. But some of our results readily generalize to at least some contexts with

intersecting thin walls.

Consider for example the argument that there are no Euclidean dS-SAdS and

consider a set of walls where the wall locations can be approximated by some (perhaps

self-intersecting) solution to the thin wall equation of motion (2.5). Since equation

(2.5) determines Ṙ from R only up to an overall sign, two-wall intersections where

Ṙ1 = −Ṙ2 are common in such solutions at points where Ṙ 6= 0. But intersections

cannot occur at rmax or rmin , as two solutions to (2.5) that coincide at such points

must agree everywhere; two such walls that meet at rmax or rmin will never separate.
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Figure 5: Left: A domain wall intersection that would allow both an rmax and an

AlAdS boundary (straight line at top of figure), but which does not satisfy conservation

of the stress-energy tensor. Right: A domain wall intersection that conserves the

stress-energy tensor.

It is therefore natural to take a Euclidean solution with interacting thin walls to

have a locally SAdS exterior region Re such that whose boundary r(s), tE(s) satisfies

the Euclidean version of (2.5) (perhaps with discontinuities in Ṙ), and in particular

with r ≤ rmax . Such spacetimes now exist, though the points closest to the asymptotic

boundary must have α > 0 and so cannot have r = rmax . Indeed, the exterior region

must look something like that shown above in figure 5 (left), where the points with

locally maximal r have discontinuities in ṙ. But conservation of stress energy will

require solutions in which two thin walls approach each other and interact on some

sphere p should take the very different form near p shown in figure 5 (right). In other

words, the domain wall world line cannot execute a sharp turn like that shown in figure

5 (left) without some injection of Euclidean momentum from another sources.

We conclude that adding intersections to our thin wall model will not by itself

allow Euclidean path integrals to create spacetimes with inflation. However, it remains

to investigate other generalizations involving walls with internal dynamical degrees of

freedom, multiple types of walls, or more general Einstein-scalar systems using either

analytic or numerical techniques. The former may be of particular interest as an internal

degree of freedom might allow models with configurations that inflate to also have

configurations where Veff > 0 as r → ∞ so that the wall can reach the Euclidean

boundary. If the two above configurations can be continuously connected in a Euclidean

solution, one might imagine that inflating bubbles could in fact be created by sourcing

the correct wall configurations at the Euclidean boundary. We leave such studies for

future work.
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4 Non-inflating interiors

While strictly de Sitter interiors yield no Euclidean solutions with asymptotically AdS

boundaries, AdS interiors (negative λ) can be more interesting. We will divide the

space of models into four regimes in accordance with the behaviors of αe, Veff. Since

µi = 0, for λ ≥ −(1 + κ2) we find αe to be positive everywhere while for λ > −(1 + κ2)

the derivative α′e is everywhere negative. Furthermore, Veff → +∞ at large r for

λ > −(κ − 1)2 or λ < −(κ + 1)2, while Veff → −∞ in between these regimes. The

relevant cases are thus

(I) λ > −(κ− 1)2 α′e < 0, Veff → −∞ at large r (4.1)

(II) − (κ− 1)2 ≥ λ > −(κ2 + 1) α′e < 0, Veff > 0 at large r (4.2)

(III) − (κ2 + 1) ≥ λ ≥ −(κ+ 1)2 αe > 0, Veff > 0 at large r (4.3)

(IV ) − (κ+ 1)2 > λ αe > 0, Veff → −∞ at large r. (4.4)

In all cases Veff → −∞ as r → 0 and αi(rmin ) > 0, with rmin the smallest zero of Veff.

The latter result may be argued much as at the end of section 3 but now using the fact

that fi is manifestly positive for all r. The statement αi(rmin ) > 0 is vacuously true in

cases where Veff is always negative and rmin fails to exist.

Having with cases (I) and (IV ) in section 3, we now focus on cases (II) and (III).

These latter ranges of parameters allow our domain walls can reach the Euclidean

boundary. In addition, some algebra (see appendix B) shows that for µe > 0 we have

V ′eff > 0 at any zero of Veff, so there is a unique zero rmin . The Euclidean domain wall

thus defines a curve along which r decreases from r = ∞ to rmin and then returns to

r =∞ in a manner consistent with time reflection symmetry.

We can now address case (III), where αi > αe > 0 at all r. From (2.8), we

see that the exterior solution moves outward from r = rmin . As shown in figure 6,

self-intersections of the wall in the exterior SAdS region may avoided by taking tEe to

be defined on (−∞,+∞) (without identifications). Such solutions are free of conical

singularities since the condition αe > 0 forces us to discard the piece of SAdS containing

the Euclidean horizon.

Although there is no minimal surface at t = 0, after Wick rotation to Lorentz sig-

nature the walls will accelerate inward from their initial location on the surface of time

symmetry and form black holes at large |t|. Such Lorentzian solutions thus represent

black holes that form from time symmetric collapse. We use the term collapsing-shell

solutions to refer to them below.

It remains only to address case (II), which turns out to have various subcases

associated with the signs of αi,e at rmin and at r =∞. Since case (II) has αe negative
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Horizon r =∞

tE →-∞

tE →+∞ r = 0 r =∞

Figure 6: Unshaded regions provide allowed exteriors (left) and interiors (right) for

case (III), where αi > αe > 0 at all r. Since the Euclidean horizon is always excised,

we take Euclidean time to run vertically over (−∞,+∞). Wick rotating to Lorentz

signature yields time symmetric collapsing-shell solutions, where a domain wall outside

its horizon at t = 0 collapses to form a black hole at late times.

at large r, and since the beginning of section 4 showed αi(rmin ) to be positive in all

cases, four subcases remain:

(IIA+) κ2 − 1 ≥ λ, αe(rmin ) > 0 αi > 0 at all r, αe changes sign, (4.5)

(IIA−) κ2 − 1 ≥ λ, αe(rmin ) ≤ 0 αi > 0 at all r, no αe sign change, (4.6)

(IIB+) κ2 − 1 < λ, αe(rmin ) > 0 αi → −∞ at large r, αe changes sign, (4.7)

(IIB−) κ2 − 1 < λ, αe(rmin ) ≤ 0 αi → −∞ at large r, no αe sign change. (4.8)

Here we have emphasized that (2.9) clearly shows the sign of αi at large r to agree with

the sign of −(1 + λ− κ2). The sign of αe(rmin ) is more complicated to determine and

will be studied numerically below.

None of these subcases allow obstructions from the interior. In the (IIA±) cases,

the interior solution behaves just as in case (III) and thus remains smooth for all

parameters in this regime. The situation is more interesting for cases (IIB±) where

αi changes sign at its unique zero. Via (2.8), this sign change entails a maximum value

of tEi and the interior takes one of the forms shown in figure 7 below. As described

in the figure caption, any apparent self-intersections can then be removed by inserting

a conical singularity in the unphysical excised region of the interior solution, so the

interior is smooth for all parameters.

The (−) cases have αe negative at all r, and in particular at rmin. Such situations

hold the potential to create bags of gold. We will show that this potential is realized

by studying these settings in detail in section 5 below.
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r = 0 r =∞

C

r = 0 r =∞

Figure 7: Interior solutions for cases (IIB+), (IIB−). For these cases, αi is negative

at rmin but positive at large r. The change of sign means that tEi has a maximum

so that the interior solution takes one of the forms shown. Since αi(rmin) > 0, in

each case we must keep a piece of the solution containing r = 0. When there are no

self-intersections (right) this presents no problems. And since αi can vanish at only

one value of r > rmin, self-intersections are always of the form shown at left. Such

self-intersections can be removed by inserting an appropriate conical singularity into

the shaded (unphysical) region. In terms of the physical (unshaded) region, the effect

is to include two copies of the region marked C near tE = 0 and r =∞. The first copy

CU of C is attached smoothly to the rest of the interior solution along the upper left

boundary C, while the lower left boundary of CU is a domain wall junction with the

exterior. In contrast, the second copy CL of C is attached smoothly to the rest of the

interior solution along the lower left boundary C, while the upper left boundary of CU
is a domain wall junction with the exterior.

The remaining cases (IIA+) and (IIB+) may now be handled quickly. There the

function αe changes sign, and since αe is non-negative at rmin , we now keep the external

SAdS piece in which r approaches rmin from the outside. These solutions thus create

collapsing shells much as in case (III). As shown in figure 8, the condition to avoid

self-intersections is now that tEe is positive for r > rmin along one entire branch of (2.8)

with tEe < 0 on the other.

5 Creating bags of gold

We now carefully examine cases (IIA−) and (IIB−) to show that we can create bags

of gold. In either such case we have αe negative at all r, so from (2.8) the sign of dtEe/dr

changes only at rmin . This means that the exterior solutions spiral outward from rmin

and take one of the forms shown in figure 9. Any solutions without self-intersections

– 19 –



H

r =∞

H

r =∞

Figure 8: Cases (IIA+), (IIB+) have αe is positive at rmin but negative at large r.

The change of sign means that tEe has a maximum, and the solution must take one of

the forms shown. Since αe(rmin ) > 0 requires us to keep the (unshaded) piece of the

solution containing the larger r side of the wall at rmin, any point with tEe = 0 and

r 6= rmin would yield a self-intersection (left). Avoiding such self-intersections (right)

thus requires tEe > 0 for r > rmin along one entire branch of (2.8) with tEe < 0 on the

other.

will describe bags of gold6.

As can be seen from figure 9, such solutions occur precisely when the world line of

the wall wraps less than once around the origin. This is the condition that the range

∆tEe of tEe over the domain wall world line be less than the natural Euclidean period

of the external SAdS solution. One can explore this condition numerically in detail,

but we show in section 5.1 that there is at least a regime with large κ, µe where the

condition is satisfied. At the level of our bottom-up analysis, this will then establish

that at least some bags of gold (i.e., those in that regime) have CFT duals.

Now, as shown in appendix C, for D > 3 the bags of gold that can be created

from Euclidean path integrals using a single domain wall have their size bounded by

a power of µe and so produce no immediate tension with the dual CFTs Bekenstein-

Hawking density of states. For D = 3 one can in fact create arbitrarily large bags of

gold at fixed µe, but only by tuning the parameter A to be small and taking κ > 4/3

(see again appendix C). As a result, the bag of gold is subject to an additional IR

cutoff associated with the finite value of the internal (i) cosmological length scale `i =

`e/
√
−λ ≈ `e/(κ− 1) < 3`e which again limits the entropy such bags may contain.

However, analyzing cases with multiple domain walls in section 5.2 will show that

6If it is free of self-intersections, the special case where αe vanishes at rmin describes a degenerate

bag-of-gold of zero size where the domain wall is located at its Schwarzschild radius on the surface of

time symmetry (t = 0).
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r =∞

H

r =∞

Figure 9: Cases (IIA−) and (IIB−) have αe negative at all r so that exterior solutions

tend to spiral outward from rmin . Left: In some cases the wall reaches the Euclidean

AdS boundary without self-intersections. We may then keep the unshaded region and

potentially build a smooth solution, depending on the interior. Recall that the interior

imposes no restrictions in case (IIA−), where interior solutions are as in case (III),

shown at right in figure 6. Right: In other cases, one or more self-intersections occur

before the wall reaches the Euclidean AdS boundary and smooth solutions do not exist.

arbitrarily large bags of gold can be created at fixed µ, and that no fine-tuning of model

parameters is required. Furthermore, we argue in section 5.3 that in our models these

are the only spherically-symmetric bulk saddles for appropriately chosen path integrals.

We thus expect them to dominate, so that such bag-of-gold geometries do indeed have

good CFT duals.

5.1 External solutions without self-intersections

In particular, we can identify a regime free of self-intersections by studying the limit

µe → +∞. Numerical results show that such solutions can also exist at moderate-to-

small µe, but at large µe the treatment simplifies and more can be said analytically. As

usual, this simplification is associated with the fact that large SAdS black holes can be

approximated as planar, so that the term of 1 can be dropped from both f and Veff .

Since this large µe limit will also play an important role in later sections, we take the

opportunity to develop it carefully here, and in particular to do so in a way that will

also allow the case µi > 0 to be considered later.

To be specific, we consider any large µe limit in case (II) in which B < 0, the

quantity γ := −µeA/B is bounded away from one, the positive quantities A and B2/4C

are all bounded away from zero, and in which

κ
√
C

µe(1 + λ+ κ2)
= O(µ−η1e ), and

AC

B2
= O(µ−η2e ) (5.1)
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for some η1, η2 > 0.

For example, with µi = 0 one may take µe large holding fixed (finite) values of

ν :=
µe
κ

, ρ :=
1 + λ+ κ2

κ
, (5.2)

so that (even at finite µe) we have

A = 1− ρ2

4
, B = −µe +

νρ

2
, C =

ν2

4
. (5.3)

For 2 > ρ > 0 the limit lies in case (II) as desired. Furthermore, B → −∞ at large µe
while A,C are held fixed. This satisfies all of the conditions above, and in particular

(5.1) yields

κ
√
C

µe(1 + λ+ κ2)
=

ν

2ρµe
= O(µ−1

e ),
AC

B2
=

ν2 (4− ρ2)

4(2µe − νρ)2 = O(µ−2
e ). (5.4)

Other limits satisfying the above conditions will also be of interest in later sections.

The first step in showing the above limits to be free of self-intersections is to

estimate rmin. At large µe the horizon radius rh at which f = 0 is rh = µ
− 1

D−1
e (1 +

O(1/µe)). So since Veff = fe − α2
e from (2.10) implies Veff(rh) < 0, we must have

rmin > rh = µ
− 1

D−1
e (1 + O(1/µe)) so that rmin must become large as well. It is then

useful to rewrite (2.6) in the form

Veff = r2

[
A+

B2

4C
+

1

r2
− C

(
r−(D−1) − B

2C

)2
]
. (5.5)

Using r
−(D−1)
min > 0 one then finds

r
−(D−1)
min =

B

2C
+

√
B2

4C2
+
A

C
+

1

Cr2
min

. (5.6)

This quantity must approach zero since rmin becomes large. But B2

4C2 is bounded below,

so the two terms must nearly cancel. This requires A
C

+ 1
Cr2min

� B2

4C2 . Furthermore,

A� 1/r2
min. Thus we find

r
−(D−1)
min = −A

B
(1 +O(µ

− 1
D−1

e )) =
γ

µe
(1 +O(µ

− 1
D−1

e )). (5.7)

Using the condition that γ is bounded away from one, we thus find

rmin − rh = O(rmin). (5.8)
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For future use, we also note that a short computation from (2.7) yields

B

2C
=

1 + λ− κ2

µe
,
B2

4C2
+
A

C
=
−4λκ2

µ2
e

. (5.9)

Understanding tEe(r) requires controlling the three ingredients Veff , αe, fe in (2.8).

The last two are straightforward, as for r > rmin ∼ µ
1

D−1 our (5.8) yields

fe = r2 + 1− µe
rD−3

= r2
(

1− µe
rD−1

) (
1 +O(r−2

min)
)

(5.10)

and (5.1) gives

αe = −rρ
2

(
1 +O(µ−ηe )

)
, (5.11)

where we have used the definition of ρ from (5.2) whether or not ρ is held constant in

our limit and η is the smallest of
{
η1,

η2
2
, 2
D−1

}
. In particular, we see that bag-of-gold

condition αe(rmin) < 0 holds as a consequence of our assumptions.

To control Veff , it is useful to build on (5.6) by defining

r
−(D−1)
− := − B

2C
+

√
B2

4C2
+
A

C
+

1

Cr2
min

, (5.12)

and also

Ṽeff(r) := Ar2

(
1− rD−1

min

rD−1

)(
1 +

rD−1
−

rD−1

)
=

Ar2
min

Ar2
min + 1

(
Veff(r)− 1 +

r2

r2
min

)
. (5.13)

Note that in case (II) the functions Ṽeff , Veff are both positive for r > rmin and negative

for 0 < r < rmin. Since we found above that A� r−2
min, the above equation implies

Ṽ ′eff = V ′eff

(
1 +O

(
1

r2
min

))
. (5.14)

Integrating (5.14) from the common zero at rmin then yields

Veff = Ṽeff

(
1−O

(
1

r2
min

))
. (5.15)

On the other hand, (5.1) implies
rD−1
−
rD−1
min

= O(µ
−η2/2
e ) so for r > rmin we have

Ṽeff(r) = Ar2

(
1− rD−1

min

rD−1

)(
1 +O(µ−η2/2e )

)
. (5.16)
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Introducing r̃ = r/rmin, we may now combine (2.8), (5.7), (5.10), (5.11), (5.15),

and (5.16) to find

dtEe
dr̃

= −rmin
αe

fe
√
Veff

=
ρ

2r̃2rmin

√
A

(
1− γ

r̃D−1

)−1
(

1− 1

r̃D−1

)− 1
2 (

1 +O(µ−ηe )
) (5.17)

for all r > rmin, where η is the smallest of 1/(D− 1), η1, η2/2. Note that the physically

interesting parameter is the ratio of the range of tEe to the Euclidean period β =
4π

(D−1)µ
1/(D−1)
e

(1 + O(µ
−1/(D−1)
e ), and that the factor of µ

1
D−1
e in rmin in the denominator

on the right-hand-side of (5.17) cancels in this ratio. For simplicity, we set tEe = 0 at

rmin, so that the desired ratio is 2tEe(r=∞)
β

.

The factor of r̃−2 on the right-hand side means that tEe(r) is finite as r → ∞.

Indeed, if one drops the O(µ
− 1

D−1
e ) corrections the integral over the full curve can be

done explicitly for D = 3, 4, 5. The case D = 3 is simplest, as then

tEe
β

=

∫ r̃

1

dr̃

√
γρr̃

4π
√
A(r̃2 − γ)

√
r̃2 − 1

(
1 +O(µ−ηe )

)
(5.18)

=
ρ

4π
√

1− γ

√
γ

A
arctan

(√
r̃2 − 1

1− γ

)(
1 +O(µ−ηe )

)
. (5.19)

Thus we find
2tEe(r =∞)

β
=

ρ

4
√

1− γ

√
γ

A

(
1 +O(µ−ηe )

)
. (5.20)

In particular, for µi = 0 tracing through the various definitions gives

2tEe(r =∞)

β
=

1

2
√

1− 2
1+λ+κ2

(
1 +O(µ−ηe )

)
. (5.21)

So as long as 1 + λ + κ2 > 8/3 we find 2tEe(r=∞)
β

< 1 and there are no intersections

at large µ. In particular, this holds when the parameters in (5.3) are held fixed at

µe →∞.

The results for D ≥ 4 are more complicated, but it is useful to write them in the

form
2tEe(r =∞)

β
=

ρ

2
√

1− γ

√
γ

A
fD(γ)

(
1 +O(µ−ηe )

)
. (5.22)
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Figure 10: The functions fD(γ) from (5.23) for D = 3, 4, 5, 6, 7 on the interval γ ∈
(0, 1). The constant function f3 = 1

2
(lowest curve) is included for reference and, moving

upward in the figure, successive curves have increasing values of D.

in terms of the functions

fD(γ) := (D − 1)
γ

1
D−1
√

1− γ
2π
√
γ

∫ ∞
1

dr̃

r̃2

(
1− γ

r̃D−1

)−1
(

1− 1

r̃D−1

)− 1
2

=
Γ
(

1
D−1

)
2
√
πγ

D−3
2(D−1) Γ

(
D+1

2(D−1)

)2F1

(
− D − 3

2(D − 1)
,
1

2
,
D + 1

2(D − 1)
, D − 1

)
.

(5.23)

In (5.23), the function 2F1 is the standard hypergeometric function and the final ex-

pression is a conjecture that we have checked using Mathematica for all integer D in

the range 3 ≤ D ≤ 50. The function fD(γ) is naturally defined for γ ∈ (0, 1]. There

the choice D = 3 yields f3(γ) = 1
2

in agreement with our results above. In contrast,

for D > 3 the functions fD monotonically decrease from positive infinity at γ = 0 to 1
2

at γ = 1. Interestingly, however, the divergence as γ → 0 is fairly slow if D is not too

large; see figure 10. Indeed we find the expansion

fD(γ) =
Γ
(

1
D−1

)
2
√
πΓ
(

D+1
2(D−1)

) γ 1
D−1

√
γ

(1 +O(γ)). (5.24)

In particular, for µi = 0 the prefactor in (5.22) is

ρ

2
√

1− γ

√
γ

A
=

1√
1− 2ρ

κ

=
1√

1− 2
1+λ+κ2

, (5.25)

and γ = (1− ρ2/4)/(1− ρ/2κ), so 2tEe(r=∞)
β

→ 1
2

as ρ→ 0 as long as ρ/κ also vanishes

in that limit. Since this ratio is less than 1, we find not self-intersecting solutions that

create bags of gold in all bulk spacetime dimensions D.
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5.2 Euclidean wormholes and large bags of gold from multiple domain walls

As stated in the introduction, it is of interest to understand whether the bags of gold

we create can become large inside a black hole of fixed surface area (here, fixed µe).

But for solutions with a single domain wall of the sort we have studied thus far, the size

of a bag-of-gold is largely dictated by rmin , which from (2.1) is in fact the maximum

radius of any SD−2 of spherical symmetry inside the black hole. And as noted above,

at large µe the Euclidean solutions tends to have rmin ∝ µ
1

D−1
e . This makes it difficult

to find Euclidean solutions that create bags of gold that become parametrically large

at fixed µe. This is especially so if, in order to avoid models that one might consider

less likely to have CFT duals, we wish to exclude models in which κ, λ are fine-tuned

to some order in `p/`. Of course, Lorentz-signature solutions in which the bag-of-gold

becomes large are easy to construct by taking the interior to inflate, but such models

lie in case (I) so as shown in section 3 they cannot be created by smooth saddle-points

of AlAdS path integrals.

Some specific bounds on rmin are established in appendix C. In short, for D > 3

we find rmin to be uniformly bounded by a power of µe. For D = 3 one can in fact

create arbitrarily large bags of gold at fixed µe, but only by tuning the parameter A

to be small and taking κ > 4/3 (see again appendix C). As a result, the bag of gold

is subject to an additional IR cutoff associated with the finite value of the internal

(i) cosmological length scale `i = `e/
√
−λ ≈ `e/(κ − 1) < 3`e which again limits the

entropy such bags may contain.

However, rather than provide an exhaustive search for highly-entropic single-domain-

wall bags of gold, we instead turn to creating bags of gold with multiple concentric

domain walls, nested one inside the other. In this context, by slightly deforming the

models discussed thus far we will construct saddles describing arbitrarily large bags of

gold with fixed surface area for the black hole horizon. Essentially the same construc-

tion will also lead directly to Euclidean wormholes – defined here as Euclidean saddles

for which the AlAdS boundary consists of two or more smooth compact connected

components.

We will maintain spherical symmetry as well as time-reflection symmetry. It is

clear that many different models can be studied. It will be most useful to consider a

large number of domain walls, but we wish to avoid possible complications associated

with models having large numbers of vacuua. We thus suppose that there are only two

vacuua which alternate between successive domain walls all having the same tension

κ. We may continue to call the vacuua (e) and (i), though at every other wall the (e)

vacuum will lie on the inside of the wall and the (i) vacuum will lie on the outside.

The region between two successive domain walls will again be a piece of Euclidean
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Figure 11: We consider the case where the (unshaded) SAdS region between two

consecutive domain walls contains an SAdS horizon (left). The alternative case where

it does not is shown at right. In particular we will focus spacetimes that have a Z2

reflection symmetry exchanging the two domain walls as shown in the left panel.

SAdS. In principle, we may consider cases where the two walls bounding a given SAdS

piece lie on opposite sides of the Euclidean horizon or where they lie on the same;

see figure 11. We shall explore only the first case (left in the figure), as this clearly

makes the given SAdS region larger than when the two walls lie on the same side of the

horizon. In addition, even at large rmin this provides a low redshift regime in which it

might be possible to hold large entropy at small cost in energy.

To organize the discussion, let us note that if we can choose the mass parameters

µ for each SAdS region to be identical, then each such region would be exactly the

same. We could then construct an arbitrarily large bag-of-gold by chaining together

many copies of the same fundamental unit consisting of an SAdS region like that shown

at fight in figure 11, bounded on each side by identical domain walls, with each wall

described in the formalism of section 2 by setting µi = µe = µ. And a periodic such

chain would yield a Euclidean spacetime with two disconnected boundaries (i.e., it

would yield a Euclidean wormhole). We thus focus on this important special case7.

Setting µi = µe = µ simplifies the analysis in several ways. First, note from (2.9)

and (5.2) that it yields

αe(r) = −ρ
2
r, αi(r) =

(
−ρ

2
+ κ
)
r. (5.26)

Recalling the sign conventions of section 2, the condition to keep the pieces of both

(e) and (i) Euclidean SAdS solutions containing the respective horizon (so that both

regions can take the form of the left panel in figure 11) is 2κ > ρ > 0. Case (II)

7Setting λ = −1 and including only a single such domain wall behind the horizon gives a spacetime

that is precisely the Z2 cover of the end-of-the-world-brane spacetimes of [37].
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always makes ρ positive, and we can easily choose parameters to make it less than

2κ. In particular, this is automatically true for λ = −1, in which case the (e) and (i)

vacua have identical gravitational physics. Indeed, even for much more complicated

models than those considered here, it follows from (2.3), (2.4), (2.5), and (2.6) that

whenever fe = fi we have αe(r) = −κr
2

= −αi(r) and the above conditions are satisfied

identically.

Furthermore, (2.7) gives

A = 1− ρ2/4, B = −µ, C = 0. (5.27)

and thus

γ := −µe
A

B
= A = 1− ρ2

4
,

κ
√
C

µe(1 + λ+ κ2)
= 0,

AC

B2
= 0 and

B2

4C
=∞. (5.28)

As a result, taking µ large at fixed ρ easily satisfied the conditions of section (5.1).

Furthermore, using the above results (5.22) simplifies to yield just

2tEe(r =∞)

β
= fD(γ)

(
1 +O(µ−

2
D−1 )

)
. (5.29)

Recall that f3(γ) = 1
2

and that for D ≥ 4 the function fD(γ) decreases monoton-

ically from +∞ at γ = 0 to 1/2 at γ = 1 as shown in figure 10. As a result, a single

domain wall of our form with µi = µe always removes at least half of the Euclidean

boundary on the (e) side of the wall. Since this is true for all λ, it must also hold on

the (i) side. Indeed, since αi = −ρ−2κ
ρ

, for the desired case 2κ > ρ one finds

2tEi(r =∞)

β
= fD(γ̃)

(
1 +O(µ−

2
D−1 )

)
with γ̃ = 1 + ρ2/4λ =

λ+ 1− γ
λ

, (5.30)

which apparently requires −λ > ρ2/4. As a result, adding two domain walls to each

SAdS region must remove the entire AlAdS boundary. So solutions of the form of figure

11 (left) do not exist in the models studied thus far.

However, for D = 3 this failure is marginal at all λ, κ in case (II), as regular

Euclidean boundaries would have existed for any smaller value of (5.29), (5.30). And

for D ≥ 4 it is marginal for γ ≈ γ̃ ≈ 1, which in particular holds for λ ≈ −1 with κ

small. As a result, small alterations of the models considered thus far could potentially

allow solutions of the desired form.

Indeed, since the relevant parameter involves the ratio of tEe, tEi to the Euclidean

period β, it is natural to study modifications that lower the temperature of the SAdS

horizons. The classic way to do so is by adding charge under an appropriate U(1) gauge
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field. To be concrete, let us focus on the case D = 4, add a Maxwell field Fab, and

consider solutions with magnetic flux on the S2 factor of the geometry8. In particular,

we may take these to be the magnetically charged black holes of AdS4 supergravity

constructed in [59, 60] with the moduli tuned so that the dilaton and other scalars are

independent of r. Such solutions can be embedded in eleven-dimensional supergravity,

so this provides a top-down model of the black holes backgrounds, if not of the domain

walls. For later use, we mention that doing so realizes the AdS4 Maxwell potential as

a Kaluza-Klein gauge field associated with reduction of the eleven-dimensional metric

along a U(1) fiber. For simplicity, we take our domain walls to be uncharged under

this Maxwell field and leave open for future investigation the question of whether they

may also be embedded in a top-down model such as those studied in [61].

As a result of adding magnetic flux, any e region between a given pair of adjacent

domain walls now becomes a piece of a D = 4 magnetically charged AdS Reissner-

Nordström (RNAdS) spacetime for which

fe = r2 + 1− µ

r
+
Q2

r2
. (5.31)

The basic formalism described in section 2 will continue to apply, but with a modified

effective potential Veff . The key point, however, is that the new magnetic term in

(5.31) falls off quickly at large r. Indeed, if we introduce the horizon size rh of the

corresponding uncharged black hole (defined by 0 = r2
h + 1− µ

rh
) and note that (5.31)

will fail to vanish anywhere for Q2 > µrh, one sees that the charge term in (5.31)

can be neglected when r � rh. So the trajectory of domain walls with rmin � rh
is essentially unaltered by the addition of charge, and this is in particular true for

the times tEe(r = ∞), tEi(r = ∞) at which the walls reach the AlAdS boundary. In

the limit of large µ and large rmin/rh = γ−1/3, the change in the ratio (5.29) is thus

dominated by the change in Euclidean period β. And since β can be made arbitrarily

large by taking the black hole to be near extremality, we can easily lower the ratio
2tEe(r=∞)

β
below 1

2
, and similarly for 2tEe(r=∞)

β
. This is essentially the same mechanism

employed to avoid self-intersections in [38].

Now, the reader may be concerned that such solutions are finely tuned, in that large

rmin/rh requires γ → 0 so that f4(γ) diverges. It may thus appear that our black hole

must be very close to extremality in order for the desired solution to exist. This may in

some sense be true, but any fine tuning is only at the O(1) level, and is not parametric

in the Planck scale `p. Furthermore, as stated in (5.24) f4(γ) diverges at small γ only

8We choose D = 4 both because of its familiarity and due to subtleties involving Maxwell fields for

D = 3. For example, the charge contribution to the usual charged BTZ solutions grows logarithmically

at large r.
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as γ−1/6, and thus as
√
rmin/rh. So if we reduce the effects of the charge term to the

10% level by taking rmin/rh ∼ 1/10, we find γ = 10−3 and f4(γ) ≈ 2.11. The desired

solutions then exist when Q is large enough to decrease the black hole temperature by

a bit more than of 4 relative to its uncharged value. Since the temperature has a square

root behavior near extremality, for a given M this means that the charge should be

within 5% to 10% of its extremal value.

The same will be true for the i region if we make the corresponding choices for γ̃.

Taking both γ and γ̃ to be small will require taking λ to be near −1 and κ ≈ ρ ≈ 2,

but again this fine-tuning is O(1) and not parametric in `p.

Periodic chains of the above form immediately define Euclidean wormholes. We

will discuss these further in section 5.3. To turn a long chain into a bag-of-gold requires

us to end the chain after a finite number of units in each direction. It is useful to first

discuss the related two-boundary wormhole solutions in which the t = 0 surface contain

two disconnected pieces of the AlAdS boundary. While these two pieces are connected

through the Euclidean time direction along the boundary, in Lorentz signature the

solution will become a wormhole with two disconnected boundaries. To build such a

solution from our chain, we need only omit both the left-most and right-most domain

walls, so that the left-most and right-most RNAdS regions contain only a single domain

wall each as in the left panel of figure 9.

A bag-of-gold solution would consist of roughly half of the long-wormhole solution

just constructed. Conservation of magnetic flux on the S2 then requires either addi-

tional non-trivial topology or the addition of magnetically charged matter fields. While

the latter is natural, we opt for the former in order to avoid specifying further details. In

particular, we consider bags of gold that are Z2 quotients of the above long wormholes,

where the (free) Z2 action simultaneously exchanges the right and left boundaries, acts

as the anti-podal map on the S2, and – in order for the Z2 action to preserve the sign

of the Maxwell field – also acts as φ → −φ on the internal U(1) Kaluza-Klein fiber

mentioned above. In other words, we take the central RNAdS-like region to in fact be

a charged RP 2 geon of the sort described in [62]. In particular, it is worth mentioning

that the full spacetime (including the internal dimensions) is non-orientable, but that

is not a problem for a bulk theory like eleven-dimensional supergravity which describes

at least the black hole sector of our model9.

9Furthermore, if there is a second U(1) Kaluza-Klein fiber, one may choose to invert it as well to

give an orientable spacetime.
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5.3 Can Euclidean wormholes and large bags of gold dominate a path in-

tegral?

Having argued that our models yield both Euclidean wormholes and Euclidean saddles

that create arbitrarily large bags of gold, it is important to ask how their actions will

compare with other possible saddles for the same path integral. We now show that

– within our model and with the assumed symmetries – our bags of gold are in fact

the only allowed saddles for properly chosen path integrals. We therefore expect that

they will dominate over other (less symmetric) saddles in our model. We also comment

briefly on issues going beyond our models in section 6, though a complete analysis is

beyond the scope of this work. After addressing bags of gold, we also discuss competing

saddles for Euclidean wormholes.

In the above section we constructed bag-of-gold solutions as Z2 quotients of long

two-boundary wormholes. In particular, the long wormholes have AlAdS boundary

topology S1 × SD−2 (where we now generalize from D = 4 to arbitrary dimension D),

and the Z2 acts on this boundary by θ → −θ on the S1 and a simultaneous anti-

podal map on the SD−2. The Euclidean bags-of-gold thus have boundary topology

S1 × SD−2/Z2. Since any solution with boundary S1 × SD−2/Z2 admits a Z2 cover

with topology S1 × SD−2, consideration of saddles that compete with our bags-of-gold

is equivalent to considering saddles that compete with our long wormholes. We find it

simpler to focus on the latter.

We are thus interested in S1 × SD−2 boundaries that are divided into alternating

regions associated with the two distinct vacua in the bulk. The vacua are naturally

specified by boundary conditions as, in an Einstein-scalar model, they are associated

with distinct asymptotic values for the scalar fields. The transitions between two

adjacent vacua along the AlAdS boundary will act as sources for bulk domain walls.

So if one fixes the metric and scalar sources on S1×SD−2, one can look for saddles that

match the stated boundary conditions, and thus including a corresponding number of

such walls.

However, we find it more convenient to use a form of the microcanonical path

integral discussed in [53]. This amounts to starting with a standard (canonical) path

integral, perhaps with the standard metric on S1 × SD−2 with some choice of sizes for

the S1 and SD−2, and then adding a constraint that fixes the stress-energy flux (“the

energy”)
∫

Σi

√
hTabn

aξb defined by the boundary stress tensor Tab through some set of

surfaces Σi with induced metric h and normal na in the direction defined by the Killing

field ξa along the S1. We will introduce one such energy constraint in every vacuum

region as shown in figure 12 above.

We will also fix the magnetic flux on the SD−2. In our model without charged
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Figure 12: The AlAdS boundary features alternating regions of two distinct vacuua,

shown here as red and blue. Dots on each side indicate that the pattern may continue.

Vertical cross-sections represent SD−2-spheres for our solutions The transitions between

vacuua (white vertical lines) are sources of domain walls. Our microcanonical path

integrals include an energy constraint (vertical green lines) in each vacuum region.

matter, this requires only a single constraint. Flux conservation then fixes the flux

everywhere. But in a more general model it would make sense to fix the flux separately

in each vacuum region.

Within this model, maintaining spherical symmetry, fixing the energy, and also

fixing the magnetic flux requires the bulk solution to be a piece of RNAdS. The bulk

must then consist of a collection of such pieces, each separated from adjacent ones by

domain walls. Furthermore, in stable theories any domain wall in a Euclidean solution

must reach the AlAdS boundary. And more explicitly, since λ ≈ −1 the two vacuua

are similar. So all domain walls in our two-vacuum model have potentials Veff with

A > 0, making it clear that all walls expand to reach the Euclidean AlAdS boundary.

In our model where domain-wall intersections are not allowed, we thus conclude that

each RNAdS piece of the bulk must also reach the AlAdS boundary at a point where

the boundary conditions transition between the two types of vacuum.

Furthermore, we assume that only one bulk domain wall reaches the AlAdS bound-

ary at each such transition in the boundary conditions. This is not something that can

be determined directly from the thin wall model, but it is naturally guaranteed in

appropriate more complete Einstein-scalar models. There each transition should be

described as a continuous change in the scalar boundary conditions from one vacuum

to another over a finite piece of the AlAdS boundary. Thus each wall in fact has some

finite thickness at the AlAdS boundary as determined by the boundary conditions.

Choosing the boundary conditions to vary monotonically from one vacuum to the next

in a theory where domain walls are stable will then naturally yield a single (thickened)

domain anchored to this part of the boundary. In the same way, we see that each bulk

RNAdS region must reach some finite piece of the AlAdS boundary, and must thus

have parameters matching those of one of our boundary regions and thus fixed by our

boundary conditions.

Now, recall that the trajectory of any domain wall between two such RNAdS

regions is also fixed by the RNAdS parameters. For most of the regions we will choose
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Figure 13: Cartoon of bulk Euclidean spacetime for our long wormhole. A/B vacuum

regions are marked on the boundary, and domain walls are shown as dashed lines. The

left-most and right-most A regions are endcaps which admit only a single domain wall.

All other regions allow two. This is the unique Euclidean spacetime compatible with

such boundary conditions.

parameters so that 2tE
β

for such walls is 1
2
− ε for some small positive epsilon. This

constrains each RNAdS piece to have exactly one or two domain walls. But we choose

two regions that are diametrically opposite around the S1, and which thus necessarily

describe the same type of vacuum, in which we instead choose µ to be 2tE
β

= 1
2

+ ε, so

that only one domain wall is allowed. For small ε, the local change in the bulk solution

will be negligible; see appendix D for more detailed comments on domain walls with

µi > 0 with µi different from µe. For reasons that will become clear, we refer to these

two special boundary regions as the endcaps. To define a CFT state, we will choose to

cut open the path integral along a pair of diametrically opposite SD−2 spheres, with

one SD−2 in each endcap.

Let us call the two vacuua A and B and take the endcaps to be regions with

boundary conditions appropriate to the A vacuum. Since only one domain wall can fit

in this region, it must connect to both ends of this A-vacuum region as shown at e.g.

the left end of figure 13. In order to avoid both intersections and three-wall regions, the

two adjacent type B regions (just to the right in 13) must then be connected by a single

RNAdS piece with two walls. Indeed, we are force to continue to pair up such boundary

regions in this wall until we are left only with the final endcap, which is necessarily

associated with another one-wall RNAdS piece; see again 13. Thus we see that within

our class of models (i.e., without charged matter or domain wall intersections) and with

the chosen boundary conditions, our path integral admits only a single saddle. It is

natural to expect it to dominate even when less symmetric saddles are included.

In contrast, boundary conditions allowing two-boundary Euclidean wormholes de-

scribed above, we always find disconnected saddles with which they can compete. For

example, we find Euclidean wormholes whose boundaries are two disconnected copies of

the S1×SD−2 discussed above, with each copy having its own set of alternative A and
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B regions, but now with all vacuum regions having parameters fixed so that 2tE
β

= 1
2
ε;

i.e., there are no special endcap regions. Nevertheless, there is an allowed saddle given

by two copies of the spacetime shown in figure 13 in which two of the regions simply

happen to have only a single domain wall. Indeed, for n vacuum regions there are n/2

such saddles, as any two diametrically opposed vacuum regions can be chosen to be

special in this way.

Furthermore, while we have not computed the relevant actions, for S1 × SD−2

boundaries one would expect the disconnected saddle to dominate. One argument for

this is based on the result of [53] that with an exact S1 translational symmetry on the

boundary, the microcanonical action is just −1 times the RT entropy. The disconnected

solution will clearly require an RT surface with two disconnected components, while

the RT surface in the connected saddle should have only one. And if the areas of these

surfaces are fixed in a simple way by boundary parameters (as in standard black hole

solutions), then the two component RT surface seems likely to have twice the area of the

one-component surface. Generalizing this idea to boundaries that break translational

symmetry on the S1, and then further to arbitrary boundary manifolds with non-trivial

fundamental group π1, suggests that disconnected saddles may always dominate in this

context.

This suggestion, however, motivates a closer look at Euclidean wormholes with

spherical boundaries (so that π1 = ∅. Due to conservation of magnetic flux, this is

not strictly possible in our models without introducing (magnetically) charged matter.

We thus leave it for future investigation. But the idea that Euclidean wormholes with

spherical boundaries might dominate certain path integrals is consistent with [63] and

[21] (which showed that the they fail to dominate with non-spherical boundaries) and

with [44] (which found low energy models where such wormholes appear to dominate

but for which top-down constructions were not known). Furthermore, we will give a

rather generic construction of Euclidean wormholes below in section 6, suggesting that

one can find fully fledged gauge/gravity dualities where such Euclidean wormholes do

indeed dominate the low energy path integral.

6 Discussion

Our work above classified the possible spherically symmetric Euclidean solutions in

which a thin domain wall of positive tension D−2
8πGD

κ ≥ 0 separates an internal (i) matter-

free region with a regular origin (r = 0) and cosmological constant λ from an external

(e) matter-free region with negative cosmological constant unit AdS length scale. We

also discussed certain examples where there is no regular origin and the internal region

instead contains a minimal surface on the t = 0 slice. We required our solutions to be
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smooth up to discontinuities in the extrinsic curvature at the domain wall. Our goal

was to better understand how asymptotically locally AdS (AlAdS) bulk spacetimes

are described in a dual CFT by identifying the saddle points of bulk Euclidean path

integrals for given AlAdS boundary conditions. In the bulk semi-classical limit, the

dominant such saddle is then dual to the CFT state generated by the corresponding

CFT path integral by an analogue of the arguments of [15]. Particular goals included the

study of AlAdS solutions with inflating bubbles, and also possible bag-of-gold solutions.

While we used a bottom-up approach, at least some top-down models of domain walls

in AdS/CFT were found in [61].

The first part of our study focused on models that allow inflating internal (i)

bubbles (perhaps driven by domain wall inflation when λ < 0) and a stable external

(e) vacuum. In this case, all Euclidean solutions satisfying the above assumptions are

topologically SD. In particular, they have no AlAdS boundaries and so cannot be

described as bulk saddle points of a dual CFT path integral.

The obstruction to finding good Euclidean solutions with AlAdS boundaries is

essentially the same as that discussed by [49] in the context of seeking instantons that

mediate the nucleation of false vacuum bubbles by quantum tunneling from flat space.

Now, in that context, it has been suggested [49–51] that the process may nevertheless

take place and that it is instead mediated by certain non-smooth saddles (see also

[39, 52]). But by extending concerns already expressed in a related context by reference

[51], we argued in section 3.3 that including such non-smooth saddles renders the

tunneling rate ill-defined. While there reamins much to understand about gravitational

path integrals, and while further consideration of such issues would be useful, this

observation suggests that only smooth saddles should be allowed.

Our analysis above has been limited to the thin wall approximation and to relatively

simple classes of domain walls. However, the basic obstruction to smooth saddles is

simple to state more broadly: Since Wick rotation changes the sign of dt2, it turns

any positive Lorentz signature acceleration driving inflation into a negative Euclidean

signature acceleration driving collapse and trapping the domain wall in the interior so

that it cannot be directly sourced at the Euclidean boundary. And non-trivial source-

free Euclidean solutions should not exist in theories with a stable vacuum. This forbids

Euclidean solutions with inflating bubbles in simple domain wall models.

As discussed at the end of section 3, it remains to investigate whether more com-

plicated models and/or full Einstein-scalar field theories might allow inflating regions

to be sourced in some indirect manner. It would also be interesting to investigate

whether it might shed light on the validity of degenerate saddles as in [50, 51]. How-

ever, extrapolating our results to such cases would suggest that AlAdS spacetimes with

inflating bubbles may have no dual description in any dual CFT. If so, it may be that
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such spacetimes are not in fact part of any complete theory of quantum gravity. It

is unclear to us whether this would then have further implications for discussions of

exact or meta-stable de Sitter vacua (see e.g. [64, 65]), but it would be interesting to

investigate further.

On the other hand, it should be noted that bubbles only inflate when they are

larger than a certain critical size and that for λ > −(κ− 1)2 saddles also fail to create

bubbles that are too small for this inflation to occur. Furthermore, for small µe, κ,

λ + 1 the stress tensor of the Lorentzian bubble solutions is small and the metric is

perturbatively close to that of the (e) AdS vacuum near t = 0. In particular, viewing

our thin wall solutions as approximations to those of a theory of gravity and a scalar

field whose potential has multiple minima, one would expect to be able to construct

the analogous Einstein-scalar saddles by adding boundary sources to the usual vacuum

path integral through an analogue of the construction in [66]. It would be interesting

to understand if gravitational effects at non-zero Euclidean times in fact prevent the

existence of such saddles, or whether some such saddles do exist in regimes where the

thin wall approximation breaks down.

The second part of our study constructed Euclidean solutions that create bag-of-

gold spacetimes. We found a large class of models in which such solutions exist, at least

at large mass parameter µe. In spacetimes with only a single domain wall, for D > 3

appendix C shows the size of any bag of gold to bounded by a power of µe. For D = 3

one can in fact create arbitrarily large bags of gold at fixed µe, but only by tuning the

parameter A to be small and taking κ > 4/3 (see again appendix C). As a result, the

bag of gold is subject to an additional IR cutoff associated with the finite value of the

internal (i) cosmological length scale `i = `e/
√
−λ ≈ `e/(κ − 1) < 3`e which again

limits the entropy such bags may contain.

However, as described in section 5.2, expanding the class of models slightly to

include magnetic charge allows the construction of arbitrarily large Euclidean bag-of-

gold solutions that contain a correspondingly large number of domain walls. Indeed, the

solutions described in section (5.2) consist of a long chain of identical RNAdS regions,

with each pair of adjacent regions separated by a domain wall. We also argued that, at

least within our class of models and preserving our symmetries, such Euclidean solutions

give the unique saddles for our path integrals, which we took to be microcanonical in

the sense of [53].

As described in the introduction, such solutions create an interesting tension with

the density of states in any dual CFT. While the tension is very real, we would argue

that there is no sharp contradiction. Indeed, the semi-classical approximation to the

bulk path integral is naturally considered to be an asymptotic expansion in small bulk

Newton constant G. A conservative perspective would thus be that it provides such
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an expansion for any given fixed G-independent bulk path integral. In our context,

this would mean that we should first fix AlAdS boundary conditions on the Euclidean

metric and matter fields (and so fix the number N of domain walls reaching the AlAdS

boundary and the mass parameters µ) and then take the limit G → 0. In particular,

this perspective suggests that the semi-classical approximation need be valid only for

G � 1/N . Of course, it remains of great interest to understand which particular

corrections to the semi-classical approximation become large for large N and what

effect they have on bulk physics. We hope our solutions provide useful starting points

for investigating such questions.

Even without filling our bags-of-gold with entropy, the results of [67] suggest that

our solutions may have interesting implications for the complexity equals action (CA)

conjecture [68, 69]. Reference [67] showed that a class of 2+1 bags-of-gold based on

adding topology inside black holes had Wheeler-DeWitt patch actions that decrease

with the size of the black hole interior. With a finite UV cut-off, this result is in tension

with the intrinsic positivity of complexity. A resolution proposed there was that such

spacetimes might lack CFT duals as they were not known to dominate any Euclidean

path integrals. But our spacetimes do appear to dominate such path integrals. So

corresponding negative contributions to Wheeler-DeWitt patch actions for these or

other (perhaps (2+1)-dimensional) bag-of-gold solutions would pose a challenge to the

CA conjecture. This remains to be analyzed in detail but, if true, would revive the

original tension noted in [67].

Using a construction closely related to our bags-of-gold, we also identified a new

class of asymptotically AlAdS Euclidean wormhole solutions. Indeed, in retrospect it

seems likely that Euclidean wormholes exist in essentially any low energy theory of

AdS gravity, and with essentially any boundary metric. The point here is that time

symmetric Euclidean wormholes Wick rotate to Lorentz signature closed cosmologies.

These are easy to construct, by simply choosing the desired topology and then adding

enough radiation (or gravitational waves) to satisfy the Hamiltonian constraint. For

example, if the metric on the time symmetric slice has everywhere non-negative Ricci

scale (as for a metric sphere or a metric torus), the Hamiltonian constraint requires the

sum of the energy densities from the cosmological constant and matter fields to be non-

negative. If we arrange for this energy to come from radiation (rather than from scalar

field potentials), the Lorentz signature solution will clearly collapse. Thus the Euclidean

solution will expand and define a Euclidean wormhole. When the spacetime has non-

contractible closed curves, we saw in section 5.3 that – at least in the microcanonical

ensemble – general arguments suggest that this wormhole will give only a subleading

contribution to the path integral. But with spherical topology, there may be potential

for Euclidean wormholes to dominate.
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This idea fits well with the results of [21, 44, 63]. In particular, [44] found low-

energy effective theories of gravity in which two-boundary Euclidean wormholes with

spherical boundaries appear to dominate the path integral. It was unclear if top-down

constructions could yield the particular models studied, but since the above approach

suggests that any top-down model will admit a broad class of Euclidean wormholes

it is plausible that top-down models where Euclidean wormholes dominate can indeed

be found. This may have interesting implications for our understanding of AdS/CFT

more generally, especially concerning any possible role of disorder [70]. We hope to

explore this further in the future.

There are, however, several issues that remain to be addressed for both classes of

solutions. One is that we have ignored the (magnetically) charged matter fields that

one expects to be present in more realistic systems, and which in particular are required

by the arguments of [71] and by appropriate versions of the weak gravity conjecture

[72]. Such fields can cause Reissner-Nordström black holes to become unstable to

growing scalar hair near extremality (see e.g. [73]), and thus can modify the analysis.

However, since the detailed form of the charged black hole solution played little role

in our analysis, and since the asymptotic form of all such solutions is identical so

long as the conformal dimension of the charged scalars is not too small, we expect a

similar analysis to hold even in models where such instabilities are present. Indeed,

we expect the existence of charged matter to make the construction of large bags of

gold even easier, as one may then take the mass parameter (and thus rmin) to increase

by a constant ratio across each domain wall, and thus to increase exponentially as one

moves further into the interior (see e.g. comments about µe 6= µi in appendix D). It

would then require only a logarithmic number of domain walls to create a bag-of-gold

with entropy greater than the event horizon’s A/4G.

Another such issue concerns the possibility of negative modes. The fact that our

saddles are the only ones for our models satisfying the stated symmetries and boundary

conditions suggests that there will be no negative modes, but a detailed study remains

to be performed.

Other possible concerns regarding our bags-of-gold include more quantum effects.

First, one might ask if fluctuations about our saddles might be large in the limit where

are bags of gold become very large. This is certainly true in some sense. For example, as

described in [53], a microcanonical ensemble of small width ∆E is naturally associated

with fluctuations in certain time correlations of size ∆t ∼ 1/∆E that, if large, make the

bulk far from any given classical metric. Such fluctuations add in quadrature, and so

the total fluctuation along a chain nchain units long is proportional to
√
nchain. Luckily,

however, we need only a finite number of units each having horizon size rh to make a

bag-of-gold large enough to allow bulk entropy greater than SBH = rD−2
h /4`D−2

p . Since
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it is easy to fit an entropy Sunit = `D−2

rD−2
h

into each unit with small back-reaction and small

cost in energy, we require no more than nchain ∼ `D−2

`D−2
p

. And taking the width of the

microcanonical ensemble to be comparable to the width of the corresponding canonical

ensemble, one finds in each unit that, relative to the corresponding Euclidean time

period β, the fluctuations satisfy ∆t
β
∼ `

D−2
2

p `

r
D−1
2

h

, so even after multiplying by
√
nchain the

time correlation fluctuations are still suppressed relative to β by

√
`
D−1
2

r
D−1
2

h

.

The remaining issue to explore is whether new complications arise when one con-

siders not just the path integral to create a fixed bag-of-gold background, but to also

actually fill the bag-of-gold with large entropy. While we see no obstacles to doing so, a

detailed analysis of this issue (perhaps following [66, 74, 75]) will be left for future work.

The point here is that a single empty bag-of-gold is just a pure state, and does not by

itself lead to tension with the Bekenstein-Hawking density of states10. Furthermore, it

was recently noted in [11, 12] that this distinction leads to important phase transitions

for quantum extremal surfaces. It follows that, at least in studying Renyi copies of our

path integrals, saddles can exchange dominance depending on the amount of entropy in

the bag-of-gold. It would be extremely interesting to identify a similar phenomenon in

saddles associated with the original state and to investigate their implications for the

information problem. Perhaps the saddles described here will provide fertile ground for

future such investigations.
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A No local minima of Veff for A < 0

We now show that in cases where Veff → −∞ at large r, Veff can be equal to zero at

most twice. In such cases, the effective potential has the form

Veff = Ar2 + 1 +
B

rD−3
− C

r2D−4
, (A.1)

where A < 0, C > 0, and D ≥ 3. The sign of B is indefinite. The first derivative and

second derivative of the effective potential are

V ′eff = 2Ar − (D − 3)
B

rD−2
+ (2D − 4)

C

r2D−3
, (A.2)

and

V ′′eff = 2A+ (D − 3) (D − 2)
B

rD−1
− (2D − 4) (2D − 3)

C

r2D−2
. (A.3)

Let r0 be a point where V ′eff |r=r0 = 0. At such r0, (A.2) requires

(D − 3) (D − 2)
B

rD−1
0

= 2A (D − 2) + (2D − 4) (D − 2)
C

r2D−2
0

. (A.4)

Substituting this into (A.3) yields

V ′′eff |r=r0 = 2A− (2D − 4) (2D − 3)
C

r2D−2
0

+ 2A (D − 2) + (2D − 4) (D − 2)
C

r2D−2
0

= 2A (D − 1)− (2D − 4) (D − 1)
C

r2D−2
0

< 0.
(A.5)

As a result, Veff has no local minima. And since it is large and negative at both large

and small r, it can have at most two zeros.

B Unique zero of Veff for A > 0

We now show that in cases where Veff → +∞ at large r, Veff can be equal to zero at

most once. In such cases, the effective potential has the form

Veff = Ar2 + 1 +
B

rD−3
− C

r2D−4
, (B.1)

where A > 0, C > 0, and D ≥ 3. The sign of B is indefinite. The first derivative of

the effective potential is again given by (A.2).
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Let r0 be a zero of Veff , so that

− B

rD−2
0

= Ar0 +
1

r0

− C

r2D−3
0

. (B.2)

Substituting this into (A.2) yields

V ′eff |r=r0 = 2Ar0 + (2D − 4)
C

r2D−3
0

+ (D − 3)Ar0 +
D − 3

r0

− (D − 3)
C

r2D−3
0

= (D − 1)Ar0 +
D − 3

r0

+ (D − 1)
C

r2D−3
0

> 0.

(B.3)

Thus Veff is increasing whenever it crosses zero. In particular, once it becomes positive

it cannot return to zero. As a result, it can cross zero at most once.

C Constraints on the size of single-wall bags of gold

As stated in the introduction, it is of interest to understand whether the bags of gold

we create can become large enough for the bulk quantum fields inside to have entropy

comparable to the Bekenstein-Hawking entropy SBH. While our analysis is not exhaus-

tive, we present some results below which suggest that this is not possible with a single

domain wall and µi = 0.

First, for D ≥ 4 we show in section C.1 that rmin is bounded above by either

(2µe)
1

D−3 or (2µe)
1

D−2 , whichever is greater. While the bounds are not particularly

strong, they show that the bags of gold do not become arbitrarily large at fixed µe, and

the for D ≥ 4 there are bounds that are independent of λ, κ. We then show in section

C.2 that for D = 3 taking rmin large at fixed µe requires tuning λ to −(κ − 1)2 and

taking κ > 4/3. As a result, any large rmin limit requires fine-tuning and, furthermore,

is subject to an additional IR cutoff associated with the finite value of the internal (i)

cosmological length scale `i = `e/
√
−λ = `e/(κ − 1) < 3`e. As a slight aside to our

present goals, for completeness section C.3 then verifies that under these constraints

D = 3 saddles do in fact exist that create bags of gold with arbitrarily large rmin.

The above bounds suggest that at large µe it will be difficult to generate bags of

gold containing e.g. radiation with entropy exceeding the Bekenstein-Hawking entropy

SBH without tuning some property of the radiation. For example, if the radiation is

thermal, one may need to take the temperature to be parametrically large. This raises

the possibility of introducing uncontrolled Planck scale physics, and also raises the

possibility that gravitational back-reaction from the radiation will become important.
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While we have not carried out an exhaustive analysis of the possible scenarios, after

some investigation we have certainly not located high-entropy regimes that are free of

such issues.

Now, one might also seek bags of gold with entropy greater than SBH by looking

at small black holes. There SBH becomes small, so even a moderately-sized bag-of-gold

would have higher entropy. However, for fixed κ, λ and D ≥ 4, analyzing (2.6) at

small µe gives rmin ∝ µ
1

D−2
e . And creating a bag-of-gold requires αe(rmin) < 0, which

from (2.9) implies µe
rD−1
min

1
1+λ+κ2

< 1. So for D ≥ 4 bags of gold do not arise at small µe

without fine-tuning λ, κ. The analysis for D = 3 is similar, though there the zero-mass

BTZ black hole has µe = 1 and a calculation shows that αe(rmin) > 0 for all λ, κ, and

that without fine-tuning λ, κ the smallest bag-of-gold will have BTZ mass parameter

me = µe − 1 of order 1 so that SBH will not be small.

C.1 Bounds on rmin for D ≥ 4

As stated in the introduction, it is of interest to understand whether the bags of gold

we create can become large inside a black hole of fixed surface area (here, fixed µe).

One notion of this size is set by rmin, which from (2.1) is in fact the maximum radius of

any SD−2 of spherical symmetry inside the black hole. We may thus equivalently ask if

rmin can be large at fixed µe. It turns out that it cannot. In particular, while the large

µe limit just studied yields rmin → ∞, it also takes µe large. In fact, as we now show,

for bags of gold it is possible to bound rmin from above whenever µe is fixed.

Let us begin by noting that Veff becomes negative at any given value of r when we

take C large at fixed values of A,B. As a result, since rmin is the minimum at which

Veff becomes non-negative, in this limit rmin becomes large. So at least one part of our

task is to show that this limit cannot occur at fixed µe. Since C = µ2e
4κ2

, we will need to

show that κ is bounded away from zero.

To do so, consider the value rαe where αe(r) = 0. Since bags of gold require

αe(rmin) < 0 and from (2.9) we see that αe(r) > 0 for r < rαe, bags of gold must have

rmin > rαe, and thus

r
−(D−1)
min < r−(D−1)

αe =
1 + λ+ κ2

µe
, (C.1)

where the last step used (2.9) to solve for r
−(D−1)
αe .

On the other hand, (5.6) implies

r
−(D−1)
min >

B

2C
+

√
B2

4C2
+
A

C
. (C.2)

Combining (5.9), (C.1), and (C.2), then requires λ > −κ2. But bags of gold arise only

in case (II), for which −(κ − 1)2 > λ. These two inequalities are compatible only for
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κ > 1/2. For bags of gold we have thus succeed in showing

C =
µ2
e

4κ2
< µ2

e. (C.3)

Now, another way to make Veff very negative would be to take B large and negative

holding fixed A and C. But case (II) also requires λ ≥ −(κ2 + 1), which implies

− B =
µe
2κ2

(
κ2 − 1− λ

)
< µe. (C.4)

For D > 3 a strict bound on rmin now follows quickly. Defining r∗ by dropping the

(positive) Ar2 term from Veff and setting the result to zero yields

1 = − B

rD−3
∗

+
C

r2D−4
∗

, (C.5)

and also that we must have rmin < r∗. But depending on which of the two terms on

the right-hand-side of (C.5) are greater, we must also have either

rD−3
∗ < −2B < 2µe or r2D−4

∗ < 2C < 2µ2
e. (C.6)

Note that the latter condition also implies rmin < (2µe)
1

D−2 , which is the bound quoted

in the introduction to this appendix.

C.2 Bounds on rmin for D = 3

The case D = 3 requires special treatment, as the first inequality in (C.6) then does

not constrain r∗. But we will nevertheless derive a bound from the requirement that

the domain wall trajectory has no self-intersections.

We first observe that for D = 3 the effective potential Veff becomes r2 times a

quadratic in r−2. Thus we may write

Veff = Ar2

(
1−

r2
+

r2

)(
1 +

r2
−

r2

)
, (C.7)

with

r−2
+ =

(1 + B) +
√

(1 + B)2 + 4AC

2C
, r−2
− = −

(1 + B)−
√

(1 + B)2 + 4AC

2C
, (C.8)

where r−2
+ > 0, r−2

− > 0, and r+ = rmin.

Now, from (C.8) it is natural to expect that A → 0 is a necessary condition for

rmin = r+ →∞. Let us first carefully argue that this is indeed the case. For 1 +B ≥ 0

it is manifest, as (C.8) and (C.3) then require

r−2
min = r−2

+ ≥
√

(1 + B)2 + 4AC

2C
≥
√
A

C
≥
√
A

µe
. (C.9)

– 43 –



For 1 +B < 0, we instead first note that (C.4) now implies |1 +B| = −1−B < µe− 1

and then use the fact that for any positive real numbers a and b one finds

√
b2 + a2 − b > a2

3b
for b ≥ a > 0 (C.10)

and √
b2 + a2 − b > a

3
for a ≥ b > 0 (C.11)

to conclude that r−2
+ > 1

3
A
|1+B| >

1
3

A
µe−1

or r−2
+ > 1

3

√
A
C
>
√
A

3µe
. In all cases rmin → ∞

with µe bounded requires A → 0, and at sufficiently large rmin (with µe fixed) one in

fact finds

A <
3µe
r2

min

=
3(r2

h + 1)

r2
min

. (C.12)

For future use we also note that (C.8) yields

µ2
e

r2
min

> µ2
e

1 + B

2C
= 4κ2(1 + B), (C.13)

so, since κ > 1
2
, taking rmin →∞ requires taking 1 + B to zero or a negative value.

With the above observations in hand, we will use (2.8) to study possible self-

intersections. Note that since A is small at large rmin, we may write

1 + κ2 + λ = 2κ(1 + O(A)), (C.14)

where the overall sign on the right is fixed by the requirement that we remain in case

(II). Since µe is fixed and κ > 1
2

as described above, for all r > rmin we find

αe(r) = −r (1 +O(A))
(
1 +O(r−2

min)
)

= −r
(
1 +O(r−2

min)
)
. (C.15)

Similarly, we have

fe(r) = r2
(
1 +O(r−2

min)
)
. (C.16)

As a result, defining r̃ = r/rmin = r/r+ and choosing the sign appropriate to moving

outward from rmin to r = +∞ with increasing tEe we see that (2.8) yields

dtEe
dr̃

=
1

A1/2r+r̃
√
r̃2 − 1

1√
1 +

r2−
r2+r̃

2

(
1 +O(A) + O(r−2

min)
)

>
1

A1/2r+r̃
√
r̃2 − 1

1√
1 +

r2−
r2+

(
1 +O(r−2

min)
)
,

(C.17)
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where in the last step we used the fact that 1 +
r2−
r2+r̃

2 is a decreasing function of r̃

together with r̃ ≥ 1. Since self-intersections arise when tEe(r =∞)− tEe(rmin) exceeds

half the period β of Euclidean time, recalling that d
dr̃

(arcsec (r̃)) = 1
r̃
√
r̃2−1

, setting

ε = A(1 +
r2−
r2+

), integrating (C.17) with tEe = 0 at rmin, and forbidding self-intersections

yields
β

2
≥ tEe(r =∞) ≥ π

2r+

√
ε
(1 + O(r−2

min)), (C.18)

or
π2

β2
(1 + O(r−2

min)) < r2
+ε = A

(
r2

+ + r2
−
)

=
√

(1 + B)2 + 4AC, (C.19)

where in the last step follows from (C.8).

Since the BTZ period satisfies π2

β2 = µe−1
4

, recalling that any limit where rmin →∞
must have A → 0 and (since A → 0 and κ > 1

2
prevent B from diverging) there must

be a limit point B0 of B with 1 + B0 ≤ 0, we may use (C.19) to write

µe − 1

4
→ −(1 + B0) =

(
1− 1

κ

)
µe − 1, (C.20)

and thus

κ ≥ 4

3

µe
µe − 1

>
4

3
. (C.21)

The condition A→ 0 and remaining in case (II) then requires

λ→ −(κ− 1)2 < −1

9
. (C.22)

In particular, λ is bounded away from zero and the internal (i) cosmological length

scale must remain finite.

C.3 With fine tuning, D = 3 bags of gold can have large rmin

The analysis above also allows us to readily show that in D = 3 one can find bags

of gold with arbitrarily large rmin at fixed µe by taking A → 0 and B → B0 with

1 +B0 < 0. To do so, note that (C.8) shows that rmin = r+ becomes large in this limit

with

r2
+ = −1 + B0

A

(
(1 +O

(
A

(1 + B0)2

))
. (C.23)

The first line of (C.17) then yields

dtEe
dr̃

<
1

A1/2r+r̃
√
r̃2 − 1

(
1 +O(A) + O(r−2

min)
)
. (C.24)
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Figure 14: D = 3 Numerical results for rmin and 2tEe(r=∞)
βe

with λ = −1 − ε, ε > 0,

κ = 2, and µe = 5. We see that rmin diverges as ε → 0. Since 2tEe(r=∞)
βe

< 1, the

solutions are free of self-intersections. These choices of parameters lie in case (II), and

we also find αe(rmin) < 0. So as ε → 0 we find saddles that create bags of gold with

arbitrarily large rmin.

We may then integrate this result as above to find

tEe(r =∞) <
π

2rmin

√
A

(1 + O(r−2
min))→ π√

−2(1 + B0)
. (C.25)

So choosing the right-hand side to be less than β
2

makes our solution free of self-

intersections. In other words, we find saddles that create D = 3 bags of gold with

rmin →∞ in any fixed-µe limit where λ approaches −(κ− 1)2 from below and the first

inequality in (C.21) holds. As a check, some numerical results for such large bags of

gold are shown in figure 14.

D Results for µi 6= µe, µi > 0

We record here a few results concerning the case µi 6= µe, µi > 0. These serve mostly

to demonstrate the continuity at µi = µe, and to set the stage for future more detailed

future investigations.

Recall that for SAdS regions with µe = µi we find 2tEe(r=∞)
β

= fD(γ) and 2tEi(r=∞)
β

=

fD(γ̃), with f3(γ) = 1
2

and fD(γ) decreasing monotonically from infinity at γ = 0 to 1
2

at γ = 1. This prohibits adding two such domain walls to a given SAdS region as in

figure 11 (left), but the failure is marginal in D = 3 and near γ = 1 for all D.

In the main text we deal with this failure by adding magnetic charge. However, it

is also interesting to explore cases with µi 6= µe. We do so briefly below.

For µi near µe and the qualitative form of the solutions for each domain wall will be

similar to that discussed in section 5.2. In particular, at r = rmin we will have negative
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Figure 15: D = 3 Numerical results for 2tEe(r=∞)
βe

(red), 2tEe(r=∞)
βe

(blue), and the

average of the two (green) with λ = −1 and κ = 1/2 as a function of mi = µi − 1 for

me = µe − 1 = 5. In fact, the ratio depends only on me

mi
= µe−1

µi−1
for me

mi
< 1. Results for

other values of κ are similar. For λ = −1 the system is symmetric under exchanging

the labels e and i, so for me

mi
> 1 one can instead find 2tEe(r=∞)

βe
from the blue curve and

2tEi(r=∞)
βi

from the red curve. All ratios are 1
2

and me

mi
= 1, but the average (green) is

smaller at other ratios.

αe and positive αi, so the region between two adjacent domain walls will contain an

SAdS horizon as desired.

The critical issue is then only the behavior of 2tEe(r=∞)
βe

, 2tEi(r=∞)
βi

for each wall. Let

us begin with D = 3. Since both of these quantities are 1
2

at µi = µe, for general µi, µe
it is natural to expect that one will be larger and the other smaller, corresponding to

a non-zero first order term in the Taylor expansion about µi = µe. For D = 3 it is

useful to introduce the parameters me = µe− 1 and mi = µi− 1 to match the standard

conventions for BTZ black holes where empty AdS3 has mass m = −1. Having done

so, for any λ one may scale parameters much as in section 5.1 to show that 2tEe(r=∞)
βe

depends only on the ratio m̃ = mi

me
. While we have not been able to obtain a closed form

expression for 2tEe(r=∞)
βe

as a function of m̃, for any λ one may generalize the calculation

(5.18) to arbitrary m̃ and expand in powers of m̃ − 1 to find integrals that can again

be performed analytically11. The results for D = 3 may then be written in the form

2tEe(r =∞)

βe
=

1

2
+

1− m̃
4κ

+
3(1 + λ+ κ2)(1− m̃)2

32κ3
+O((1− m̃)3). (D.1)

As expected, the linear term is non-zero and is positive for m̃ < 1; i.e., the ratio exceeds
1
2

on the side of the domain wall with larger µ. Sample numerical results are also shown

11Most conveniently with help from Mathematica.
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in figure 15.

Without invoking magnetic charge or otherwise altering our simple model, to find a

region like that shown at left in figure 11 having both two domain walls and a non-trivial

AlAdS boundary the mass parameter µ for D = 3 must thus behave monotonically as

one passes from each SAdS region to the next. The details of how µ evolves as we move

inward are constrained only by the need only ensure that the decrease in 2tE(r=∞)
β

below
1
2

on the larger mass side more than compensates for the increase in 2tE(r=∞)
β

above 1
2

on

the smaller mass side. Note that using 1− m̃ = (m̃−1− 1)− (m̃−1− 1)2 +O(m̃−1− 1)3,

one finds from (D.1) that the average of (D.1) at mi

me
= m̃ and at mi

me
= m̃−1 is

1

2

(
2tEe(r =∞)

βe
|mi
me

=m̃ +
2tEe(r =∞)

βe
|mi
me

=m̃−1

)
=

1

2
− (5k2 − 3(1 + λ))(1− m̃)2

32k3
+O((1− m̃)3).

(D.2)

This average is thus less than 1
2

for κ2 > 3(1 + λ) and m̃ close to 1; see also figure 15

for a numerical check. As a result, with parameters chosen as above it suffices to take

all walls to have the same ratio µi
µe

, with each SAdS region then serving as the interior

(i) for one wall and then as the exterior (e) for the next.

Numerical computations for D > 4 and λ near −1 give similar results, though

cases with µi ≈ µe can have values near 1
2

only for small κ. In general the results

depend separately on µi and µe, but in the limit of large µe they again depend only

on the ratio µi
µe

. This can again be seen by repeating the sort of analysis described

in section 5.1, but is also simply a manifestation of the well-known facts that large µ

SAdS black holes are effectively planar black holes, and that two planar black holes for

differing mass parameters µ in fact have the same bulk geometry and differ only by the

normalization of the time translation; i.e., in the limit µ→∞ the geometries lose any

notion of intrinsic scale. In practice, as usual, this amounts to being about to drop the

1 in fe, fi, and Veff . In all dimensions, numerical results show that for two walls with

the same mass ratio µi
µe
≈ 1 at large µ the average of 2tEe(r=∞)

βe
, 2tEi(r=∞)

βi
is again less

than the large µ value at µi
µe

= 1. So, at least at small enough κ, at large µ it again

suffices to use the same ratio µi
µe

across each domain wall12.

As noted above, the mass parameter µ must behave monotonically as we go inward.

Since regularity at the center of the bag-of-gold requires µ = 0, one should thus expect

that µ must decrease monotonically. In fact, the case µ = 0 requires special treatment

12Interestingly, there appears to be a sharp transition at κ = 1 in all dimensions D > 3. For smaller

values of κ, the average just described becomes numerically small – and certainly smaller than 1/2 –

when µi

µe
→ 0 (or equivalently µi

µe
→∞). But this is not the case for 2 > κ > 1.
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as (for D > 4) it clearly is not large and since (for D = 3) it corresponds to m < 0. But

numerically we do indeed find 2tEe(r=∞)
βe

> 1
2

in regions where our numerics is stable13.

In particular, we may take µ to decrease by an appropriate fixed factor µi
µe
< 1 as we

move inward past each successive domain wall.

13In any case, in a chain with fixed ratio µi

µe
> 1 the parameter µ will increase exponentially and

quickly become very large. As discussed in section 5.1, one can then show analytically for D = 3, 4,

and 5 that this ratio is not less than 1
2 .
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