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Abstract. Gaussian graphical models are useful tools for exploring network struc-
tures in multivariate normal data. In this paper we are interested in situations
where data show departures from Gaussianity, therefore requiring alternative mod-
eling distributions. The multivariate t-distribution, obtained by dividing each com-
ponent of the data vector by a gamma random variable, is a straightforward gen-
eralization to accommodate deviations from normality such as heavy tails. Since
different groups of variables may be contaminated to a different extent, Finegold
and Drton (2014) introduced the Dirichlet t-distribution, where the divisors are
clustered using a Dirichlet process. In this work, we consider a more general class
of nonparametric distributions as the prior on the divisor terms, namely the class
of normalized completely random measures (NormCRMs). To improve the effec-
tiveness of the clustering, we propose modeling the dependence among the divisors
through a nonparametric hierarchical structure, which allows for the sharing of
parameters across the samples in the data set. This desirable feature enables us
to cluster together different components of multivariate data in a parsimonious
way. We demonstrate through simulations that this approach provides accurate
graphical model inference, and apply it to a case study examining the dependence
structure in radiomics data derived from The Cancer Imaging Atlas.

Keywords: Graphical models, Bayesian nonparametrics, Normalized completely
random measures, Hierarchical models, Radiomics data, t-distribution.

1 Introduction

Graphical models describe the conditional dependence relationships among a set of random
variables. A graph G = (V,E) specifies a set of vertices V = {1, 2, . . . , p} and a set of edges E ⊂
V ×V . In a directed graph, edges are denoted by ordered pairs (i, j) ∈ E. In an undirected graph,
(i, j) ∈ E if and only if (j, i) ∈ E (Lauritzen, 1996). Here we focus on undirected graphical models,
also known as Markov random fields. In this class of models, the absence of an edge between
two vertices means that the two corresponding variables are conditionally independent given
the remaining variables, while an edge is included whenever the two variables are conditionally
dependent.

In the context of multivariate normal data, graphical models are known as Gaussian graphical
models (GGMs) or covariance selection models (Dempster, 1972). In this setting, the graph
structure G implies constraints on the precision matrix (the inverse of the covariance matrix).
Specifically, a zero entry in the precision matrix corresponds to the absence of an edge in the
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2 Hierarchical NormCRMs for Robust Graphical Modeling

graph, meaning that the corresponding nodes (variables) are conditionally independent. Since
graphical model estimation corresponds to estimation of a sparse matrix, regularization methods
are a natural approach. In particular, the graphical lasso (Meinshausen and Bühlmann, 2006;
Yuan and Lin, 2007; Friedman et al., 2008), which imposes an L1 penalty on the sum of the
absolute values of the entries of the precision matrix, is a popular method for achieving the
desired sparsity. Among Bayesian approaches, the Bayesian graphical lasso, proposed as the
Bayesian analogue to the graphical lasso, places double exponential priors on the off-diagonal
entries of the precision matrix (Wang, 2012; Peterson et al., 2013), while approaches which
enforce exact zeros in the precision matrix have been proposed by Roverato (2002), Jones et al.
(2005), and Dobra et al. (2011). Gaussian graphical models have been widely applied in genomics
and proteomics to infer various types of networks, including co-expression, gene regulatory, and
protein interaction networks (Friedman, 2004; Dobra et al., 2004; Mukherjee and Speed, 2008;
Stingo et al., 2010; Telesca et al., 2012; Peterson et al., 2016).

Some extensions of standard Gaussian graphical models exist in the literature for the analysis of
data that show departures from normality. Among others, Pitt et al. (2006) used copula models
and Bhadra et al. (2018) used Gaussian scale mixtures. Here, we build upon the approach of
Finegold and Drton (2011, 2014), who introduced a vector of positive latent contamination
parameters (divisors) regulating the departure from Gaussianity and then modeled those as a
sample from a nonparametric distribution, specifically a Dirichlet process. Their model, however,
does not allow the exchange of information among the vectors of observed data, since independent
Dirichlet process priors are used for each of the n samples. We propose to use a more flexible
class of nonparametric prior distributions, known as normalized completely random measures
(NormCRMs), and consider a hierarchical construction where the nonparametric priors for the
divisors are conditionally independent, given their centering measure, which is itself a completely
random measure. NormCRMs were first introduced by Regazzini et al. (2003) with the name of
Normalized Random Measures with Independent increments (NRMI), and subsequently studied
by several researchers in statistics and machine learning (James et al., 2009; Lijoi and Prünster,
2010; Caron and Fox, 2017). One of the most commonly used measures in this class is the
Normalized Generalized Gamma (NGG) process (Lijoi et al., 2007). For illustrations of the use
of this prior in mixture models, see Argiento et al. (2010), Barrios et al. (2013), and Argiento
et al. (2016). Theoretical and clustering properties of hierarchical CRMs were first investigated
by Camerlenghi et al. (2019) (see also Camerlenghi et al., 2017, 2018). Subsequently, Argiento
et al. (2018) have focused on clustering and computational issues arising under mixture models
built upon this class of priors. In this paper, we exploit the clustering characterization of these
constructions to induce sharing of information. More specifically, we focus our attention on the
normalized generalized gamma process, which has been shown to yield a quite flexible clustering
structure. Furthermore, we devise a suitable MCMC algorithm for posterior sampling.

We are motivated by an application to radiomics data derived from magnetic resonance imaging
(MRI) of glioblastoma patients collected as part of The Cancer Imaging Atlas. In the development
of personalized cancer treatment, there is great interest in using information from tumor imaging
data to better characterize a patient’s disease, as these medical images are collected as a routine
part of diagnosis. There have been a large number of different numerical summaries proposed, but
the interpretation of these features is not immediate. It is hypothesized that clinically relevant
features may be capturing related aspects of the underlying disease. Statistical modeling of the
dependencies in radiomics data poses challenges, however, as the features exhibit outliers and
overdispersion due to heterogeneity of the tumor presentation across patients.

The paper is organized as follows: we begin in Section 2 with a review of graphical models. In
Section 3, we lay out the proposed model and summarize computational methods for inference.
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We then illustrate the application of the method to both simulated and a publicly available
radiomics data set in Section 4. Finally, we conclude with a discussion on the current model as
well as future directions in Section 5.

2 Background

2.1 Gaussian Graphical Models

Let Xi ∈ Rp be a random vector, with i = 1, . . . , n. In GGMs, the conditional independence
relationships between pairs of nodes encoded by a graph G correspond to constraints on the
precision matrix Ω = Σ−1 of the multivariate normal distribution

Xi ∼ Np(µ,Σ), i = 1, . . . , n, (1)

with µ ∈ Rp the mean vector and Σ ∈ Rp×Rp a positive definite symmetric matrix. Specifically,
the precision matrix Ω is constrained to the cone of symmetric positive definite matrices with
off-diagonal entry ωij equal to zero if there is no edge in G between nodes i and j.

In Bayesian analysis, the standard conjugate prior for the precision matrix Ω is the Wishart
distribution. Given the constraints of a graph among the variables, Roverato (2002) proposed
the G-Wishart distribution as the conjugate prior. The G-Wishart is the Wishart distribution
restricted to the space of precision matrices with zeros specified by a graph G. The G-Wishart
density WG(b,D) can be written as

p(Ω|G, b,D) = IG(b,D)−1|Ω|(b−2)/2 exp
{
− 1

2
tr(ΩD)

}
, Ω ∈ PG

where b > 2 is the degrees of freedom parameter, D is a p×p positive definite symmetric matrix,
IG is the normalizing constant, and PG is the set of all p×p positive definite symmetric matrices
with ωij = 0 if and only if (i, j) /∈ E. Even when the graph structure is known, sampling from
this distribution poses computational difficulties since both the prior and posterior normalizing
constants are intractable. Dobra et al. (2011) proposed a reversible jump algorithm to sample over
the joint space of graphs and precision matrices that does not scale well to large graphs. Wang
and Li (2012) and Lenkoski (2013) proposed sampler methods that do not require proposal tuning
and circumvent computation of the prior normalizing constant through the use of the exchange
algorithm, improving both the accuracy and efficiency of the computations. Mohammadi and Wit
(2015) proposed a sampling methodology based on birth-death processes for the appearance or
removal of an edge in the graph. Their algorithm, implemented in the R package BDgraph, can be
used with the approximation of the normalizing constant of the G-Wishart prior calculated either
via the Monte Carlo method of Atay-Kayis and Massam (2005) or the Laplace approximation of
Lenkoski and Dobra (2011).

To sum up, we can write the standard Gaussian graphical model in the Bayesian setting as:

X1, . . . ,Xn|µ,Ω,
iid∼ Np(µ,Ω),

µ ∼ Np(µ0, Ip/σ2
µ) (2)

Ω|G ∼ G-Wishart(G, b,D),

G ∼ π(G),

with the symbol Ip indicating the identity matrix of dimension p. The last ingredient to fully
specify the model is the prior for the graph G. When prior knowledge is not available, a uniform
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4 Hierarchical NormCRMs for Robust Graphical Modeling

prior is often used (see Lenkoski and Dobra, 2011). However, it is well known that this prior is not
optimal for sparsity as it favors graphs with a moderately large number of edges. To overcome
this issue, Dobra et al. (2004) and Jones et al. (2005) suggested assigning a small data-dependent

inclusion probability to each edge, i.e., π(G) ∝ d|E|(1− d)(
p
2)−|E|, with d = 2/(p− 1). This prior,

adopted also in this paper, is called the Erdős-Rényi prior, and it reduces to the uniform prior
when d = 0.5.

2.2 Robust Graphical Models

Assume Yi ∈ Rp is a vector of observed data on p variables for subject i, with i = 1, . . . , n.
When data show departures from normality, robust models are needed. In particular, as noted
by Finegold and Drton (2011, 2014), t-distributions are well-suited to accommodate heavy tails,
and result in minimal loss of efficiency when the data are in fact normal. They propose introducing
the normal variables Xi in model (2) as latent quantities, and modeling the observed data as:

Yij = µj +
Xij√
θij

j = 1, . . . , p, (3)

where θi = (θi1, . . . , θip), for i = 1, . . . , n, are data and variable specific perturbation parameters
(divisors), taking into account the deviation from normality of the observations. Using the in-
variance under linear transformation property of the Gaussian distribution, we can express the
sampling model as:

Yi|µ,Ω,θi
iid∼ Np(µ, diag(

√
θi) Ω diag(

√
θi)), i = 1 . . . , n. (4)

Different distributions of the vector θi yield different models. Let P0 denote a gamma(ν/2, ν/2)
distribution with mean 1 and variance 2/ν. If θi1 = θi2 = · · · = θip and θi1 ∼ P0 (i.e., just one
common divisor for all the components), then a multivariate t-distribution is assumed for the

observations. We refer to this model as Yi ∼ tp,ν(µ,Ω). On the other hand, if θi1, . . . , θip
iid∼ P0

(i.e., p different divisors, one for each component of the data), then Yi is distributed according
to an alternative t-distribution, as introduced by Finegold and Drton (2011), and denoted by

Yi ∼ t∗p,ν(µ,Ω). As an intermediate case, Finegold and Drton (2014) consider θi1, . . . , θip|Pi
iid∼ Pi,

Pi ∼ DP (κ, P0), where Pi ∼ DP (κ, P0) is the Dirichlet process with mass parameter κ and
centering measure P0. We refer to this model as Y ∼ tκp,ν(µ,Ω). A realization from the Dirichlet
process Pi is almost surely a discrete random probability measure. To give an illustration, let

p = 2. Therefore, if (θi1, θi2)|Pi
iid∼ Pi, then with probability P(θi1 = θi2) = 1

κ+1 , and Yi =
(Yi1, Yi2) ∼ t2,ν(µ,Ω). On the other hand, with probability κ

κ+1 we have the alternative t case.
Indeed, the two are limiting cases of the Dirichlet t-distribution when κ → 0 or κ → +∞,
respectively. Even though the Dirichlet process has proven to perform well in several contexts,
it is well known that the clustering it induces is often inaccurate as it is affected by the so-called
rich-gets-richer effect. In the next section, we propose a more flexible approach to mitigate this
behavior and to allow for a more flexible clustering structure.

3 Proposed Method

3.1 Robust Graphical Modeling via Hierarchical Normalized Completely
Random Measures

We propose an extension of the Dirichlet t model that uses a more flexible class of nonparametric
distributions, namely the class of hierarchical normalized completely random measures (Norm-
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CRM). Through the use of these measures, we are able to address some of the limitations of the
Dirichlet process. First, the tendency towards a highly skewed distribution of cluster sizes can
be mitigated by the use of the more flexible NormCRM. In addition, we show how exploiting a
hierarchical construction facilitates the sharing of information across cluster components in the
dataset.

Let Θ be the Euclidean space and let us consider the class of almost surely discrete random
probability measures that can be written as:

P̃ (·) =
∑
l≥1

Jl
T
δτl(·) =

∑
l≥1

wlδτl(·), (5)

where T =
∑

l≥1 Jl. We assume P̃ to be a homogeneous NormCRM, whose law is characterized
by a Lèvy intensity measure ν that factorizes into ν(ds, dτ) = α(s)P (dτ)ds, where α is the density
of a nonnegative measure, absolutely continuous with respect to the Lebesgue measure on R+

and regular enough to guarantee that 0 < T <∞ almost surely, and P is a probability measure
over (Θ,B). In general, such a factorization does not hold true, but by adopting it we ensure
that the random jumps {Jl}l≥1 and the random locations {τl}l≥1 are independent sequences.
The random locations τ1, τ2, . . . are independent and identically distributed according to the
base distribution P , while the unnormalized random masses J1, J2, . . . are distributed according
to a Poisson random measure with intensity α. The Dirichlet process is encompassed by this class
when α(s) = κs−1e−s, for κ > 0 and s > 0. Even though our approach can be implemented with
a general NormCRM, in what follows we consider the specific case of the normalized generalized
gamma (NGG) process (Lijoi et al., 2007), which is obtained by choosing α(s) = κ

Γ(1−σ)s
−1−σe−s,

for 0 ≤ σ < 1. This nonparametric prior has been shown to be very effective for model-based
clustering (Lijoi et al., 2007). We also refer readers to Argiento et al. (2015), for an application
in biostatistics. Note that, when σ = 0, the Dirichlet process is recovered.

A sample θ1, . . . , θp|P̃
iid∼ P̃ =

∑
l≥1 wlδτl can be represented via the set of variables l =

(l1, . . . , lp)|{wl}l≥1
iid∼ Discrete({wl}l≥1), by letting θj = τlj , for j = 1, . . . , p. Let l∗ = (l∗1, . . . , l

∗
K)

be the set of the K unique values in l. A partition ρ = {C1, . . . , CK} of the indices {1, . . . , p} can
be defined by letting Ch = {j : lj = l∗h}, for h = 1, . . . ,K. The partition ρ is called l-clustering.
Let now θ∗h = τl∗h . When the centering measure P is diffuse, the θ∗hs coincide with the unique
values in θ = (θ1, . . . , θp) and the l-clustering coincides with the natural clustering, i.e., we can
also write Ch = {j : θj = θ∗h}, for h = 1, . . . ,K. The l-clustering and the natural clustering
can be different when the centering measure P is discrete (see Argiento et al., 2018). In partic-
ular, in the discrete case, each θ∗h is the value shared by all the indices in the so-called l-cluster
Ch, for h = 1, . . . ,K. Furthermore, extending the results in Pitman (1996), Ishwaran and James
(2003), and Argiento et al. (2018), one can show that, for P either atomic or diffuse, the following
characterization holds:

L(ρ, dθ∗1 , . . . , dθ∗K) = L(ρ)L(dθ∗1 , . . . , dθ∗K |K) = eppf(e;κ, σ)

K∏
h=1

P (dθ∗h), (6)

with e = (e1, . . . , eK) the vector of l-cluster sizes in the partition ρ, such that eh = #Ch, for
each h = 1, . . . ,K, and with the notation eppf(e;κ, σ) indicating the exchangeable partition
probability function (eppf) of the NGG process, a symmetric function of the cluster sizes e, as
introduced by Pitman (2003). The explicit analytical form of the eppf of a generic (homogeneous)
NormCRM can be derived (see formulas (36)-(37) in Pitman (2003)) and enables the construction
of a Gibbs sampler based on the Chinese restaurant process representation. In the Dirichlet
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6 Hierarchical NormCRMs for Robust Graphical Modeling

process case, De Blasi et al. (2015) pointed out that the predictive distribution induced by (6),
i.e., the probability that θp belongs to a new l-cluster given (θ1, . . . , θp−1), depends only on
the dimension p, while in the NGG process case this probability depends on both p and K,
leading to a more flexible prior. Furthermore, the probability that θp belongs to a previously
observed l-cluster Ch is proportional to eh − σ, for h = 1, . . . ,K. These two properties mitigate
the rich-gets-richer behavior arising when considering the Dirichlet case.

The first step towards our proposed robust graphical modeling construction is to replace the
Dirichlet prior on the divisors with an NGG process, yielding the following robust graphical
model:

Yi|µ,Ω,θi
iid∼ Np(µ, diag(

√
θi) Ω diag(

√
θi)), i = 1 . . . , n,

θi1, . . . , θip|Pi
iid∼ Pi, i = 1, . . . , n, (7)

P1, . . . , Pn|κ, σ
iid∼ NGG(κ, σ, P ),

where P is the distribution on the space of the divisors. Suitable prior distributions can be
assigned to κ, σ, µ, and Ω. We denote by ρi = {Ci1, . . . , CiKi

} the l-clustering induced by Pi in
each data vector, for i = 1, . . . , n, as described earlier in this section.

When P is diffuse, model (7) does not allow for sharing of information across the data vectors.
This can be seen by using characterization (6) to marginalize model (7) with respect to the
infinite-dimensional parameters P1, . . . , Pn, and rewriting the last two lines of (7) as:

ρi|κ, σ
ind∼ eppf(ei;κ, σ), i = 1, . . . , n,

θ∗i1, . . . , θ
∗
iKi

|Ki
iid∼ P, i = 1, . . . , n,

where (ρi,θ
∗
i ) represent the partition and the vector of unique values induced by Pi on the data

components, and ei = (ei1, . . . , eiKi
) is the vector of l-cluster sizes in the partition ρi, such that

eih = #Cih, for each h = 1, . . . ,Ki. By this re-writing, it is clear that the sharing of information
among the different clustering structures is achieved only via the conditional dependence of ρi
given κ and σ. In particular, we cannot have shared divisors across data vectors, but only across
components of the same data vector, since θ∗’s are all i.i.d. from the diffuse distribution P .
We overcome this limitation by considering a more flexible hierarchical model formulation that
allows for additional sharing of information across the samples. Specifically, we assume P to be
a random probability measure, namely an NGG process centered on a diffuse measure P0. In
formulas, the proposed model can be written as follows:

Yi|µ,Ω,θi
iid∼ Np(µ, diag(

√
θi) Ω diag(

√
θi)), i = 1 . . . , n,

θi1, . . . , θip|Pi
iid∼ Pi, i = 1, . . . , n, (8)

P1, . . . , Pn|κ, σ, P
iid∼ NGG(κ, σ, P ),

P |κ0, σ0 ∼ NGG(κ0, σ0, P0).

The law of (P1, . . . , Pn), as given by the last two lines of (8), is called the hierarchical NGG
(HNGG) process. For ease of notation, we will refer to the mixture model (8) as t-HNGG.
Theoretical and clustering properties of hierarchical normalized completely random measures
have been investigated first by Camerlenghi et al. (2019), and a detailed study of the clustering
induced by these measures in the context of mixture models has been conducted in Argiento et al.
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(2018). An attractive feature of this construction is that it induces a two-layered hierarchical
clustering structure that allows components of different observed data vectors to be clustered
together. This two-layered structure consists of an l-clustering ρi within each group i, and a
clustering η that merges elements of ρ1, . . . , ρn. In order to define η more precisely, let θ =
(θ⊤1 , . . . ,θ

⊤
n )

⊤ be the matrix where the row θi is the vector of all divisors of the i-th observation,
and let ψ = (ψ1, . . . , ψM ) be the vector of unique values found in the matrix θ. Let ρ =
(ρ1, . . . , ρn) indicate the l-clustering partitions in each data vector, and θ∗ = (θ∗1 , . . . ,θ

∗
n) the

corresponding multidimensional array of parameter values. We define a clustering of the indices of
the multidimensional array θ∗ by letting η = {D1, . . . , DM} where Dm = {(i, h) : θ∗ih = ψm, h =
1, . . . ,Ki, i = 1, . . . , n}, with m = 1, . . . ,M . We also let d = (d1, . . . , dM ), with dm = #Dm.
Then, the law of the matrix θ of divisors, given in the last three lines of (8), can be characterized
in terms of ρ, η and ψ as:

L(ρ, η, dψ) = L(η|ρ)
n∏

i=1

L(ρi)
M∏

m=1

P0(dψm) = eppf(d;κ0, σ0)

n∏
i=1

eppf(ei;κ, σ)

M∏
m=1

P0(dψm). (9)

Full details on the derivation of formula (9) can be found in Argiento et al. (2018). We also note
that the partially exchangeable partition probability function of Camerlenghi et al. (2019) can
be obtained from (9) by marginalizing with respect to (η,ψ).

We call the natural clustering induced by θ the partition of indices I = {I1, . . . , IM} such that
(i, j) ∈ Im iff θij = ψm. Since the sets of indices Im, for m = 1, . . . ,M , can be recovered from
(ρ, η), formula (9) characterizes the law of the natural clustering. The relationship between I
and (ρ, η) is clarified in formulas:

I(ρi,η)
m =

Ki⋃
h=1

{(i, j) : j ∈ Cih, (i, h) ∈ Dm}, m = 1, . . . ,M, (10)

Im := I(ρ,η)
m =

n⋃
i=1

I(ρi,η)
m , m = 1, . . . ,M.

Formula (9) can be described in terms of a Chinese restaurant franchise process. In our context,
each observation represents a different restaurant in the franchise, each serving p customers, one
for each component of the data vector. Customers entering the i-th restaurant are allocated to
the tables according to eppf(ei;κ, σ), independently from the other restaurants in the franchise,
and generate the partition ρi = (Ci1, . . . , CiKi), for i = 1, . . . , n. In this metaphor, the elements
of ρi represent the tables of the i-th restaurant. Conditionally on T =

∑n
i=1Ki, the tables of the

franchise are grouped according to the law described by eppf(d;κ0, σ0), thus obtaining a partition
of tables. Hence, the elements of η can be interpreted as clusters of tables. In addition, all tables
in the same cluster Dm share the same dish ψm, for m = 1, . . . ,M . Moreover, ψ = (ψ1, . . . , ψM )
is and i.i.d. sample from P0. Under this metaphor, eih, for h = 1, . . . ,Ki and i = 1, . . . , n,
represents the number of customers seated at the h-th table in the i-th restaurant, while dm, for
m = 1, . . . ,M , is the number of tables where the m-th dish is served across the franchise. Finally,
in this metaphor, the natural clustering induced by the corresponding θ is formed of clusters of
customers that share the same dish across the franchise, and not only in the same restaurant.

3.2 Predictive Structure of the hierarchical NGG

In this paper, we make use of a marginal MCMC algorithm for simulating the nonparamet-
ric quantities involved in model (8). This algorithm is based on integrating out the infinite-
dimensional parameters P1, . . . , Pn, P and on the characterization of the generalized Chinese
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8 Hierarchical NormCRMs for Robust Graphical Modeling

restaurant franchise process via formula (9). To drastically reduce the computational complex-
ity, it is convenient to consider the predictive structure induced by the hierarchical NGG process
by using a standard augmentation trick (see James et al., 2009; Lijoi and Prünster, 2010). More
specifically, we introduce n+1 auxiliary random variables U = (U1, . . . , Un, U0), referring to the
n clustering structures in each data vector, and to the one existing across the whole dataset,
respectively. For the NGG process, each partition ρi has the following law, jointly with Ui:

eppf(ei, ui;κ, σ) =

Ki∏
h=1

κΓ(eih − σ)

Γ(1− σ)

up−1
i

Γ(p)
(ui + 1)

Kiσ−p
exp

{
−κ (1 + ui)

σ − 1

σ

}
, (11)

where Ki is the number of clusters and ei = (ei1, . . . , eiKi) is the vector of cluster sizes in ρi.
The joint law of (η, U0) has an analogous expression.

Suppose now to have a new variable in the i-th group, whose index is p+1. We will use an abuse
on notation by indicating with (p+ 1) ∈ Cih, for h = 1, . . . ,Ki, the event that the new variable
is allocated to the h-th cluster in the i-th group, and with (p + 1) ∈ CiKi+1 the event that the
new variable is assigned to a new cluster. It can be shown that the allocation probabilities of the
new variable are the following, for h = 1, . . . ,Ki:

P
(to)
ih = P((p+ 1) ∈ Cih|ρi, Ui) ∝

eppf(ei1, . . . , eih + 1, . . . , eiKi
;κ, σ, ui)

eppf(ei1, . . . , eiKi
;κ, σ, ui)

= eih − σ,

P
(tn)
i = P((p+ 1) ∈ Ci(Ki+1)|ρi, Ui) ∝

eppf(ei1, . . . , eiKi
, 1;κ, σ, ui)

eppf(ei1, . . . , eiKi ;κ, σ, ui)
= κ(ui + 1)σ, (12)

corresponding to the allocation probabilities of a new customer entering the i-th restaurant, and
sitting at an existing or at a new table in the generalized Chinese restaurant metaphor. In case
a new cluster arises, the partition η needs to be updated. The allocation probabilities of the new
element T + 1 are, for m = 1, . . . ,M :

P (do)
m = P((T + 1) ∈ Dm|η, U0) ∝

eppf(d1, . . . , dm + 1, . . . , dM ;κ0, σ0, u0)

eppf(d1, . . . , dM ;κ0, σ0, u0)
= dm − σ0,

P (dn) = P((T + 1) ∈ DM+1|η, U0) ∝
eppf(d1, . . . , dm, 1;κ0, σ0, u0)

eppf(d1, . . . , dM ;κ0, σ0, u0)
= κ0(u0 + 1)σ0 , (13)

corresponding to the allocation probabilities that a newly generated table will join a new or an
existing cluster of tables. Additional details on how to derive (12) and (13) can be found in the
Supplementary Materials.

To complete the generalized Chinese restaurant franchise process metaphor, not only does a
new customer have to select a table, but also a dish from the franchise menu. Suppose the new
customer enters the i-th restaurant, and let θip+1 be the label of the selected dish. The table
is picked according to the predictive rules (12) of the i-th restaurant. The customer can choose
between joining an existing table with label h = 1, . . . ,Ki, or occupying the (Ki+1)-th new one.
The first choice leads to sharing the dish on the h-th table in the i-th restaurant, i.e. θi(p+1) = θ∗ih.
On the other hand, if a new table is chosen, the customer can select a dish from the menu of
dishes according to (13). This menu contains dishes that are already served in other tables across
the franchise, as well as infinitely many new ones, since the centering measure P0 is diffuse.
Following Argiento et al. (2018), the full-conditional allocation probability, for i = 1, . . . , n is

P((p+ 1) ∈ Cih, (i, p+ 1) ∈ I(ρi,η)
m |ρ, η,U)

= P((i, p+ 1) ∈ I(ρi,η)
m |(p+ 1) ∈ Cih,ρ, η,U)P((p+ 1) ∈ Cih|ρ, η,U)
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∝

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P

(to)
ih h = 1, . . . ,Ki, m = mh,

P
(do)
m P

(tn)
i h = Ki + 1, m = 1, . . . ,M

P (dn)P
(tn)
i h = Ki + 1, m =M + 1,

0 otherwise,

(14)

where mh is such that (i, h) ∈ Dmh
, and the sets I(ρi,η)

m , for m = 1, . . . ,M , are defined in
(10). These equations are the main blocks to compute the full-conditional allocation probabil-
ities needed for posterior sampling, as presented in the next section. Such probabilities can be
calculated in closed form using equation (9). However, in the next section we make use of auxil-
iary variables as these simplify the sampling algorithm. The conditional predictive probabilities
hereby specified characterize the prior clustering induced by our nonparametric modeling. We
refer to Argiento et al. (2018) for results on the distribution of relevant quantities, such as the
prior distribution of the number of different dishes or the dependence induced by our model
across observations (e.g. correlation, coskewness).

3.3 MCMC Algorithm

In this section, we describe the MCMC algorithm for posterior inference from model (8), embed-
ded within the graphical modeling part described in (2). The state space of the Gibbs sampler is
given by (µ,Ω, G,ρ, η,ψ). We describe the parameter updates by splitting them into two blocks:
the graphical model block, which comprises the full conditionals of (µ,Ω, G), and the generalized
Chinese restaurant franchise block, which includes those for (ρ, η,ψ). For simplicity, we will
remove the indexing of the Gibbs sampler iteration.

• Graphical model updates: In the following, we will consider the law of (µ,Ω, G) con-
ditionally upon the variables (ρ, η,ψ).

– For the update of (Ω, G), we resort to the birth-death algorithm of Mohammadi and
Wit (2015) available in the R package BDgraph, and suitable for non-decomposable
graphs. The algorithm proceeds by first adding/removing an edge of the graph, and
then updating the precision matrix Ω using the algorithm presented in Lenkoski
(2013). These moves have probabilities

P((i, j) ∈ E|µ,Ω, G,Y ,θ) ∝ βb
ij(µ,Ω, G,Y ,θ), (i, j) /∈ E,

P((i, j) /∈ E|µ,Ω, G,Y ,θ) ∝ βd
ij(µ,Ω, G,Y ,θ), (i, j) ∈ E,

with βb
ij and βd

ij the birth and death rates of edge (i, j), respectively, computed in
such a way that the stationary distribution of the Markov process is the joint full-
conditional of (Ω, G), given (Y ,ρ, η,ψ) (see Theorem 3.1 in Mohammadi and Wit,
2015). This algorithm is particularly efficient since the Markov process specification en-
sures that the birth/death moves are always accepted, contrarily to the reversible jump
algorithm of Giudici and Green (1999), also implemented in the package BDgraph.

– Updating µ: This full-conditional is conjugate. A-priori µ ∼ Np(µ0, Ip/σ2
µ), hence:

µ|G,Ω,θ,Y ∼ Np(mµ,Sµ),

Sµ = Ip/σ2
µ +

n∑
i=1

(
diag(

√
θi) Ω diag(

√
θi)

)
,
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mµ = Sµ

[
µ0/σ

2
µ +

n∑
i=1

(
diag(

√
θi) Ω diag(

√
θi)

)
Y ⊤
i

]
.

• Generalized Chinese restaurant franchise process updates: We refer to the nota-
tion of Sections 3.1 and 3.2. Conditionally to the vector of auxiliary variables U and the
graphical model parameters (µ,Ω, G), the joint law of (8) is:

L(Y1, . . . ,Yn|ρ, η,θ,U ,µ,Ω, G)L(ρ1, . . . , ρn|U1, . . . , Un)L(η|U0)

M∏
m=1

P0(dψm)

=

n∏
i=1

f(yi|µ,Ω,θi)
n∏

i=1

eppf(ei;κ, σ, P0, ui)eppf(d;κ0, σ0, P0, u0)

M∏
m=1

P0(dψm),

with f representing the multivariate Gaussian density introduced in model (8). It is im-
portant to point out that, under model (8), the observations yij are now components of
the vector yi and are no longer conditionally independent. Thus, it is useful to introduce
the following conditional likelihood for a subset of indices t ⊂ {1, . . . , p}:

f(yit|yi\t,µ,Ω,θi) = N
(
yit

⏐⏐⏐µc,
[
diag(

√
θi) Ω diag(

√
θi)

]
tt

)
,

µc = µt −Ω−1
tt Ωt\t(yi\t − µ\t)

√
θi\t, (15)

with \t = {1, . . . , p} ∩ t, and t indicating the complementary set of t. This allows us to
write the following updates:

– Update of U and ψ: using the expression given in (11) of eppf(·, u0;κ0, σ0, P0) and
eppf(·, ui;κ, σ, P0), and the centering measure P0, we have:

p(Ui|ρi, κ, σ) ∝ up−1
i e−

κ
σ ((ui+1)σ−1)

Ki∏
h=1

(
κ

(ui + 1)eih−σ

Γ(eih − σ)

Γ(1− σ)

)
, i = 1, . . . , n,

p(U0|η, κ0, σ0, T ) ∝ uT−1
0 e−

κ0
σ0

((u0+1)σ0−1)
M∏

m=1

(
κ0

(u0 + 1)dm−σ0

Γ(dm − σ0)

Γ(1− σ0)

)
, (16)

p(ψm|Y ,ρ, η) ∝
n∏

i=1

f(y
iI(ρi,η)

m
|y

i\I(ρi,η)
m

,µ,Ω, ψm)P0(dψm), m = 1, . . . ,M.

These quantities are often known up to a normalizing constant, making necessary to
implement a series of Metropolis-Hastings (MH) steps. Specifically, we use an adap-
tive MH scheme for the random variables U , following the guidelines of Griffin and
Stephens (2013). The sampling of the unique values ψ is achieved by performing M
independent standard MH steps. This approach is necessary since the full-conditional
distribution of ψ presents an intractable normalizing constant, and does not allow the
use of a direct sampler (Finegold and Drton, 2011).

– Update of (ρ, η): We report now the full-conditional distributions for the clus-
tering variables (ρ, η). The updating takes advantage of the augmented predictive
representation given in Section 3.2, inspired by (Favaro and Teh, 2013) and by the
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popular Algorithm 8 of (Neal, 2000). Indeed, due to the non-conjugate setting of
our model, we augment the sample space to include a set of Nc auxiliary variables

ψc = (ψc
1, . . . , ψ

c
Nc

)
iid∼ P0. Let the superscript (−ij) denote the conditioning on the

random variables modified after the removal of the j-th observation of the i-th restau-
rant, for j = 1, . . . , p and i = 1, . . . , n. Then, conditionally upon Y and (ρ−ij , η−ij),
and resorting to (14), the probability of assigning the j-th customer to the h-th table
of the i-th restaurant, where the m-th dish is served, is:

P(j ∈ C−ij
ih , θij = ψm|Y ,µ,Ω, G,ρ−ij , η−ij ,θ−ij ,ψc,U) (17)

∝

⎧⎪⎪⎨⎪⎪⎩
P

(to)
ih f(yij |yi\j ,µ,Ω, θ∗ih), h = 1, . . . ,K−ij

i

P
(tn)
i P

(do)
m f(yij |yi\j ,µ,Ω, ψm), h = K−ij

i + 1,m = 1, . . . ,M−ij

P
(tn)
i P (dn)f(yij |yi\j ,µ,Ω, ψc

nc
)/Nc, h = K−ij

i + 1,m =M−ij + 1, nc = 1, . . . , Nc,

where K−ij
i + 1 and M−ij + 1 are the new table and new dish labels, respectively.

The updating process continues by re-allocating Cih to a cluster of tables. To this end,
we have to assign Cih to a Dm, for h = 1, . . . ,Ki and m = 1, . . . ,M . More formally,
let the superscript (−ih) indicate the conditioning on the variables after the removal
of all the observations in Cih. Conditionally on Y and (ρ−ih, η−ih), and using again
(14), the probability of assigning the h-th table of the i-th restaurant to the m-th
cluster is:

P((i, h) ∈ D−ih
m , θ∗ih = ψm|Y ,ρ−ih, η−ih,ψ−ih,ψc,U) (18)

∝

{
P

(do)
m f(yiCih

|yi\Cih
,µ,Ω, ψm), m = 1, . . . ,M−ih,

P (dn)f(yiCih
|yi\Cih

,µ,Ω, ψc
nc
)/Nc, m =M−ih + 1, nc = 1, . . . , Nc.

where M−ih + 1 indicates the new dish labels.

Given the output from the MCMC chain, one can estimate the graph structure by considering
the median graph (Barbieri et al., 2004) as the graph represented by those edges (i, j) ∈ E for
which the posterior edge inclusion probability P((i, j) ∈ E|Y ) is greater than 0.5. Additionally,
we can estimate the precision matrix of the sampling model (4) by considering the contribution
of the divisors θ, as

Ωθ =
1

n

n∑
i=1

diag(
√
θi) Ω diag(

√
θi).

We obtain an analogous estimate Ω̂θ by averaging over the MCMC samples.

One important feature of the nonparametric prior distributions imposed in models (7) and (8) is
the ability to cluster the data via the unique values of the divisors θ. In the applications below, we
illustrate the properties of the random partitions imposed on θ by reporting the posterior mean
of the number of clusters in each data vector for the independent model (7), and the posterior
distribution of the number of clusters among all the data vectors for the hierarchical model (8).
Both quantities are computed by using the saved iterations of the posterior chains of the random
partitions ρ and η.
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4 Applications

4.1 Simulation Study

In this section we illustrate the performance of the proposed method via simulation studies.
In particular, we employ two simulated scenarios inspired by the work of Finegold and Drton
(2014), for ease of comparison. Analogously, an edge (i, j) ∈ E is considered “positive” if P((i, j) ∈
E|Y ) > ϵ, for a range of values of ϵ ∈ (0, 1). We compare results across different models in terms
of the receiver operating characteristic (ROC) curves, by calculating true and false positive rates
for each of 50 replicated datasets and then computing the ROC curves by averaging over the 50
replicates.

AR(1) graph, n = p = 25

In this simulation setting, n = 25 data vectors are simulated from model (4) with an AR(1)
graph structure on G, induced by a tri-diagonal precision matrix Ω where the off-diagonal non-
zero elements are set to -1, and the diagonal ones are set to 3 apart from the two extremes
that are set to 2. The mean vector µ is simulated as p independent standard normal random
variables. The divisors θ are set to recover different distribution structures, namely the multi-
variate Gaussian (θij = 1 for i = 1, . . . , n, j = 1, . . . , p), the classical multivariate t-Student

(θi1 = · · · = θip
iid∼ gamma(ν/2, ν/2), i = 1, . . . , n), and the alternative multivariate t-Student

(θ11, . . . , θpp
iid∼ gamma(ν/2, ν/2)). Where required, ν = 3.

Here, we investigate performance of four different models: an independent Dirichlet model (t-
DP) obtained from (7) with κ ∼ gamma(1, 1) and σ = 0 (E(M) = n4.31, sd(M) =

√
n1.56);

an independent t-NGG model obtained from (7) with κ ∼ gamma(1, 1) and by setting σ = 0.1
(E(M) = n4.40, sd(M) =

√
n1.70); a t-HDP model in the form of equation (8) with κ, κ0 ∼

gamma(1, 1) and σ = σ0 = 0 (E(M) = 4.50, sd(M) = 1.56); and a t-HNGG model obtained from
(8) with κ, κ0 ∼ gamma(1, 1) and by setting (σ, σ0) = (0.5, 0.1) (E(M) = 7.67, sd(M) = 2.41).
Alternatively, Beta hyperpriors can be imposed on σ, σ0 (see our second simulation setting below
and Argiento et al. (2018) for a full sensitivity analysis on the parameters (κ, κ0, σ, σ0)).

Furthermore, in all models, we set the prior distribution for G to be uniform with edge probability
d = 0.05. We also set b = p and D = Ip for the prior distribution of Ω, and ν = 3. For each
replicated dataset, we ran an MCMC chain with 50,000 iterations, of which the first 40,000 are
discarded as burn-in period, and 5,000 are saved from the remaining ones, after thinning, for
estimation purposes.

In order to elucidate the properties of the clustering structure of the divisors induced by our
model, in Figure 1 we show the posterior distributions of the number of clusters for each of the
four fitted models, on one of the replicated datasets for each of the three different scenarios.
As expected, both the t-HDP and the t-HNGG model induce a lower posterior mean number
of clusters (in the natural clustering sense), when compared to the number of clusters in each
data vector induced by the independent t-DP and t-NGG models. This is possible thanks to
the ability of the t-HNGG model to exploit the sharing of information across data vectors. This
effect is particularly clear when looking at the Gaussian scenario, where the proposed model is
able to effectively cluster the data into one cluster with high posterior probability. On the other
hand, in the alternative multivariate t case it is clear how the tuning of the hyperparameters
plays a crucial role in the resulting partition structure. The classical t case shows that neither
hierarchical model accurately captures the original number of clusters, equal to 25. However,
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Gaussian

t-DP t-NGG t-HDP t-HNGG

L1 15.5948 15.3678 3.3862 3.4717

L2 26.4608 26.2770 6.8677 6.8875

Max 9.2539 9.1041 1.1490 1.2120

Classical t

t-DP t-NGG t-HDP t-HNGG

L1 12.7382 13.0816 4.3448 4.3848

L2 16.6510 17.2454 9.0376 8.7959

Max 6.1404 6.3945 1.5965 1.6277

Alternative t

t-DP t-NGG t-HDP t-HNGG

L1 8.5563 9.2981 5.3283 5.2390

L2 11.3243 12.0485 9.0608 8.8924

Max 4.7448 5.3204 2.8309 2.7630

Table 1: Simulation study, AR(1) graph: Average distances between Ω̂θ and Ωθ.

the t-HNGG model outperforms the t-HDP model, allowing for higher posterior probability on

partitions characterized by a larger number of clusters.

Figure 2 shows the comparison of the ROC curves for the four different models, computed

by averaging over the 50 replicates, for each of the three simulation settings. We can observe

an agreement in the results for the Gaussian case, while the proposed model performs better

in the other scenarios, due to the presence of non-unitary divisors that can be captured by the

flexible nonparametric structure. The t-HDP and t-HNGGmodels show comparable performance.

Furthermore, in Table 1 we report the L1, L2, and maximum modulus distances between the

estimated and the simulated precision matrices, averaged over the 50 replicates, for each of the

three simulated scenarios. For two matrices A,B ∈ Rp×p, these measures are defined as:

dL1(A,B) = max
1≤j≤p

p∑
i=1

|aij − bij |,

dL2(A,B) =

√ p∑
i=1

p∑
j=1

(aij − bij)2, (19)

dmax(A,B) = max
ij

|aij − bij |.

The proposed model clearly outperforms the independent ones in all simulated scenarios. Once

again, the two hierarchical models yield comparable results. Additional details on this analysis

are reported in the Supplementary Materials, where the posterior estimates of the precision and

covariance matrices are compared for the different models and simulation scenarios.
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Figure 1: Simulation study, AR(1) graph: Posterior number of clusters, comparing the four models
under study (independent t-DP, independent t-NGG, t-HDP, and t-HNGG), for data generated
from a Gaussian distribution (first column), a Classical t distribution (second column) and an
Alternative t distribution (third column). Posterior means for each data vector are reported for
the independent t-DP and t-NGG models (first and second rows, respectively), while posterior
distributions are shown for the t-HDP and the t-HNGG models (third and fourth rows).
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Figure 2: Simulation study, AR(1) graph: ROC curves comparing the independent t-DP and
t-NGG models with the t-HDP and the t-HNGG models, for data generated from a Gaussian
distribution, a Classical t distribution and an Alternative t distribution.
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Figure 3: Simulation study, contaminated data: ROC curves, t-NGG vs t-HNGG models.

Contaminated data, n = 100 and p = 30

Next, we illustrate the behavior of our model on a more complex simulated data structure.
In particular, we simulate n = 100 p-dimensional random vectors, with p = 30. In this set of
simulations, the graph structure G is produced by splitting the p-dimensional graph into three
random graphs of size 10 each, while the elements of the related precision matrix Ω are set to
3 on the diagonal (2 at the extremes), and to -1 for the off-diagonal non-zero elements. Then,
the values are multiplied by a constant factor, yielding to a minimum eigenvalue of Ω bigger
than 0.5. The divisor matrix θ is produced by working on its vectorized version, vec(θ). We
sample nr, nc ∼ Poisson(10), and associate to nrnc randomly selected elements of vec(θ) a
divisor ψm ∼ Unif[0.01, 0.2]. We repeat this process without replacement to produce 4 divisors,
and set all the other elements of vec(θ) to 1. For this example, we fit the t-NGG and t-HNGG
models with hyperpriors σ, σ0 ∼ Beta(2, 18), where the prior expectation of the Beta distribution
is equal to 0.1. The rest of the setting remains unchanged from the previous simulation study.

Figure 3 shows the comparison of the ROC curves for our t-HNGG model vs the independent
counterpart, the t-NGG model. Curves were computed by averaging over 50 replicated datasets.
We observe a clear improvement in the t-HNGG model fitting. Figure 4 reports a summary of
the posterior number of clusters as well as posterior distributions of σ and σ0, obtained under
the two models. In particular, in the independent model we show the posterior mean of the
number of clusters in each data vector, while the posterior distribution of the number of clusters
M is reported for model (8). As expected, the number of clusters in each data vector obtained
under the t-NGG is higher than in the t-HNGG case, due to the lack of sharing of information.
Furthermore, the posterior mode of the number of clusters in the hierarchical model is very close
to the number of unique divisors used to simulate the data (i.e., 5 different divisors including
1). We also notice that the posterior distributions of σ and σ0 show a clear departure from the
Dirichlet process case (achieved when σ = σ0 = 0), supporting the choice of the use of the NGG
process as a building block for our model.

Finally, Table 2 reports the L1, L2, and maximum modulus distances between estimated and
true precision matrices, averaged over the 50 replicates, and calculated using formulas (19).
We also add comparisons with methodologies available in the literature, i.e., the Graphical-
Lasso (Meinshausen and Bühlmann, 2006) and the Bayesian Graphical-Lasso (Wang, 2012). The
proposed model outperforms both the standard methods and the independent t-NGG model.
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Figure 4: Simulation study, contaminated data: t-NGG vs t-HNGG models. (a) Posterior mean
of the number of clusters in each data vector (t-NGG); (b,c) posterior distribution of σ and
σ0 (t-NGG); (d) posterior distribution of the number of clusters M (t-HNGG); (e,f) posterior
distribution of σ and σ0 (t-HNGG).

G-Lasso Bayes G-Lasso t-NGG t-HNGG

L1 6.9213 6.9089 6.6516 5.6287

L2 17.2031 18.3216 16.2151 8.6058

Max 3.2770 3.4513 3.1293 1.6143

Table 2: Simulation study, contaminated data: Average distances between Ω̂θ and Ωθ.
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4.2 Case Study on Radiomics Features

Radiomics is the study of numerical features extracted from radiographic image data, which
can be used to quantitatively summarize tumor phenotypes (Lambin et al., 2012; Gillies et al.,
2016). Cellular diagnostic techniques such as biopsies are not only invasive, but they also do not
allow for a thorough or complete investigation of the entire tumor environment, while manual
review of images by radiologists is expensive, time-consuming, and not always consistent across
raters. Quantitative imaging features mined with radiomics techniques can be used to get a more
comprehensive picture of the entire lesion environment without having to take multiple biopsies
or depend on qualitative visual assessments. It has been hypothesized that trends in radiomic
features are reflective of complementary tumor characteristics at the molecular, cellular, and
genetic levels (Aerts et al., 2014).

Although the development of novel radiomic features is an active area of research (Shoemaker
et al., 2018), in this work, we focus on the so-called first and second order features, as these
are the most commonly used in practice (Gillies et al., 2016). First order features consider the
collection of intensity values across all voxels in the image, without regard for their spatial
orientation, and may be referred to as histogram-based or non-spatial. Examples of first order
features include volume, intensity, mean, median, entropy, kurtosis. Second order features account
for voxel position in addition to intensity, and are also called spatial features. Examples of
second order features include eccentricity, solidity, and texture features. These features are often
computed on multiple combinations of angle, distance, and number of grey levels, leading to
a large set of features that can be used in model building and data analysis. However, there
are challenges in the use of radiomics data for statistical modeling. Firstly, features often exhibit
departures from normality due to the heterogeneity of the tumor images across patients. Secondly,
they are often highly correlated. Such dependence is partially structural in nature, as the features
are all calculated on the same voxel data. To date, most efforts at predictive modeling begin with
filtering of the features by selecting a single representative for each cluster of highly correlated
features (Gillies et al., 2016) or applying rank-based filtering methods across all features (Parmar
et al., 2015) or within each class of features (Aerts et al., 2014). The screened features are then
used as input to machine learning algorithms for prediction or classification such as random
forests, support vector machines, or regularized regression. There is a push in the field, however,
away from “black box” modeling. For example, there is an interest in establishing the genetic
basis of the features (known as “radiogenomics”, see Gevaert et al., 2014) and, more generally, in
enhancing the interpretability of the features, models, and results obtained (Morin et al., 2018).
Investigation of the relationships between features supports the search for links between radiomic
features, genotypes, phenotypes, and clinical outcomes in more complex statistical models (Stingo
et al., 2013) aimed at not only using imaging features for prediction, but understanding their
interdependence and the genomic and clinical factors that shape them.

In this case study, we focus on glioblastoma data collected as part of The Cancer Imaging
Atlas (TCIA), which provides imaging data on the same set of subjects whose clinical and ge-
nomic data are available through The Cancer Genome Atlas (TCGA). Specifically, we obtained
radiomic features extracted from magnetic resonance imaging (MRI) images by Bakas et al.
(2017), which made a standard set of features publicly available with the goal of providing
reproducible and accessible data. This data set includes more than 700 radiomic features for
102 subjects diagnosed with glioblastoma (GBM). The features provided include intensity, volu-
metric, morphologic, histogram-based, and textural features, as well as spatial information and
parameters extracted from a glioma growth model (Hogea et al., 2008). Each subject has scans in
the MRI modalities of T1-weighted pre-contrast (T1), T1-weighted post-contrast (T1-Gd), T2,
and T2-Fluid-Attenuated Inversion Recovery (FLAIR). The MRI images were segmented into
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the following regions: the enhancing part of the tumor core (ET), the non-enhancing part of the
tumor core (NET), and the peritumoral edema (ED), and these segmentations were manually
checked and approved by a neurologist.

To obtain a usable feature set for the proposed robust graphical model, we first applied a log
transformation to improve symmetry and reduce the impact of outlying large values in the
untransformed data. To account for negative values and to handle the presence of zeros, the
features with negative values were shifted up by the minimum value, and 1 was added to each
observation for all features before the log transformation was applied. We then assessed the
pairwise correlation between all the log-transformed features. If a pair had absolute correlation
greater than 0.8, we removed the feature with a higher mean absolute correlation to all other
features. In order to focus on features with potential clinical importance, we obtained survival
information from the TCGA database, and filtered the features to include only those with p-value
≤ 0.05 in a univariate Cox proportion hazard model for overall survival. This resulted in a set
of 26 features for downstream analysis. The features that remain are fairly representative of the
different types of features provided in Bakas et al. (2017), as well as from the different regions
of the brain and MRI modalities. See Supplementary Materials for detailed information on these
features.

Analysis

The t-HNGG model was applied to the screened features. As in the first simulation study, we set
κ, κ0 ∼ gamma(1, 1) and (σ, σ0) = (0.5, 0.1), yielding E(M) = 8.83 and sd(M) = 2.66. We ran an
MCMC chain with 30,000 iterations, with 20,000 burn-in iterations and thinned by 2. The edge
inclusion was determined by thresholding the posterior probability of inclusion (PPI) at 0.5, as
in the median model of Barbieri et al. (2004). Following Peterson et al. (2015), we computed the
Bayesian false discovery rate (FDR) for the selected model; the resulting value of 0.053 suggests
that our edge selection procedure is reasonable.

To assess convergence, we applied the Geweke diagnostic criteria (Geweke et al., 1991) on four
parameters: κ, κ0, the number of clusters, and the number of edges. The test gave non-significant
p-values for each of the parameters, indicating that the chains converged. The trace plots for the
number of clusters and the number of edges are given in Figure 5, along with the frequency of
differing numbers of clusters and edges found. Summaries of the posterior means of the number
of clusters in each data vector, the number of edges, and the number of clusters are given in
Figure 6.

For comparison, we applied the graphical lasso (GLasso) and the Bayesian graphical lasso
(BGLasso) methods. The regularization parameter for the GLasso was chosen as 0.45 by min-
imizing the Bayesian information criterion (BIC), and the gamma prior for the regularization
parameter of the BGLasso was set such that the prior mean was also 0.45, with shape = 4.5
and scale = 1/10. The BGLasso was run for 13,000 total iterations, with a burn in of 3,000.
The sampled precision matrices for this method are not sparse, so a threshold of 0.1 on the
absolute value of the entries in the posterior mean of the precision matrix was chosen to create
the adjacency matrix.

Results

The graph inferred by the proposed t-HNGG method is presented in Figure 7, with three different
color schemes to indicate class membership of the nodes by feature type, feature region, and
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Figure 5: Case study on radiomics data: Trace plots of the parameters for the numbers of edges
and the number of clusters for the t-HNGG model.

imaging modality. In this illustration, we see that features from the same type and modality are
more likely to be identified as connected, while there are fewer links dictated by region: this could
imply that it is more critical to have features divided over separate regions of the tumor than
it is to have a large number of features or to have scans in multiple modalities, as the former is
more likely to give independent information from the different features.

Regarding the comparison to other methods, GLasso and BGLasso produced very similar graphs,
as is to be expected, and these had fewer edges overall than the graph inferred via the t-HNGG
model, although there were a couple of connections selected under the lasso methods that were
not identified in the t-HNGG model. Table 3 reports edge similarities between the three methods.
In all three graphs, edges are captured that we expect to see, such as adjacent bins in various
histograms, e.g., there is a connection between bin 1 and bin 2 of the histogram for the T2
modality of the NET region. The busyness features over three different modalities are connected
in all three models. However, the two GLasso models only select couplets and triplets, and none
of these are particularly surprising, linking together similar features that could be considered
adjacent in a qualitative sense. As one would expect, reducing the PPI threshold in the t-HNGG
model increases the number of selected edges, while increasing this threshold reduces the number
of selections. We found, however, that the overlapping edges between the t-HNGG and the
graphs inferred with GLasso and BGLasso remained consistent across the range of PPI thresholds
between 0.2 and 0.9.

An interesting edge captured by the t-HNGG model that is not captured by the other models is
one between a histogram feature and a busyness texture feature. Histogram features display only
the first-order information about the pixels and are not often used to infer any information about
the adjacency or texture of the images. However, this particular histogram feature is of the first
bin of the histogram, so this could suggest that heavier tailed pixel distributions are harbingers
of busyness. The end bin of the histogram was also found to be a significant feature for glioma
classification by Cho and Park (2017). Further, there are no edges in the graphs inferred by the

imsart-ba ver. 2014/10/16 file: Cremaschi_et_al_2019.tex date: May 12, 2020



21

0 20 40 60 80

1
.2

1
.4

1
.6

1
.8

2
.0

Ki

P
(K

i| 
y
)

(a)

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

n. edges

P
(n

. 
e
d
g
e
s
| 
y
)

20 22 24 26 28 30 32 34 36 38 40 42

(b)

1 2 3 4 5 6 7 8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

M

P
(M

| 
y
)

(c)

Figure 6: Case study on radiomics data: (a) Posterior mean of the number of clusters in each
data vector (b) Posterior distribution of the number of edges (c) Posterior distribution of the
number of clusters.
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Figure 7: Case study on radiomics data: The resulting graph from the t-HNGG model is depicted
in plots (a)-(c). In each plot, colors are used to indicate class membership of the graph nodes,
according to different characteristics of the features, i.e, (a) feature type, (b) feature region, and
(c) imaging modality.

GL BGL t-HNGG

GL 7 7 5

BGL 8 6

t-HNGG 19

Table 3: Case study on radiomics data: Number of edges in each of the graphs inferred by GLasso,
BGLasso and the t-HNGG model, and number of shared edges between pairs of graphs.
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Figure 8: Case study on radiomics data: A histogram of the data for the 9th feature, solidity of
the NET region.

LASSO-type models that connect the solidity feature to any other feature, unlike in the t-HNGG
graph. Failure to recover edges might be attributed to the non-normal distribution shown by this
feature, as it can be seen in Figure 8, showing once again the power of the t-HNGG model to
handle outliers. Edges and dependencies, and lack thereof, can be used to inform more complex
models for classification and characterization, to inform radiologists and clinicians as they begin
to utilize radiomics, and to enhance the general interpretation as statisticians move away from
the “black box models” often used on these complicated feature sets.

5 Conclusion

In this paper, we have proposed a class of robust Bayesian graphical models based on a nonpara-
metric hierarchical prior construction that allows for flexible deviations from Gaussianity in the
distribution of the data. The proposed model is an extension of the t-Dirichlet model presented
in Finegold and Drton (2014), where departure from Gaussianity is accounted for by including
suitable latent variables (divisors) in the sampling model, to allow for skewness. In our proposed
construction, the law of the divisors is described by a hierarchical normalised completely random
measure. In particular, in this paper we have focused on a hierarchical NGG process, yielding to
what we have called a t-HNGG model. The advantage of this choice is twofold: on one side, by
extending the characterization to the NGG process, we induce a more flexible clustering structure
when compared to the Dirichlet process case; on the other side, by allowing for an additional
level of hierarchy in the nonparametric prior setting, we achieve sharing of information across the
data sample. For posterior inference, we have implemented a suitable MCMC algorithm, which is
built upon the generalized Chinese restaurant franchise metaphor to exploit dependency among
the components of each data vector (i.e,. customers seated in the same restaurant).

We have illustrated performances of our proposed methodology on simulated data and on a
case study on numerical features extracted from radiographic image data which can be used to
quantitatively summarize tumor phenotypes, and that are known to show non-Gaussian char-
acteristics. On simulated data, we have shown good recovery of the main features of the data,
such as the graph structure and the precision matrix. Additionally, a comparison with existing
methodologies such as the GLasso and the Bayesian GLasso has shown how these methods are
outperformed by our proposed model in the presence of non-Gaussian data. On the real data, our
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model has resulted in a less sparse graph than those inferred by GLasso and Bayesian GLasso.
Furthermore, the inferred relationships highlighted by our estimated graph have revealed inter-
esting interpretation in terms of important characteristics of the data. These relationships and
dependencies, and lack thereof, can provide valuable information for follow-up classifications and
characterization of radiomics data.
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