

Early life relationships matter: Social position during early life predicts fitness among female spotted hyenas

Julie W. Turner ^{*a,b,c}, Alec L. Robitaille ^c, Patrick S. Bills ^d, Kay E. Holekamp ^{a,b}

^a Michigan State University Department of Integrative Biology, 288 Farm Ln. rm. 203, East Lansing, MI 48824

^b Ecology, Evolutionary Biology, and Behavior, 293 Farm Ln. rm. 103, East Lansing, MI 48824.

^c Memorial University of Newfoundland Department of Biology, 232 Elizabeth Ave., St. John's, NL A1B3X9, Canada.

^d Michigan State University Institute for Cyber-Enabled Research, 567 Wilson Rd. rm. 1440,
East Lansing, MI 48824.

*Corresponding author: julwturner@gmail.com

Running headline: Early life relationships matter

Summary

1. How social development in early life affects fitness remains poorly understood.
2. Though there is growing evidence that early-life relationships can affect fitness, little research has investigated how social positions develop or whether there are particularly important periods for social position development in an animal's life history. In long-lived species in particular, understanding the lasting consequences of early-life social environments requires detailed, long-term datasets.
3. Here we used a 25-year dataset to test whether social positions held during early development predicted adult fitness. Specifically, we quantified social position using

24 three social network metrics: degree, strength, and betweenness. We determined the
25 social position of each individual in three types of networks during each of three stages of
26 ontogeny to test whether they predict annual reproductive success (ARS) or longevity
27 among adult female spotted hyenas (*Crocuta crocuta*).

28 4. The social positions occupied by juvenile hyenas did predict their fitness, but the effects
29 of social position on fitness measures differed between stages of early development.

30 Network metrics when individuals were young adults better predicted ARS, but network
31 metrics for younger animals, particularly when youngsters were confined to the
32 communal den, better predicted longevity than did metrics assessed during other stages of
33 development.

34 5. Our study shows how multiple types of social bonds formed during multiple stages of
35 social development predict lifetime fitness outcomes. We suggest that social bonds
36 formed during specific phases of development may be more important than others when
37 considering fitness outcomes.

38
39 **Keywords:** Longevity, Ontogeny, Reproductive success, Social development, Social networks,
40 *Crocuta crocuta*

41
42 **Introduction**

43 The early social environments of both human and non-human animals affect later-life
44 phenotypes and fitness outcomes (e.g. Belsky, Steinberg & Draper 1991; Kasumovic 2013).
45 Much empirical evidence shows that favorable early environments, ranging from quality of
46 parental care to the general physical and social environment, improve fitness, whereas
47 unfavorable environments reduce it (e.g. Lee *et al.* 2013; Douhard *et al.* 2014; Leris & Reader

48 2016). However, despite a growing understanding of the relationship between early social
49 relationships and adult traits (e.g. Silk 2003; Lee *et al.* 2013; Kurvers *et al.* 2020), the long-term
50 fitness consequences of an individual's early social network, and its position within that network,
51 have seldom been explored. Data from the few studies in which these social metrics have been
52 investigated suggest that early-life social networks can have important fitness consequences. For
53 instance, early and adult social environments of Alpine marmots (*Marmota marmota*) both
54 independently and additively affect the longevity and reproductive success of dominant females
55 (Berger *et al.* 2015). Juvenile social positions in various bird species directly and indirectly
56 influence adult reproductive success (McDonald 2007; Royle *et al.* 2012; Szipl *et al.* 2019). The
57 early social environment of individuals has also been linked to learning propensity across fish
58 (Taborsky *et al.* 2012; Leris & Reader 2016), birds (White, Gersick & Snyder-Mackler 2012;
59 Langley *et al.* 2020), and mammals (Chiyo, Moss & Alberts 2012). Furthermore, dispersal
60 tendencies often depend on how embedded individuals are in their networks across taxa
61 (Blumstein, Wey & Tang 2009; Nicolaus *et al.* 2012; Godfrey *et al.* 2014). Despite what is
62 known regarding social networks and fitness, the link between early-life social position and
63 lifetime fitness remains poorly understood.

64 In long-lived species, the more complex the social environment, the more likely it is that
65 variations in social development may have subtle, far-reaching consequences. However, some
66 stages of development may be more important than others with respect to their influence on adult
67 traits (Bateson 1979). As an extreme example, experimental studies have shown that there are
68 sensitive periods during early life for social development (Harlow & Harlow 1962; Bateson &
69 Hinde 1987; Bateson & Gluckman 2011). Rhesus macaques (*Macaca mulatta*) that fail to
70 develop secure attachments during infancy experience negative long-term health consequences

71 for which later normal socialization cannot compensate (Conti *et al.* 2012). Even among free-
72 ranging adult mammals, variation in social capital, which includes an individual's real or
73 perceived social resources, is increasingly linked to differential fitness outcomes; although, these
74 depend on the stage of adulthood under consideration (Almeling *et al.* 2016; Brent, Ruiz-
75 Lambides & Platt 2017; Ellis *et al.* 2017). The transition from juvenile to adult is an important
76 stage of development in many species, perhaps because it represents a last chance to modify the
77 phenotype in response to the current environment before reaching adulthood (Sachser, Kaiser &
78 Hennessy 2013). Although studies such as those cited above focus on a single stage of
79 development during infancy or adolescence, or on multiple stages during adulthood, we know of
80 no prior research assessing multiple stages of social development from infancy through
81 adulthood and their respective influences on adult traits among free-living animals. The dearth of
82 such studies may be due in part to the fact that there are seldom obvious ways in which to
83 identify discrete developmental stages in most gregarious vertebrates.

84 Here, we use social network analysis (SNA) and a long-term dataset collected from free-
85 living spotted hyenas (*Crocuta crocuta*) to test how social position, indicated by network metrics
86 describing an individual's relationships with its group-mates, during each of three life stages
87 predict their fitness. Spotted hyenas offer a particularly good model system in which to use SNA
88 to explore social development and its influence on fitness. They live in complex fission-fusion
89 societies, called clans, in which individuals are often found alone or with small subgroups of
90 clan-mates (Smith *et al.* 2008), so their tendency to associate with particular group-mates can be
91 measured directly, as can their tendency to spend time alone. In contrast to most other mammals
92 living in complex societies, spotted hyenas also advance through life-history stages that are
93 clearly bounded by unambiguous milestones, such as cessation of dependence on dens for shelter

94 (Holekamp & Smale 1998). The discrete developmental stages in the life histories of spotted
95 hyenas allow us to document network features separately in each stage of life and assess their
96 effects on fitness.

97 Each clan of spotted hyenas is structured by a linear dominance hierarchy in which adult
98 females and their offspring dominate breeding males (Frank 1986a; Holekamp *et al.* 2012).
99 Hyena dominance rank determines priority of access to food, so rank has profound effects on
100 fitness measures, including both longevity and reproductive success (e.g. Holekamp, Smale &
101 Szykman 1996; Höner *et al.* 2010; Swanson, Dworkin & Holekamp 2011). Young hyenas of
102 both sexes acquire dominance ranks in their natal clan immediately below those of their mothers
103 by a protracted learning process during the first two years of life; an individuals' dominance rank
104 is not fully learned until it is around 18 months old (Holekamp & Smale 1991; Smale, Frank &
105 Holekamp 1999), which suggests that social interactions may be less strongly influenced by
106 dominance rank during early life than during later life stages (Turner, Bills & Holekamp 2018).
107 Most male spotted hyenas disperse from their natal clans after puberty, whereas females are
108 philopatric (Smale, Nunes & Holekamp 1997; Höner *et al.* 2010).

109 Our 25-year dataset enabled us to inquire whether early-life social position has long-term
110 fitness consequences for female hyenas. Furthermore, we inquired whether social network
111 metrics assessed during one stage of development have more important fitness consequences
112 than those assessed during other developmental stages. We know that dominance rank and
113 maternal effects can have lasting consequences for cub survival and for dispersal success of
114 males in this species (Holekamp *et al.* 1996; Watts *et al.* 2009; Höner *et al.* 2010), so we
115 controlled for rank in all our analyses and predicted that dominance rank would be positively
116 related to both reproductive success and longevity. We have also documented dramatic changes

117 in the social networks of individuals over the course of ontogeny that are largely independent of
118 dominance rank in this species (Turner *et al.* 2018). Therefore, we hypothesized that social
119 position measured during different stages of development would differentially predict fitness
120 among adult female spotted hyenas. Specifically, we predicted that being more central and
121 having stronger relationships would positively influence adult reproductive success and
122 longevity; these metrics indicate that the individual has more social capital or support, which has
123 been linked to adult fitness outcomes in hyenas and other species (Silk *et al.* 2010; Brent *et al.*
124 2011; Vullioud *et al.* 2018). Furthermore, because den-dwelling hyena cubs have no control over
125 which group-mates visit the den, and thus with which group-mates they can associate, we
126 anticipated that network metrics measured during this stage of development would be less
127 effective predictors of fitness than those measured in later life stages when hyenas are
128 independent of the den and can choose their own associates. Finally, we inquired whether social
129 network metrics measured during early life stages better predict fitness measures than do
130 network metrics measured in early adulthood, after hyenas have fully learned their dominance
131 ranks.

132

133 **Materials and methods**

134 *Study site and subject animals*

135 This study took place in the Masai Mara National Reserve, Kenya. Our subjects were
136 female members of a single large clan of spotted hyenas that defend a common territory of
137 roughly 83 km² in the Talek region. We only explored fitness outcomes for females, as we could
138 follow them throughout their lives to obtain fitness measures, whereas many males disperse to
139 unstudied clans. Data were collected via daily monitoring, roughly 6 hrs/day, from June 1988

140 through December 2013. We identified individual hyenas by their unique spots, determined their
141 sex based on phallic morphology (Frank, Glickman & Licht 1991), and determined their
142 birthdates to ± 7 days based on their appearance when first observed (Holekamp *et al.* 1996).

143 To explore the social development of our subjects, we partitioned ontogeny into three
144 stages (Fig. 1). The Communal Den (CD) stage was separated from the Den Independent (DI)
145 stage by the distinct milestone of becoming independent of the communal den. Both CD and DI
146 stages occurred before achievement of reproductive maturity, which occurs at 24 months of age
147 in this species. Our third stage, the adult stage, represented a period of early adulthood after
148 reaching reproductive maturity. Young hyenas in our study area live at a communal den with
149 other members of their cohort until they are 9-10 months old. During the CD stage, social
150 interactions are more limited than during later stages because cubs' choices of social partners are
151 restricted to members of their cohorts and whichever den-independent hyenas choose to visit the
152 den. Thus, the first stage of development on which we focused in this paper was the CD stage,
153 lasting from the date each cub was first seen, until its date of den independence. All subjects
154 were first seen within the first three months of life and we restricted study subjects to animals
155 with known dates at which they became independent of the communal den. A juvenile was
156 considered independent of the den when it was found away from the den on at least three
157 consecutive occasions (Boydston *et al.* 2005). Den-independent hyenas continue to visit the
158 communal den, but they no longer rely on it for shelter (Holekamp & Smale 1998).

159 During the DI stage of development, juveniles are independent of the den and potentially
160 able to interact with all their clan-mates, but they remain dependent on their mothers for food
161 until weaning, which occurs at an average age of 14 months (Holekamp *et al.* 1996). Although
162 offspring are weaned during the DI stage, and although this might conceivably influence network

163 metrics during this stage, youngsters continue to rely heavily on their mothers for assistance in
164 feeding throughout the DI stage because their skulls and jaw musculature remain far from fully
165 developed (Tanner et al. 2009; Watts et al. 2009; Swanson et al. 2013). During this second stage
166 of development, juveniles learn their ranks in relation to any remaining clan members with
167 whom they failed to interact at the communal den. Here the DI stage started when a cub became
168 den-independent, and it was equal in length to the length of its CD stage. Because hyenas reach
169 puberty at 24 months of age, here all natal animals under 24 months were considered juveniles.
170 We defined the adult stage of development as starting on the day an individual reached 24
171 months of age, and extending from that date for a period equal in length to that of its CD stage.
172 For each individual, all stages of development were of the same length so we could fairly
173 compare network metrics among stages, and each individual subject was observed during all
174 three stages of development. Mean (\pm SE) stage length was 7.17 ± 0.13 months.

175 Spotted hyena clans are composed of multiple matrilines of adult females, their young,
176 and adult breeding males, most of which are immigrant males born elsewhere. Adult females and
177 their young tend to be core figures in hyena societies, whereas adult males occupy more
178 peripheral positions (Kruuk 1972; Holekamp *et al.* 1997; Szykman *et al.* 2001). Rank
179 relationships among adult females are quite stable over long periods (Holekamp *et al.* 2012;
180 Vullioud *et al.* 2018). High-ranking females enjoy markedly greater reproductive success than do
181 low-ranking females (Holekamp *et al.* 1996; Swanson *et al.* 2011). Females' ranks were based
182 on their wins and losses in dyadic agonistic interactions using informed MatReorder (Strauss &
183 Holekamp 2019b). Females in the two juvenile stages analyzed here (CD and DI) were assigned
184 the dominance ranks of their mothers, but as young adults they were assigned their own ranks; at

185 reproductive maturity, each female enters the adult hierarchy in a position immediately below
186 that of her mother.

187

188 *Behavioral data collection*

189 Throughout the 25-year study period, daily behavioral observations were conducted year-
190 round from vehicles, which we used as mobile blinds. Observations were made each day
191 between 0530 and 0900 h and between 1700 and 2000 h. Each observation session (henceforth
192 called 'session') was initiated when we found one or more hyenas separated from others by at
193 least 200 m and terminated when we left that individual or group (Smith *et al.* 2008); this
194 occurred when either all hyenas were out of sight or they were all resting. In the absence of vocal
195 communication, hyenas appear to be unaware of one another when separated by more than 200
196 m. We ended sessions with only one hyena present after five minutes unless it started hunting
197 and/or joined other hyenas. Session lengths ranged from 5 to 638 minutes (mean 11 ± 0.06
198 minutes). Although no focal hyenas were radio-collared here, subgroups of hyenas were located
199 either via use of radio telemetry or while observers drove daily circuits in which all highpoints
200 within the study clan's home range were visited. By making 360-degree visual scans with
201 binoculars from each highpoint, we were able to sample all parts of the clan's territory every day
202 for presence of hyena subgroups. Each subgroup sighted or found via telemetry was then visited
203 to determine its composition. Female hyenas in this study were observed, on average, in
204 88.8 ± 5.0 sessions during the CD stage, 88.5 ± 4.6 sessions during the DI stage, and 75.2 ± 4.4
205 sessions during the adult stage (Table S1). On average, they were seen in 0.43 ± 0.02 sessions per
206 day during the CD stage, 0.40 ± 0.02 sessions per day during the DI stage and 0.35 ± 0.02 session
207 per day during the adult stage.

208 To maximize independence of observations, we used only the first session in which an
209 individual was seen during morning or evening observation periods. From session data, we
210 determined association patterns using the simple ratio association index (AI) (Cairns &
211 Schwager 1987), see Appendix S1 for this calculation). At the beginning of each observation
212 session, and subsequently at 15-20 minute intervals, we performed scans in which we recorded
213 the identities of all individuals present (Altmann 1974).

214 We used all-occurrence sampling (Altmann 1974) to record all agonistic and affiliative
215 interactions occurring within each observation session. Detailed descriptions of the aggressive
216 behaviors we recorded can be found in Szykman et al. (2003). Regarding affiliative behavior, we
217 focused on greetings, in which hyenas stand head to tail, lift their hind legs, and sniff one
218 another's ano-genital region; greetings have been found to promote social bonds (Smith *et al.*
219 2011). Table S1 shows mean numbers of interactions of each type for each individual in each
220 stage of development.

221

222 **Figure 1.** An example for two of our focal females, Monopoly and Guinness, of their
 223 association, aggression, and affiliation networks that were built for each of their developmental
 224 stages: communal den (CD), den-independent (DI), and early adult (Adult). Each stage was of
 225 equal length. The green dot indicates Monopoly and the purple dot indicates Guinness in each of
 226 their networks. Monopoly was high-ranking whereas Guinness was low-ranking. From each of
 227 these networks we calculated their (out-/in-) degree, (out-/in-) strength, and betweenness. Whole
 228 networks were made for each of 79 focal females during each of their three stages of
 229 development, yielding 9 networks per female. Thus, we made a total of 711 observed networks.

230

231 *Network construction*

232 Social networks are composed of groups of more than two individual animals (nodes)
233 connected by behavioral interactions or co-occurrences in space and time (ties) and portrayed as
234 networks. Ties can be directed if the behavior has an initiator and a receiver, or undirected when
235 there is no clear direction in the relationship. Using methods developed earlier (Turner *et al.*
236 2018), we built three types of whole networks. Networks could include all individuals of both
237 sexes in the clan for each focal female during each stage of development: we built association,
238 aggression, and affiliation networks. Here networks based on associations were undirected, as
239 they merely indicated co-occurrence, but both aggression and affiliation networks were directed.
240 Depending on the network type, each network tie was weighted such that it reflected either
241 purely the association index within the dyad (the AI) or behavioral interaction indices that
242 controlled for variation in opportunity to emit the behavioral acts (see below for more detail, Fig.
243 1).

244 Using the ‘igraph’ package (version 1.2.4) (Csardi & Nepusz 2006) in R (version 3.5.1)
245 (R Core Team 2019), we built three social networks per subject per network type, with each
246 network based on data collected during the CD, DI, or adult stage of development. The focal
247 individual had to be seen at least ten times during each developmental stage for its network to be
248 calculated, and each of its partners also had to be seen at least ten times during a particular stage
249 to be included in the network. These criteria produce robust social networks during all three
250 stages of social development in spotted hyenas (see Appendix S2, (Turner *et al.* 2018). To assess
251 the robustness of our results here, we also ran our analyses with minima of 25 and 50 sightings
252 per focal individual per stage, respectively (see Appendix S2, Tables S2 and S3), but these

253 denser networks did not differ appreciably from those built using a minimum of 10 sightings per
254 developmental stage, so our analyses below use an inclusion criterion of 10 sightings to
255 maximize our sample sizes. Seventy-nine females met the criteria for being included as focal
256 individuals. Simple ratio AIs (Cairns & Schwager 1989) were used to build association networks
257 for focal animals, as these AIs are known to be robust indicators of social bond strength (Hoppitt
258 & Farine 2018). In interaction networks, we calculated behavioral indices of aggression and
259 affiliation to represent the strength of relationships between dyads. These were calculated as the
260 residuals of the regression of AIs predicting the interaction rate (Godde *et al.* 2013 for more
261 detail see Appendix S1; Whitehead & James 2015). This was done to account for opportunity to
262 interact and individual variation in gregariousness among individuals. Rates in aggression
263 networks were calculated as the number of aggressive acts an individual initiated or received
264 within each dyad over the relevant developmental stage, weighted by the intensity of said
265 aggression (1 to 3 indicating lowest to highest, as described in (Szykman *et al.* 2003). Similarly,
266 the rate in each affiliation network was weighted based on numbers of greetings between the
267 focal individual and each of its group-mates divided by the length (in days) of the specified
268 developmental stage. In both aggression and affiliation networks, we used only interactions in
269 which we were certain of the identities of both the initiator and the receiver.

270

271 *Network metrics*

272 For each focal individual, during each stage of development (CD, DI, and early
273 adulthood), in each network type (association, aggression, or affiliation networks), we calculated
274 several measures of social network position. First, to supplement network metrics, we calculated
275 the proportion of observation sessions during each stage of development in which each female

276 was found alone (“alone rate”), when she clearly could not be interacting with other animals, as
277 the number of sessions in which she was found alone divided by the total number of sessions in
278 which that female was observed during that developmental stage. We next calculated degree
279 centrality, here called “degree”, which is the number of other individuals to which the focal
280 individual was connected. Degree is an important metric in social networks, as having a higher
281 degree can indicate that an individual is more of a social hub, which in turn can affect its fitness
282 via its exposure to both information and pathogens (e.g. Hamede *et al.* 2009; Royle *et al.* 2012).
283 In directed networks, we calculated both out-degree centrality, which represents the number of
284 individuals with which the focal animal initiated interactions, and in-degree centrality, which
285 represents the number of individuals that directed actions at the focal individual. We also
286 calculated network “strength” as the sum of the weights of all connections to the focal individual.
287 In association networks, strength is roughly proportional to group size, whereas in interaction
288 networks it indicates the quality of interactions by accounting for how often or how intensely
289 dyads interact (Farine & Whitehead 2015). Network strength has long-lasting social and fitness
290 consequences in other gregarious species (e.g. dolphins and rodents, (Stanton & Mann 2012; Wey
291 *et al.* 2013). Lastly, we calculated “betweenness” centrality, a measure of indirect interactions,
292 which is the number of shortest paths between members of any dyad in the network that run
293 through the focal individual. Thus, individuals with higher betweenness, often referred to as
294 “brokers,” link more individuals that are otherwise unconnected (Lehmann & Dunbar 2009).
295 Indirect ties, like betweenness, are frequently hypothesized to help maintain cohesion in complex
296 societies (Lehmann & Dunbar 2009), like those of spotted hyenas. Because ‘igraph’ calculates
297 betweenness prioritizing weak links rather than strong links, as we do in behavioral ecology, we
298 inverted the edge weight in the calculation (1/edge weight).

299 We focused on these three social network metrics (degree, strength, and betweenness) in
300 particular because they are some of the few that have been linked to individual or group success
301 multiple times in other species (e.g. Stanton & Mann 2012; Nunez, Adelman & Rubenstein
302 2015; Brent *et al.* 2017; Blumstein *et al.* 2018).

303

304 *Fitness measures*

305 We explored two different fitness outcomes to test how well they were predicted by
306 metrics describing juvenile social position. Specifically, we focused on annual reproductive
307 success (ARS) and longevity, two measures known to be robust fitness measures in spotted
308 hyenas (Swanson *et al.* 2011). ARS was calculated as the number of cubs borne by the focal
309 female over her reproductive lifetime to control for longevity. Only females who lived to at least
310 four years of age were used in this analysis to ensure they had a chance (at least 2 years) to
311 reproduce. Longevity was calculated as the age at which females were found dead or the last date
312 on which they were seen alive before disappearing. Here individuals had to live at least three
313 years to have an adult longevity measure to ensure that all individuals would have a complete
314 Adult stage before dying. Ultimately, 66 females met our criteria for which we also had ARS
315 data, and we had longevity measures for 65 females who met our inclusion criteria. The mean
316 ARS for the females observed in this study was 1.4 ± 0.05 (range: 0.71-2.9) cubs per year, and
317 mean longevity was 7.6 ± 0.46 (range: 3.2-19) years.

318 *Models and statistical analyses*

319 We employed generalized linear mixed models (GLMM) to predict how alone rate and
320 specific social position metrics predicted either ARS or longevity. We examined the focal
321 animal's degree centrality, strength, and betweenness in its association, aggression, and

322 affiliation networks. In directed networks (aggression and affiliation networks), we explored
323 both the out- and in-degree centrality and out- and in-strength. All predictor variables were
324 scaled alike for easier comparisons. We also included the dominance rank of each individual as a
325 fixed effect in all models to control for any rank effects. Additionally, we log-transformed our
326 fitness outcomes to normalize their distributions. We fit these models using the ‘lme4’ package
327 in R (version 1.1.21, (Bates *et al.* 2015)).

328 We ran separate models for CD, DI, and adult stages to determine whether the social
329 position of an individual in each stage, represented by the network metrics calculated for that
330 individual during that stage, predicted its adult success. During the study period, clan size ranged
331 from 36 to 125 individuals, and on average, the study clan contained 77.31 ± 0.57 hyenas.
332 Therefore, we included an offset for clan size during the stage in question for each individual to
333 account for effects of group size on network metrics. Group size is known to affect network
334 metrics because it limits the number of individuals with which a focal animal can interact. We
335 also included an offset for the number of sessions in which the focal individual was observed
336 during each developmental stage to control for opportunity for interactions to be observed. Both
337 of these values were log-transformed to make their scales more closely comparable to those of
338 our response measures. We included as a random effect the identity of the mother of the focal
339 individual. Mothers may have specific parenting styles that affect their offspring, and cubs can
340 “inherit” their mothers’ social networks (Ilany & Akcay 2016). We then used Akaike
341 information criteria (AIC) for model selection to determine which network metrics during each
342 stage best predicted the fitness outcomes. Henceforth, we present the top model(s) identified by
343 AIC for each fitness measure in each developmental stage (dAIC < 2).

344 To account for the inherent lack of independence in social network data, we took a null
345 model hypothesis approach, as is commonly done with social network data (Farine 2017). In this
346 approach, we compare the parameters of our observed models with parameters of random models
347 (as opposed to comparing parameters to zero, as done in most frequentist statistics) to determine
348 whether the value of a variable differs significantly from what might occur at random. We
349 employed data-stream permutations on data collected daily to generate randomized networks for
350 our null models to help account for individuals having variable numbers of observations (Farine
351 & Whitehead 2015; Farine 2017). As with our observed models, raw interaction data of each
352 type (association, aggression, and affiliation) were randomized for each focal individual in each
353 developmental period, and we then re-generated networks based on randomized interaction data.
354 One caveat here is that aggression and affiliation networks are dependent on association
355 networks because an individual can only directly interact with an individual with whom it
356 associates. To account for that fact in our randomizations, we first permuted our association
357 networks then permuted the aggression and affiliation networks within the new association
358 networks. We performed 1000 randomizations for each female in each stage of development,
359 and the metrics of the focal females in these randomized networks were then used to build null
360 GLMMs to compare parameter estimates with the parameter estimates of our observed GLMMs
361 (Farine 2017). A parameter was considered a strong predictor of the fitness outcome if the
362 observed model estimate fell outside the 95% distribution of the randomized null model
363 parameter estimates for all three thresholds of 10, 25, and 50 observations per life stage (Tables
364 S2 and S3). If the observed estimate fell outside the 95% distribution for the 10 observation
365 threshold, but within one or more of the larger thresholds, we considered the metric to have have
366 a weaker, less certain relationship with the fitness outcome than the metrics that were significant

367 at all three threshold values (Wasserstein, Schirm & Lazar 2019). Because our random
368 distributions were not centered around 0 (Farine 2017), we calculated a corrected effect size by
369 taking the difference between the observed coefficient value and the median of the distribution of
370 the coefficient values based on the randomized networks. Furthermore, because network metrics
371 are often correlated, we used variance inflation factors (VIFs) to assess multicollinearity among
372 the predictor variables. VIFs of 10 and higher usually indicate severe collinearity, and VIFs of 5
373 are still moderately collinear (O'brien 2007); the VIF values in all our models were between 1.0
374 and 3.6 (correlations between metrics in this study are shown in Table S4).

375

376 **Results**

377 Mean values (\pm SE) for all network metrics during each stage of development appear in
378 Table S5.

379 The best CD model for ARS was a better fit than the best DI model ($dAIC > 7.5$, Table
380 S6), but the adult model was better than either the CD ($dAIC > 10$, Table S6) or DI model ($dAIC$
381 > 19 , Table S6). In models predicting longevity, during all three developmental stages, two
382 models were statistically indistinguishable from one another ($dAIC < 2$, Table S7). The CD and
383 DI models were also indistinguishable from one another ($dAIC < 2$, Table S7). Although the CD
384 model was a better fit than the adult model ($dAIC > 2$, Table S7), the DI model for longevity was
385 indistinguishable from the adult model ($dAIC < 2$, Table S7).

386

387 *Effect of social network positions across ontogeny on fitness*

388 a) *ARS*

389 We found that network metrics assessed during early ontogeny did in fact predict the
390 later-life fitness of female hyenas. The best model for all stages of development predicting ARS
391 included only degree in association networks, and out- and in-degree in aggression and affiliation
392 networks; this model did not include alone rate, strength, or betweenness metrics. Association
393 degree positively related to adult ARS and affiliation out-degree showed a negative trend (Table
394 1). When female hyenas were in the DI stage, those that associated with more individuals also
395 had greater adult ARS (Table 1). During the adult stage, female hyenas enjoyed greater ARS
396 who associated with more individuals, aggressed on fewer individuals, and tended to affiliate
397 with fewer individuals (aggression and affiliation out-degree), and who also had more affiliations
398 directed towards them (affiliation in-degree); of these, association degree had the greatest effect
399 (Table 1).

400

401 **Table 1.** Observed model estimates, 95% randomization ranges, two-tailed p-values (P_{rand}), and
 402 corrected effect size for each of the model variables explaining ARS among 66 adult females
 403 based on social network positions during communal den (CD), den independent (DI), and adult
 404 stages. P_{rand} is calculated by comparing the observed model estimates with the distribution of the
 405 model estimates from the 1000 randomizations of the network data. Bolded values indicate that
 406 the observed estimates fall outside of the 95% distribution at all observation threshold values,
 407 and italicized values indicate that the observed estimates did not fall outside of the 95%
 408 distribution at all observation number thresholds. Strength and betweenness did not appear in any
 409 of the best models, so they are not included here. The random effect is the standard deviation
 410 (sd) of the different intercepts for the random effect of mother.

network type	term	CD effect size	estimate	range	P_{rand}
	dominance rank	-0.064	-0.062	-0.048 to 0.058	0.021
association	degree	0.098	-0.335	-0.487 to -0.371	0.005
aggression	out-degree	0.025	-0.116	-0.223 to -0.068	0.304
	in-degree	-0.054	-0.077	-0.087 to 0.037	0.07
affiliation	out-degree	-0.114	-0.125	-0.124 to 0.108	0.048
	in-degree	0.097	0.084	-0.129 to 0.107	0.087
	mother (random effect sd)		0.458		
network type	term	DI effect size	estimate	range	P_{rand}
	dominance rank	-0.016	-0.125	-0.157 to -0.061	0.288
association	degree	0.08	-0.423	-0.535 to -0.472	0.001
aggression	out-degree	0.027	-0.029	-0.109 to -0.003	0.207
	in-degree	-0.001	-0.024	-0.075 to 0.029	0.479
affiliation	out-degree	-0.072	-0.124	-0.161 to 0.081	0.137
	in-degree	0.03	-0.016	-0.165 to 0.07	0.327
	mother (random effect sd)		0.403		
network type	term	Adult effect size	estimate	range	P_{rand}

	dominance rank	-0.034	-0.198	-0.219 to -0.105	0.15
association	degree	0.197	-0.086	-0.326 to -0.237	<0.001
aggression	out-degree	-0.102	-0.223	-0.191 to -0.054	0.008
	in-degree	-0.005	-0.087	-0.173 to 0.011	0.464
affiliation	out-degree	-0.172	-0.219	-0.168 to 0.083	<i>0.012</i>
	in-degree	0.146	0.047	-0.208 to 0.03	<i>0.03</i>
	mother (random effect sd)		0.213		

411

CD					
network type	term	corEffect	estimate	randRange	Prand
association	dominance rank	-0.064	-0.062	0.048 to 0.058	0.021
	degree	0.098	-0.335	-0.487 to -0.371	0.005
	out-degree	0.025	-0.116	-0.223 to -0.068	0.304
	in-degree	-0.054	-0.077	0.087 to 0.037	0.07
	out-degree	-0.114	-0.125	0.124 to 0.108	0.048
	in-degree	0.097	0.084	0.129 to 0.107	0.087
mother (random effect sd)		0.458			
DI					
network type	term	corEffect	estimate	randRange	Prand
association	dominance rank	-0.016	-0.125	-0.157 to -0.061	0.288
	degree	0.08	-0.423	-0.535 to -0.472	0.001
	out-degree	0.027	-0.029	-0.109 to -0.003	0.207
	in-degree	-0.001	-0.024	0.075 to 0.029	0.479
	out-degree	-0.072	-0.124	0.161 to 0.081	0.137
	in-degree	0.03	-0.016	-0.165 to 0.07	0.327
mother (random effect sd)		0.403			
Adult					
network type	term	corEffect	estimate	randRange	Prand
association	dominance rank	-0.034	-0.198	-0.219 to -0.105	0.15
	degree	0.197	-0.086	-0.326 to -0.237	<0.001
	out-degree	-0.102	-0.223	-0.191 to -0.054	0.008
	in-degree	-0.005	-0.087	0.173 to 0.011	0.464
	out-degree	-0.172	-0.219	0.168 to 0.083	0.012
	in-degree	0.146	0.047	-0.208 to 0.03	0.03
mother (random effect sd)		0.213			

413 *b) Longevity*

414 The best models for the CD stage predicting longevity, like those predicting ARS, included
415 degree in association networks and both out-degree and in-degree in aggression and affiliation
416 networks, and the second best model included strength in association networks and both out-
417 strength and in-strength in aggression and affiliation networks; neither included alone rate or
418 betweenness metrics. Those individuals lived longer who associated with more individuals and
419 initiated fewer affiliations, but also received more affiliations (Fig. 2, Table 2). Furthermore,
420 those who were higher ranked and received aggression from fewer individuals tended to live
421 longer (Table 2). In the strength model, hyenas lived longer who had lower association strength,
422 lower affiliation out-strength, and higher affiliation in-strength. Affiliation metrics during the CD
423 period had the strongest effects in both models (Table 2). The longevity of female hyenas was
424 best predicted by betweenness in all networks followed by degree in association networks and
425 both out-degree and in-degree in aggression and affiliation networks during the DI; alone rate
426 and strength did not appear in the best models. In the betweenness model, females lived longer
427 who were lower ranked, and had lower association betweenness but higher affiliation
428 betweenness. In the degree model, those females lived longer who were higher ranked and
429 associated with more individuals (Table 2). Association metrics had the strongest effects. During
430 the adult stage, the best models were the same as the DI stage, but the degree model was top
431 ranked followed by the betweenness model. In the degree model, females lived longer who
432 associated with more individuals, and in the betweenness model, affiliation betweenness had a
433 weak, negative relationship with longevity (Table 2).

434

435 **Figure 2.** The relationship between longevity and the number of individuals that directed
436 greetings towards the 65 focal females during the CD stage. Longevity was log transformed. The
437 dark line indicates the relationship between the social network metric and longevity estimated as
438 a linear regression.

439 **Table 2.** Observed model estimates, 95% randomization ranges, two-tailed p-values (P_{rand}), and corrected effect size for each of the
 440 model variables explaining longevity among 65 adult females based on social network positions during communal den (CD), den
 441 independent (DI), and adult stages. When two models during a developmental stage had $dAIC < 2$, both were included, and the first
 442 shown was the better of the two. P_{rand} was calculated by comparing the observed model estimates with the distribution of the model
 443 estimates from 1000 randomizations of the network data. Bolded values indicate significance in that the observed estimates fall
 444 outside of the 95% distribution at all observation threshold values. Italicized values indicate that the observed estimates fell within the
 445 95% distribution of one or two observation number thresholds, and dashes indicate that the metric did not appear in the best model.
 446 The random effect is the standard deviation (sd) of the different intercepts for the random effect of mother.

network type	term	effect size	degree			P_{rand}	CD				P_{rand}
			estimate	range			effect size	estimate	range		
association	dominance rank	0.091	0.302	0.146 to 0.245		0.003	0.049	0.239	0.129 to 0.252	0.092	
	degree	0.124	-0.292	-0.453 to -0.378		<0.001	--	--	--	--	--
	strength	--	--	--		--	-0.089	-0.401	-0.358 to -0.267	0.002	
aggression	out-degree	-0.069	-0.2	-0.227 to -0.04		0.121	--	--	--	--	--
	in-degree	-0.117	-0.056	-0.02 to 0.146		<i>0.01</i>	--	--	--	--	--
	out-strength	--	--	--		--	0.012	-0.108	-0.189 to -0.045	0.385	
affiliation	in-strength	--	--	--		--	-0.061	0.049	0.038 to 0.174	0.081	
	out-degree	-0.405	-0.409	-0.152 to 0.146		<0.001	--	--	--	--	--
	in-degree	0.383	0.37	-0.167 to 0.127		<0.001	--	--	--	--	--
	out-strength	--	--	--		--	-0.327	-0.342	-0.138 to 0.109	<0.001	

		in-strength	--	--	--	--	0.279	0.247	-0.159 to 0.094	<0.001
	mother (random effect sd)		0.543				0.544			
DI										
network type	term	effect size	estimate	range	P _{rand}		effect size	estimate	range	P _{rand}
association	dominance rank	-0.121	-0.154	-0.1 to 0.045	0.004		0.121	0.143	-0.027 to 0.071	<0.001
	degree	--	--	--	--		0.083	-0.365	-0.477 to -0.414	<0.001
	betweenness	-0.395	-0.469	-0.205 to 0.071	<0.001		--	--	--	--
aggression	out-degree	--	--	--	--		-0.012	-0.043	-0.093 to 0.038	0.361
	in-degree	--	--	--	--		-0.003	0.021	-0.032 to 0.078	0.465
affiliation	betweenness	0.045	-0.062	-0.467 to 0.053	0.32		--	--	--	--
	out-degree	--	--	--	--		0.072	0.037	-0.172 to 0.109	0.191
	in-degree	--	--	--	--		-0.115	-0.159	-0.171 to 0.099	0.077
	betweenness	0.194	0.074	-0.236 to 0.004	0.004		--	--	--	--
Adult										
network type	term	effect size	estimate	range	P _{rand}		effect size	estimate	range	P _{rand}
association	dominance rank	-0.009	-0.031	-0.075 to 0.037	0.391		0.077	0.002	-0.206 to 0.058	0.189
	degree	0.203	-0.196	-0.426 to -0.369	<0.001		--	--	--	--
	betweenness	--	--	--	--		-0.061	-0.188	-0.27 to 0.045	0.243
aggression	out-degree	-0.017	-0.106	-0.171 to -0.006	0.335		--	--	--	--
	in-degree	-0.006	-0.112	-0.205 to -0.009	0.462		--	--	--	--
	betweenness	--	--	--	--		0.132	-0.016	-0.54 to 0.042	0.148
affiliation	out-degree	-0.069	-0.082	-0.175 to 0.142	0.248		--	--	--	--

in-degree	-0.126	-0.17	-0.195 to 0.119	0.088	--	--	--	--	--
betweenness	--	--	--	--	-0.163	-0.32	-0.292 to -0.021	0.019	
mother (random effect sd)		0.56				0.613			

447

448 **Discussion**

449 *Social position during ontogeny predicts fitness*

450 Annual reproductive success (ARS) and longevity were both predicted by specific
451 juvenile social network metrics, supporting the hypothesis that social position measured during
452 different stages of development would differentially predict fitness among adult female spotted
453 hyenas. Degree, or the number of individuals with which a female interacts early in life,
454 appeared in at least one of the best models for all three developmental stages. This suggests that
455 the number of relationships experienced during early life has lasting impacts throughout the
456 lifetime of the individual. Specifically, associating with many individuals was positively related
457 to both ARS and longevity in all three developmental stages. Overall, the early-life direct
458 network metric of degree had a stronger influence on reproductive success than did the indirect
459 network connectivity measure, betweenness, which played a role in predicting longevity. Out-
460 degree in aggression networks negatively predicted ARS during the young adult stage of life. By
461 contrast, aggression network metrics did not strongly influence longevity. Affiliation network
462 metrics did not predict ARS but strongly related to longevity, first positively then negatively,
463 over ontogeny. Finally, model selection indicated that the adult stage best predicted the ARS
464 data, but the CD and DI stages best predicted female longevity. Thus, we found that the social
465 environments females experienced as juveniles had lasting influences into adulthood, as has been
466 seen in many other species.

467 Contrary to our expectations, an individual's dominance rank position during the studied
468 stages of postnatal development did not consistently predict either its ARS or its longevity.
469 Although it has been well-documented that maternal rank affects juvenile survivorship in this
470 species (Watts *et al.* 2009), of those hyenas who survived past three years of age in our study,

471 their ranks early in life did not always predict their fitness in adulthood. However, regardless of
472 the rank an individual held early in life, its early social position within its network strongly
473 influenced its ARS and longevity. Young hyenas start learning their ranks at the communal den,
474 and do not fully solidify their rank relationships with all adults in the clan until they are
475 approximately 18 months old after which they remain relatively stable (Smale *et al.* 1999;
476 Strauss & Holekamp 2019a), so perhaps it should not surprise us that the social bonds they
477 developed as juveniles were as good or better at predicting their eventual fitness than their
478 juvenile ranks. Dominance rank can be a source of stress while concurrently providing an
479 individual with resource benefits (Gesquiere *et al.* 2011). If a female hyena survives to 3 years of
480 age, she may develop other strategies to counteract any negative effects of low dominance rank
481 on fitness such as having fewer indirect associative connections (Vandeleest *et al.* 2016), as we
482 saw here. We rarely saw an effect of early rank in our analyses, but we consistently saw effects
483 of other social metrics on female fitness, particularly the number of individuals with whom
484 females associated.

485 Our study is one of only a few inquiring how juvenile sociality predicts multiple
486 measures of fitness regardless of the adult social environment. Graylag geese who are more
487 closely connected as juveniles enjoy greater reproductive success years later (Szipl *et al.* 2019).
488 The adult social environment of Alpine marmots was a strong driver of reproductive success
489 whereas the number of helpers present in early life was a strong driver of longevity (Berger *et al.*
490 2015). Similarly, in spotted hyenas we found that ARS was much better predicted by the adult
491 model, but models of juvenile stages better predicted longevity. Social network metrics assessed
492 in spotted hyenas can change dramatically over ontogeny (Turner *et al.* 2018), but they become
493 more consistent and stable as hyenas mature (Smith, Memenis & Holekamp 2007; Smith *et al.*

494 2011; Yoshida, Van Meter & Holekamp 2016); thus it is noteworthy that social network metrics
495 measured during both the CD and DI stages predicted longevity better than did those measured
496 during the adult stage. The adolescent period is known to be a sensitive period in other species
497 (Sachser *et al.* 2013), as it may be for female hyenas with respect to their longevity in particular.
498 The stages of development in this study represent periods of intense social learning for female
499 hyenas. We propose that the choices females make during juvenile stages regarding with whom
500 and how they interact help prepare them for long-term success in hyena society.

501

502 *Linking early social position and fitness*

503 By assessing multiple phases of hyena development, we are one step closer to
504 demonstrating causality in the relationship between early sociality and adult fitness outcomes
505 (Hill 1965), though several factors may mediate this relationship. Our data demonstrate that
506 female hyenas who had more associates during all stages of development, and who initiated
507 fewer direct interactions, tended to enjoy greater ARS and lived longer; this suggests that
508 gregariousness is costly to females. Unfortunately, our data cannot indicate whether or not
509 individuals are actively avoiding one another. However, our results do suggest that successful
510 individuals experience less competition for resources with others in the clan. In species with
511 strict linear hierarchies, like cercopithecine primates and spotted hyenas, higher ranks guarantee
512 better access to resources, and this improves their reproductive success (Holekamp *et al.* 1996;
513 Johnson 2003; Liu *et al.* 2018). However, our current dataset indicates that lower ranking
514 females may adopt alternative strategies to improve their reproductive success. Rank for these
515 females does not predict ARS, but females who interact with fewer individuals have fewer
516 competitors for resources. Competition for resources goes hand-in-hand with aggression in

517 hyenas (Frank 1986b). Thus, minimizing competition is likely the best explanation for the link
518 between early social network metrics and ARS: females who directed attacks at fewer
519 individuals during the young adult stage had greater ARS than others, regardless of their rank.
520 By contrast, aggression metrics did not predict longevity.

521 Our results also suggest that social capital, or social support, relates to survivorship in
522 hyenas starting at an early age. Social capital is often linked to other traits that may be mediating
523 the fitness outcomes we observed here (Silk, Seyfarth & Cheney 2018). For instance, more
524 focused social networks may represent a form of social buffering, where social bonds are known
525 to augment fitness and reduce stress. On the other hand, some species have higher concentrations
526 of stress hormones when they are in more connected social positions (Ponzi *et al.* 2016; Szipl *et*
527 *al.* 2019). Rhesus macaques with smaller association networks but more connected grooming
528 networks had lower glucocorticoid levels, suggesting that the quality of the relationship matters
529 (Crockford *et al.* 2008; Brent *et al.* 2011). Furthermore, studies of many primate species show
530 that strong affiliative networks, frequently characterized by high rates of grooming, reduce stress
531 responses and improve longevity (Wittig *et al.* 2008; Silk *et al.* 2010; Brent *et al.* 2017). Though
532 we did not measure stress hormones here, female hyenas in our study lived longer when they had
533 focused association networks and when they were better integrated into their broader affiliation
534 network, as is also seen among primates. Although most studies focus strictly on adults, our
535 findings highlight the need to explore the relationship between social support and adult stress
536 phenotypes at earlier developmental stages to determine how it relates to adult fitness and what
537 mediates this relationship.

538 Studies of effects of early adversity in other species increasingly demonstrate that both
539 the social environment and stress experienced during early life can affect adult fitness via

540 epigenetic mediation (Hunter & McEwen 2013; Tung *et al.* 2016). Juvenile hyenas with higher
541 association degrees have higher global genome methylation (Laubach 2019), which suggests that
542 epigenetic effects may be mediating the relationship between early social relationships and adult
543 fitness. We see this as a fascinating avenue for further study to better understand which
544 mechanistic variables affect fitness, and how these effects are mediated, as fitness in hyenas is
545 clearly not determined exclusively by either rank or genetic inheritance.

546

547 Conclusion

548 Our study enhances our understanding of how early social development relates to adult
549 fitness. The importance of social network positions emerging very early in life has rarely been
550 reported before for other species. Most studies, whether exploring the influences of social
551 position during early ontogeny or during adulthood, measure fitness in terms of reproductive
552 success, but studies that address how social network positions predict longevity are considerably
553 more rare. Of the studies linking social position to longevity in non-human animals, only two
554 (Stanton & Mann 2012; Nunez *et al.* 2015) consider juvenile social development. Although this
555 research area is growing, there are still critical gaps in our understanding of early social
556 development, especially with respect to the factors mediating the relationship between early
557 social position and fitness.

558

559 Supporting Information

560 Additional Supporting Information may be found in the online version of this article:

561

562 **Appendix S1.** Association and interaction indices

563 **Appendix S2.** Assessing network robustness.

564 **Table S1.** Mean \pm SE of observation “sessions” and number of behaviors.

565 **Table S2.** Model output predicting ARS for assessing network robustness.

566 **Table S3.** Model output predicting longevity for assessing network robustness.

567 **Table S4.** Pearson correlations between dominance rank, alone rate, and all network metrics.

568 **Table S5.** Mean \pm SE of all network metrics during each stage of development.

569 **Table S6.** Model comparisons using AIC for the best models predicting ARS.

570 **Table S7.** Model comparisons using AIC for the best models predicting longevity.

571 **Fig. S1.** The relationship between longevity and association degree during the DI stage.

572 **Fig. S2.** Patterns in degree centrality and betweenness to assess network robustness

573

574 **Acknowledgements**

575 We thank the Kenyan National Commission for Science, Technology, and Innovation for
576 permission to conduct this research, and the Kenya Wildlife Service, Narok County Government
577 and the Senior Warden of the Masai Mara National Reserve for assistance. We are indebted to all
578 those who have contributed to long-term data collection on the Mara Hyena Project. We thank H.
579 Couraud for her help organizing the data for analysis. Special thanks to T. Getty, L. Smale, J.
580 Neal, and A. Wolfe for helpful comments along the way.

581

582 **Ethics:** All procedures performed in studies involving animals were in accordance with the
583 ethical standards of Michigan State University and following all applicable guidelines in Kenya.
584 Ethical approval for use of animals in this study was issued by Michigan State University under

585 IACUC approval # 05/11-110-00 on 22 August 2013.

586

587 **Data accessibility:** Data are available as files for reviewers and editors but will be made
588 available on Dryad once accepted for publication.

589

590 **Authors' contributions:** JWT conceived the idea and designed analyses with the help of PSB
591 and KEH. KEH provided the archival data. PSB transformed the archival data for analysis with
592 the help of JWT and ALR. ALR and JWT developed the R code to perform the analyses, and
593 JWT analyzed and interpreted the data. JWT & KEH wrote the manuscript. All authors gave
594 final approval for publication.

595

596 **Competing interests:** The authors declare that they have no competing interests.

597 **Funding:** This work was supported by National Science Foundation Grants DEB1353110,
598 OISE1556407, OISE1853934 and IOS1755089 to KEH. JWT was supported by OISE1556407, a
599 Student Research Grant from the Animal Behavior Society, a Grant-in-Aid from the American
600 Society of Mammalogists, and a Dissertation Continuation Fellowship from the College of
601 Natural Science at Michigan State University.

602 **References**

603 Almeling, L., Hammerschmidt, K., Sennhenn-Reulen, H., Freund, A.M. & Fischer, J. (2016)
604 Motivational Shifts in Aging Monkeys and the Origins of Social Selectivity. *Current*
605 *biology*, **26**, 1744–1749.

606 Altmann, J. (1974) Observational study of behavior: sampling methods. *Behaviour*, **49**, 227–267.

607 Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting Linear Mixed-Effects Models
608 Using lme4. *Journal of Statistical Software*, **67**, 1–48.

609 Bateson, P. (1979) How do sensitive periods arise and what are they for? *Animal behaviour*.

610 Bateson, P. & Gluckman, P. (2011) *Plasticity, Robustness, Development and Evolution*.
611 Cambridge University Press, New York.

612 Bateson, P. & Hinde, R.A. (1987) Developmental changes in sensitivity to experience. *Sensitive*
613 *periods in development* (eds MH Bornstein), 19–34.

614 Belsky, J., Steinberg, L. & Draper, P. (1991) Childhood experience, interpersonal development,
615 and reproductive strategy: An evolutionary theory of socialization. *Child development*, **62**,
616 647–670.

617 Berger, V., Lemaître, J.-F., Allainé, D., Gaillard, J.-M. & Cohas, A. (2015) Early and adult social
618 environments have independent effects on individual fitness in a social vertebrate.
619 *Proceedings of the Royal Society B*, **282**, 20151167.

620 Blumstein, D.T., Wey, T.W.-T. & Tang, K. (2009) A test of the social cohesion hypothesis:
621 interactive female marmots remain at home. *Proceedings of the Royal Society B*, **276**, 3007–
622 3012.

623 Blumstein, D.T., Williams, D.M., Lim, A.N., Kroeger, S. & Martin, J.G.A. (2018) Strong social
624 relationships are associated with decreased longevity in a facultatively social mammal.
625 *Proceedings of the Royal Society B*, **285**, 20171934–7.

626 Boydston, E.E., Kapheim, K.M., Van Horn, R.C., Smale, L. & Holekamp, K.E. (2005) Sexually
627 dimorphic patterns of space use throughout ontogeny in the spotted hyena (*Crocuta crocuta*).
628 *Journal of Zoology*, **267**, 271–281.

629 Brent, L.J.N., Ruiz-Lambides, A. & Platt, M.L. (2017) Family network size and survival across
630 the lifespan of female macaques. *Proceedings of the Royal Society B*, **284**, 20170515–7.

631 Brent, L.J.N., Semple, S., Dubuc, C., Heistermann, M. & MacLarnon, A. (2011) Social capital
632 and physiological stress levels in free-ranging adult female rhesus macaques. *Physiology &*
633 *behavior*, **102**, 76–83.

634 Cairns, S.J. & Schwager, S.J. (1987) A comparison of association indices. *Animal behaviour*, **35**,
635 1454–1469.

636 Chiyo, P.I., Moss, C.J. & Alberts, S.C. (2012) The influence of life history milestones and
637 association networks on crop-raiding behavior in male African elephants. (ed B Fenton).
638 *PLoS ONE*, **7**, e31382.

639 Conti, G., Hansman, C., Heckman, J.J., Novak, M.F.X., Ruggiero, A. & Suomi, S.J. (2012)
640 Primate evidence on the late health effects of early-life adversity. *Proceedings of the*
641 *National Academy of Sciences*, **109**, 8866–8871.

642 Crockford, C., Wittig, R.M., Whitten, P.L., Seyfarth, R.M. & Cheney, D.L. (2008) Social
643 stressors and coping mechanisms in wild female baboons (*Papio hamadryas ursinus*).
644 *Hormones and behavior*, **53**, 254–265.

645 Csardi, G. & Nepusz, T. (2006) The igraph software package for complex network research.
646 *InterJournal, Complex Systems*, 1695.

647 Douhard, M., Plard, F., Gaillard, J.-M., Capron, G., Delorme, D., Klein, F., Duncan, P., Loe,
648 L.E. & Bonenfant, C. (2014) Fitness consequences of environmental conditions at different
649 life stages in a long-lived vertebrate. *Proceedings of the Royal Society B*, **281**, 20140276–
650 20140276.

651 Ellis, S., Franks, D.W., Nattrass, S., Cant, M.A., Weiss, M.N., Giles, D., Balcomb, K.C. & Croft,
652 D.P. (2017) Mortality risk and social network position in resident killer whales: sex
653 differences and the importance of resource abundance. *Proceedings of the Royal Society B*,
654 **284**, 20171313–7.

655 Farine, D.R. (2017) A guide to null models for animal social network analysis. *Methods in
656 Ecology and Evolution*, **8**, 1309–1320.

657 Farine, D.R. & Whitehead, H. (2015) Constructing, conducting and interpreting animal social
658 network analysis. *Journal of Animal Ecology*, **84**, 1144–1163.

659 Frank, L.G. (1986a) Social organization of the spotted hyaena (*Crocuta crocuta*). I.
660 Demography. *Animal behaviour*, **34**, 1500–1509.

661 Frank, L.G. (1986b) Social organization of the spotted hyaena *Crocuta crocuta*. II. Dominance
662 and reproduction. *Animal behaviour*, **34**.

663 Frank, L.G., Glickman, S.E. & Licht, P. (1991) Fatal sibling aggression, precocial development,
664 and androgens in neonatal spotted hyenas. *Science*, **252**, 702–704.

665 Gesquiere, L.R., Learn, N.H., Simao, M.C.M., Onyango, P.O., Alberts, S.C. & Altmann, J.
666 (2011) Life at the top: rank and stress in wild male baboons. *Science*, **333**, 357–360.

667 Godde, S., Humbert, L., Côté, S.D., Réale, D. & Whitehead, H. (2013) Correcting for the impact
668 of gregariousness in social network analyses. *Animal behaviour*, **108**, 101–107.

669 Godfrey, S.S., Ansari, T.H., Gardner, M.G., Farine, D.R. & Bull, C.M. (2014) A contact-based
670 social network of lizards is defined by low genetic relatedness among strongly connected
671 individuals. *YANBE*, **97**, 35–43.

672 Hamede, R.K., Bashford, J., McCallum, H. & Jones, M. (2009) Contact networks in a wild
673 Tasmanian devil (*Sarcophilus harrisii*) population: using social network analysis to reveal
674 seasonal variability in social behaviour and its implications for transmission of devil facial
675 tumour disease. *Ecology Letters*, **12**, 1147–1157.

676 Harlow, H.F. & Harlow, M. (1962) Social deprivation in monkeys. *Scientific American*, **207**,
677 136–146.

678 Hill, A.B. (1965) The environment and disease: Association or causation? *Proceedings of the*
679 *Royal Society of Medicine*, **58**, 295–300.

680 Holekamp, K.E. & Smale, L. (1991) Dominance acquisition during mammalian social
681 development: the “inheritance” of maternal rank. *American Zoologist*, **31**, 306–317.

682 Holekamp, K.E. & Smale, L. (1998) Behavioral Development in the Spotted Hyena. *BioScience*,
683 **48**, 997–1005.

684 Holekamp, K.E., Cooper, S.M., Katona, C.I., Berry, N.A., Frank, L.G. & Smale, L. (1997)
685 Patterns of association among female spotted hyenas (*Crocuta crocuta*). *Journal of*
686 *Mammalogy*, **78**, 55–64.

687 Holekamp, K.E., Smale, L. & Szykman, M. (1996) Rank and reproduction in the female spotted
688 hyaena. *Journal of reproduction and fertility*, **108**, 229–237.

689 Holekamp, K.E., Smith, J.E., Strelloff, C.C., Van Horn, R.C. & Watts, H.E. (2012) Society,
690 demography and genetic structure in the spotted hyena. *Molecular Ecology*, **21**, 613–632.

691 Hoppitt, W.J.E. & Farine, D.R. (2018) Association indices for quantifying social relationships:
692 how to deal with missing observations of individuals or groups. *YANBE*, **136**, 227–238.

693 Höner, O.P., Wachter, B., Hofer, H., Wilhelm, K., Thierer, D., Trillmich, F., Burke, T. & East,
694 M.L. (2010) The fitness of dispersing spotted hyaena sons is influenced by maternal social
695 status. *Nature communications*, **1**, 60–7.

696 Hunter, R.G. & McEwen, B.S. (2013) Stress and anxiety across the lifespan: structural plasticity
697 and epigenetic regulation. *Epigenomics*, **5**, 177–194.

698 Ilany, A. & Akcay, E. (2016) Social inheritance can explain the structure of animal social
699 networks. *Nature communications*, **7**, 1–10.

700 Johnson, S.E. (2003) Life history and the competitive environment: trajectories of growth,
701 maturation, and reproductive output among Chacma baboons. *American journal of physical*
702 *anthropology*, **120**, 83–98.

703 Kasumovic, M.M. (2013) The multidimensional consequences of the juvenile environment:
704 towards an integrative view of the adult phenotype. *Animal behaviour*, **85**, 1049–1059.

705 Kruuk, H. (1972) *The Spotted Hyena: a Study of Predation and Social Behavior*. Chicago,
706 University of Chicago Press.

707 Kurvers, R.H.J.M., Prox, L., Farine, D.R., Jongeling, C. & Snijders, L. (2020) Season-specific
708 carryover of early life associations in a monogamous bird species. *YANBE*, **164**, 25–37.

709 Langley, E.J.G., van Horik, J.O., Whiteside, M.A., Beardsworth, C.E., Weiss, M.N. & Madden,
710 J.R. (2020) Early life learning ability predicts adult social structure, with potential
711 implications for fitness outcomes in the wild. *Journal of Animal Ecology*, 1365–
712 2656.13194–10.

713 Laubach, Z.M. (2019) *Developmental Plasticity: Early Life Environment, DNA Methylation, and*
714 *Later Life Phenotype in Spotted Hyenas* [dissertation]. East Lansing.

715 Lee, P.C., Bussiere, L.F., Webber, C.E., Poole, J.H. & Moss, C.J. (2013) Enduring consequences
716 of early experiences: 40 year effects on survival and success among African elephants
717 (*Loxodonta africana*). *Biology Letters*, **9**, 20130011–20130011.

718 Lehmann, J. & Dunbar, R.I.M. (2009) Network cohesion, group size and neocortex size in
719 female-bonded Old World primates. *Proceedings of the Royal Society B*, **276**, 4417–4422.

720 Leris, I. & Reader, S.M. (2016) Age and early social environment influence guppy social
721 learning propensities. *YANBE*, **120**, 11–19.

722 Liu, B.-J., Wu, C.-F., Garber, P.A., Zhang, P. & Li, M. (2018) Effects of group size and rank on
723 mother-infant relationships and reproductive success in rhesus macaques (*Macaca mulatta*).
724 *American Journal of Primatology*, **49**, e22881–16.

725 McDonald, D.B. (2007) Predicting fate from early connectivity in a social network. *Proceedings*
726 *of the National Academy of Sciences*, **104**, 10910–10914.

727 Nicolaus, M., Michler, S.P.M., Jalvingh, K.M., Ubels, R., van der Velde, M., Komdeur, J., Both,
728 C. & Tinbergen, J.M. (2012) Social environment affects juvenile dispersal in great tits (*Parus*
729 *major*). *Journal of Animal Ecology*, **81**, 827–837.

730 Nunez, C.M.V., Adelman, J.S. & Rubenstein, D.I. (2015) Sociality increases juvenile survival
731 after a catastrophic event in the feral horse (*Equus caballus*). *Behavioral Ecology*, **26**, 138–
732 147.

733 O'brien, R.M. (2007) A Caution Regarding Rules of Thumb for Variance Inflation Factors.
734 *Quality & Quantity*, **41**, 673–690.

735 Ponzi, D., Zilioli, S., Mehta, P.H., Maslov, A. & Watson, N.V. (2016) Social network centrality
736 and hormones: The interaction of testosterone and cortisol. *Psychoneuroendocrinology*, **68**,
737 6–13.

738 R Core Team. (2019) R: A language and environment for statistical computing.

739 Royle, N.J., Pike, T.W., Heeb, P., Richner, H. & Kolliker, M. (2012) Offspring social network
740 structure predicts fitness in families. *Proceedings of the Royal Society B*, **279**, 4914–4922.

741 Sachser, N., Kaiser, S. & Hennessy, M.B. (2013) Behavioural profiles are shaped by social
742 experience: when, how and why. *Philosophical Transactions: Biological Sciences*, **368**, 1–
743 11.

744 Silk, J.B. (2003) Social Bonds of Female Baboons Enhance Infant Survival. *Science*, **302**, 1231–
745 1234.

746 Silk, J.B., Beehner, J.C., Bergman, T.J., Crockford, C., Engh, A.L., Moscovice, L.R., Wittig,
747 R.M., Seyfarth, R.M. & Cheney, D.L. (2010) Strong and consistent social bonds enhance the
748 longevity of female baboons. *Current biology*, **20**, 1359–1361.

749 Silk, J.B., Seyfarth, R.M. & Cheney, D.L. (2018) Quality versus quantity: do weak bonds
750 enhance the fitness of female baboons? *YANBE*, **140**, 207–211.

751 Smale, L., Frank, L.G. & Holekamp, K.E. (1999) Ontogeny of dominance in free-living spotted
752 hyaenas: juvenile rank relations with adult females and immigrant males. *Animal behaviour*,
753 **46**, 467–477.

754 Smale, L., Nunes, S. & Holekamp, K.E. (1997) Sexually dimorphic dispersal in mammals:
755 patterns, causes, and consequences. *Advances in the Study of Behavior*, **26**, 181–250.

756 Smith, J.E., Kolowski, J.M., Graham, K.E., Dawes, S.E. & Holekamp, K.E. (2008) Social and
757 ecological determinants of fission–fusion dynamics in the spotted hyaena. *Animal behaviour*,
758 **76**, 619–636.

759 Smith, J.E., Memenis, S.K. & Holekamp, K.E. (2007) Rank-related partner choice in the fission–
760 fusion society of the spotted hyena (*Crocuta crocuta*). *Behavioral Ecology and*
761 *Sociobiology*, **61**, 753–765.

762 Smith, J.E., Powning, K.S., Dawes, S.E., Estrada, J.R., Hopper, A.L., Piotrowski, S.L. &
763 Holekamp, K.E. (2011) Greetings promote cooperation and reinforce social bonds among
764 spotted hyaenas. *Animal behaviour*, **81**, 401–415.

765 Stanton, M.A. & Mann, J. (2012) Early social networks predict survival in wild bottlenose
766 dolphins. *PLoS ONE*, **7**, e47508.

767 Strauss, E.D. & Holekamp, K.E. (2019a) Inferring longitudinal hierarchies: Framework and
768 methods for studying the dynamics of dominance (ed A Jackson). *Journal of Animal*
769 *Ecology*, **61**, 489–16.

770 Strauss, E.D. & Holekamp, K.E. (2019b) Social alliances improve rank and fitness in
771 convention-based societies. *Proceedings of the National Academy of Sciences*, **88**,
772 201810384–6.

773 Swanson, E.M., Dworkin, I. & Holekamp, K.E. (2011) Lifetime selection on a hypoallometric
774 size trait in the spotted hyena. *Proceedings of the Royal Society B*, **278**, 3277–3285.

775 Swanson, E.M., McElhinny, T.L., Dworkin, I., Weldele, M.L., Glickman, S.E. & Holekamp,
776 K.E. (2013) Ontogeny of sexual size dimorphism in the spotted hyena (*Crocuta crocuta*).
777 *Journal of Mammalogy*, **94**, 1298–1310.

778 Szipl, G., Depenau, M., Kotrschal, K., Hemetsberger, J. & Frigerio, D. (2019) Costs and benefits
779 of social connectivity in juvenile Greylag geese. *Scientific reports*, **9**, 1–10.

780 Szykman, M., Engh, A.L., Van Horn, R.C., Boydston, E.E., Scribner, K.T. & Holekamp, K.E.
781 (2003) Rare male aggression directed toward females in a female-dominated society: Baiting
782 behavior in the spotted hyena. *Aggressive Behavior*, **29**, 457–474.

783 Szykman, M., Engh, A.L., Van Horn, R., Funk, S., Scribner, K. & Holekamp, K.E. (2001)
784 Association patterns among male and female spotted hyenas (*Crocuta crocuta*) reflect male
785 mate choice. *Behavioral Ecology and Sociobiology*, **50**, 231–238.

786 Taborsky, B., Arnold, C., Junker, J. & Tschopp, A. (2012) The early social environment affects
787 social competence in a cooperative breeder. *YANBE*, **83**, 1067–1074.

788 Tanner, J.B., Zelditch, M.L., Lundrigan, B.L. & Holekamp, K.E. (2009) Ontogenetic change in
789 skull morphology and mechanical advantage in the spotted hyena (*Crocuta crocuta*). *Journal
790 of Morphology*, **271**, 353–365.

791 Tung, J., Archie, E.A., Altmann, J. & Alberts, S.C. (2016) Cumulative early life adversity
792 predicts longevity in wild baboons. *Nature communications*, **7**, 11181.

793 Turner, J.W., Bills, P.S. & Holekamp, K.E. (2018) Ontogenetic change in determinants of social
794 network position in the spotted hyena. *Behavioral Ecology and Sociobiology*, **72**, 1–15.

795 Vandeleest, J.J., Beisner, B.A., Hannibal, D.L., Nathman, A.C., Capitanio, J.P., Hsieh, F., Atwill,
796 E.R. & McCowan, B. (2016) Decoupling social status and status certainty effects on health
797 in macaques: a network approach. *PeerJ*, **4**, e2394–25.

798 Vullioud, C., Davidian, E., Wachter, B., Rousset, F., Courtiol, A. & Höner, O.P. (2018) Social
799 support drives female dominance in the spotted hyaena. *Nature Ecology & Evolution*, **3**, 1–9.

800 Wasserstein, R.L., Schirm, A.L. & Lazar, N.A. (2019) Moving to a World Beyond “ $p < 0.05$.”
801 *The American Statistician*, **73**, 1–19.

802 Watts, H.E., Tanner, J.B., Lundrigan, B.L. & Holekamp, K.E. (2009) Post-weaning maternal
803 effects and the evolution of female dominance in the spotted hyena. *Proceedings of the
804 Royal Society B*, **276**, 2291–2298.

805 Wey, T.W.-T., Burger, J.R., Ebensperger, L.A. & Hayes, L.D. (2013) Reproductive correlates of
806 social network variation in plurally breeding degus (*Octodon degus*). *YANBE*, **85**, 1407–
807 1414.

808 White, D.J., Gersick, A.S. & Snyder-Mackler, N. (2012) Social networks and the development of
809 social skills in cowbirds. *Philosophical Transactions of the Royal Society B: Biological
810 Sciences*.

811 Whitehead, H. & James, R. (2015) Generalized affiliation indices extract affiliations from social
812 network data (ed R Freckleton). *Methods in Ecology and Evolution*, **6**, 836–844.

813 Yoshida, K., Van Meter, P.E. & Holekamp, K.E. (2016) Variation among free-living spotted
814 hyenas in three personality traits. *Behaviour*, **153**, 1665–1722.