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Abstract: Grassland monitoring can be challenging because it is time-consuming and expensive to

measure grass condition at large spatial scales. Remote sensing offers a time- and cost-effective method

for mapping and monitoring grassland condition at both large spatial extents and fine temporal

resolutions. Combinations of remotely sensed optical and radar imagery are particularly promising

because together they can measure differences in moisture, structure, and reflectance among land

cover types. We combined multi-date radar (PALSAR-2 and Sentinel-1) and optical (Sentinel-2)

imagery with field data and visual interpretation of aerial imagery to classify land cover in the Masai

Mara National Reserve, Kenya using machine learning (Random Forests). This study area comprises

a diverse array of land cover types and changes over time due to seasonal changes in precipitation,

seasonal movements of large herds of resident and migratory ungulates, fires, and livestock grazing.

We classified twelve land cover types with user’s and producer’s accuracies ranging from 66%–100%

and an overall accuracy of 86%. These methods were able to distinguish among short, medium, and

tall grass cover at user’s accuracies of 83%, 82%, and 85%, respectively. By yielding a highly accurate,

fine-resolution map that distinguishes among grasses of different heights, this work not only outlines

a viable method for future grassland mapping efforts but also will help inform local management

decisions and research in the Masai Mara National Reserve.

Keywords: remote sensing; synthetic aperture radar; satellite imagery; grasslands; grass height;

land cover

1. Introduction

Grasslands represent one of the Earth’s most common vegetation types [1,2], covering nearly a

fifth of the planet’s land [3] and providing important ecological, economic, and cultural services. They

are responsible for an estimated 16%–17% of global primary production [4–6], serve as hotspots for

floral and faunal biodiversity [7,8], support endemic species [7–9], affect runoff and water quality [10],

and contain up to 30% of the Earth’s total soil carbon, thus reducing greenhouse gas emissions [2,8].

Grasslands are critical to the maintenance of human economies, livelihoods, and cultures, particularly

for low-income and marginalized peoples [8,11]. In 2006, area allocated for livestock grazing covered a

quarter of the Earth’s ice-free land [12]. By supporting livestock, grasslands allow people to produce

high-protein food, such as meat and milk [8], in addition to creating employment opportunities and

generating income [11]. In recent decades, grasslands have suffered severe and increasing degradation;
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between 2000 and 2010, approximately half of global grassland ecosystems underwent degradation,

due primarily to climate change and human activities [13].

The importance of grasslands, paired with their vulnerability to climate change and human activity,

makes their management a high priority. However, monitoring and managing grasslands is challenging.

Field surveys of grass condition and production are costly and difficult to implement at the scale of

large grasslands [14–17]. Remote sensing has great potential for improving grassland monitoring.

While traditionally underutilized, remotely sensed data have been employed in several recent studies

to detect grass cover, biomass, and height in temperate to hyper-arid grazing ecosystems (e.g., [17–25]).

The studies cited here primarily used vegetation indices and fractions derived from data from passive,

optical sensors, most commonly Landsat TM, to investigate correlates of spectral signatures with

biophysical properties of grass, particularly biomass. Marsett et al. [21], Numata et al. [22], and Cimbelli

and Vitale [25] specifically focused on predicting grass height, using Landsat [21,22] or Landsat and

Sentinel [25] data to explain up to 80% of variation in grass height [21]. Only two of the studies cited

here [24,25] used radar data in their analyses. Wang et al. [24] combined multitemporal optical data

with multitemporal radar data collected in the X-band, C-band, and L-band; they described correlations

between data collected via different sensors but did not incorporate field data on land cover. More

recently, Cimbelli and Vitale [25] combined Landsat and Sentinel imagery with field data to predict

grass height at medium resolution, but with limited success.

Although previous work suggests that remote sensing may be applicable to grassland management,

several gaps in our current capabilities are apparent. First, most efforts to map grasslands fail to exploit

the benefits of optical and radar sensor fusion. Second, most of the studies to date have been conducted

using highly homogenous grasslands, such as pastures and prairies [17,19,22–24]. Saltz et al. [18],

Schino et al. [20], Marsett et al. [21], and Cimbelli and Vitale [25], on the other hand, used spatially

heterogeneous study sites, but with varying success in characterizing the biophysical properties of

grass. The mapping algorithm applied to the most heterogeneous of the landscapes (a hyper-arid

erosional cirque in Israel [18]) performed particularly poorly at characterizing plant cover.

Here, we seek to build upon previous work by extending the use of remote sensing in estimating

land cover to include differentiation of discrete grass height classes in a dynamic savanna landscape

representing a mosaic of open grasslands, shrubs, riverine forests, and wetlands. By integrating optical

and radar imagery with a large field dataset, we aimed to produce a current and accurate land cover

map of the Masai Mara National Reserve (henceforth, “the Reserve”) in southwestern Kenya. This

work is unique in three important ways. First, we aim to differentiate among grasses of different

heights, which represent an important component of habitat suitability for various animals (e.g., large

herbivores [26]), among other diverse land cover types in a heterogeneous landscape. Second, our

methods apply a novel fusion of sensor imagery to the classification of land cover within a grassland

ecosystem: PALSAR-2 radar imagery, Sentinel-1 radar imagery, and Sentinel-2 optical imagery. Third,

our resulting land cover map provides a highly accurate, detailed, and novel map of a region that is of

utmost conservation priority because it comprises the natural habitat of an enormously diverse fauna.

2. Background

We employed a combination of multi-date radar (PALSAR-2 and Sentinel-1) imagery and single

date optical (Sentinel-2) imagery. Optical sensors are “passive,” meaning they measure light (visible and

infrared) emitted by the sun that has reflected off the Earth’s surface. Synthetic aperture radar (SAR)

sensors, on the other hand, are “active,” meaning that they emit microwave energy and measure

its backscatter from the Earth’s surface [27]. Microwave energy, unlike visible and infrared light,

penetrates cloud cover, affording radar sensors “all-weather” capability [28].

SAR imagery has been described as a perfect complement to optical imagery for several reasons [24].

First, as active sensors, SAR sensors can collect data at nighttime [27] and are not impeded by cloud cover.

Second, radar and optical sensors collect data in different, complementary bands of electromagnetic
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energy. Unlike reflected light measured by optical sensors, SAR backscatter is affected by standing water,

soil inundation, surface roughness, and plant structure, biomass, and moisture content [24,27,29,30].

SAR sensors emit and detect microwave energy in the L-band (longest wavelength, lowest

frequency), C-band, or X-band (shortest wavelength, highest frequency). The PALSAR-2 sensor

measures backscatter in the L-band, meaning that it penetrates vegetative canopy and thus is sensitive

to soil background, soil moisture, and standing water [26,31]. Co-polarized PALSAR-2 imagery is

particularly useful for detection [30] and differentiation of wetland classes due to an enhanced double

bounce effect from water surface and tree trunks [31]. Cross-polarized PALSAR-2 imagery, on the other

hand, is sensitive to biomass, making it useful for distinction of woody from herbaceous vegetation [32].

The Sentinel-1 sensor measures backscatter in the C-band and provides information about vegetation

structure and texture [33].

3. Methods

3.1. Study Area

The Reserve (1510 km2 [34]) constitutes the northernmost portion of the Serengeti-Mara

ecosystem. The Reserve consists primarily of open, rolling grassland with small patches of riparian

vegetation along rivers and seasonal watercourses. Rainfall occurs bimodally, with most rain falling

November–December and March–May [35]. The Reserve is bounded by the Oloololo Escarpment to

the west and the Serengeti National Park to the south and is bisected north to south by the Mara River.

The area west of the Mara River, known as the Mara Triangle, is managed by the Mara Conservancy,

whereas the land east of the Mara River is managed by the Narok County Government. Due to

differences in management, human disturbance, particularly livestock grazing, has been prevalent on

the eastern side of the park in recent decades, whereas it rarely occurs on the western side.

In 2013, the Serengeti-Mara ecosystem was identified as one of only four remaining strongholds for

carnivore conservation in East Africa [36]. It also seasonally hosts large herds of zebras and wildebeest

migrating north from the Serengeti National Park [37] and southwest from the Loita Plains [38], and it

is inhabited by many species of resident herbivores as well [37]. Altogether, the Masai Mara National

Reserve supports 25% of Kenya’s wildlife, based on estimates from the 1990s [39].

3.2. Remote Sensing Data

We combined multi-date imagery from the PALSAR-2, Sentinel-1, and Sentinel-2 sensors. Image

dates were selected to be coincident with field data collection described in Section 3.3 below. All

imagery was projected to the WGS 1984 Universal Transverse Mercator coordinate system, zone 36S.

Images were stacked and clipped to the geometry of the Reserve boundary.

3.2.1. ALOS-2 PALSAR-2 Radar Imagery

Radar imagery was collected by the PALSAR-2 sensor onboard the Advanced Land Observing

Satellite 2 (ALOS-2) platform. PALSAR-2 (L-band, ~23 cm wavelength) images were recorded in Fine

Beam Dual (FBD) mode, meaning that the sensor transmitted the signals horizontally and received them

both horizontally (HH, known as co-polarization) and vertically (HV, known as cross-polarization).

These data were collected at high resolution (10 × 10 m).

PALSAR-2 imagery was captured on two dates, 18 May 2018 and 13 July 2018. The imagery was

collected in ascending orbit at 28.6◦ (all incident angles given apply at the center of the scene but

vary across the extent of the scene). Only one frame was required to cover the entire extent of the

study area. Images were calibrated to sigma-naught. We used a 3 × 3 median filter to account for

speckle, the coherent addition of backscatter from multiple scatterers in the same resolution cell, which

is inherent to all SAR imagery [27,28].
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3.2.2. Sentinel Radar and Optical Imagery

Additional radar imagery was collected by the Sentinel-1 satellite constellation, operated by the

European Space Agency (ESA). Sentinel-1 (C-band, ~5.5 cm wavelength) images were obtained in

dual-polarization mode, meaning that signals were transmitted vertically and received both vertically

(VV) and horizontally (VH). These data were collected in high-resolution mode (10 × 10 m).

Owing to the seasonal variation in the herbivore community composition, herbivore density, and

rainfall, the Reserve is highly dynamic and surface features such as soil inundation and vegetative

cover often change rapidly within a year. Therefore, it was critical to obtain satellite imagery and field

data that were collected during the same time period. This guided our selection of Sentinel-1 data

as the complement to the PALSAR-2 imagery. Sentinel-1 imagery was captured on two dates, 7 June

2018 and 19 June 2018. The imagery was collected in ascending orbit at an incident angle of ~33◦.

One frame was sufficient to cover the entire study area. Images were calibrated to sigma-naught and

filtered using a 3 × 3 median filter.

Optical imagery was collected by the Sentinel-2B satellite, also operated by the ESA. Sentinel-2

data are collected in 13 spectral bands, ranging from ~443 nm – ~2190 nm. One frame of Sentinel-2

Level-1C top-of-atmosphere reflectance imagery was acquired for a single date, 11 June 2018. We

planned to use imagery captured in July 2018 in order to include optical data coincident with the

13 July PALSAR-2 data, but an image collected early in the month was obscured by cloud cover, and

subsequent image captures were collected while prescribed burns were occurring within the Reserve.

We did not include the burned optical imagery in our analysis as our SAR imagery was collected before

the burns, and our field verified sites did not include any already burned areas. Burned grasslands

can experience enhanced regrowth and typically recover very rapidly. The visible and near-infrared

bands (collected at 10 m resolution) along with vegetation red edge and shortwave infrared bands

(collected at 20 m resolution) were used in this study. The bands collected at 20 m resolution were

resampled to 10 m resolution using a nearest neighbor technique.

3.3. Training and Validation Data

Field data were collected throughout the Reserve between 4 June and 28 July 2018 to generate a

supervised dataset for land cover classification (a blank field data collection sheet is available in the

supplementary materials; Table S1). This time period did not overlap with either of the two rainy

seasons and occurred prior to the arrival of the migratory herds of large herbivores. Therefore, grass

height is unlikely to have changed substantially over the 54-day period of data collection. Our goal

was to identify a minimum of six locations per land cover class (see Table 1 for definitions of land

cover classes considered) to allow for a minimum of four training data and two validation data per

class. We based our operations at the two field sites of the Mara Hyena Project (UTM coordinates:

751839 E, 9837939 N, and 724390 E, 9845214 N), and we therefore primarily collected data within the

study areas monitored by the Mara Hyena Project. Specifically, we used ESRI ArcGIS to randomly

generate 150 locations in the territories of three different hyena clans, covering a total of 71 km2 west of

the Mara River and a 61 km2 area east of the Mara River. Random selection of locations was inefficient

at identifying rare land cover classes, such as wetlands, water, barren ground, and Acacia-studded

grassland (henceforth, shortened to “grass Acacia”). Therefore, we supplemented our field data by

opportunistically sampling these rare land cover types when we encountered them in the field (this was

also done by Bourgeau-Chavez et al. [27]).

At each field location, GPS (model: Garmin GPSMAP 78) coordinates were recorded using

the averaging feature to improve horizontal accuracy and geotagged photographs were taken in

the four cardinal directions and at nadir. For each sample area, we recorded the extent of the

sample area, the land cover class, the dominant vegetation type, the approximate average height

of the dominant vegetation, the percentage of vegetative cover, the distribution of the vegetation

(homogeneous, heterogeneous, or patchy), and water inundation of the soil.
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Table 1. Description of each land cover class mapped.

Class Description

Barren

Exposed light soil (sand), red soil (murram), dark soil (black cotton), and/or rock. Light soil
is often exposed along rivers or dry creek beds or in transitional areas. Red soil is often
exposed in murram quarries, on roads and airstrip runways, and in transitional areas.
Dark soil is often exposed in overgrazed areas.

Riverine forest
Characterized by broadleaf evergreen trees and dead forests along rivers/streams. Woody
vegetation must have a minimum height of four meters.

Upland forest
Characterized by broadleaf evergreen trees and dead forests occurring away (e.g., upland)
from rivers/streams. Woody vegetation must have a minimum height of four meters.

Grass Acacia
Acacia-studded grasslands. Grass is the dominant vegetation type, followed by
shrubs/trees of the genus Acacia. Acacia crown closure constitutes a minimum of 10% cover.

Grass Balanites
Balanites-studded grasslands. Grass is the dominant vegetation type, followed by Balanites
trees. Balanites crown closure constitutes a minimum of 10% cover.

Tall grass Grass plains where grass is 75 cm in height or taller.

Medium grass Grass plains where grass is between 30 and 75 cm in height.

Short grass Grass plains where grass is 30 cm in height or shorter.

Shrub
Patches of shrubs other than Acacia, typically dominated by shrubs of the genera Croton or
Euclea.

Water
Areas persistently inundated in water that do not typically show annual drying out, such as
streams, canals, rivers, lakes, estuaries, reservoirs, impoundments, and bays. Water depth
is typically 0.5 m or deeper, so surface and subsurface aquatic vegetation persistence is low.

Emergent
wetland

Wetlands characterized by emergent or floating vegetation, including lily pads, cattails,
sedges, and rushes. Some submergent vegetation may occur as well. The water table is at
or near the earth’s surface. Seasonal drying is variable within this class of wetlands.

Wet meadow
Wetland characterized primarily by inundated grasses and sedges along with some cattails
and rushes. Following monsoons, the water table is at or near the earth’s surface. Seasonal
inundation and or drying are common phenomena.

We collected field data at 233 locations. Polygons representing field data were hand-digitized

using Google Earth Pro. Each polygon was drawn to include the GPS coordinates collected in the

field. In some cases, these polygons were later reshaped to increase homogeneity within polygons

to circumvent problems induced by spatial misalignment between sensors (Figure 1) and to avoid

mixed pixel effects in dynamic areas. Some large original field site polygons were split to form two or

more smaller, more homogeneous polygons in cases where the site was split by roads or the Mara

River. A small number of polygons were deemed poor quality (e.g., not representative of a single

land cover type, too heterogeneous) or were too small to avoid problems caused by mixed pixels or

sensor misalignment and were therefore deleted. In total, we used 190 polygons based upon field

observations. Of the field-derived training polygons, 136 were used for training and 54 were reserved

for validation. Additionally, we added polygons for rare but easily detectable classes (e.g., water) from

photo interpretation using both aerial imagery and our multi-sensor composite stack imagery; these

points were not visited in the field. A total of 113 polygons were added based on visual interpretation of

imagery. Of the 113 polygons added, 32 (28%) were upland forest, 20 (18%) were water, 13 (12%) were

riverine forest, 8 (7%) were grass Balanites, 4 (4%) were grass Acacia, and the remaining 36 (32%) were

wet meadow, emergent wetland, shrub, and barren. A total of 303 training and validation polygons

collectively covering approximately 3.5 km2 were used for the final classification and validation

(Table 2).
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Figure 1. Great care had to be taken in delineating supervised data (polygons) to account for spatial

misalignment of data collected by different sensors. Here, a patch of Euclea shrubs is shown using

(a) Sentinel-2 band 4 (image captured 11 July 2018) and (b) Sentinel-1 cross-polarization (VH; image

captured 13 July 2018). We aimed to limit the polygons to pixels where the patch, or feature, of interest,

as shown by each sensor, overlapped.

Table 2. Summary of supervised data. Field data (FD) polygons were visited in research vehicles

(ground-truthed). 190 of the original 233 FD polygons were included in the final training dataset.

Polygons added via visual interpretation (VI) were not ground-truthed, but rather were identified via

visual interpretation of remotely sensed imagery (PASLAR-2, Sentinel-1, and Sentinel-2) only.

Training Polygons Validation Polygons

FD VI Total Pixels
Area
(m2)

FD VI Total Pixels
Area
(m2)

Barren 18 4 22 763 76,300 5 0 5 159 15,900
Riverine forest 6 13 19 2635 263,500 4 0 4 133 13,300
Upland forest 0 29 29 4161 416,100 5 3 8 727 72,700
Grass Acacia 5 4 9 250 25,000 2 0 2 50 5000

Grass Balanites 7 8 15 7303 730,300 3 0 3 1190 119,000
Tall grass 25 0 25 5462 546,200 6 0 6 959 95,900

Medium grass 30 0 30 2311 231,100 7 0 7 485 48,500
Short grass 18 0 18 1440 144,000 4 0 4 321 32,100

Shrub 18 7 25 1668 166,800 6 0 6 369 36,900
Water 4 20 24 799 79,900 5 0 5 170 17,000

Emergent wetland 1 11 12 1371 137,100 3 0 3 141 14,100
Wet meadow 4 14 18 1675 167,500 4 0 4 176 17,600

Grand Total 136 110 246 29,838 2,983,800 54 3 57 4880 488,000

3.4. Supervised Land Cover Classification

Land cover across the Reserve was classified using the process depicted in Figure 2. We first

randomly partitioned our supervised data into two categories, a training set and a validation set.

Polygons representing approximately 80% of the area for each class were included in the training

set (Table 2), while polygons accounting for the remaining 20% were reserved as an independent

validation set. Polygons representing sites that were visited during fieldwork were prioritized to be

included in the validation data set. Supervised data added via visual interpretation of aerial imagery

but not verified via ground-truthing were only used as validation data in cases where the field verified

polygons did not reach the 20% threshold. This was done to ensure that validation used field-verified

data whenever possible. In the final classified map, only the upland forest class contained polygons

that were used as validation but were not visited in the field.
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Figure 2. An overview of the land cover classification process. We reserved 20% of the polygons

from the supervised dataset for validation, prioritizing field-verified sites. These validation polygons

were not used in creating the Random Forests classifier. The other 80% of the supervised data and the

multi-sensor composite stack imagery were input into a Random Forests classifier. The validation data

were then used to construct a confusion matrix to assess accuracy. Visual inspection of the resultant

land cover map and the confusion matrix informed subsequent refinement, addition, and deletion of

supervised data and combination of classes.

The training dataset and imagery stack were used to predict land cover for each pixel in the study

area using the machine learning algorithm Random Forests [40,41] in R version 3.6.1 [42]. The training

data were selected from the training data polygons by selecting 100 random pixels from each land

cover class. Random Forests uses both a random sample of the training data and a random subset of

predictors (image bands) to create a decision tree that best classifies the data. This is repeated multiple

times until a “forest” of decision trees is generated. Each decision tree generates a “vote” for the most

likely land cover class for the given pixel, and the pixel is assigned to whichever land cover class

receives the most votes. We used 500 trees in our classifier and used the default node size of one. The

Random Forests classifier was deemed optimal for this study based on its high classification accuracy

and relatively low processing time. Additional benefits of Random Forests include its insensitivity

to missing data [29], such as pixels obscured by cloud cover [31] and nonpredictive input data, its

capability for classifying datasets with many variables and relatively few training data [29,41], and the

fact that it is easy to use [40] and allows for parallel processing [41].
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After classification, the validation data were compared to the predictions of Random Forests

to assess accuracy. The overall accuracy is the total number of correctly identified validation pixels

divided by the total number of validation pixels. Within each land cover type, the producer’s accuracy

is the number of pixels correctly identified as the given land cover type divided by the total number of

validation pixels of that class. In other words, we determined the percentage of pixels in a given class

that were correctly identified. As producer’s accuracy increases, omission error decreases. The user’s

accuracy is derived by dividing the number of pixels correctly identified as a given land cover type by

the total number of pixels assigned to that class, whether they were correctly identified or not. In other

words, for each given class, we determined the probability that a pixel identified as that class truly

does belong to that class. User’s accuracy, also known as reliability, increases as commission error

decreases. Results are presented in an error, or confusion, matrix (Table 3). Our mapping goal was to

achieve a minimum of 75% producer’s and user’s accuracies for each land cover type and an overall

accuracy higher than 75%.

Based on the resultant map and confusion matrix, additional training polygons were added or

removed via visual interpretation of high-resolution satellite imagery. A few field data had to be

removed as the area of the land cover was too small to cover the minimum mapping area. Field-verified

polygons that had been mapped using aerial imagery to define boundaries had to be buffered inward

to avoid having mixed pixels within the scale of our 10 m resolution imagery. Additional riverine

and upland forest polygon classes had to be added with visual interpretation of aerial imagery. After

revision, data were once again assigned to training or validation data sets (prioritizing field-verified

polygons for validation), and the Random Forests algorithm was run again. We aggregated the Croton

shrub and Euclea shrub classes into a single shrub class.

Between iterations of Random Forests, if a class received additional training data (i.e., from visual

interpretation), then the polygons in that class were once again randomly split. Therefore, for the

classes requiring additional training polygons, validation data in the final classification may have been

used in a prior run as training data. The most important classes of grass height were not affected, as

we could not use visual interpretation. In the final classification iteration, we utilized a new image

stack with different dates designed to avoid confusion with the burned areas. Given the change in

predictor variables, we believe the final run can be considered independent of previous runs.
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Table 3. Confusion (i.e., error) matrix for land cover classification of the Masai Mara National Reserve. Numbers represent pixels (10 × 10 m each). Numbers in gray

cells represent pixels from the validation dataset that were correctly identified by the Random Forests classifier. Numbers falling outside the gray cells represent

misclassified pixels.

Classified True Land Cover

Land Cover
Barren

Riverine Upland Grass Grass Tall Medium Short
Shrub Water

Emergent Wet
Sum Commission

User Acc.

Forest Forest Acacia Balanites Grass Grass Grass Wetland Meadow

Barren 94 0 0 0 0 0 0 0 0 1 0 2 97 3% 97%
Riverine forest 0 79 7 1 0 0 0 0 0 0 1 1 89 11% 89%
Upland forest 0 10 87 0 0 0 0 0 2 0 0 0 99 12% 88%
Grass Acacia 0 0 0 82 5 1 0 0 10 0 1 9 108 24% 76%

Grass Balanites 0 0 0 0 94 1 0 0 0 0 0 0 95 1% 99%
Tall grass 0 0 0 4 1 82 7 2 1 0 0 0 97 15% 85%

Medium grass 0 0 0 2 0 7 88 10 0 0 0 0 107 18% 82%
Short grass 5 0 0 0 0 7 6 87 0 0 0 0 105 17% 83%

Shrub 0 12 15 0 0 1 0 0 81 0 13 0 122 34% 66%
Water 0 0 0 0 0 0 0 0 0 102 0 0 102 0% 100%

Emergent wetland 0 4 0 6 0 0 0 0 0 0 83 3 96 14% 86%
Wet meadow 0 0 0 8 0 0 0 0 0 0 3 83 94 12% 88%

Sum 99 105 109 103 100 99 101 99 94 103 101 98
Omission 5% 25% 20% 20% 6% 17% 13% 12% 14% 1% 18% 15%
Prod. Acc. 95% 75% 80% 80% 94% 83% 87% 88% 86% 99% 82% 85% 86%
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4. Results

We combined a 10 m resolution imagery stack (dual date PALSAR-2, dual date Sentinel-1, and

single date Sentinel-2) with training and validation data to assign land cover of the Masai Mara

National Reserve using a Random Forests classifier. The resultant map (Figure 3) had an overall

accuracy of 86%. The producer’s accuracies for individual land cover classes ranged from 75% to 100%

and the user’s accuracies ranged from 66% to 100% (Table 3). This map will be made publicly and

freely available as a Tagged Image File Format, compatible with ArcGIS and QGIS, via the Michigan

Tech Research Institute (Ann Arbor, MI, USA) website.

 

 

 
Figure 3. Land cover map of the Masai Mara National Reserve, with an overall accuracy of 86%.

Recall that the producer’s accuracy is the likelihood with which a validation pixel for a given

class was correctly classified, whereas the user’s accuracy is the likelihood that a pixel assigned to a

given class truly represents that class. The highest class-level accuracy was obtained for water, such

as permanent water holes and rivers, which had producer’s and user’s accuracies of 99% and100%,

respectively. Most of the observed confusion occurred between riverine forest, upland forest, shrub,

and grass Acacia, but this error was not substantial; this confusion increased class-level omission error

by a maximum of 21% (riverine forest) and commission error by a maximum of 22% (shrub). Not

surprisingly, medium grass had the lowest user’s accuracy (82%) of the grass heights due to confusion

between tall and short grasses. That is, slightly more confusion occurred between tall and medium

grass and between medium and short grass, than between tall and short grass. The three grass height

land covers were all identified with accuracies of 82% or higher, with accuracies as high as 85% (user’s)

and 88% (producer’s) obtained (Table 3).

Variable importance of our image bands was quantified using the mean decrease in accuracy

metric (Figure 4) [41]. We looked at the importance of all the image bands to the overall classification,

and we also looked at the importance of bands to classifying the three grass height land cover types.

Values represent the loss in out-of-bag classification accuracy for each input band if that band had been

excluded or permutated. Cross-polarized backscatter from L-band PALSAR-2 collected on 13 July 2018

was the most important band for the full classification as well as for the grass classes individually. The

cross-polarized component of radar backscatter is typically due to significant volume scattering and
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is especially sensitive to biomass, so the importance of the variable for discriminating grass height,

shrub, and forest is not surprising. Sentinel-2 red edge bands were also important, which highlights

the strength of those bands for distinguishing vegetation types. Of some interest is the relatively low

importance of C-band Sentinel-1 data. Cimbelli and Vitale [25] also found Sentinel-1 to have limited

value in assessing grass height in a study region in Italy.

 

 

 

Figure 4. Mean Decrease Accuracy for all classes (black), short grass (green), medium grass (yellow),

and tall grass (blue).

The most common land cover across the Reserve was tall grass (31.0%), followed by medium

grass (19.7%). Short grass covered 10.19% of the study area, similar to grass Acacia (12.0%), grass

Balanites (11.0%), and shrub (8.8%) (Table 4). Collectively, grass constituted 60.9% of the entire study

area. The rarest classes were water (0.3%), followed by wetlands (1.3% emergent wetland and 1.1%

wet meadow), and forests (1.1% riverine forest and 0.9% upland forest). Visual inspection of the

map (Figure 3) corroborates our personal observations that upland forest primarily occurs along the

Oloololo Escarpment, which runs along the western boundary of the Reserve, atop inselbergs, and

sometimes on hills, particularly those with human settlements, including tourist lodges. Riverine

forest is found along the Mara River, with some also appearing along the Talek River and other small

rivers. Shrubs were over four times as widespread as riverine and upland forest combined. Also

consistent with our personal observations, Balanites trees appeared to occur more densely west of the

Mara River than east, specifically immediately east of the Oloololo Escarpment (Figure 3).

Wetlands occur infrequently throughout this habitat, comprising only 2.4% of the entire Reserve.

Many of the existing wetlands (especially wet meadow) occurred west of the Mara River, in the Mara

Triangle. This too is consistent with our personal observations.
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Table 4. Total area and percentage of Masai Mara National Reserve covered by each land cover class,

based on the output of Random Forests.

Land Cover Total Area (km2) Percentage of Study Area

Barren 45 3%
Riverine forest 18 1%
Upland forest 14 1%
Grass Acacia 191 12%

Grass Balanites 176 11%
Tall grass 496 31%

Medium grass 315 20%
Short grass 163 10%

Shrub 141 9%
Water 4 < 1%

Emergent wetland 20 1%
Wet meadow 17 1%

5. Discussion

Our land cover classification method proved highly effective in this heterogeneous and temporally

dynamic ecosystem. Excitingly, this method was successful in differentiating grasses of different

heights, which, to our knowledge, has not been previously achieved in such a diverse landscape mosaic.

A mapping technique with this capability is particularly important for an area like the Masai Mara

National Reserve, which is composed primarily of grasslands (83.8% of the area is covered by short,

medium, and tall grass as well as grass Acacia and grass Balanites).

Visual inspection of our map (Figure 3) suggests several differences between the Mara Triangle

(west of the Mara River), which is managed by the Mara Conservancy, and the portion of the Reserve

managed by the Narok County government (east of the Mara River). Some of these differences may be

due to differences in management, i.e., active vs. passive management of livestock grazing within

the Reserve. Within the eastern side, progression from south to north (e.g., towards the northern

boundary of the Reserve) coincides with a transition from tall to medium to short grass and sometimes

to large patches of barren ground. That is, grasslands in this region appear to diminish with increasing

proximity to the northern boundary. The southern boundary of the Reserve is the Kenyan/Tanzanian

border, beyond which lies the Serengeti National Park. Beyond the northern boundary, on the other

hand, some land is protected whereas other areas are not. For instance, the communities of Talek

and N’Tipiliguani, which lie immediately north of the Reserve, have developed rapidly, leading to

a fivefold increase in illegal livestock grazing in the park between 2008 and 2015 [43,44]. This could

potentially explain the south–north transition in grass height and cover.

However, some differences in land cover between the western and eastern sides of the park are

more likely attributable to naturally occurring topographic variation. For example, the Mara Triangle

seems to contain higher proportions of wetlands than the rest of the Reserve. This may in part be

attributed to the higher rainfall the Mara Triangle receives compared to the east side of the Reserve

due to local precipitation patterns created by the Lake Victoria convergence zone [45]. Additionally,

the Mara Triangle is more densely populated by Acacia and Balanites trees than is the area east of the

Mara River.

Although we consider this landscape to be a savanna–woodland mosaic, it is worth noting that

grass is far more common than woody vegetation. Open grasslands constitute the majority of the

entire Reserve (60.9%), followed by grasslands studded with sparse Acacia and Balanites (23.0%), and

then shrubs (8.8%). Forests constitute only 2.0% of land cover within the Reserve. Historically, these

grasslands have been maintained by frequent fire disturbance and uprooting of woody vegetation by

elephants [46]. The frequent resetting of the successional clock by elephants and fires would explain

why trees are less common than shrubs, which in turn are less common than grasses. Riverine forest is

found primarily along rivers, particularly the Mara River. Upland forest is primarily distributed along
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the top of the Oloololo Escarpment but is also commonly found atop inselbergs. Inselbergs, which are

hills or small mountains that rise abruptly, typically consisting of granite or gneiss rock [47] (Figure 5),

in the Reserve are typically topped by patches of shrubs or trees (Figure 6). Generally, the vegetation

on inselbergs is distinct from that of the surrounding land cover due to harsh edaphic (i.e., amount of

soil cover) and microclimatic (i.e., evaporation rate and degree of insolation) conditions [47]. Thus,

inselbergs clearly contribute to the Reserve’s diversity of land cover and vegetation types.

 

 

Figure 5. Inselbergs typically occur as abruptly rising, solitary, monolithic hills or mountains. They are

particularly common in the tropics and subtropics [47]. This photo was taken in the southern Mara

Triangle, where inselbergs are quite common.

 

 
Figure 6. A cluster of inselbergs in the southwestern Mara Triangle, on which rock and dense woody

vegetation occur.

Although our overall and class-level accuracies were consistently high, the confusion between

shrub and tree cover is worth mentioning. That is, riverine forest, upland forest, grass Acacia, and

shrub were sometimes confused, resulting in a 5% decrease in the overall accuracy (Table 3). In future

applications, the addition of lidar data (aerial or space-based) to measure vegetation height has great
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potential to help differentiate forests and shrubs and perhaps even grass heights. The inclusion of a

texture metric might also resolve some of this confusion. Grass Acacia and grass Balanites are composed

of flat grasslands with sparse tall trees and thus should be very rough-textured. Forests consist of trees

(canopy layer) and shrubs (understory) of various heights, so they should also be somewhat rough in

texture. Shrub patches, on the other hand, are relatively homogeneous in height and therefore should

be relatively smooth in texture.

We hope that this map will prove useful for ecological research within the Reserve. The Reserve

is home to a plethora of research projects, focusing on spotted hyenas (e.g., [48]), lions (e.g., [49]),

cheetahs (e.g., [50]), baboons (e.g., [51]), Martial Eagles (e.g., [52]), ungulates (e.g., [44]), and river

ecology (e.g., [53]), to name a few. It should also be useful to managers in the Masai Mara. Overgrazing

by livestock represents a serious and ongoing threat to this ecosystem. This map may inform

management decisions by identifying large patches of barren ground or short grass, which may

represent problem areas warranting allocation of management efforts. Furthermore, application of our

methods using optical and radar imagery collected over time may represent a highly accurate, feasible,

and cost-effective method for monitoring grassland condition.

These methods should also be applicable to other savanna–woodland landscapes in East Africa.

They have proven effective, despite the spatially heterogeneous and temporally dynamic nature of

this ecosystem. Furthermore, they are capable of differentiating short, medium, and tall grass. Open

grasslands comprise well over half of this study area, so differentiating grass height is important for

delivering a detailed, informative land cover map.

There are several notable advantages afforded by these methods. First, the combination of

PALSAR-2, Sentinel-1, and Sentinel-2 yields data across a wider range of the electromagnetic

spectrum [26,27,29,30] than radar or optical imagery could separately, which provides more unique

spectral signatures corresponding to different land cover types. The diversity of bands in which

radiation is measured allows for inference about diverse features, from soil inundation to vegetation

canopy structure [27,28]. Second, the use of multidate data yields valuable information, particularly in

a temporally dynamic landscape such as the Masai Mara National Reserve. For example, wet meadows

are prone to seasonal drying, and therefore single-date imagery could falsely classify wet meadow

as grassland or permanent water. Incorporation of imagery from a second date can reduce errors in

classification of seasonally dynamic land cover classes. Third, the Random Forests classifier is well

adapted for this application, due to its high classification accuracy, insensitivity to missing data [29],

ability to function with relatively few training data [29,41], ease of use, and low processing time [40].

Finally, using an independent validation data set allows for accuracy measurement and identification

of sources of confusion.

Additional work is needed to incorporate the temporal effects of wildfire on grass heights. We

know a portion of our map changed very rapidly during our field observation period due to fire. None

of our field data were gathered after burning, but some training sites did burn after our field visits.

Therefore, we chose to map the vegetation before the fire occurred, but it is of great importance to

remember the product is a snapshot of conditions over a relatively short temporal period.

This method should also be applicable in classifying land cover in mixed grassland systems beyond

East Africa. Remote sensing may represent a highly effective, logistically feasible, affordable method

to monitor grassland conditions, which can inform effective management. The method developed

and assessed in this paper demonstrates the utility of remotely sensed imagery in differentiating

grass height, even within a spatially diverse and temporally dynamic ecosystem. Future work should

seek to expand the application of this method to other mixed grassland ecosystems, explore imagery

sources which are more accessible, and test the feasibility of developing algorithms that are not as

heavily reliant on expensive field observations. If algorithms do require field data, it would be useful

to determine how much data will be needed and for what temporal scales the maps are useful.
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6. Conclusions

This study represents the first study to our knowledge to use remotely sensed data to

accurately classify discrete classes of grass height among other diverse land cover types in a tropical

savanna-woodland landscape mosaic, which is highly spatially heterogeneous and temporally dynamic.

We combined multi-date radar imagery (PALSAR-2 and Sentinel-1) and optical imagery (Sentinel-2)

from a single season with training data from ground-truthing (i.e., field data) and image interpretation

to assign land cover at a fine spatial resolution (10 × 10 m) using a machine learning algorithm, Random

Forests [40]. We reserved 20% of our supervised data for validation, allowing us to assess and report

user’s, producer’s, and overall accuracy and subsequently add and refine supervised data to improve

classification in an iterative process.

The resultant map was highly accurate, achieving user’s and producer’s accuracies ranging from

66%–100% and an overall map accuracy of 86%. In addition to classifying a wide variety of land cover

types, from open water to forests, we were able to distinguish discrete grass heights (short, medium,

and tall) with user’s accuracies of 83%, 82%, and 85%, respectively. Furthermore, confusion between

grassland and non-grassland land cover occurred at low rates of 1% (omission) and 4% (commission).

Overall, most of the confusion in classification occurred between shrubs, forests, and grasslands dotted

with Acacia trees or shrubs. However, confusion was still low.

We expect that this fine-resolution, highly accurate land cover map of an ecologically important

protected area will inform wildlife managers and allow researchers to address new questions regarding

habitat preference and land cover change over time. Furthermore, these methods can be repeated or

expanded upon for implementation in other mixed grassland ecosystems.
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